1
|
Parikh R, Parikh S, Berzin D, Vaknine H, Ovadia S, Likonen D, Greenberger S, Scope A, Elgavish S, Nevo Y, Plaschkes I, Nizri E, Kobiler O, Maliah A, Zaremba L, Mohan V, Sagi I, Ashery-Padan R, Carmi Y, Luxenburg C, Hoheisel JD, Khaled M, Levesque MP, Levy C. Recycled melanoma-secreted melanosomes regulate tumor-associated macrophage diversification. EMBO J 2024; 43:3553-3586. [PMID: 38719996 PMCID: PMC11377571 DOI: 10.1038/s44318-024-00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 09/07/2024] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.
Collapse
Affiliation(s)
- Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- The Ragon Institute of Mass General, Massachusetts Institute of Technology (MIT), and Harvard, MA 02139, Cambridge, USA
| | - Daniella Berzin
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon, 58100, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daniela Likonen
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | | | - Alon Scope
- The Kittner Skin Cancer Screening and Research Institute, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv Universitygrid.12136.37, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Laureen Zaremba
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Chen Luxenburg
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mehdi Khaled
- INSERM 1279, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Wagistrasse 18, CH-8952, Schlieren, Switzerland
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
2
|
Badal KK, Zhao Y, Raveendra BL, Lozano-Villada S, Miller KE, Puthanveettil SV. PKA Activity-Driven Modulation of Bidirectional Long-Distance transport of Lysosomal vesicles During Synapse Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601272. [PMID: 38979384 PMCID: PMC11230415 DOI: 10.1101/2024.06.28.601272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The bidirectional long-distance transport of organelles is crucial for cell body-synapse communication. However, the mechanisms by which this transport is modulated for synapse formation, maintenance, and plasticity are not fully understood. Here, we demonstrate through quantitative analyses that maintaining sensory neuron-motor neuron synapses in the Aplysia gill-siphon withdrawal reflex is linked to a sustained reduction in the retrograde transport of lysosomal vesicles in sensory neurons. Interestingly, while mitochondrial transport in the anterograde direction increases within 12 hours of synapse formation, the reduction in lysosomal vesicle retrograde transport appears three days after synapse formation. Moreover, we find that formation of new synapses during learning induced by neuromodulatory neurotransmitter serotonin further reduces lysosomal vesicle transport within 24 hours, whereas mitochondrial transport increases in the anterograde direction within one hour of exposure. Pharmacological inhibition of several signaling pathways pinpoints PKA as a key regulator of retrograde transport of lysosomal vesicles during synapse maintenance. These results demonstrate that synapse formation leads to organelle-specific and direction specific enduring changes in long-distance transport, offering insights into the mechanisms underlying synapse maintenance and plasticity.
Collapse
Affiliation(s)
- Kerriann. K. Badal
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
- Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Yibo. Zhao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Bindu L Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sebastian Lozano-Villada
- Harriet L. Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Kyle. E. Miller
- Harriet L. Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Sathyanarayanan V. Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Chaudhary Y, Jain J, Gaur SK, Tembhurne P, Chandrasekar S, Dhanavelu M, Sehrawat S, Kaul R. Nucleocapsid Protein (N) of Peste des petits ruminants Virus (PPRV) Interacts with Cellular Phosphatidylinositol-3-Kinase (PI3K) Complex-I and Induces Autophagy. Viruses 2023; 15:1805. [PMID: 37766213 PMCID: PMC10536322 DOI: 10.3390/v15091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is an essential and highly conserved catabolic process in cells, which is important in the battle against intracellular pathogens. Viruses have evolved several ways to alter the host defense mechanisms. PPRV infection is known to modulate the components of a host cell's defense system, resulting in enhanced autophagy. In this study, we demonstrate that the N protein of PPRV interacts with the core components of the class III phosphatidylinositol-3-kinase (PI3K) complex-I and results in the induction of autophagy in the host cell over, thereby expressing this viral protein. Our data shows the interaction between PPRV-N protein and different core components of the autophagy pathway, i.e., VPS34, VPS15, BECN1 and ATG14L. The PPRV-N protein can specifically interact with VPS34 of the PI3K complex-I and colocalize with the proteins of PI3K complex-I in the same sub-cellular compartment, that is, in the cytoplasm. These interactions do not affect the intracellular localization of the different host proteins. The autophagy-related genes were transcriptionally modulated in PPRV-N-expressing cells. The expression of LC3B and SQSTM1/p62 was also modulated in PPRV-N-expressing cells, indicating the induction of autophagic activity. The formation of typical autophagosomes with double membranes was visualized by transmission electron microscopy in PPRV-N-expressing cells. Taken together, our findings provide evidence for the critical role of the N protein of the PPR virus in the induction of autophagy, which is likely to be mediated by PI3K complex-I of the host.
Collapse
Affiliation(s)
- Yash Chaudhary
- Department of Microbiology, University of Delhi, South Campus, New Delhi 110021, India; (Y.C.); (J.J.); (S.K.G.)
| | - Juhi Jain
- Department of Microbiology, University of Delhi, South Campus, New Delhi 110021, India; (Y.C.); (J.J.); (S.K.G.)
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi, South Campus, New Delhi 110021, India; (Y.C.); (J.J.); (S.K.G.)
| | - Prabhakar Tembhurne
- Department of Microbiology, Nagpur Veterinary College, Nagpur 440006, India;
| | - Shanmugam Chandrasekar
- Division of Virology, Indian Veterinary Research Institute, Mukteshwar, Nainital 263138, India; (S.C.); (M.D.)
| | - Muthuchelvan Dhanavelu
- Division of Virology, Indian Veterinary Research Institute, Mukteshwar, Nainital 263138, India; (S.C.); (M.D.)
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali 140306, India;
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi, South Campus, New Delhi 110021, India; (Y.C.); (J.J.); (S.K.G.)
| |
Collapse
|
4
|
Meena NK, Randazzo D, Raben N, Puertollano R. AAV-mediated delivery of secreted acid α-glucosidase with enhanced uptake corrects neuromuscular pathology in Pompe mice. JCI Insight 2023; 8:e170199. [PMID: 37463048 PMCID: PMC10543735 DOI: 10.1172/jci.insight.170199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Gene therapy is under advanced clinical development for several lysosomal storage disorders. Pompe disease, a debilitating neuromuscular illness affecting infants, children, and adults with different severity, is caused by a deficiency of lysosomal glycogen-degrading enzyme acid α-glucosidase (GAA). Here, we demonstrated that adeno-associated virus-mediated (AAV-mediated) systemic gene transfer reversed glycogen storage in all key therapeutic targets - skeletal and cardiac muscles, the diaphragm, and the central nervous system - in both young and severely affected old Gaa-knockout mice. Furthermore, the therapy reversed secondary cellular abnormalities in skeletal muscle, such as those in autophagy and mTORC1/AMPK signaling. We used an AAV9 vector encoding a chimeric human GAA protein with enhanced uptake and secretion to facilitate efficient spread of the expressed protein among multiple target tissues. These results lay the groundwork for a future clinical development strategy in Pompe disease.
Collapse
Affiliation(s)
- Naresh K. Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Qin ZL, Yao QF, Zhao P, Ren H, Qi ZT. Zika virus infection triggers lipophagy by stimulating the AMPK-ULK1 signaling in human hepatoma cells. Front Cell Infect Microbiol 2022; 12:959029. [PMID: 36405969 PMCID: PMC9667116 DOI: 10.3389/fcimb.2022.959029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Zika virus (ZIKV) is a globally transmitted mosquito-borne pathogen, and no effective treatment or vaccine is available yet. Lipophagy, a selective autophagy targeting lipid droplets (LDs), is an emerging subject in cellular lipid metabolism and energy homeostasis. However, the regulatory mechanism of lipid metabolism and the role of lipophagy in Zika virus infection remain largely unknown. Here, we demonstrated that ZIKV induced lipophagy by activating unc-51-like kinase 1 (ULK1) through activation of 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) in Huh7 cells. Upon ZIKV infection, the average size and triglyceride content of LDs significantly decreased. Moreover, ZIKV infection significantly increased lysosomal biosynthesis and LD-lysosome fusion. The activities of AMPK at Thr-172 and ULK1 at Ser-556 were increased in ZIKV-infected cells and closely correlated with lipophagy induction. Silencing of AMPK expression inhibited ZIKV infection, autophagy induction, and LD-lysosome fusion and decreased the triglyceride content of the cells. The activities of mammalian target of rapamycin (mTOR) at Ser-2448 and ULK1 at Ser-757 were suppressed independently of AMPK during ZIKV infection. Therefore, ZIKV infection triggers AMPK-mediated lipophagy, and the LD-related lipid metabolism during ZIKV infection is mainly regulated via the AMPK-ULK1 signaling pathway.
Collapse
|
6
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Joseph J, Doles JD. Disease-associated metabolic alterations that impact satellite cells and muscle regeneration: perspectives and therapeutic outlook. Nutr Metab (Lond) 2021; 18:33. [PMID: 33766031 PMCID: PMC7992337 DOI: 10.1186/s12986-021-00565-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Many chronic disease patients experience a concurrent loss of lean muscle mass. Skeletal muscle is a dynamic tissue maintained by continuous protein turnover and progenitor cell activity. Muscle stem cells, or satellite cells, differentiate (by a process called myogenesis) and fuse to repair and regenerate muscle. During myogenesis, satellite cells undergo extensive metabolic alterations; therefore, pathologies characterized by metabolic derangements have the potential to impair myogenesis, and consequently exacerbate skeletal muscle wasting. How disease-associated metabolic disruptions in satellite cells might be contributing to wasting is an important question that is largely neglected. With this review we highlight the impact of various metabolic disruptions in disease on myogenesis and skeletal muscle regeneration. We also discuss metabolic therapies with the potential to improve myogenesis, skeletal muscle regeneration, and ultimately muscle mass.
Collapse
Affiliation(s)
- Josiane Joseph
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Linden G, Vázquez O. Bioorthogonal Turn-On BODIPY-Peptide Photosensitizers for Tailored Photodynamic Therapy. Chemistry 2020; 26:10014-10023. [PMID: 32638402 PMCID: PMC7496803 DOI: 10.1002/chem.202001718] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) leads to cancer remission via the production of cytotoxic species under photosensitizer (PS) irradiation. However, concomitant damage and dark toxicity can both hinder its use. With this in mind, we have implemented a versatile peptide-based platform of bioorthogonally activatable BODIPY-tetrazine PSs. Confocal microscopy and phototoxicity studies demonstrated that the incorporation of the PS, as a bifunctional module, into a peptide enabled spatial and conditional control of singlet oxygen (1 O2 ) generation. Comparing subcellular distribution, PS confined in the cytoplasmic membrane achieved the highest toxicities (IC50 =0.096±0.003 μm) after activation and without apparent dark toxicity. Our tunable approach will inspire novel probes towards smart PDT.
Collapse
Affiliation(s)
- Greta Linden
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Olalla Vázquez
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
9
|
Meena NK, Ralston E, Raben N, Puertollano R. Enzyme Replacement Therapy Can Reverse Pathogenic Cascade in Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:199-214. [PMID: 32671132 PMCID: PMC7334420 DOI: 10.1016/j.omtm.2020.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Pompe disease, a deficiency of glycogen-degrading lysosomal acid alpha-glucosidase (GAA), is a disabling multisystemic illness that invariably affects skeletal muscle in all patients. The patients still carry a heavy burden of the disease, despite the currently available enzyme replacement therapy. We have previously shown that progressive entrapment of glycogen in the lysosome in muscle sets in motion a whole series of “extra-lysosomal” events including defective autophagy and disruption of a variety of signaling pathways. Here, we report that metabolic abnormalities and energy deficit also contribute to the complexity of the pathogenic cascade. A decrease in the metabolites of the glycolytic pathway and a shift to lipids as the energy source are observed in the diseased muscle. We now demonstrate in a pre-clinical study that a recently developed replacement enzyme (recombinant human GAA; AT-GAA; Amicus Therapeutics) with much improved lysosome-targeting properties reversed or significantly improved all aspects of the disease pathogenesis, an outcome not observed with the current standard of care. The therapy was initiated in GAA-deficient mice with fully developed muscle pathology but without obvious clinical symptoms; this point deserves consideration.
Collapse
Affiliation(s)
- Naresh Kumar Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Evelyn Ralston
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- Corresponding author Nina Raben, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- Corresponding author Rosa Puertollano, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Mohammadalipour Z, Rahmati M, Khataee A, Moosavi MA. Differential effects of N-TiO 2 nanoparticle and its photo-activated form on autophagy and necroptosis in human melanoma A375 cells. J Cell Physiol 2020; 235:8246-8259. [PMID: 31989650 DOI: 10.1002/jcp.29479] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
The manipulation of autophagy provides a new opportunity for highly effective anticancer therapies. Recently, we showed that photodynamic therapy (PDT) with nitrogen-doped titanium dioxide (N-TiO2 ) nanoparticles (NPs) could promote the reactive oxygen species (ROS)-dependent autophagy in leukemia cells. However, the differential autophagic effects of N-TiO2 NPs in the dark and light conditions and the potential of N-TiO2- based PDT for the treatment of melanoma cells remain unknown. Here we show that depending on the visible-light condition, the autophagic response of human melanoma A375 cells to N-TiO2 NPs switches between two different statuses (ie., flux or blockade) with the opposite outcomes (ie., survival or death). Mechanistically, low doses of N-TiO2 NPs (1-100 µg/ml) stimulate a nontoxic autophagy flux response in A375 cells, whereas their photo-activation leads to the impairment of the autophagosome-lysosome fusion, the blockade of autophagy flux and consequently the induction of RIPK1-mediated necroptosis via ROS production. These results confirm that photo-controllable autophagic effects of N-TiO2 NPs can be utilized for the treatment of cancer, particularly melanoma.
Collapse
Affiliation(s)
- Zahra Mohammadalipour
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, Nicosia, North Cyprus, Turkey
| | - Mohammad A Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
11
|
Ravindran R, Jaganathan R, Periandavan K. EGCG exerts its protective effect by mitigating the release of lysosomal enzymes in aged rat liver on exposure to high cholesterol diet. Cell Biochem Funct 2020; 38:309-318. [PMID: 31926118 DOI: 10.1002/cbf.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/30/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
Abstract
The aim is to test the hypothesis whether the cholesterol loaded lysosomes are capable of mediating lysosomal membrane permeabilization (LMP) during aging and to study the efficacy of epigallocatechin-3-gallate (EGCG) in preserving the lysosomal membrane stability. Aged rats were fed with high cholesterol diet (HCD) and treated with EGCG orally. Serum and tissue lipid status, cholesterol levels in lysosomal fraction, activities of lysosomal enzymes in lysosomal, and cytosolic fractions were measured. Transmission electron microscopic studies (TEM), oil red "O" (ORO) staining, and immunohistochemical analysis of oxidized low density lipoprotein (OxLDL) were carried out. Significant increase in serum, tissue lipid profile, and lysosomal cholesterol levels were observed in aged HCD-fed rats with a concomitant decrease in high density lipoprotein (HDL) levels. We also observed a significant increase in lipid accumulation in hepatocytes of aged HCD-fed rats by TEM, ORO, and immunohistochemical staining. Upon treatment with EGCG to aged HCD-fed animals, we found augmented levels of HDL with a concomitant decrease in lysosomal cholesterol levels and other lipoproteins. TEM studies and immunohistochemistry of OxLDL also showed a marked reduction in lipid deposition of hepatocytes. Thus, EGCG has preserved the lysosomal membrane stability in HCD stressed aged rats. SIGNIFICANCE OF THE STUDY: The research article is focused mainly on the effect of EGCG and its capability on mitigating the release of lysosomal enzymes in aged animals fed with HCD. The study signifies the cellular function of the organelle lysosome following administration of aged rats with HCD, which would make the readers to understand the action of EGCG and the interrelationship of both cholesterol and activity of lysosomes when cholesterol is loaded.
Collapse
Affiliation(s)
- Rajeswari Ravindran
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Chennai, India
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Chennai, India
| |
Collapse
|
12
|
Zhang Y, Wang YT, Koka S, Zhang Y, Hussain T, Li X. Simvastatin improves lysosome function via enhancing lysosome biogenesis in endothelial cells. Front Biosci (Landmark Ed) 2020; 25:283-298. [PMID: 31585890 DOI: 10.2741/4807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nlrp3 inflammasomes were shown to play a critical role in triggering obesity-associated early onsets of cardiovascular complications such as endothelial barrier dysfunction with endothelial hyperpermeability. Statins prevent endothelial dysfunction and decrease cardiovascular risk in patients with obesity and diabetes. However, it remains unclear whether statin treatment for obesity-induced endothelial barrier dysfunction is in part due to the blockade of Nlrp3 inflammasome signaling axis. The results showed that simvastatin, a clinically and widely used statin, prevented free fatty acid-induced endothelial hyperpermeability and disruption of ZO-1 and VE-cadherin junctions in mouse microvascular endothelial cells (MVECs). This protective effect of simvastatin was largely due to improved lysosome function that attenuated lysosome injury-mediated Nlrp3 inflammasome activation and subsequent release of high mobility group box protein-1 (HMGB1). Mechanistically, simvastatin induces autophagy that promotes removal of damaged lysosomes and also promotes lysosome regeneration that preserves lysosome function. Collectively, simvastatin treatment improves lysosome function via enhancing lysosome biogenesis and its autophagic turnover, which may be an important mechanism to suppress Nlrp3 inflammasome activation and prevents endothelial hyperpermeability in obesity.
Collapse
Affiliation(s)
- Youzhi Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Yun-Ting Wang
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Saisudha Koka
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Yang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298
| | - Tahir Hussain
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Xiang Li
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204,
| |
Collapse
|
13
|
Tsubone TM, Martins WK, Baptista MS. Identifying Specific Subcellular Organelle Damage by Photosensitized Oxidations. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:413-422. [PMID: 31543705 PMCID: PMC6747945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The search for conditions that maximize the outcome of Photodynamic Therapy (PDT) continues. Recent data indicate that PDT-induced cell death depends more on the specific intracellular location of the photosensitizer (PS) than on any other parameter. Indeed, knowledge of the PS intracellular location allows the establishment of clear relationships between the mechanism of cell death and the PDT efficacy. In order to determine the intracellular localization sites of a given PS, classical co-localization protocols, which are based in the comparison of the emissive profiles of organelle-specific probes to those of the PS, are usually performed. Since PSs are usually not efficient fluorophores, co-localization protocols require relatively high PS concentrations (micromolar range), distorting the whole proposal of the experiment, as high PS concentration means accumulation in many low-affinity sites. To overcome this difficulty, herein we describe a method that identifies PS intracellular localization by recognizing and quantifying the photodamage at intracellular organelles. We propose that irradiation protocols and characterization of major sites of photodamage results from many cycles of photosensitized oxidations, furnishing an integrated picture of the PS location. By comparing the results of protocols based in either method, we showed that the analysis of the damaged organelles can be conducted at optimal conditions (low PS concentrations), providing clear correlations with cell death mechanisms, which is not the case for the results obtained with co-localization protocols. Experiments using PSs that target either mitochondria or lysosomes were described and investigated in detail, showing that evaluating organelle damage is as simple as performing co-localization protocols.
Collapse
Affiliation(s)
- Tayana Mazin Tsubone
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Brazil,Institute of Physics, University of Sao Paulo, Brazil
| | - Waleska Kerllen Martins
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Brazil,Anhanguera University of Sao Paulo, Brazil
| | - Maurício S. Baptista
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Brazil,To whom all correspondence should be addressed: Maurício S. Baptista, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, SP, Brazil, Tel: +55 (11)-3091-8952,
| |
Collapse
|
14
|
Lim JA, Meena NK, Raben N. Pros and cons of different ways to address dysfunctional autophagy in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:279. [PMID: 31392191 DOI: 10.21037/atm.2019.03.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a major intracellular self-digestion process that brings cytoplasmic materials to the lysosome for degradation. Defective autophagy has been linked to a broad range of human disorders, including cancer, diabetes, neurodegeneration, autoimmunity, cardiovascular diseases, and myopathies. In Pompe disease, a severe neuromuscular disorder, disturbances in autophagic process manifest themselves as progressive accumulation of undegraded cellular debris in the diseased muscle cells. A growing body of evidence has connected this defect to the decline in muscle function and muscle resistance to the currently available treatment-enzyme replacement therapy (ERT). Both induction and inhibition of autophagy have been tested in pre-clinical studies in a mouse model of the disease. Here, we discuss strengths and weaknesses of different approaches to address autophagic dysfunction in the context of Pompe disease.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Naresh Kumar Meena
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
15
|
Xu S, Lun Y, Frascella M, Garcia A, Soska R, Nair A, Ponery AS, Schilling A, Feng J, Tuske S, Valle MCD, Martina JA, Ralston E, Gotschall R, Valenzano KJ, Puertollano R, Do HV, Raben N, Khanna R. Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight 2019; 4:125358. [PMID: 30843882 DOI: 10.1172/jci.insight.125358] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/17/2019] [Indexed: 01/14/2023] Open
Abstract
Pompe disease is a rare inherited disorder of lysosomal glycogen metabolism due to acid α-glucosidase (GAA) deficiency. Enzyme replacement therapy (ERT) using alglucosidase alfa, a recombinant human GAA (rhGAA), is the only approved treatment for Pompe disease. Although alglucosidase alfa has provided clinical benefits, its poor targeting to key disease-relevant skeletal muscles results in suboptimal efficacy. We are developing an rhGAA, ATB200 (Amicus proprietary rhGAA), with high levels of mannose-6-phosphate that are required for efficient cellular uptake and lysosomal trafficking. When administered in combination with the pharmacological chaperone AT2221 (miglustat), which stabilizes the enzyme and improves its pharmacokinetic properties, ATB200/AT2221 was substantially more potent than alglucosidase alfa in a mouse model of Pompe disease. The new investigational therapy is more effective at reversing the primary abnormality - intralysosomal glycogen accumulation - in multiple muscles. Furthermore, unlike the current standard of care, ATB200/AT2221 dramatically reduces autophagic buildup, a major secondary defect in the diseased muscles. The reversal of lysosomal and autophagic pathologies leads to improved muscle function. These data demonstrate the superiority of ATB200/AT2221 over the currently approved ERT in the murine model.
Collapse
Affiliation(s)
- Su Xu
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | - Yi Lun
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | | | - Anju Nair
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | - Jessie Feng
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | - José A Martina
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Evelyn Ralston
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Rosa Puertollano
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Hung V Do
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | - Nina Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
16
|
Lim JA, Yi H, Gao F, Raben N, Kishnani PS, Sun B. Intravenous Injection of an AAV-PHP.B Vector Encoding Human Acid α-Glucosidase Rescues Both Muscle and CNS Defects in Murine Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:233-245. [PMID: 30809555 PMCID: PMC6376130 DOI: 10.1016/j.omtm.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Abstract
Pompe disease, a severe and often fatal neuromuscular disorder, is caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The disease is characterized by the accumulation of excess glycogen in the heart, skeletal muscle, and CNS. Currently approved enzyme replacement therapy or experimental adeno-associated virus (AAV)-mediated gene therapy has little effect on CNS correction. Here we demonstrate that a newly developed AAV-PHP.B vector can robustly transduce both the CNS and skeletal muscles in GAA-knockout (GAAKO) mice. A single intravenous injection of an AAV-PHP.B vector expressing human GAA under the control of cytomegalovirus (CMV) enhancer-chicken β-actin (CB) promoter into 2-week-old GAAKO mice resulted in widespread GAA expression in the affected tissues. Glycogen contents were reduced to wild-type levels in the brain and heart, and they were significantly decreased in skeletal muscle by the AAV treatment. The histological assay showed no visible glycogen in any region of the brain and spinal cord of AAV-treated mice. In this study, we describe a set of behavioral tests that can detect early neurological deficits linked to extensive lysosomal glycogen accumulation in the CNS of untreated GAAKO mice. Furthermore, we demonstrate that the therapy can help prevent the development of these abnormalities.
Collapse
Affiliation(s)
- Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Haiqing Yi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
17
|
Adams J, Feuerborn M, Molina JA, Wilden AR, Adhikari B, Budden T, Lee SY. Autophagy-lysosome pathway alterations and alpha-synuclein up-regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease. Sci Rep 2019; 9:151. [PMID: 30655561 PMCID: PMC6336884 DOI: 10.1038/s41598-018-36379-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative lysosomal storage disorders. CLN5 deficiency causes a subtype of NCL, referred to as CLN5 disease. CLN5 is a soluble lysosomal protein with an unclear function in the cell. Increased levels of the autophagy marker protein LC3-II have been reported in several subtypes of NCLs. In this report, we examine whether autophagy is altered in CLN5 disease. We found that the basal level of LC3-II was elevated in both CLN5 disease patient fibroblasts and CLN5-deficient HeLa cells. Further analysis using tandem fluorescent mRFP-GFP-LC3 showed the autophagy flux was increased. We found the alpha-synuclein (α-syn) gene SNCA was highly up-regulated in CLN5 disease patient fibroblasts. The aggregated form of α-syn is well known for its role in the pathogenicity of Parkinson's disease. Higher α-syn protein levels confirmed the SNCA up-regulation in both patient cells and CLN5 knockdown HeLa cells. Furthermore, α-syn was localized to the vicinity of lysosomes in CLN5 deficient cells, indicating it may have a lysosome-related function. Intriguingly, knocking down SNCA reversed lysosomal perinuclear clustering caused by CLN5 deficiency. These results suggest α-syn may affect lysosomal clustering in non-neuronal cells, similar to its role in presynaptic vesicles in neurons.
Collapse
Affiliation(s)
- Jessie Adams
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33602, USA
| | - Melissa Feuerborn
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Joshua A Molina
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Alexa R Wilden
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Babita Adhikari
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Theodore Budden
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Stella Y Lee
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
18
|
Ivanova MM, Changsila E, Iaonou C, Goker-Alpan O. Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases. PLoS One 2019; 14:e0210617. [PMID: 30633777 PMCID: PMC6329517 DOI: 10.1371/journal.pone.0210617] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022] Open
Abstract
The major cellular clearance pathway for organelle and unwanted proteins is the autophagy-lysosome pathway (ALP). Lysosomes not only house proteolytic enzymes, but also traffic organelles, sense nutrients, and repair mitochondria. Mitophagy is initiated by damaged mitochondria, which is ultimately degraded by the ALP to compensate for ATP loss. While both systems are dynamic and respond to continuous cellular stressors, most studies are derived from animal models or cell based systems, which do not provide complete real time data about cellular processes involved in the progression of lysosomal storage diseases in patients. Gaucher and Fabry diseases are rare sphingolipid disorders due to the deficiency of the lysosomal enzymes; glucocerebrosidase and α-galactosidase A with resultant lysosomal dysfunction. Little is known about ALP pathology and mitochondrial function in patients with Gaucher and Fabry diseases, and the effects of enzyme replacement therapy (ERT). Studying blood mononuclear cells (PBMCs) from patients, we provide in vivo evidence, that regulation of ALP is defective. In PBMCs derived from Gaucher patients, we report a decreased number of autophagic vacuoles with increased cytoplasmic localization of LC3A/B, accompanied by lysosome accumulation. For both Gaucher and Fabry diseases, the level of the autophagy marker, Beclin1, was elevated and ubiquitin binding protein, SQSTM1/p62, was decreased. mTOR inhibition did not activate autophagy and led to ATP inhibition in PBMCs. Lysosomal abnormalities, independent of the type of the accumulated substrate suppress not only autophagy, but also mitochondrial function and mTOR signaling pathways. ERT partially restored ALP function, LC3-II accumulation and decreased LC3-I/LC3-II ratios. Levels of lysosomal (LAMP1), autophagy (LC3), and mitochondrial markers, (Tfam), normalized after ERT infusion. In conclusion, there is mTOR pathway dysfunction in sphingolipidoses, as observed in both PBMCs derived from patients with Gaucher and Fabry diseases, which leads to impaired autophagy and mitochondrial stress. ERT partially improves ALP function.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
- * E-mail: (MMI); (OGA)
| | - Erk Changsila
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Chidima Iaonou
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
- * E-mail: (MMI); (OGA)
| |
Collapse
|
19
|
Lim JA, Sun B, Puertollano R, Raben N. Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Mol Ther 2018; 26:1783-1796. [PMID: 29804932 DOI: 10.1016/j.ymthe.2018.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
The complexity of the pathogenic cascade in lysosomal storage disorders suggests that combination therapy will be needed to target various aspects of pathogenesis. The standard of care for Pompe disease (glycogen storage disease type II), a deficiency of lysosomal acid alpha glucosidase, is enzyme replacement therapy (ERT). Many patients have poor outcomes due to limited efficacy of the drug in clearing muscle glycogen stores. The resistance to therapy is linked to massive autophagic buildup in the diseased muscle. We have explored two strategies to address the problem. Genetic suppression of autophagy in muscle of knockout mice resulted in the removal of autophagic buildup, increase in muscle force, decrease in glycogen level, and near-complete clearance of lysosomal glycogen following ERT. However, this approach leads to accumulation of ubiquitinated proteins, oxidative stress, and exacerbation of muscle atrophy. Another approach involves AAV-mediated TSC knockdown in knockout muscle leading to upregulation of mTOR, inhibition of autophagy, reversal of atrophy, and efficient cellular clearance on ERT. Importantly, this approach reveals the possibility of reversing already established autophagic buildup, rather than preventing its development.
Collapse
Affiliation(s)
- Jeong-A Lim
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA; Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Keeling E, Lotery AJ, Tumbarello DA, Ratnayaka JA. Impaired Cargo Clearance in the Retinal Pigment Epithelium (RPE) Underlies Irreversible Blinding Diseases. Cells 2018; 7:E16. [PMID: 29473871 PMCID: PMC5850104 DOI: 10.3390/cells7020016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic degeneration of the Retinal Pigment Epithelium (RPE) is a precursor to pathological changes in the outer retina. The RPE monolayer, which lies beneath the neuroretina, daily internalises and digests large volumes of spent photoreceptor outer segments. Impaired cargo handling and processing in the endocytic/phagosome and autophagy pathways lead to the accumulation of lipofuscin and pyridinium bis-retinoid A2E aggregates and chemically modified compounds such as malondialdehyde and 4-hydroxynonenal within RPE. These contribute to increased proteolytic and oxidative stress, resulting in irreversible damage to post-mitotic RPE cells and development of blinding conditions such as age-related macular degeneration, Stargardt disease and choroideremia. Here, we review how impaired cargo handling in the RPE results in their dysfunction, discuss new findings from our laboratory and consider how newly discovered roles for lysosomes and the autophagy pathway could provide insights into retinopathies. Studies of these dynamic, molecular events have also been spurred on by recent advances in optics and imaging technology. Mechanisms underpinning lysosomal impairment in other degenerative conditions including storage disorders, α-synuclein pathologies and Alzheimer's disease are also discussed. Collectively, these findings help transcend conventional understanding of these intracellular compartments as simple waste disposal bags to bring about a paradigm shift in the way lysosomes are perceived.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | - David A Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Science Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
21
|
Li H, Pei W, Vergarajauregui S, Zerfas PM, Raben N, Burgess SM, Puertollano R. Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Hum Mol Genet 2018; 26:2701-2718. [PMID: 28449103 DOI: 10.1093/hmg/ddx158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease characterized by neurologic and ophthalmologic abnormalities. There is currently no effective treatment. MLIV is caused by mutations in MCOLN1, a lysosomal cation channel from the transient receptor potential (TRP) family. In this study, we used genome editing to knockout the two mcoln1 genes present in Danio rerio (zebrafish). Our model successfully reproduced the retinal and neuromuscular defects observed in MLIV patients, indicating that this model is suitable for studying the disease pathogenesis. Importantly, our model revealed novel insights into the origins and progression of the MLIV pathology, including the contribution of autophagosome accumulation to muscle dystrophy and the role of mcoln1 in embryonic development, hair cell viability and cellular maintenance. The generation of a MLIV model in zebrafish is particularly relevant given the suitability of this organism for large-scale in vivo drug screening, thus providing unprecedented opportunities for therapeutic discovery.
Collapse
Affiliation(s)
- Huiqing Li
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sivia Vergarajauregui
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Pricope G, Ursu EL, Sardaru M, Cojocaru C, Clima L, Marangoci N, Danac R, Mangalagiu II, Simionescu BC, Pinteala M, Rotaru A. Novel cyclodextrin-based pH-sensitive supramolecular host–guest assembly for staining acidic cellular organelles. Polym Chem 2018. [DOI: 10.1039/c7py01668a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel supramolecular approach for the preparation of new non-toxic systems for staining cellular organelles is described.
Collapse
|
23
|
Lim JA, Li L, Shirihai OS, Trudeau KM, Puertollano R, Raben N. Modulation of mTOR signaling as a strategy for the treatment of Pompe disease. EMBO Mol Med 2017; 9:353-370. [PMID: 28130275 PMCID: PMC5331267 DOI: 10.15252/emmm.201606547] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) coordinates biosynthetic and catabolic processes in response to multiple extracellular and intracellular signals including growth factors and nutrients. This serine/threonine kinase has long been known as a critical regulator of muscle mass. The recent finding that the decision regarding its activation/inactivation takes place at the lysosome undeniably brings mTOR into the field of lysosomal storage diseases. In this study, we have examined the involvement of the mTOR pathway in the pathophysiology of a severe muscle wasting condition, Pompe disease, caused by excessive accumulation of lysosomal glycogen. Here, we report the dysregulation of mTOR signaling in the diseased muscle cells, and we focus on potential sites for therapeutic intervention. Reactivation of mTOR in the whole muscle of Pompe mice by TSC knockdown resulted in the reversal of atrophy and a striking removal of autophagic buildup. Of particular interest, we found that the aberrant mTOR signaling can be reversed by arginine. This finding can be translated into the clinic and may become a paradigm for targeted therapy in lysosomal, metabolic, and neuromuscular diseases.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.,Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Orian S Shirihai
- Department of Medicine, Obesity and Nutrition Section, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kyle M Trudeau
- Department of Medicine, Obesity and Nutrition Section, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Skurat AV, Segvich DM, DePaoli-Roach AA, Roach PJ. Novel method for detection of glycogen in cells. Glycobiology 2017; 27:416-424. [PMID: 28077463 PMCID: PMC5444244 DOI: 10.1093/glycob/cwx005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022] Open
Abstract
y Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, Pleet ML, Kashanchi F, El-Hage N. Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications. Viruses 2017; 9:v9070176. [PMID: 28684681 PMCID: PMC5537668 DOI: 10.3390/v9070176] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
The autophagy–lysosomal pathway mediates a degradative process critical in the maintenance of cellular homeostasis as well as the preservation of proper organelle function by selective removal of damaged proteins and organelles. In some situations, cells remove unwanted or damaged proteins and RNAs through the release to the extracellular environment of exosomes. Since exosomes can be transferred from one cell to another, secretion of unwanted material to the extracellular environment in exosomes may have an impact, which can be beneficial or detrimental, in neighboring cells. Exosome secretion is under the influence of the autophagic system, and stimulation of autophagy can inhibit exosomal release and vice versa. Neurons are particularly vulnerable to degeneration, especially as the brain ages, and studies indicate that imbalances in genes regulating autophagy are a common feature of many neurodegenerative diseases. Cognitive and motor disease associated with severe dementia and neuronal damage is well-documented in the brains of HIV-infected individuals. Neurodegeneration seen in the brain in HIV-1 infection is associated with dysregulation of neuronal autophagy. In this paradigm, we herein provide an overview on the role of autophagy in HIV-associated neurodegenerative disease, focusing particularly on the effect of autophagy modulation on exosomal release of HIV particles and how this interplay impacts HIV infection in the brain. Specific autophagy–regulating agents are being considered for therapeutic treatment and prevention of a broad range of human diseases. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Seth M Dever
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
26
|
Kim Y, Hood DA. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations. Physiol Rep 2017; 5:e13307. [PMID: 28720712 PMCID: PMC5532476 DOI: 10.14814/phy2.13307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle is adaptable to exercise stimuli via the upregulation of mitochondrial biogenesis, and recent studies have suggested that autophagy also plays a role in exercise-induced muscle adaptations. However, it is still obscure how muscle regulates autophagy over the time course of training adaptations. This study examined the expression of autophagic proteins in skeletal muscle of rats exposed to chronic contractile activity (CCA; 6 h/day, 9V, 10 Hz continuous, 0.1 msec pulse duration) for 1, 3, and 7 days (n = 8/group). CCA-induced mitochondrial adaptations were observed by day 7, as shown by the increase in mitochondrial proteins (PGC-1α, COX I, and COX IV), as well as COX activity. Notably, the ratio of LC3 II/LC3 I, an indicator of autophagy, decreased by day 7 largely due to a significant increase in LC3 I. The autophagic induction marker p62 was elevated on day 3 and returned to basal levels by day 7, suggesting a time-dependent increase in autophagic flux. The lysosomal system was upregulated early, prior to changes in mitochondrial proteins, as represented by increases in lysosomal system markers LAMP1, LAMP2A, and MCOLN1 as early as by day 1, as well as TFEB, a primary regulator of lysosomal biogenesis and autophagy flux. Our findings suggest that, in response to chronic exercise, autophagy is upregulated concomitant with mitochondrial adaptations. Notably, our data reveal the surprising adaptive plasticity of the lysosome in response to chronic contractile activity which enhances muscle health by providing cells with a greater capacity for macromolecular and organelle turnover.
Collapse
Affiliation(s)
- Yuho Kim
- Muscle Health Research Centre, School of Kinesiology and Health Science York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Science York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Science York University, Toronto, Ontario, Canada
| |
Collapse
|
27
|
RACK1 depletion in the ribosome induces selective translation for non-canonical autophagy. Cell Death Dis 2017; 8:e2800. [PMID: 28518135 PMCID: PMC5520723 DOI: 10.1038/cddis.2017.204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
RACK1, which was first demonstrated as a substrate of PKCβ II, functions as a scaffold protein and associates with the 40S small ribosomal subunit. According to previous reports, ribosomal RACK1 was also suggested to control translation depending on the status in translating ribosome. We here show that RACK1 knockdown induces autophagy independent of upstream canonical factors such as Beclin1, Atg7 and Atg5/12 conjugates. We further report that RACK1 knockdown induces the association of mRNAs of LC3 and Bcl-xL with polysomes, indicating increased translation of these proteins. Therefore, we propose that the RACK1 depletion-induced autophagy is distinct from canonical autophagy. Finally, we confirm that cells expressing mutant RACK1 (RACK1R36D/K38E) defective in ribosome binding showed the same result as RACK1-knockdown cells. Altogether, our data clearly show that the depletion of ribosomal RACK1 alters the capacity of the ribosome to translate specific mRNAs, resulting in selective translation of mRNAs of genes for non-canonical autophagy induction.
Collapse
|
28
|
de la Mata M, Cotán D, Oropesa-Ávila M, Villanueva-Paz M, de Lavera I, Álvarez-Córdoba M, Luzón-Hidalgo R, Suárez-Rivero JM, Tiscornia G, Sánchez-Alcázar JA. Coenzyme Q 10 partially restores pathological alterations in a macrophage model of Gaucher disease. Orphanet J Rare Dis 2017; 12:23. [PMID: 28166796 PMCID: PMC5292786 DOI: 10.1186/s13023-017-0574-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/20/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal β-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. RESULTS Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. CONCLUSION These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.
Collapse
Affiliation(s)
- Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Isabel de Lavera
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Raquel Luzón-Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Gustavo Tiscornia
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, 41013, Spain. .,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
29
|
Canonico B, Cesarini E, Salucci S, Luchetti F, Falcieri E, Di Sario G, Palma F, Papa S. Defective Autophagy, Mitochondrial Clearance and Lipophagy in Niemann-Pick Type B Lymphocytes. PLoS One 2016; 11:e0165780. [PMID: 27798705 PMCID: PMC5087958 DOI: 10.1371/journal.pone.0165780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
Niemann-Pick disease type A (NP-A) and type B (NP-B) are lysosomal storage diseases (LSDs) caused by sphingomyelin accumulation in lysosomes relying on reduced or absent acid sphingomyelinase. A considerable body of evidence suggests that lysosomal storage in many LSD impairs autophagy, resulting in the accumulation of poly-ubiquitinated proteins and dysfunctional mitochondria, ultimately leading to cell death. Here we test this hypothesis in a cellular model of Niemann-Pick disease type B, in which autophagy has never been studied. The basal autophagic pathway was first examined in order to evaluate its functionality using several autophagy-modulating substances such as rapamycin and nocodazole. We found that human NP-B B lymphocytes display considerable alteration in their autophagic vacuole accumulation and mitochondrial fragmentation, as well as mitophagy induction (for damaged mitochondria clearance). Furthermore, lipid traceability of intra and extra-cellular environments shows lipid accumulation in NP-B B lymphocytes and also reveals their peculiar trafficking/management, culminating in lipid microparticle extrusion (by lysosomal exocytosis mechanisms) or lipophagy. All of these features point to the presence of a deep autophagy/mitophagy alteration revealing autophagic stress and defective mitochondrial clearance. Hence, rapamycin might be used to regulate autophagy/mitophagy (at least in part) and to contribute to the clearance of lysosomal aberrant lipid storage.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| | - Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sara Salucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- IGM, CNR, Rizzoli Orthopaedic Institute, Bologna, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gianna Di Sario
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fulvio Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
30
|
Choi YK, Cho SG, Choi YJ, Yun YJ, Lee KM, Lee K, Yoo HH, Shin YC, Ko SG. SH003 suppresses breast cancer growth by accumulating p62 in autolysosomes. Oncotarget 2016; 8:88386-88400. [PMID: 29179443 PMCID: PMC5687613 DOI: 10.18632/oncotarget.11393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 07/27/2016] [Indexed: 11/25/2022] Open
Abstract
Drug markets revisits herbal medicines, as historical usages address their therapeutic efficacies with less adverse effects. Moreover, herbal medicines save both cost and time in development. SH003, a modified version of traditional herbal medicine extracted from Astragalus membranaceus (Am), Angelica gigas (Ag), and Trichosanthes Kirilowii Maximowicz (Tk) with 1:1:1 ratio (w/w) has been revealed to inhibit tumor growth and metastasis on highly metastatic breast cancer cells, both in vivo and in vitro with no toxicity. Meanwhile, autophagy is imperative for maintenance cellular homeostasis, thereby playing critical roles in cancer progression. Inhibition of autophagy by pharmacological agents induces apoptotic cell death in cancer cells, resulting in cancer treatment. In this study, we demonstrate that SH003-induced autophagy via inhibiting STAT3 and mTOR results in an induction of lysosomal p62/SQSTM1 accumulation-mediated reactive oxygen species (ROS) generation and attenuates tumor growth. SH003 induced autophagosome and autolysosome formation by inhibiting activation of STAT3- and mTOR-mediated signaling pathways. However, SH003 blocked autophagy-mediated p62/SQSTM1 degradation through reducing of lysosomal proteases, Cathepsins, resulting in accumulation of p62/SQSTM1 in the lysosome. The accumulation of p62/SQSTM1 caused the increase of ROS, which resulted in the induction of apoptotic cell death. Therefore, we conclude that SH003 suppresses breast cancer growth by inducing autophagy. In addition, SH003-induced p62/SQSTM1 could function as an important mediator for ROS generation-dependent cell death suggesting that SH003 may be useful for treating breast cancer.
Collapse
Affiliation(s)
- Youn Kyung Choi
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, 695-975, Korea
| | - Sung-Gook Cho
- Department of Biotechnology, Korea National University of Transportation, Chungbuk, 368-701, Korea
| | - Yu-Jeong Choi
- Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul, 130-701, Korea
| | - Yee Jin Yun
- Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul, 130-701, Korea
| | - Kang Min Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 130-701, Korea
| | - Kangwook Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 130-701, Korea
| | - Hye-Hyun Yoo
- Institute of Pharmaceutical Science and Technology and Collage of Pharmacy, Hanyang University, Gyonggi, 426-791, Korea
| | - Yong Cheol Shin
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Seong-Gyu Ko
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| |
Collapse
|
31
|
Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep 2016; 6:28171. [PMID: 27302320 PMCID: PMC4908603 DOI: 10.1038/srep28171] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
To survive and replicate in macrophages Mycobacterium tuberculosis (Mtb) has developed strategies to subvert host defence mechanisms, including autophagy. Autophagy induction has the potential to clear Mtb, but little is known about its effect during controlled tuberculosis and HIV co-infection. Mammalian target of rapamycin complex1 (mTORC1) inhibitors were used to induce autophagy in human macrophages pre-infected with HIV-1BaL and infected with a low dose of Mtb (co-infected), or single Mtb infected (single infected). The controlled Mtb infection was disrupted upon mTOR inhibition resulting in increased Mtb replication in a dose-dependent manner which was more pronounced during co-infection. The increased Mtb replication could be explained by the marked reduction in phagosome acidification upon mTOR inhibition. Autophagy stimulation targeting mTORC1 clearly induced a basal autophagy with flux that was unlinked to the subcellular environment of the Mtb vacuoles, which showed a concurrent suppression in acidification and maturation/flux. Overall our findings indicate that mTOR inhibition during Mtb or HIV/Mtb co-infection interferes with phagosomal maturation, thereby supporting mycobacterial growth during low-dose and controlled infection. Therefore pharmacological induction of autophagy through targeting of the canonical mTORC1-pathway should be handled with caution during controlled tuberculosis, since this could have serious consequences for patients with HIV/Mtb co-infection.
Collapse
|
32
|
Harlan FK, Lusk JS, Mohr BM, Guzikowski AP, Batchelor RH, Jiang Y, Naleway JJ. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities. PLoS One 2016; 11:e0156312. [PMID: 27228111 PMCID: PMC4882035 DOI: 10.1371/journal.pone.0156312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022] Open
Abstract
Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and monitoring the effect of secondary therapeutic agents on lysosomal enzyme activity in drug development for the lysosomal storage disorders and allied diseases.
Collapse
Affiliation(s)
- Fiona Karen Harlan
- Research and Development, Marker Gene Technologies, Inc., Eugene, OR, United States of America
| | - Jason Scott Lusk
- Research and Development, Marker Gene Technologies, Inc., Eugene, OR, United States of America
| | | | | | - Robert Hardy Batchelor
- Research and Development, Marker Gene Technologies, Inc., Eugene, OR, United States of America
| | - Ying Jiang
- Research and Development, Marker Gene Technologies, Inc., Eugene, OR, United States of America
| | | |
Collapse
|
33
|
Miyagawa T, Ebinuma I, Morohashi Y, Hori Y, Young Chang M, Hattori H, Maehara T, Yokoshima S, Fukuyama T, Tsuji S, Iwatsubo T, Prendergast GC, Tomita T. BIN1 regulates BACE1 intracellular trafficking and amyloid-β production. Hum Mol Genet 2016; 25:2948-2958. [PMID: 27179792 DOI: 10.1093/hmg/ddw146] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 11/15/2022] Open
Abstract
BIN1 is a genetic risk factor of late-onset Alzheimer disease (AD), which was identified in multiple genome-wide association studies. BIN1 is a member of the amphiphysin family of proteins, and contains N-terminal Bin-Amphiphysin-Rvs and C-terminal Src homology 3 domains. BIN1 is widely expressed in the mouse and human brains, and has been reported to function in the endocytosis and the endosomal sorting of membrane proteins. BACE1 is a type 1 transmembrane aspartyl protease expressed predominantly in neurons of the brain and responsible for the production of amyloid-β peptide (Aβ). Here we report that the depletion of BIN1 increases cellular BACE1 levels through impaired endosomal trafficking and reduces BACE1 lysosomal degradation, resulting in increased Aβ production. Our findings provide a mechanistic role of BIN1 in the pathogenesis of AD as a novel genetic regulator of BACE1 levels and Aβ production.
Collapse
Affiliation(s)
- Toji Miyagawa
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences .,Department of Neurology, Graduate School of Medicine, The University of Tokyo, 113-0033 Japan
| | - Ihori Ebinuma
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences
| | - Yuichi Morohashi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences
| | | | - Haruhiko Hattori
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya University, 464-8601 Japan
| | - Tomoaki Maehara
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya University, 464-8601 Japan
| | - Satoshi Yokoshima
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya University, 464-8601 Japan
| | - Tohru Fukuyama
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya University, 464-8601 Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 113-0033 Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 113-0033 Japan
| | | | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences
| |
Collapse
|
34
|
Onyenwoke RU, Brenman JE. Lysosomal Storage Diseases-Regulating Neurodegeneration. J Exp Neurosci 2016; 9:81-91. [PMID: 27081317 PMCID: PMC4822725 DOI: 10.4137/jen.s25475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders.
Collapse
Affiliation(s)
- Rob U Onyenwoke
- Department of Pharmaceutical Science, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Jay E Brenman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol 2015; 95:86-93. [PMID: 26602750 DOI: 10.1016/j.yjmcc.2015.11.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
Abstract
Autophagy is an evolutionarily ancient process of intracellular catabolism necessary to preserve cellular homeostasis in response to a wide variety of stresses. In the case of post-mitotic cells, where cell replacement is not an option, finely tuned quality control of cytoplasmic constituents and organelles is especially critical. And due to the ubiquitous and critical role of autophagic flux in the maintenance of cell health, it comes as little surprise that perturbation of the autophagic process is observed in multiple disease processes. A large body of preclinical evidence suggests that autophagy is a double-edged sword in cardiovascular disease, acting in either beneficial or maladaptive ways, depending on the context. In light of this, the autophagic machinery in cardiomyocytes and other cardiovascular cell types has been proposed as a potential therapeutic target. Here, we summarize current knowledge regarding the dual functions of autophagy in cardiovascular disease. We go on to analyze recent evidence suggesting that titration of autophagic flux holds potential as a novel treatment strategy.
Collapse
|
36
|
Bonet-Ponce L, Saez-Atienzar S, da Casa C, Sancho-Pelluz J, Barcia JM, Martinez-Gil N, Nava E, Jordan J, Romero FJ, Galindo MF. Rotenone Induces the Formation of 4-Hydroxynonenal Aggresomes. Role of ROS-Mediated Tubulin Hyperacetylation and Autophagic Flux Disruption. Mol Neurobiol 2015; 53:6194-6208. [PMID: 26558631 DOI: 10.1007/s12035-015-9509-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/22/2015] [Indexed: 01/13/2023]
Abstract
Oxidative stress causes cellular damage by (i) altering protein stability, (ii) impairing organelle function, or (iii) triggering the formation of 4-HNE protein aggregates. The catabolic process known as autophagy is an antioxidant cellular response aimed to counteract these stressful conditions. Therefore, autophagy might act as a cytoprotective response by removing impaired organelles and aggregated proteins. In the present study, we sought to understand the role of autophagy in the clearance of 4-HNE protein aggregates in ARPE-19 cells under rotenone exposure. Rotenone induced an overproduction of reactive oxygen species (ROS), which led to an accumulation of 4-HNE inclusions, and an increase in the number of autophagosomes. The latter resulted from a disturbed autophagic flux rather than an activation of the autophagic synthesis pathway. In compliance with this, rotenone treatment induced an increase in LC3-II while upstream autophagy markers such as Beclin- 1, Vsp34 or Atg5-Atg12, were decreased. Rotenone reduced the autophagosome-to-lysosome fusion step by increasing tubulin acetylation levels through a ROS-mediated pathway. Proof of this is the finding that the free radical scavenger, N-acetylcysteine, restored autophagy flux and reduced rotenone-induced tubulin hyperacetylation. Indeed, this dysfunctional autophagic response exacerbates cell death triggered by rotenone, since 3-methyladenine, an autophagy inhibitor, reduced cell mortality, while rapamycin, an inductor of autophagy, caused opposite effects. In summary, we shed new light on the mechanisms involved in the autophagic responses disrupted by oxidative stress, which take place in neurodegenerative diseases such as Huntington or Parkinson diseases, and age-related macular degeneration.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Sara Saez-Atienzar
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Unidad de Neuropsicofarmacología Traslacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.,Grupo de Neurofarmacología, Dpto. Ciencias Médicas. Facultad de Medicina de Albacete, IDINE, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carmen da Casa
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas. Facultad de Medicina de Albacete, IDINE, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Javier Sancho-Pelluz
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Jorge M Barcia
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Natalia Martinez-Gil
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Eduardo Nava
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas. Facultad de Medicina de Albacete, IDINE, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Joaquín Jordan
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas. Facultad de Medicina de Albacete, IDINE, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Francisco J Romero
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Maria F Galindo
- Unidad de Neuropsicofarmacología Traslacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.
| |
Collapse
|
37
|
Bacellar IOL, Tsubone TM, Pavani C, Baptista MS. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. Int J Mol Sci 2015; 16:20523-59. [PMID: 26334268 PMCID: PMC4613217 DOI: 10.3390/ijms160920523] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.
Collapse
Affiliation(s)
- Isabel O L Bacellar
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Tayana M Tsubone
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Christiane Pavani
- Programa de Pós Graduação em Biofotônica Aplicada às Ciências da Saúde, Universidade Nove de Julho, São Paulo 01504-001, Brazil.
| | - Mauricio S Baptista
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
38
|
Abstract
The exact mechanisms underlying the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV) are unclear. In the present study, we provide evidence that mTOR regulates the opening and closing of the lysosomal channel responsible for MLIV through phosphorylation. Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca2+ efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.
Collapse
|
39
|
Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle 2015; 5:9. [PMID: 25834726 PMCID: PMC4381453 DOI: 10.1186/s13395-015-0033-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
Background Alterations in skeletal muscle contractile activity necessitate an efficient remodeling mechanism. In particular, mitochondrial turnover is essential for tissue homeostasis during muscle adaptations to chronic use and disuse. While mitochondrial biogenesis appears to be largely governed by the transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α), selective mitochondrial autophagy (mitophagy) is thought to mediate organelle degradation. However, whether PGC-1α plays a direct role in autophagy is currently unclear. Methods To investigate the role of the co-activator in autophagy and mitophagy during skeletal muscle remodeling, PGC-1α knockout (KO) and overexpressing (Tg) animals were unilaterally denervated, a common model of chronic muscle disuse. Results Animals lacking PGC-1α exhibited diminished mitochondrial density alongside myopathic characteristics reminiscent of autophagy-deficient muscle. Denervation promoted an induction in autophagy and lysosomal protein expression in wild-type (WT) animals, which was partially attenuated in KO animals, resulting in reduced autophagy and mitophagy flux. PGC-1α overexpression led to an increase in lysosomal capacity as well as indicators of autophagy flux but exhibited reduced localization of LC3II and p62 to mitochondria, compared to WT animals. A correlation was observed between the levels of the autophagy-lysosome master regulator transcription factor EB (TFEB) and PGC-1α in muscle, supporting their coordinated regulation. Conclusions Our investigation has uncovered a regulatory role for PGC-1α in mitochondrial turnover, not only through biogenesis but also via degradation using the autophagy-lysosome machinery. This implies a PGC-1α-mediated cross-talk between these two opposing processes, working to ensure mitochondrial homeostasis during muscle adaptation to chronic disuse. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0033-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Vainshtein
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, 4700 Keele St., Toronto, Ontario M3J 1P3 Canada
| | - Eric Ma Desjardins
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, 4700 Keele St., Toronto, Ontario M3J 1P3 Canada
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy ; Venetian Institute of Molecular Medicine, 35129 Padova, Italy ; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, 4700 Keele St., Toronto, Ontario M3J 1P3 Canada
| |
Collapse
|
40
|
McKnight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z, Zhao Y, Heintz N, Zong WX, Yue Z. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 2014; 10:e1004626. [PMID: 25275521 PMCID: PMC4183436 DOI: 10.1371/journal.pgen.1004626] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/25/2014] [Indexed: 01/24/2023] Open
Abstract
Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis.
Collapse
Affiliation(s)
- Nicole C. McKnight
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yun Zhong
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mitchell S. Wold
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shiaoching Gong
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York, United States of America
| | - Greg R. Phillips
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Zhixun Dou
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York, United States of America
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhenyu Yue
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Lim JA, Li L, Raben N. Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 2014; 6:177. [PMID: 25183957 PMCID: PMC4135233 DOI: 10.3389/fnagi.2014.00177] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder in which acid alpha-glucosidase (GAA) is deficient or absent. Deficiency of this lysosomal enzyme results in progressive expansion of glycogen-filled lysosomes in multiple tissues, with cardiac and skeletal muscle being the most severely affected. The clinical spectrum ranges from fatal hypertrophic cardiomyopathy and skeletal muscle myopathy in infants to relatively attenuated forms, which manifest as a progressive myopathy without cardiac involvement. The currently available enzyme replacement therapy (ERT) proved to be successful in reversing cardiac but not skeletal muscle abnormalities. Although the overall understanding of the disease has progressed, the pathophysiology of muscle damage remains poorly understood. Lysosomal enlargement/rupture has long been considered a mechanism of relentless muscle damage in Pompe disease. In past years, it became clear that this simple view of the pathology is inadequate; the pathological cascade involves dysfunctional autophagy, a major lysosome-dependent intracellular degradative pathway. The autophagic process in Pompe skeletal muscle is affected at the termination stage—impaired autophagosomal-lysosomal fusion. Yet another abnormality in the diseased muscle is the accelerated production of large, unrelated to ageing, lipofuscin deposits—a marker of cellular oxidative damage and a sign of mitochondrial dysfunction. The massive autophagic buildup and lipofuscin inclusions appear to cause a greater effect on muscle architecture than the enlarged lysosomes outside the autophagic regions. Furthermore, the dysfunctional autophagy affects the trafficking of the replacement enzyme and interferes with its delivery to the lysosomes. Several new therapeutic approaches have been tested in Pompe mouse models: substrate reduction therapy, lysosomal exocytosis following the overexpression of transcription factor EB and a closely related but distinct factor E3, and genetic manipulation of autophagy.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
42
|
Martyniszyn L, Szulc-Dąbrowska L, Boratyńska-Jasińska A, Struzik J, Winnicka A, Niemiałtowski M. Crosstalk between autophagy and apoptosis in RAW 264.7 macrophages infected with ectromelia orthopoxvirus. Viral Immunol 2014; 26:322-35. [PMID: 24116707 DOI: 10.1089/vim.2013.0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Several studies have provided evidence that complex relationships between autophagic and apoptotic cell death pathways occur in cancer and virus-infected cells. Previously, we demonstrated that infection of macrophages with Moscow strain of ectromelia virus (ECTV-MOS) induces apoptosis under in vitro and in vivo conditions. Here, we found that autophagy was induced in RAW 264.7 cells during infection with ECTV-MOS. Silencing of beclin 1, an autophagy-related gene, reduced the percentage of late apoptotic cells in virus-infected RAW 264.7 macrophages. Pharmacological modulation of autophagy by wortmannin (inhibitor) or rapamycin (inductor) did not affect or cause increased apoptosis in ECTV-MOS-infected RAW 264.7 cells, respectively. Meantime, blocking apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, increased the formation of autophagosomes in infected macrophages. Taken together, three important points arise from our study. First, autophagy may co-occur with apoptosis in RAW 264.7 cells exposed to ECTV-MOS. Second, at later stages of infection, autophagy may partially participate in the execution of macrophage cell death by enhancing apoptosis. Third, when apoptosis is blocked infected macrophages undergo increased autophagy. Our results provide new information about the relationship between autophagy and apoptosis in ECTV-MOS-infected macrophages.
Collapse
Affiliation(s)
- Lech Martyniszyn
- 1 Division of Immunology, Department of Preclinical Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW) , Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
43
|
Ingemann L, Kirkegaard T. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res 2014; 55:2198-210. [PMID: 24837749 DOI: 10.1194/jlr.r048090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.
Collapse
|
44
|
Hendrikx T, Walenbergh SMA, Hofker MH, Shiri-Sverdlov R. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis. Obes Rev 2014; 15:424-33. [PMID: 24629059 DOI: 10.1111/obr.12159] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 12/15/2022]
Abstract
Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with plaque severity during atherosclerosis, recently, a growing body of evidence indicates a causal link between lysosomal cholesterol accumulation and inflammation. These findings make lysosomal cholesterol accumulation an important target for intervention in metabolic diseases that are characterized by the presence of an inflammatory response. In this review, we aim to show the importance of cholesterol trapping inside lysosomes to the development of inflammation by focusing upon cardiovascular disease and non-alcoholic steatohepatitis (NASH) in particular. We summarize current data supporting the hypothesis that lysosomal cholesterol accumulation plays a key role in the development of inflammation during atherosclerosis and NASH. In addition, potential mechanisms by which disturbed lysosomal function can trigger the inflammatory response, the challenges in improving cholesterol trafficking in macrophages and recent successful research directions will be discussed.
Collapse
Affiliation(s)
- T Hendrikx
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
45
|
Li X, Xu M, Pitzer AL, Xia M, Boini KM, Li PL, Zhang Y. Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. J Mol Med (Berl) 2014; 92:473-85. [PMID: 24463558 PMCID: PMC4211081 DOI: 10.1007/s00109-014-1120-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/06/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED Recent studies have indicated a protective role of autophagy in regulating vascular smooth muscle cells homeostasis in atherogenesis, but the mechanisms controlling autophagy, particularly autophagy maturation, are poorly understood. Here, we investigated whether acid sphingomyelinase (ASM)-regulated lysosome function is involved in autophagy maturation in coronary arterial smooth muscle cells (CASMCs) in the pathogenesis of atherosclerosis. In coronary arterial wall of ASM-deficient (Smpd1⁻/⁻) mice on Western diet, there were high expression levels of both LC3B, a robust marker of autophagosomes (APs), and p62, a selective autophagy substrate, compared with those in wild-type (Smpd1⁺/⁺) mice. By Western blotting and flow cytometry, atherogenic stimulation of Smpd1⁺/⁺ CASMCs with 7-ketocholesterol was found to significantly enhance LC3B expression and increase the content of both APs and autophagolysosomes (APLs). In Smpd1⁻/⁻ CASMCs, such 7-ketocholesterol-induced increases in LC3B and p62 expression and APs were further augmented, but APLs formation was abolished. Analysis of fluorescence resonance energy transfer between fluorescence-labeled LC3B and Lamp1 (lysosome marker) showed that 7-ketocholesterol markedly induced fusion of APs with lysosomes in Smpd1⁺/⁺ CASMCs, which was abolished in Smpd1⁻/⁻ CASMCs. Moreover, 7-ketocholesterol-induced expression of cell dedifferentiation marker vimentin and proliferation was enhanced in Smpd1⁻/⁻ CASMCs compared with those in Smpd1⁺/⁺ CASMCs. Lastly, overexpression of ASM further increased APLs formation in Smpd1⁺/⁺ CASMCs and restored APLs formation in Smpd1⁻/⁻ CASMCs indicating that increased ASM expression is highly correlated with enhanced APLs formation. Taken together, our data suggest that the control of lysosome trafficking and fusion by ASM is essential to a normal autophagic flux in CASMCs, which implicates that the deficiency of ASM-mediated regulation of autophagy maturation may result in imbalance of arterial smooth muscle cell homeostasis and thus serve as an important atherogenic mechanism in coronary arteries. KEY MESSAGES Acid sphingomyelinase (ASM) controls autophagy maturation in smooth muscle cells. ASM maintains smooth muscle cell homeostasis and its contractile phenotype. ASM plays a protective role in smooth muscle dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA, 23298, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Prada CE, Grabowski GA. Neuronopathic lysosomal storage diseases: clinical and pathologic findings. ACTA ACUST UNITED AC 2014; 17:226-46. [PMID: 23798011 DOI: 10.1002/ddrr.1116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The lysosomal-autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. METHODS Literature review provided insight into the current clinical neurological findings, phenotypic spectrum, and pathogenic mechanisms of LASDs with primary neurological involvement. CONCLUSIONS CNS signs and symptoms are variable and related to the disease-specific underlying pathogenesis. LAS dysfunction leads to diverse global cellular consequences in the CNS ranging from specific axonal and dendritic abnormalities to neuronal death. Pathogenic mechanisms for disease progression vary from impaired autophagy, massive storage, regional involvement, to end-stage inflammation. Some of these features are also found in adult neurodegenerative disorders, for example, Parkinson's and Alzheimer's diseases. Lack of effective therapies is a significant unmet medical need.
Collapse
Affiliation(s)
- Carlos E Prada
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Ohio, USA
| | | |
Collapse
|
47
|
Zhang Y, Xu M, Xia M, Li X, Boini KM, Wang M, Gulbins E, Ratz PH, Li PL. Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res 2014; 102:68-78. [PMID: 24445604 DOI: 10.1093/cvr/cvu011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Autophagic flux is an important process during autophagy maturation in smooth muscle cells. However, the molecular mechanisms underlying autophagic flux in these cells are largely unknown. Here, we revealed a previously undefined role of CD38, an enzyme that metabolizes NADP(+) into NAADP, in the regulation of autophagic flux in coronary arterial myocytes (CAMs). METHODS AND RESULTS In vivo CD38 gene knockout mice (CD38(-/-)) fed the high-fat Western diet showed increased accumulation of autophagosomes in coronary arterial media compared with that in wild-type (CD38(+/+)) mice, suggesting that CD38 gene deletion results in a defective autophagic process in CAMs of coronary arteries. In primary cultured CAMs, CD38 gene deletion markedly enhanced 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer)-induced accumulation of autophagosomes and increased expression of an autophagic marker, LC3B. However, no difference in autophagosome formation was observed between CD38(+/+) and CD38(-/-) CAMs when autophagic flux was blocked, which indicates that CD38 regulates autophagic flux rather than induction of autophagosome formation. Further, 7-Ket-induced formation of autophagolysosomes was markedly attenuated in CD38(-/-) CAMs compared with CD38(+/+) CAMs. Mechanistically, CD38 gene deletion markedly inhibited 7-Ket-induced dynein activation and autophagosome trafficking, which were associated with attenuated lysosomal Ca(2+) release. Importantly, coronary arterial smooth muscle from CD38(-/-) mice fed the Western diet exhibited phenotypic changes towards a more dedifferentiated state with abnormal extracellular matrix metabolism. CONCLUSION Taken together, these results suggest that CD38 plays a critical role in autophagosome trafficking and fusion with lysosomes, thus controlling autophagic flux in CAMs under atherogenic stimulation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Feeney EJ, Austin S, Chien YH, Mandel H, Schoser B, Prater S, Hwu WL, Ralston E, Kishnani PS, Raben N. The value of muscle biopsies in Pompe disease: identifying lipofuscin inclusions in juvenile- and adult-onset patients. Acta Neuropathol Commun 2014; 2:2. [PMID: 24383498 PMCID: PMC3892035 DOI: 10.1186/2051-5960-2-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Pompe disease, an inherited deficiency of lysosomal acid alpha-glucosidase (GAA), is a metabolic myopathy with heterogeneous clinical presentations. Late-onset Pompe disease (LOPD) is a debilitating progressive muscle disorder that can occur anytime from early childhood to late adulthood. Enzyme replacement therapy (ERT) with recombinant human GAA is currently available for Pompe patients. Although ERT shows some benefits, the reversal of skeletal muscle pathology - lysosomal glycogen accumulation and autophagic buildup - remains a challenge. In this study, we examined the clinical status and muscle pathology of 22 LOPD patients and one atypical infantile patient on ERT to understand the reasons for muscle resistance to ERT. Results The patients were divided into three groups for analysis, based on the age of onset and diagnosis: adult-onset patients, juvenile-onset patients, and those identified through newborn screening (NBS). The areas of autophagic buildup found in patients’ biopsies of all three groups, contained large autofluorescent inclusions which we show are made of lipofuscin, an indigestible intralysosomal material typically associated with ageing. These inclusions, analysed by staining, spectral analysis, time-resolved Fluorescence Lifetime Imaging (FLIM), and Second Harmonic Generation (SHG) imaging, were the major pathology remaining in many fibers after ERT. The best outcome of ERT both clinically and morphologically was observed in the NBS patients. Conclusions The muscle biopsy, in spite of its shortcomings, allowed us to recognize an underreported, ERT-resistant pathology in LOPD; numerous lysosomes and autolysosomes loaded with lipofuscin appear to be a hallmark of LOPD skeletal muscle. Lipofuscin accumulation - a result of inefficient lysosomal degradation - may in turn exacerbate both lysosomal and autophagic abnormalities.
Collapse
|
49
|
Prater SN, Patel TT, Buckley AF, Mandel H, Vlodavski E, Banugaria SG, Feeney EJ, Raben N, Kishnani PS. Skeletal muscle pathology of infantile Pompe disease during long-term enzyme replacement therapy. Orphanet J Rare Dis 2013; 8:90. [PMID: 23787031 PMCID: PMC3691834 DOI: 10.1186/1750-1172-8-90] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/12/2013] [Indexed: 01/17/2023] Open
Abstract
Background Pompe disease is an autosomal recessive metabolic neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). It has long been believed that the underlying pathology leading to tissue damage is caused by the enlargement and rupture of glycogen-filled lysosomes. Recent studies have also implicated autophagy, an intracellular lysosome-dependent degradation system, in the disease pathogenesis. In this study, we characterize the long-term impact of enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA) on lysosomal glycogen accumulation and autophagy in some of the oldest survivors with classic infantile Pompe disease (IPD). Methods Muscle biopsies from 8 [4 female, 4 male; 6 cross-reactive immunologic material (CRIM)-positive, 2 CRIM-negative] patients with a confirmed diagnosis of classic IPD were examined using standard histopathological approaches. In addition, muscle biopsies were evaluated by immunostaining for lysosomal marker (lysosomal-associated membrane protein-2; LAMP2), autophagosomal marker (microtubule-associated protein 1 light chain 3; LC3), and acid and alkaline ATPases. All patients received rhGAA by infusion at cumulative biweekly doses of 20–40 mg/kg. Results Median age at diagnosis of classic IPD was 3.4 months (range: 0 to 6.5 months; n = 8). At the time of muscle biopsy, the patients’ ages ranged from 1 to 103 months and ERT duration ranged from 0 (i.e., baseline, pre-ERT) to 96 months. The response to therapy varied considerably among the patients: some patients demonstrated motor gains while others experienced deterioration of motor function, either with or without a period of initial clinical benefit. Skeletal muscle pathology included fiber destruction, lysosomal vacuolation, and autophagic abnormalities (i.e., buildup), particularly in fibers with minimal lysosomal enlargement. Overall, the pathology reflected clinical status. Conclusions This is the first study to investigate the impact of rhGAA ERT on lysosomal glycogen accumulation and autophagic buildup in patients with classic IPD beyond 18 months of treatment. Our findings indicate that ERT does not fully halt or reverse the underlying skeletal muscle pathology in IPD. The best outcomes were observed in the two patients who began therapy early, namely at 0.5 and 1.1 months of age.
Collapse
|
50
|
Bado-Nilles A, Betoulle S, Geffard A, Porcher JM, Gagnaire B, Sanchez W. Flow cytometry detection of lysosomal presence and lysosomal membrane integrity in the three-spined stickleback (Gasterosteus aculeatus L.) immune cells: applications in environmental aquatic immunotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2692-2704. [PMID: 23288672 DOI: 10.1007/s11356-012-1410-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
The neutral red retention assay has been proposed to determine the lysosomal membrane stability in immune cells. Nevertheless, this assay implies many examinations under a microscope at short time intervals and therefore the analysis of few samples. The present study proposes two more rapid, efficient, and sensitive sample analyses using flow cytometry method. Lysosomal presence and lysosomal membrane integrity (LMI) were evaluated on the three-spined stickleback, Gasterosteus aculeatus (L.), a well-described model fish species for aquatic ecotoxicology studies. After development of the two biomarkers, they were validated by ex vivo contamination with endosulfan and copper and by in situ sampling. These immunomarkers were clearly modulated by pollutants and their variations seemed to be correlated with leucocyte mortality. Thus, from a practical point of view, lysosomal presence and LMI may provide novel and efficient means of evaluating immune capacities and indicating the toxic effects of environmental pollution.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- Université Reims Champagne-Ardenne, EA Unité Interactions Animal-Environnement, Moulin de Housse, BP 1039, 51687 Reims, France.
| | | | | | | | | | | |
Collapse
|