1
|
Stadler K, Ilatovskaya DV. Renal Epithelial Mitochondria: Implications for Hypertensive Kidney Disease. Compr Physiol 2023; 14:5225-5242. [PMID: 38158371 PMCID: PMC11194858 DOI: 10.1002/cphy.c220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.
Collapse
Affiliation(s)
- Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Sindhu T, Rajamanikandan S, Jeyakanthan J, Pal D. Investigation of protein-ligand binding motions through protein conformational morphing and clustering of cytochrome bc1-aa3 super complex. J Mol Graph Model 2023; 118:108347. [PMID: 36208591 DOI: 10.1016/j.jmgm.2022.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Cytochrome b (QcrB) is considered an essential subunit in the electron transport chain that coordinates the action of the entire cytochrome bc1 oxidase. It has been identified as an attractive drug target for a new promising clinical candidate Q203 that depletes the intracellular ATP levels in the bacterium, Mycobacterium tuberculosis. However, single point polymorphism (T313A/I) near the quinol oxidation site of QcrB developed resistance to Q203. In the present study, we analyze the structural changes and drug-resistance mechanism of QcrB due to the point mutation in detail through conformational morphing and molecular docking studies. By morphing, we generated conformers between the open and closed state of the electron transporting cytochrome bc1-aa3 super complex. We clustered them to identify four intermediate structures and relevant intra- and intermolecular motions that may be of functional relevance, especially the binding of Q203 in wild and mutant QcrB intermediate structures and their alteration in developing drug resistance. The difference in the binding score and hydrogen bond interactions between Q203 and the wild-type and mutant intermediate structures of QcrB from molecular docking studies showed that the point mutation T313A severely affected the binding affinity of the candidate drug. Together, the findings provide an in-depth understanding of QcrB inhibition in different conformations, including closed, intermediate, and open states of cytochrome bc1-aa3 super complex in Mycobacterium tuberculosis at the atomic level. We also obtain insights for designing QcrB and cytochrome bc1-aa3 inhibitors as potential therapeutics that may combat drug resistance in tuberculosis.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sundarraj Rajamanikandan
- Research and Development Wing, Sree Balaji Medical College and Hospital (BIHER), Chennai, Tamil Nadu, India
| | | | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
3
|
Sindhu T, Debnath P. Cytochrome bc1-aa3 oxidase supercomplex as emerging and potential drug target against tuberculosis. Curr Mol Pharmacol 2021; 15:380-392. [PMID: 34602044 DOI: 10.2174/1874467214666210928152512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
The cytochrome bc1-aa3 supercomplex plays an essential role in the cellular respiratory system of Mycobacterium Tuberculosis. It transfers electrons from menaquinol to cytochrome aa3 (Complex IV) via cytochrome bc1 (Complex III), which reduces the oxygen. The electron transfer from a variety of donors into oxygen through the respiratory electron transport chain is essential to pump protons across the membrane creating an electrochemical transmembrane gradient (proton motive force, PMF) that regulates the synthesis of ATP via the oxidative phosphorylation process. Cytochrome bc1-aa3 supercomplex in M. tuberculosis is, therefore, a major drug target for antibiotic action. In recent years, several respiratory chain components have been targeted for developing new candidate drugs, illustrating the therapeutic potential of obstructing energy conversion of M. tuberculosis. The recently available cryo-EM structure of mycobacterial cytochrome bc1-aa3 supercomplex with open and closed conformations has opened new avenues for understanding its structure and function for developing more effective, new therapeutics against pulmonary tuberculosis. In this review, we discuss the role and function of several components, subunits, and drug targeting elements of the supercomplex cytochrome bc1-aa3, and its potential inhibitors in detail.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| | - Pal Debnath
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| |
Collapse
|
4
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Pagacz J, Broniec A, Wolska M, Osyczka A, Borek A. ROS signaling capacity of cytochrome bc 1: Opposing effects of adaptive and pathogenic mitochondrial mutations. Free Radic Biol Med 2021; 163:243-254. [PMID: 33352219 DOI: 10.1016/j.freeradbiomed.2020.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/06/2023]
Abstract
Cytochrome bc1, also known as mitochondrial complex III, is considered to be one of the important producers of reactive oxygen species (ROS) in living organisms. Under physiological conditions, a certain level of ROS produced by mitochondrial electron transport chain (ETC) might be beneficial and take part in cellular signaling. However, elevated levels of ROS might exhibit negative effects, resulting in cellular damage. It is well known that inhibiting the electron flow within mitochondrial complex III leads to high production of ROS. However, superoxide production by cytochrome bc1 in a non-inhibited system remained controversial. Here, we propose a novel method for ROS detection in ETC hybrid system in solution comprising bacterial cytochrome bc1 and mitochondrial complex IV. We clearly show that non-inhibited cytochrome bc1 generates ROS and that adaptive and pathogenic mitochondrial mutations suppress and enhance ROS production, respectively. We also noted that cytochrome bc1 produces ROS in a rate-dependent manner and that the mechanism of ROS generation changes according to the rate of operation of the enzyme. This dependency has not yet been reported, but seems to be crucial when discussing ROS signaling originating from mitochondria.
Collapse
Affiliation(s)
- Jakub Pagacz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Broniec
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Wolska
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
6
|
Manickam P, Kaushik A, Karunakaran C, Bhansali S. Recent advances in cytochrome c biosensing technologies. Biosens Bioelectron 2016; 87:654-668. [PMID: 27619529 DOI: 10.1016/j.bios.2016.09.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/27/2022]
Abstract
This review is an attempt, for the first time, to describe advancements in sensing technology for cytochrome c (cyt c) detection, at point-of-care (POC) application. Cyt c, a heme containing metalloprotein is located in the intermembrane space of mitochondria and released into bloodstream during pathological conditions. The release of cyt c from mitochondria is a key initiative step in the activation of cell death pathways. Circulating cyt c levels represents a novel in-vivo marker of mitochondrial injury after resuscitation from heart failure and chemotherapy. Thus, cyt c detection is not only serving as an apoptosis biomarker, but also is of great importance to understand certain diseases at cellular level. Various existing techniques such as enzyme-linked immunosorbent assays (ELISA), Western blot, high performance liquid chromatography (HPLC), spectrophotometry and flow cytometry have been used to estimate cyt c. However, the implementation of these techniques at POC application is limited due to longer analysis time, expensive instruments and expertise needed for operation. To overcome these challenges, significant efforts are being made to develop electrochemical biosensing technologies for fast, accurate, selective, and sensitive detection of cyt c. Presented review describes the cutting edge technologies available in the laboratories to detect cyt c. The recent advancements in designing and development of electrochemical cyt c biosensors for the quantification of cyt c are also discussed. This review also highlights the POC cyt c biosensors developed recently, that would prove of interest to biologist and therapist to get real time informatics needed to evaluate death process, diseases progression, therapeutics and processes related with mitochondrial injury.
Collapse
Affiliation(s)
- Pandiaraj Manickam
- Bio-MEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA.
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Chandran Karunakaran
- Biomedical Research Laboratory, Department of Chemistry, VHNSN College (Autonomous), Virudhunagar, Tamil Nadu, India
| | - Shekhar Bhansali
- Bio-MEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| |
Collapse
|
7
|
Ekiert R, Borek A, Kuleta P, Czernek J, Osyczka A. Mitochondrial disease-related mutations at the cytochrome b-iron-sulfur protein (ISP) interface: Molecular effects on the large-scale motion of ISP and superoxide generation studied in Rhodobacter capsulatus cytochrome bc1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1102-1110. [PMID: 27032290 PMCID: PMC4906154 DOI: 10.1016/j.bbabio.2016.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/06/2023]
Abstract
One of the important elements of operation of cytochrome bc1 (mitochondrial respiratory complex III) is a large scale movement of the head domain of iron–sulfur protein (ISP-HD), which connects the quinol oxidation site (Qo) located within the cytochrome b, with the outermost heme c1 of cytochrome c1. Several mitochondrial disease-related mutations in cytochrome b are located at the cytochrome b-ISP-HD interface, thus their molecular effects can be associated with altered motion of ISP-HD. Using purple bacterial model, we recently showed that one of such mutations — G167P shifts the equilibrium position of ISP-HD towards positions remote from the Qo site as compared to the native enzyme [Borek et al., J. Biol. Chem. 290 (2015) 23781-23792]. This resulted in the enhanced propensity of the mutant to generate reactive oxygen species (ROS) which was explained on the basis of the model evoking “semireverse” electron transfer from heme bL to quinone. Here we examine another mutation from that group — G332D (G290D in human), finding that it also shifts the equilibrium position of ISP-HD in the same direction, however displays less of the enhancement in ROS production. We provide spectroscopic indication that G332D might affect the electrostatics of interaction between cytochrome b and ISP-HD. This effect, in light of the measured enzymatic activities and electron transfer rates, appears to be less severe than structural distortion caused by proline in G167P mutant. Comparative analysis of the effects of G332D and G167P confirms a general prediction that mutations located at the cytochrome b-ISP-HD interface influence the motion of ISP-HD and indicates that “pushing” ISP-HD away from the Qo site is the most likely outcome of this influence. It can also be predicted that an increase in ROS production associated with the “pushing” effect is quite sensitive to overall severity of this change with more active mutants being generally more protected against elevated ROS. This article is part of a Special Issue entitled ‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2–6, 2016’, edited by Prof. Paolo Bernardi. Several mitochondrial mutations are located at the cytochrome b-ISP interface. We compare molecular effects of two mutations from that group. In both mutants ISP is shifted away from the Qo catalytic site. This effect is generally associated with increased ROS production. More active mutants are more protected against elevated ROS.
Collapse
Affiliation(s)
- Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Czernek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Borek A, Kuleta P, Ekiert R, Pietras R, Sarewicz M, Osyczka A. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide. J Biol Chem 2015; 290:23781-92. [PMID: 26245902 PMCID: PMC4583038 DOI: 10.1074/jbc.m115.661314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which “semireverse” electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P.
Collapse
Affiliation(s)
- Arkadiusz Borek
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Robert Ekiert
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Liemburg-Apers DC, Willems PHGM, Koopman WJH, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015; 89:1209-26. [PMID: 26047665 PMCID: PMC4508370 DOI: 10.1007/s00204-015-1520-y] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans.
Collapse
Affiliation(s)
- Dania C. Liemburg-Apers
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sander Grefte
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- />Department of Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
10
|
Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015; 95:219-43. [PMID: 25540143 PMCID: PMC4281590 DOI: 10.1152/physrev.00006.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
Quinlan CL, Goncalves RLS, Hey-Mogensen M, Yadava N, Bunik VI, Brand MD. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 2014; 289:8312-25. [PMID: 24515115 DOI: 10.1074/jbc.m113.545301] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD(+) or NADH at about the same operating redox potential as the NADH/NAD(+) pool and comprise the NADH/NAD(+) isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)(+) ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I.
Collapse
Affiliation(s)
- Casey L Quinlan
- From The Buck Institute for Research on Aging, Novato, California 94945
| | | | | | | | | | | |
Collapse
|
12
|
Tikkanen M, Mekala NR, Aro EM. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:210-5. [DOI: 10.1016/j.bbabio.2013.10.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
13
|
Vyssokikh MY, Chernyak BV, Domnina LV, Esipov DS, Ivanova OY, Korshunova GA, Symonyan RA, Skulachev MV, Zinevich TV, Skulachev VP. SkBQ — Prooxidant addressed to mitochondria. BIOCHEMISTRY (MOSCOW) 2013; 78:1366-70. [DOI: 10.1134/s0006297913120079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Vennam PR, Fisher N, Krzyaniak MD, Kramer DM, Bowman MK. A caged, destabilized, free radical intermediate in the q-cycle. Chembiochem 2013; 14:1745-53. [PMID: 24009094 PMCID: PMC3951126 DOI: 10.1002/cbic.201300265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Indexed: 11/12/2022]
Abstract
The Rieske/cytochrome b complexes, also known as cytochrome bc complexes, catalyze a unique oxidant-induced reduction reaction at their quinol oxidase (Qo ) sites, in which substrate hydroquinone reduces two distinct electron transfer chains, one through a series of high-potential electron carriers, the second through low-potential cytochrome b. This reaction is a critical step in energy storage by the Q-cycle. The semiquinone intermediate in this reaction can reduce O2 to produce deleterious superoxide. It is yet unknown how the enzyme controls this reaction, though numerous models have been proposed. In previous work, we trapped a Q-cycle semiquinone anion intermediate, termed SQo , in bacterial cytochrome bc1 by rapid freeze-quenching. In this work, we apply pulsed-EPR techniques to determine the location and properties of SQo in the mitochondrial complex. In contrast to semiquinone intermediates in other enzymes, SQo is not thermodynamically stabilized, and can even be destabilized with respect to solution. It is trapped in Qo at a site that is distinct from previously described inhibitor-binding sites, yet sufficiently close to cytochrome bL to allow rapid electron transfer. The binding site and EPR analyses show that SQo is not stabilized by hydrogen bonds to proteins. The formation of SQo involves "stripping" of both substrate -OH protons during the initial oxidation step, as well as conformational changes of the semiquinone and Qo proteins. The resulting charged radical is kinetically trapped, rather than thermodynamically stabilized (as in most enzymatic semiquinone species), conserving redox energy to drive electron transfer to cytochrome bL while minimizing certain Q-cycle bypass reactions, including oxidation of prereduced cytochrome b and reduction of O2 .
Collapse
Affiliation(s)
- Preethi R. Vennam
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| | - Nicholas Fisher
- Biochemistry and Molecular Biology and the MSU-DOE Plant Research Laboratory Michigan State University East Lansing, MI 48824, United States
| | - Matthew D. Krzyaniak
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| | - David M. Kramer
- Biochemistry and Molecular Biology and the MSU-DOE Plant Research Laboratory Michigan State University East Lansing, MI 48824, United States
| | - Michael K. Bowman
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| |
Collapse
|
15
|
Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 2013; 1:304-12. [PMID: 24024165 PMCID: PMC3757699 DOI: 10.1016/j.redox.2013.04.005] [Citation(s) in RCA: 428] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ), with small contributions from the flavin site in complex I (site IF) and the quinol oxidation site in complex III (site IIIQo). However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF) was a major contributor (together with sites IF and IIIQo), and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.
Collapse
Key Words
- CDNB, 1-chloro-2,4-dinitrobenzene
- Cytochrome b
- ETF, electron transferring flavoprotein
- ETF:QOR, ETF:ubiquinone oxidoreductase
- Eh, redox potential
- Hydrogen peroxide
- IF, flavin site of complex I
- IIF, flavin site of complex II
- IIIQo, quinol oxidation site of complex III
- IQ, quinone-binding site of complex I
- NADH
- OGDH, 2-oxoglutarate dehydrogenase
- PDH, pyruvate dehydrogenase
- Q, ubiquinone
- QH2, ubiquinol
- ROS, reactive oxygen species
- Respiratory complexes
- Superoxide
- Ubiquinone
- mGPDH, mitochondrial glycerol 3-phosphate dehydrogenase
Collapse
Affiliation(s)
- Casey L. Quinlan
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
- Correspondence to: The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA. Tel.: +1 415 493 3676.
| | | | - Martin Hey-Mogensen
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Biomedical Sciences, Center for Healthy Aging, Copenhagen University, Denmark
| | - Adam L. Orr
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Martin D. Brand
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
16
|
Lanciano P, Khalfaoui-Hassani B, Selamoglu N, Ghelli A, Rugolo M, Daldal F. Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1332-9. [PMID: 23542447 DOI: 10.1016/j.bbabio.2013.03.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/14/2013] [Accepted: 03/20/2013] [Indexed: 12/23/2022]
Abstract
In this mini review, we briefly survey the molecular processes that lead to reactive oxygen species (ROS) production by the respiratory complex III (CIII or cytochrome bc1). In particular, we discuss the "forward" and "reverse" electron transfer pathways that lead to superoxide generation at the quinol oxidation (Qo) site of CIII, and the components that affect these reactions. We then describe and compare the properties of a bacterial (Rhodobacter capsulatus) mutant enzyme producing ROS with its mitochondrial (human cybrids) counterpart associated with a disease. The mutation under study is located at a highly conserved tyrosine residue of cytochrome b (Y302C in R. capsulatus and Y278C in human mitochondria) that is at the heart of the quinol oxidation (Qo) site of CIII. Similarities of the major findings of bacterial and human mitochondrial cases, including decreased catalytic activity of CIII, enhanced ROS production and ensuing cellular responses and damages, are remarkable. This case illustrates the usefulness of undertaking parallel and complementary studies using biologically different yet evolutionarily related systems, such as α-proteobacteria and human mitochondria. It progresses our understanding of CIII mechanism of function and ROS production, and underlines the possible importance of supra-molecular organization of bacterial and mitochondrial respiratory chains (i.e., respirasomes) and their potential disease-associated protective roles. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Pascal Lanciano
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
17
|
García-Sánchez MA, Rojas-González F, Menchaca-Campos EC, Tello-Solís SR, Quiroz-Segoviano RIY, Diaz-Alejo LA, Salas-Bañales E, Campero A. Crossed and linked histories of tetrapyrrolic macrocycles and their use for engineering pores within sol-gel matrices. Molecules 2013; 18:588-653. [PMID: 23292327 PMCID: PMC6270341 DOI: 10.3390/molecules18010588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/20/2012] [Accepted: 12/25/2012] [Indexed: 11/17/2022] Open
Abstract
The crossed and linked histories of tetrapyrrolic macrocycles, interwoven with new research discoveries, suggest that Nature has found in these structures a way to ensure the continuity of life. For diverse applications porphyrins or phthalocyanines must be trapped inside solid networks, but due to their nature, these compounds cannot be introduced by thermal diffusion; the sol-gel method makes possible this insertion through a soft chemical process. The methodologies for trapping or bonding macrocycles inside pristine or organo-modified silica or inside ZrO₂ xerogels were developed by using phthalocyanines and porphyrins as molecular probes. The sizes of the pores formed depend on the structure, the cation nature, and the identities and positions of peripheral substituents of the macrocycle. The interactions of the macrocyclic molecule and surface Si-OH groups inhibit the efficient displaying of the macrocycle properties and to avoid this undesirable event, strategies such as situating the macrocycle far from the pore walls or to exchange the Si-OH species by alkyl or aryl groups have been proposed. Spectroscopic properties are better preserved when long unions are established between the macrocycle and the pore walls, or when oligomeric macrocyclic species are trapped inside each pore. When macrocycles are trapped inside organo-modified silica, their properties result similar to those displayed in solution and their intensities depend on the length of the alkyl chain attached to the matrix. These results support the prospect of tuning up the pore size, surface area, and polarity inside the pore cavities in order to prepare efficient catalytic, optical, sensoring, and medical systems. The most important feature is that research would confirm again that tetrapyrrolic macrocycles can help in the development of the authentic pore engineering in materials science.
Collapse
Affiliation(s)
- Miguel A García-Sánchez
- Departamento de Quimica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, D. F. 09340, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhu XQ, Li XT, Han SH, Mei LR. Conversion and Origin of Normal and Abnormal Temperature Dependences of Kinetic Isotope Effect in Hydride Transfer Reactions. J Org Chem 2012; 77:4774-83. [DOI: 10.1021/jo3005952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao-Qing Zhu
- State Key Laboratory
of Elemento-Organic Chemistry,
Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiu-Tao Li
- State Key Laboratory
of Elemento-Organic Chemistry,
Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Su-Hui Han
- State Key Laboratory
of Elemento-Organic Chemistry,
Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Lian-Rui Mei
- State Key Laboratory
of Elemento-Organic Chemistry,
Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Berry EA, Huang LS. Conformationally linked interaction in the cytochrome bc(1) complex between inhibitors of the Q(o) site and the Rieske iron-sulfur protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1349-63. [PMID: 21575592 DOI: 10.1016/j.bbabio.2011.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
The modified Q cycle mechanism accounts for the proton and charge translocation stoichiometry of the bc(1) complex, and is now widely accepted. However the mechanism by which the requisite bifurcation of electron flow at the Q(o) site reaction is enforced is not clear. One of several proposals involves conformational gating of the docking of the Rieske ISP at the Q(o) site, controlled by the stage of the reaction cycle. Effects of different Q(o)-site inhibitors on the position of the ISP seen in crystals may reflect the same conformational mechanism, in which case understanding how different inhibitors control the position of the ISP may be a key to understanding the enforcement of bifurcation at the Q(o) site (Table 1). Here we examine the available structures of cytochrome bc(1) with different Q(o)-site inhibitors and different ISP positions to look for clues to this mechanism. The effect of ISP removal on binding affinity of the inhibitors stigmatellin and famoxadone suggest a "mutual stabilization" of inhibitor binding and ISP docking, however this thermodynamic observation sheds little light on the mechanism. The cd(1) helix of cytochrome b moves in such a way as to accommodate docking when inhibitors favoring docking are bound, but it is impossible with the current structures to say whether this movement of α-cd(1) is a cause or result of ISP docking. One component of the movement of the linker between E and F helices also correlates with the type of inhibitor and ISP position, and seems to be related to the H-bonding pattern of Y279 of cytochrome b. An H-bond from Y279 to the ISP, and its possible modulation by movement of F275 in the presence of famoxadone and related inhibitors, or its competition with an alternate H-bond to I269 of cytochrome b that may be destabilized by bound famoxadone, suggest other possible mechanisms. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
Affiliation(s)
- Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | | |
Collapse
|
20
|
Mazat JP, Ransac S. [The cytochrome bc1 complex in the mitochondrial respiratory chain functions according to the Q cycle hypothesis of Mitchell: the proof using a stochastic approach?]. Med Sci (Paris) 2011; 26:1079-86. [PMID: 21187048 DOI: 10.1051/medsci/201026121079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bc1 complex is a central complex in the mitochondrial respiratory chain. It links the electrons transfer from ubiquinol (or coenzyme Q) to cytochrome c and proton translocation across the inner mitochondrial membrane. It is widely agreed that the "Q-cycle mechanism" proposed by Mitchell correctly describes the bc1 complex working. It is based on an unexpected separation of the two electrons coming from the coenzyme Q bound at the Q0 site of the bc1 complex. Using the stochastic approach of Gillespie and the known spatial structure of bc1 complexes with the kinetic parameters described by Moser and Dutton we demonstrated the natural emergence of the Q-cycle mechanism and the quasi absence of short-circuits in the functional dimer of bc1 complex without the necessity to invoke any additional mechanism. This approach gives a framework which is well adapted to the modelling of all oxido-reduction reactions of the respiratory chain complexes, normal or mutant.
Collapse
Affiliation(s)
- Jean-Pierre Mazat
- Inserm U688, Université de Bordeaux 2, 146, rue Léo-Saignat, F 33076, Bordeaux Cedex, France.
| | | |
Collapse
|
21
|
Ransac S, Mazat JP. How does antimycin inhibit the bc1 complex? A part-time twin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1849-57. [DOI: 10.1016/j.bbabio.2010.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 10/19/2022]
|
22
|
Zheng Z, Dutton PL, Gunner MR. The measured and calculated affinity of methyl- and methoxy-substituted benzoquinones for the Q(A) site of bacterial reaction centers. Proteins 2010; 78:2638-54. [PMID: 20607696 DOI: 10.1002/prot.22779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron, and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality, and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of 10 oxidized, neutral benzoquinones were measured for the high affinity Q(A) site in the detergent-solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multiconformation Continuum Electrostatics was then used to calculate their relative binding free energies by grand canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand, and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics, and accessible surface area-dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled-ligand and side-chain motions. The calculations match experiment with an root mean square deviation (RMSD) of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using a solvent-accessible surface area-dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Physics, City College of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
23
|
Sarewicz M, Borek A, Cieluch E, Swierczek M, Osyczka A. Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc₁. Implications for the mechanism of superoxide production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1820-7. [PMID: 20637719 PMCID: PMC3057645 DOI: 10.1016/j.bbabio.2010.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/08/2010] [Indexed: 11/09/2022]
Abstract
In addition to its bioenergetic function of building up proton motive force, cytochrome bc1 can be a source of superoxide. One-electron reduction of oxygen is believed to occur from semiquinone (SQo) formed at the quinone oxidation/reduction Qo site (Qo) as a result of single-electron oxidation of quinol by the iron–sulfur cluster (FeS) (semiforward mechanism) or single-electron reduction of quinone by heme bL (semireverse mechanism). It is hotly debated which mechanism plays a major role in the overall production of superoxide as experimental data supporting either reaction exist. To evaluate a contribution of each of the mechanisms we first measured superoxide production under a broad range of conditions using the mutants of cytochrome bc1 that severely impeded the oxidation of FeS by cytochrome c1, changed density of FeS around Qo by interfering with its movement, or combined these two effects together. We then compared the amount of generated superoxide with mathematical models describing either semiforward or semireverse mechanism framed within a scheme assuming competition between the internal reactions at Qo and the leakage of electrons on oxygen. We found that only the model of semireverse mechanism correctly reproduced the experimentally measured decrease in ROS for the FeS motion mutants and increase in ROS for the mutants with oxidation of FeS impaired. This strongly suggests that this mechanism dominates in setting steady-state levels of SQo that present a risk of generation of superoxide by cytochrome bc1. Isolation of this reaction sequence from multiplicity of possible reactions at Qo helps to better understand conditions under which complex III might contribute to ROS generation in vivo.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | | | |
Collapse
|
24
|
Cape JL, Aidasani D, Kramer DM, Bowman MK. Substrate redox potential controls superoxide production kinetics in the cytochrome bc complex. Biochemistry 2009; 48:10716-23. [PMID: 19810688 DOI: 10.1021/bi901205w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Q-cycle mechanism of the cytochrome bc(1) complex maximizes energy conversion during the transport of electrons from ubiquinol to cytochrome c (or alternate physiological acceptors), yet important steps in the Q-cycle are still hotly debated, including bifurcated electron transport, the high yield and specificity of the Q-cycle despite possible short-circuits and bypass reactions, and the rarity of observable intermediates in the oxidation of quinol. Mounting evidence shows that some bypass reactions producing superoxide during oxidation of quinol at the Q(o) site diverge from the Q-cycle rather late in the bifurcated reaction and provide an additional means of studying initial reactions of the Q-cycle. Bypass reactions offer more scope for controlling and manipulating reaction conditions, e.g., redox potential, because they effectively isolate or decouple the Q-cycle initial reactions from later steps, preventing many complications and interactions. We examine the dependence of oxidation rate on substrate redox potential in the yeast cytochrome bc(1) complex and find that the rate limitation occurs at the level of direct one-electron oxidation of quinol to semiquinone by the Rieske protein. Oxidation of semiquinone and reduction of cyt b or O(2) are subsequent, distinct steps. These experimental results are incompatible with models in which the transfer of electrons to the Rieske protein is not a distinct step preceding transfer of electrons to cytochrome b, and with conformational gating models that produce superoxide by different rate-limiting reactions from the normal Q-cycle.
Collapse
Affiliation(s)
- Jonathan L Cape
- Institute of Biological Chemistry, Washington State University, 289 Clark Hall, Pullman, Washington 99164-6314, USA
| | | | | | | |
Collapse
|
25
|
Van Nieuwenhuyse P, Van Leeuwen T, Khajehali J, Vanholme B, Tirry L. Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. PEST MANAGEMENT SCIENCE 2009; 65:404-412. [PMID: 19165831 DOI: 10.1002/ps.1705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Resistance of Tetranychus urticae Koch to bifenazate was recently linked with mutations in the mitochondrial cytochrome b Q(o) pocket, suggesting that bifenazate acts as a Q(o) inhibitor (Q(o)I). Since these mutations might cause cross-resistance to the known acaricidal Q(o)I acequinocyl and fluacrypyrim, resistance levels and inheritance patterns were investigated in several bifenazate-susceptible and bifenazate-resistant strains with different mutations in the cd1 and ef helices aligning the Q(o) pocket. RESULTS Cross-resistance to acequinocyl in two bifenazate-resistant strains was shown to be maternally inherited and caused by the combination of two specific mutations in the cytochrome b Q(o) pocket. Although most investigated strains were resistant to fluacrypyrim, resistance was not inherited maternally, but as a monogenic autosomal highly dominant trait. As a consequence, there was no correlation between cytochrome b genotype and fluacrypyrim resistance. CONCLUSIONS Although there is no absolute cross-resistance between bifenazate, acequinocyl and fluacrypyrim, some bifenazate resistance mutations confer cross-resistance to acequinocyl. In the light of resistance development and management, high prudence is called for when alternating bifenazate and acequinocyl in the same crop. Maternally inherited cross-resistance between bifenazate and acequinocyl reinforces the likelihood of bifenazate acting as a mitochondrial complex III inhibitor at the Q(o) site.
Collapse
Affiliation(s)
- Pieter Van Nieuwenhuyse
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
26
|
The Cytochrome bc 1 and Related bc Complexes: The Rieske/Cytochrome b Complex as the Functional Core of a Central Electron/Proton Transfer Complex. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Gunner MR, Madeo J, Zhu Z. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers. J Bioenerg Biomembr 2008; 40:509-19. [PMID: 18979192 DOI: 10.1007/s10863-008-9179-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/31/2008] [Indexed: 11/29/2022]
Abstract
Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc(1) oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the Q(A) and Q(B) sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary Q(A) site ubiquinone is reduced only to the anionic semiquinone (Q(*-)) while in the secondary Q(B) site the product is the doubly reduced, doubly protonated quinol (QH(2)). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q(*-) while destabilizing Q(=) relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department, The City College of New York, New York, NY 10031, USA.
| | | | | |
Collapse
|
28
|
Covian R, Trumpower BL. Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1079-91. [PMID: 18471987 PMCID: PMC2607007 DOI: 10.1016/j.bbabio.2008.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/10/2008] [Accepted: 04/12/2008] [Indexed: 10/22/2022]
Abstract
The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School Hanover, New Hampshire 03755, U.S.A
| | - Bernard L. Trumpower
- Department of Biochemistry, Dartmouth Medical School Hanover, New Hampshire 03755, U.S.A
| |
Collapse
|
29
|
Ransac S, Parisey N, Mazat JP. The loneliness of the electrons in the bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1053-9. [DOI: 10.1016/j.bbabio.2008.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 04/15/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
|
30
|
Covian R, Trumpower BL. The dimeric structure of the cytochrome bc(1) complex prevents center P inhibition by reverse reactions at center N. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1044-52. [PMID: 18454936 DOI: 10.1016/j.bbabio.2008.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/18/2008] [Accepted: 04/07/2008] [Indexed: 11/25/2022]
Abstract
Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the b(H) heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c(1) reduction indicated that the b(H) hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of b(H) heme reduction of 33%-55% depending on the quinol/quinone ratio. The extent of initial cytochrome c(1) reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the b(H) hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the b(H) hemes was explained using kinetics in terms of the dimeric structure of the bc(1) complex which allows electrons to equilibrate between monomers.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA
| | | |
Collapse
|
31
|
Covian R, Zwicker K, Rotsaert FA, Trumpower BL. Asymmetric and Redox-specific Binding of Quinone and Quinol at Center N of the Dimeric Yeast Cytochrome bc1 Complex. J Biol Chem 2007; 282:24198-208. [PMID: 17584742 DOI: 10.1074/jbc.m700662200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome bc1 complex recycles one of the two electrons from quinol (QH2) oxidation at center P by reducing quinone (Q) at center N to semiquinone (SQ), which is bound tightly. We have analyzed the properties of SQ bound at center N of the yeast bc1 complex. The EPR-detectable signal, which reports SQ bound in the vicinity of reduced bH heme, was abolished by the center N inhibitors antimycin, funiculosin, and ilicicolin H, but was unchanged by the center P inhibitors myxothiazol and stigmatellin. After correcting for the EPR-silent SQ bound close to oxidized bH, we calculated a midpoint redox potential (Em) of approximately 90 mV for all bound SQ. Considering the Em values for bH and free Q, this result indicates that center N preferentially stabilizes SQ.bH(3+) complexes. This favors recycling of the electron coming from center P and also implies a >2.5-fold higher affinity for QH2 than for Q at center N, which would potentially inhibit bH oxidation by Q. Using pre-steady-state kinetics, we show that Q does not inhibit the initial rate of bH reduction by QH2 through center N, but does decrease the extent of reduction, indicating that Q binds only when bH is reduced, whereas QH2 binds when bH is oxidized. Kinetic modeling of these results suggests that formation of SQ at one center N in the dimer allows stabilization of SQ in the other monomer by Q reduction after intradimer electron transfer. This model allows maximum SQ.bH(3+) formation without inhibition of Q binding by QH2.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
32
|
Cape JL, Bowman MK, Kramer DM. A semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: importance for the Q-cycle and superoxide production. Proc Natl Acad Sci U S A 2007; 104:7887-92. [PMID: 17470780 PMCID: PMC1876542 DOI: 10.1073/pnas.0702621104] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cytochrome bc1 and related complexes are essential energy-conserving components of mitochondrial and bacterial electron transport chains. They orchestrate a complex sequence of electron and proton transfer reactions resulting in the oxidation of quinol, the reduction of a mobile electron carrier, and the translocation of protons across the membrane to store energy in an electrochemical proton gradient. The enzyme can also catalyze substantial rates of superoxide production, with deleterious physiological consequences. Progress on understanding these processes has been hindered by the lack of observable enzymatic intermediates. We report the first direct detection of a semiquinone radical generated by the Q(o) site using continuous wave and pulsed EPR spectroscopy. The radical is a ubisemiquinone anion and is sensitive to both specific inhibitors and mutations within the Q(o) site as well as O2, suggesting that it is the elusive intermediate responsible for superoxide production. Paramagnetic interactions show that the new semiquinone species is buried in the protein, probably in or near the Q(o) site but not strongly interacting with the 2Fe2S cluster. The semiquinone is substoichiometric, even with conditions optimized for its accumulation, consistent with recently proposed models where the semiquinone is destabilized to limit superoxide production. The discovery of this intermediate provides a critical tool to directly probe the elusive chemistry that takes place within the Q(o) site.
Collapse
Affiliation(s)
- Jonathan L. Cape
- *Institute of Biological Chemistry, Washington State University, 289 Clark Hall, Pullman, WA 99164-6314; and
| | - Michael K. Bowman
- *Institute of Biological Chemistry, Washington State University, 289 Clark Hall, Pullman, WA 99164-6314; and
- Department of Chemistry, University of Alabama, Shelby Hall 113A, P.O. Box 870336, Tuscaloosa, AL 35487-0336
| | - David M. Kramer
- *Institute of Biological Chemistry, Washington State University, 289 Clark Hall, Pullman, WA 99164-6314; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Forquer I, Covian R, Bowman MK, Trumpower BL, Kramer DM. Similar transition states mediate the Q-cycle and superoxide production by the cytochrome bc1 complex. J Biol Chem 2006; 281:38459-65. [PMID: 17008316 DOI: 10.1074/jbc.m605119200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria play critical roles in their respective electron transport chains. The quinol oxidase (Q(o)) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low potential cytochrome b heme and the "Rieske" iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a "Q-cycle" mechanism, which generates proton motive force for ATP synthesis. Since semiquinone intermediates of quinol oxidation are generally highly reactive, one of the key questions in this field is: how does the Q(o) site oxidize quinol without the production of deleterious side reactions including superoxide production? We attempt to test three possible general models to account for this behavior: 1) The Q(o) site semiquinone (or quinol-imidazolate complex) is unstable and thus occurs at a very low steady-state concentration, limiting O(2) reduction; 2) the Q(o) site semiquinone is highly stabilized making it unreactive toward oxygen; and 3) the Q(o) site catalyzes a quantum mechanically coupled two-electron/two-proton transfer without a semiquinone intermediate. Enthalpies of activation were found to be almost identical between the uninhibited Q-cycle and superoxide production in the presence of antimycin A in wild type. This behavior was also preserved in a series of mutants with altered driving forces for quinol oxidation. Overall, the data support models where the rate-limiting step for both Q-cycle and superoxide production is essentially identical, consistent with model 1 but requiring modifications to models 2 and 3.
Collapse
Affiliation(s)
- Isaac Forquer
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | |
Collapse
|
34
|
Covian R, Trumpower BL. Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc1 complex. J Biol Chem 2006; 281:30925-32. [PMID: 16908520 DOI: 10.1074/jbc.m604694200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have obtained evidence for conformational communication between ubiquinol oxidation (center P) and ubiquinone reduction (center N) sites of the yeast bc1 complex dimer by analyzing antimycin binding and heme bH reduction at center N in the presence of different center P inhibitors. When stigmatellin was occupying center P, concentration-dependent binding of antimycin occurred only to half of the center N sites. The remaining half of the bc1 complex bound antimycin with a slower rate that was independent of inhibitor concentration, indicating that a slow conformational change needed to occur before half of the enzyme could bind antimycin. In contrast, under conditions where the Rieske protein was not fixed proximal to heme bL at center P, all center N sites bound antimycin with fast and concentration-dependent kinetics. Additionally, the extent of fast cytochrome b reduction by menaquinol through center N in the presence of stigmatellin was approximately half of that observed when myxothiazol was bound at center P. The reduction kinetics of the bH heme by decylubiquinol in the presence of stigmatellin or myxothiazol were also consistent with a model in which fixation of the Rieske protein close to heme bL in both monomers allows rapid binding of ligands only to one center N. Decylubiquinol at high concentrations was able to abolish the biphasic binding of antimycin in the presence of stigmatellin but did not slow down antimycin binding rates. These results are discussed in terms of half-of-the-sites activity of the dimeric bc1 complex.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
35
|
Chen Y, Suzuki I. Electron transport pathways for the oxidation of endogenous substrate(s) in Acidithiobacillus ferrooxidans. Can J Microbiol 2006; 52:317-27. [PMID: 16699582 DOI: 10.1139/w05-128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidation of endogenous substrate(s) of Acidithiobacillus ferrooxidans with O2 or Fe3+ as electron acceptor was studied in the presence of uncouplers and electron transport inhibitors. Endogenous substrate was oxidized with a respiratory quotient (CO2 produced/O2 consumed) of 1.0, indicating its carbohydrate nature. The oxidation was inhibited by complex I inhibitors (rotenone, amytal, and piericidin A) only partially, but piericidin A inhibited the oxidation with Fe3+ nearly completely. The oxidation was stimulated by uncouplers, and the stimulated activity was more sensitive to inhibition by complex I inhibitors. HQNO (2-heptyl-4-hydroxyquinoline N-oxide) also stimulated the oxidation, and the stimulated respiration was more sensitive to KCN inhibition than uncoupler stimulated respiration. Fructose, among 20 sugars and sugar alcohols including glucose and mannose, was oxidized with a CO2/O2 ratio of 1.0 by the organism. Iron chelators in general stimulated endogenous respiration, but some of them reduced Fe3+ chemically, introducing complications. The results are discussed in view of a branched electron transport system of the organism and its possible control.
Collapse
Affiliation(s)
- Yongqiang Chen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada.
| | | |
Collapse
|
36
|
Cape JL, Bowman MK, Kramer DM. Understanding the cytochrome bc complexes by what they don't do. The Q-cycle at 30. TRENDS IN PLANT SCIENCE 2006; 11:46-55. [PMID: 16352458 DOI: 10.1016/j.tplants.2005.11.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/20/2005] [Accepted: 11/25/2005] [Indexed: 05/05/2023]
Abstract
The cytochrome (cyt) bc(1), b(6)f and related complexes are central components of the respiratory and photosynthetic electron transport chains. These complexes carry out an extraordinary sequence of electron and proton transfer reactions that conserve redox energy in the form of a trans-membrane proton motive force for use in synthesizing ATP and other processes. Thirty years ago, Peter Mitchell proposed a general turnover mechanism for these complexes, which he called the Q-cycle. Since that time, many opposing schemes have challenged the Q-cycle but, with the accumulation of large amounts of biochemical, kinetic, thermodynamic and high-resolution structural data, the Q-cycle has triumphed as the accepted model, although some of the intermediate steps are poorly understood and still controversial. One of the major research questions concerning the cyt bc(1) and b(6)f complexes is how these enzymes suppress deleterious and dissipative side reactions. In particular, most Q-cycle models involve reactive semiquinone radical intermediates that can reduce O(2) to superoxide and lead to cellular oxidative stress. Current models to explain the avoidance of side reactions involve unprecedented or unusual enzyme mechanisms, the testing of which will involve new theoretical and experimental approaches.
Collapse
Affiliation(s)
- Jonathan L Cape
- Institute of Biological Chemistry, Washington State University, 289 Clark Hall, Pullman, WA 99164-6314, USA
| | | | | |
Collapse
|
37
|
Cape JL, Strahan JR, Lenaeus MJ, Yuknis BA, Le TT, Shepherd JN, Bowman MK, Kramer DM. The respiratory substrate rhodoquinol induces Q-cycle bypass reactions in the yeast cytochrome bc(1) complex: mechanistic and physiological implications. J Biol Chem 2005; 280:34654-60. [PMID: 16087663 DOI: 10.1074/jbc.m507616200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial cytochrome bc(1) complex catalyzes the transfer of electrons from ubiquinol to cyt c while generating a proton motive force for ATP synthesis via the "Q-cycle" mechanism. Under certain conditions electron flow through the Q-cycle is blocked at the level of a reactive intermediate in the quinol oxidase site of the enzyme, resulting in "bypass reactions," some of which lead to superoxide production. Using analogs of the respiratory substrates ubiquinol-3 and rhodoquinol-3, we show that the relative rates of Q-cycle bypass reactions in the Saccharomyces cerevisiae cyt bc(1) complex are highly dependent by a factor of up to 100-fold on the properties of the substrate quinol. Our results suggest that the rate of Q-cycle bypass reactions is dependent on the steady state concentration of reactive intermediates produced at the quinol oxidase site of the enzyme. We conclude that normal operation of the Q-cycle requires a fairly narrow window of redox potentials with respect to the quinol substrate to allow normal turnover of the complex while preventing potentially damaging bypass reactions.
Collapse
Affiliation(s)
- Jonathan L Cape
- Institute of Biological Chemistry, Washingston State University, Pullman, Washington 99164-6340, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mulkidjanian AY. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:5-34. [PMID: 16005845 DOI: 10.1016/j.bbabio.2005.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/01/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, Max-von-Laue-Str. 3, D-60438 Frankfurt-am-Main, Germany.
| |
Collapse
|
39
|
Abstract
The single-electron chemistry of mitochondrial oxidative phosphorylation (ox-phos) by default generates reactive oxygen species (ROS). These ROS have roles in both physiologic cell signaling and numerous pathologic situations. One factor that has the potential to regulate ROS generation is the mild uncoupling of ox-phos, i.e., proton (H(+)) leak across the mitochondrial inner membrane. Proton leak has been shown to decrease ROS generation, whereas ROS have been shown to induce H(+) leak, and this suggests the existence of a feedback loop between ROS and H(+) leak. Interestingly, although H(+) leak is detrimental to ATP synthesis, it has been shown to be cytoprotective in several models of ischemic injury. Herein the molecular basis of both ROS generation and H(+) leak will be reviewed and the consequences of their interaction for mitochondrial function discussed.
Collapse
Affiliation(s)
- Paul S Brookes
- Department of Anesthesiology, University of Rochester, Medical Center Box 604, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|