1
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
2
|
Murphy MP, O'Neill LAJ. A break in mitochondrial endosymbiosis as a basis for inflammatory diseases. Nature 2024; 626:271-279. [PMID: 38326590 DOI: 10.1038/s41586-023-06866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Dunn CD. The population frequency of human mitochondrial DNA variants is highly dependent upon mutational bias. Biol Open 2021; 10:272468. [PMID: 34643212 PMCID: PMC8565468 DOI: 10.1242/bio.059072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing can quickly reveal genetic variation potentially linked to heritable disease. As databases encompassing human variation continue to expand, rare variants have been of high interest, since the frequency of a variant is expected to be low if the genetic change leads to a loss of fitness or fecundity. However, the use of variant frequency when seeking genomic changes linked to disease remains very challenging. Here, I explored the role of selection in controlling human variant frequency using the HelixMT database, which encompasses hundreds of thousands of mitochondrial DNA (mtDNA) samples. I found that a substantial number of synonymous substitutions, which have no effect on protein sequence, were never encountered in this large study, while many other synonymous changes are found at very low frequencies. Further analyses of human and mammalian mtDNA datasets indicate that the population frequency of synonymous variants is predominantly determined by mutational biases rather than by strong selection acting upon nucleotide choice. My work has important implications that extend to the interpretation of variant frequency for non-synonymous substitutions.
Collapse
Affiliation(s)
- Cory D Dunn
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
4
|
Mitocryptide-2: Identification of Its Minimum Structure for Specific Activation of FPR2-Possible Receptor Switching from FPR2 to FPR1 by Its Physiological C-terminal Cleavages. Int J Mol Sci 2021; 22:ijms22084084. [PMID: 33920954 PMCID: PMC8071274 DOI: 10.3390/ijms22084084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Mitocryptides are a novel family of endogenous neutrophil-activating peptides originating from various mitochondrial proteins. Mitocryptide-2 (MCT-2) is one of such neutrophil-activating peptides, and is produced as an N-formylated pentadecapeptide from mitochondrial cytochrome b. Although MCT-2 is a specific endogenous ligand for formyl peptide receptor 2 (FPR2), the chemical structure within MCT-2 that is responsible for FPR2 activation is still obscure. Here, we demonstrate that the N-terminal heptapeptide structure of MCT-2 with an N-formyl group is the minimum structure that specifically activates FPR2. Moreover, the receptor molecule for MCT-2 is suggested to be shifted from FPR2 to its homolog formyl peptide receptor 1 (FPR1) by the physiological cleavages of its C-terminus. Indeed, N-terminal derivatives of MCT-2 with seven amino acid residues or longer caused an increase of intracellular free Ca2+ concentration in HEK-293 cells expressing FPR2, but not in those expressing FPR1. Those MCT-2 derivatives also induced β-hexosaminidase secretion in neutrophilic/granulocytic differentiated HL-60 cells via FPR2 activation. In contrast, MCT-2(1–4), an N-terminal tetrapeptide of MCT-2, specifically activated FPR1 to promote those functions. Moreover, MCT-2 was degraded in serum to produce MCT-2(1–4) over time. These findings suggest that MCT-2 is a novel critical factor that not only initiates innate immunity via the specific activation of FPR2, but also promotes delayed responses by the activation of FPR1, which may include resolution and tissue regeneration. The present results also strongly support the necessity of considering the exact chemical structures of activating factors for the investigation of innate immune responses.
Collapse
|
5
|
Abstract
Most mammals rely on chemosensory cues for individual recognition, which is essential to many aspects of social behavior, such as maternal bonding, mate recognition, and inbreeding avoidance. Both volatile molecules and nonvolatile peptides secreted by individual conspecifics are detected by olfactory sensory neurons in the olfactory epithelium and the vomeronasal organ. The pertinent cues used for individual recognition remain largely unidentified. Here we show that nonformylated, but not N-formylated, mitochondrially encoded peptides-that is, the nine N-terminal amino acids of NADH dehydrogenases 1 and 2-can be used to convey strain-specific information among individual mice. We demonstrate that these nonformylated peptides are sufficient to induce a strain-selective pregnancy block. We also observed that the pregnancy block by an unfamiliar peptide derived from a male of a different strain was prevented by a memory formed at the time of mating with that male. Our findings also demonstrate that pregnancy-blocking chemosignals in the urine are maternally inherited, as evidenced by the production of reciprocal sons from two inbred strains and our test of their urine's ability to block pregnancy. We propose that this link between polymorphic mitochondrial peptides and individual recognition provides the molecular means to communicate an individual's maternal lineage and strain.
Collapse
|
6
|
Chorev DS, Baker LA, Wu D, Beilsten-Edmands V, Rouse SL, Zeev-Ben-Mordehai T, Jiko C, Samsudin F, Gerle C, Khalid S, Stewart AG, Matthews SJ, Grünewald K, Robinson CV. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 2018; 362:829-834. [PMID: 30442809 PMCID: PMC6522346 DOI: 10.1126/science.aau0976] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
Membrane proteins reside in lipid bilayers and are typically extracted from this environment for study, which often compromises their integrity. In this work, we ejected intact assemblies from membranes, without chemical disruption, and used mass spectrometry to define their composition. From Escherichia coli outer membranes, we identified a chaperone-porin association and lipid interactions in the β-barrel assembly machinery. We observed efflux pumps bridging inner and outer membranes, and from inner membranes we identified a pentameric pore of TonB, as well as the protein-conducting channel SecYEG in association with F1FO adenosine triphosphate (ATP) synthase. Intact mitochondrial membranes from Bos taurus yielded respiratory complexes and fatty acid-bound dimers of the ADP (adenosine diphosphate)/ATP translocase (ANT-1). These results highlight the importance of native membrane environments for retaining small-molecule binding, subunit interactions, and associated chaperones of the membrane proteome.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Lindsay A Baker
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Victoria Beilsten-Edmands
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College, London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Chimari Jiko
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Christoph Gerle
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan and Science and Technology Agency, Kawaguchi, Japan
| | - Syma Khalid
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen J Matthews
- Department of Life Sciences, Imperial College, London, South Kensington Campus, London SW7 2AZ, UK
| | - Kay Grünewald
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Centre of Structural Systems Biology (CSSB), Notkestr. 85, D-22607, Heinrich-Pette Institute/University of Hamburg, Hamburg, Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
7
|
Arguello T, Köhrer C, RajBhandary UL, Moraes CT. Mitochondrial methionyl N-formylation affects steady-state levels of oxidative phosphorylation complexes and their organization into supercomplexes. J Biol Chem 2018; 293:15021-15032. [PMID: 30087118 DOI: 10.1074/jbc.ra118.003838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
N-Formylation of the Met-tRNAMet by the nuclearly encoded mitochondrial methionyl-tRNA formyltransferase (MTFMT) has been found to be a key determinant of protein synthesis initiation in mitochondria. In humans, mutations in the MTFMT gene result in Leigh syndrome, a progressive and severe neurometabolic disorder. However, the absolute requirement of formylation of Met-tRNAMet for protein synthesis in mammalian mitochondria is still debated. Here, we generated a Mtfmt-KO mouse fibroblast cell line and demonstrated that N-formylation of the first methionine via fMet-tRNAMet by MTFMT is not an absolute requirement for initiation of protein synthesis. However, it differentially affected the efficiency of synthesis of mtDNA-coded polypeptides. Lack of methionine N-formylation did not compromise the stability of these individual subunits but had a marked effect on the assembly and stability of the OXPHOS complexes I and IV and on their supercomplexes. In summary, N-formylation is not essential for mitochondrial protein synthesis but is critical for efficient synthesis of several mitochondrially encoded peptides and for OXPHOS complex stability and assembly into supercomplexes.
Collapse
Affiliation(s)
- Tania Arguello
- From the Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136 and
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Carlos T Moraes
- From the Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136 and
| |
Collapse
|
8
|
Lebeau J, Rainbolt TK, Wiseman RL. Coordinating Mitochondrial Biology Through the Stress-Responsive Regulation of Mitochondrial Proteases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:79-128. [PMID: 30072094 PMCID: PMC6402875 DOI: 10.1016/bs.ircmb.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are localized throughout mitochondria and function as critical regulators of all aspects of mitochondrial biology. As such, the activities of these proteases are sensitively regulated through transcriptional and post-translational mechanisms to adapt mitochondrial function to specific cellular demands. Here, we discuss the stress-responsive mechanisms responsible for regulating mitochondrial protease activity and the implications of this regulation on mitochondrial function. Furthermore, we describe how imbalances in the activity or regulation of mitochondrial proteases induced by genetic, environmental, or aging-related factors influence mitochondria in the context of disease. Understanding the molecular mechanisms by which cells regulate mitochondrial function through alterations in protease activity provide insights into the contributions of these proteases in pathologic mitochondrial dysfunction and reveals new therapeutic opportunities to ameliorate this dysfunction in the context of diverse classes of human disease.
Collapse
Affiliation(s)
- Justine Lebeau
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - T Kelly Rainbolt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
9
|
Marutani T, Hattori T, Tsutsumi K, Koike Y, Harada A, Noguchi K, Kiso Y, Mukai H. Mitochondrial protein-derived cryptides: Are endogenous N-formylated peptides including mitocryptide-2 components of mitochondrial damage-associated molecular patterns? Biopolymers 2017; 106:580-7. [PMID: 26600263 DOI: 10.1002/bip.22788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/08/2022]
Abstract
Recently, much attention has been paid to "nonclassical" bioactive peptides, which are fragmented peptides simultaneously produced during maturation and degradation of various functional proteins. We identified many fragmented peptides derived from various mitochondrial proteins including mitocryptide-1 and mitocryptide-2 that efficiently activate neutrophils. These endogenous, functionally active, fragmented peptides are referred to as "cryptides." Among them, mitocryptide-2 is an N-formylated cryptide cleaved from mitochondrial cytochrome b that is encoded in mitochondrial DNA (mtDNA). It is known that 13 proteins encoded in mtDNA are translated in mitochondria as N-formylated forms, suggesting the existence of endogenous N-formylated peptides other than mitocryptide-2. Here, we investigated the effects of N-formylated peptides presumably cleaved from mtDNA-encoded proteins other than cytochrome b on the functions of neutrophilic cells to elucidate possible regulation by endogenous N-formylated cryptides. Four N-formylated cryptides derived from cytochrome c oxidase subunit I and NADH dehydrogenase subunits 4, 5, and 6 among 12 peptides from mtDNA-encoded proteins efficiently induced not only migration but also β-hexosaminidase release, which is an indicator of neutrophilic phagocytosis, in HL-60 cells differentiated into neutrophilic cells. These activities were comparable to or higher than those induced by mitocryptide-2. Although endogenous N-formylated peptides that are contained in mitochondrial damage-associated molecular patterns (DAMPs) have yet to be molecularly identified, they have been implicated in innate immunity. Thus, N-formylated cryptides including mitocryptide-2 are first-line candidates for the contents of mitochondrial DAMPs to promote innate immune responses. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 580-587, 2016.
Collapse
Affiliation(s)
- Takayuki Marutani
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Tatsuya Hattori
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Koki Tsutsumi
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yusuke Koike
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Akihiko Harada
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Kosuke Noguchi
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Hidehito Mukai
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| |
Collapse
|
10
|
Bergman O, Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:457-69. [PMID: 27412728 PMCID: PMC4959648 DOI: 10.1177/0706743716648290] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca(+2), neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder.
Collapse
Affiliation(s)
- Oded Bergman
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Technion-IIT, Haifa, Israel B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Technion-IIT, Haifa, Israel B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| |
Collapse
|
11
|
Pierzchalska M, Grabacka M. The potential role of some phytochemicals in recognition of mitochondrial damage-associated molecular patterns. Mitochondrion 2016; 30:24-34. [PMID: 27288721 DOI: 10.1016/j.mito.2016.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria are the source of damage-associated molecular patterns (DAMPs). DAMPs modulate responses to stress and trauma in animals, influencing the onset of many diseases. Dietary phytochemicals, which target various cellular molecules, are potential modulators of immunological status. In this review the existence of the possible impact of some plant-derived compounds with proven anti-cancer and anti-inflammatory properties (isothiocyanates and curcumin) on DAMPs recognition is highlighted. Special consideration is given to the mtDNA recognizing Toll-like receptor 9 and formyl peptide receptors. In the context of the phytochemicals action, the role of these receptors in epithelial homeostasis is also discussed.
Collapse
Affiliation(s)
- Malgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Poland.
| | - Maja Grabacka
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Poland
| |
Collapse
|
12
|
Giglione C, Fieulaine S, Meinnel T. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie 2015; 114:134-46. [PMID: 25450248 DOI: 10.1016/j.biochi.2014.11.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
N-terminal protein modifications correspond to the first modifications which in principle any protein may undergo, before translation is completed by the ribosome. This class of essential modifications can have different nature or function and be catalyzed by a variety of dedicated enzymes. Here, we review the current state of the major N-terminal co-translational modifications, with a particular emphasis to their catalysts, which belong to metalloprotease and acyltransferase clans. The earliest of these modifications corresponds to the N-terminal methionine excision, an ubiquitous and essential process leading to the removal of the first methionine. N-alpha acetylation occurs also in all Kingdoms although its extent appears to be significantly increased in higher eukaryotes. Finally, N-myristoylation is a crucial pathway existing only in eukaryotes. Recent studies dealing on how some of these co-translational modifiers might work in close vicinity of the ribosome is starting to provide new information on when these modifications exactly take place on the elongating nascent chain and the interplay with other ribosome biogenesis factors taking in charge the nascent chains. Here a comprehensive overview of the recent advances in the field of N-terminal protein modifications is given.
Collapse
Affiliation(s)
- Carmela Giglione
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | - Sonia Fieulaine
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
13
|
Hinttala R, Sasarman F, Nishimura T, Antonicka H, Brunel-Guitton C, Schwartzentruber J, Fahiminiya S, Majewski J, Faubert D, Ostergaard E, Smeitink JA, Shoubridge EA. An N-terminal formyl methionine on COX 1 is required for the assembly of cytochrome c oxidase. Hum Mol Genet 2015; 24:4103-13. [PMID: 25911677 DOI: 10.1093/hmg/ddv149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 11/12/2022] Open
Abstract
Protein synthesis in mitochondria is initiated by formylmethionyl-tRNA(Met) (fMet-tRNA(Met)), which requires the activity of the enzyme MTFMT to formylate the methionyl group. We investigated the molecular consequences of mutations in MTFMT in patients with Leigh syndrome or cardiomyopathy. All patients studied were compound heterozygotes. Levels of MTFMT in patient fibroblasts were almost undetectable by immunoblot analysis, and BN-PAGE analysis showed a combined oxidative phosphorylation (OXPHOS) assembly defect involving complexes I, IV and V. The synthesis of only a subset of mitochondrial polypeptides (ND5, ND4, ND1, COXII) was decreased, whereas all others were translated at normal or even increased rates. Expression of the wild-type cDNA rescued the biochemical phenotype when MTFMT was expressed near control levels, but overexpression produced a dominant-negative phenotype, completely abrogating assembly of the OXPHOS complexes, suggesting that MTFMT activity must be tightly regulated. fMet-tRNA(Met) was almost undetectable in control cells and absent in patient cells by high-resolution northern blot analysis, but accumulated in cells overexpressing MTFMT. Newly synthesized COXI was under-represented in complex IV immunoprecipitates from patient fibroblasts, and two-dimensional BN-PAGE analysis of newly synthesized mitochondrial translation products showed an accumulation of free COXI. Quantitative mass spectrophotometry of an N-terminal COXI peptide showed that the ratio of formylated to unmodified N-termini in the assembled complex IV was ∼350:1 in controls and 4:1 in patient cells. These results show that mitochondrial protein synthesis can occur with inefficient formylation of methionyl-tRNA(Met), but that assembly of complex IV is impaired if the COXI N-terminus is not formylated.
Collapse
Affiliation(s)
- Reetta Hinttala
- Department of Human Genetics and Montreal Neurological Institute, McGill University, Montreal, QC., Canada, Department of Children and Adolescents, Division of Pediatric Neurology, PEDEGO Research Group and Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Florin Sasarman
- Montreal Neurological Institute, McGill University, Montreal, QC., Canada, Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, Que., Canada
| | - Tamiko Nishimura
- Montreal Neurological Institute, McGill University, Montreal, QC., Canada
| | - Hana Antonicka
- Montreal Neurological Institute, McGill University, Montreal, QC., Canada
| | - Catherine Brunel-Guitton
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, Que., Canada
| | | | | | | | - Denis Faubert
- Institut de Recherches Clinique de Montreal (IRCM), Montreal, Que., Canada
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark and
| | - Jan A Smeitink
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Mitochondrial Disorders, Nijmegen, The Netherlands
| | - Eric A Shoubridge
- Department of Human Genetics and Montreal Neurological Institute, McGill University, Montreal, QC., Canada,
| |
Collapse
|
14
|
Sheth A, Escobar-Alvarez S, Gardner J, Ran L, Heaney ML, Scheinberg DA. Inhibition of human mitochondrial peptide deformylase causes apoptosis in c-myc-overexpressing hematopoietic cancers. Cell Death Dis 2014; 5:e1152. [PMID: 24675470 PMCID: PMC3973238 DOI: 10.1038/cddis.2014.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 12/30/2022]
Abstract
Inhibition of human mitochondrial peptide deformylase (HsPDF) depolarizes the mitochondrial membrane, reduces mitochondrial protein translation and causes apoptosis in Burkitt's lymphoma. We showed that HsPDF mRNA and protein levels were overexpressed in cancer cells and primary acute myeloid leukemia samples. Myc regulates mitochondria and metabolism; we also demonstrated c-myc regulated the expression of HsPDF, likely indirectly. Inhibition of HsPDF by actinonin blocked mitochondrial protein translation and caused apoptotic death of myc-positive Burkitt's lymphoma, but not myc-negative B cells. Inhibition of mitochondrial translation by chloramphenicol or tetracycline, structurally different inhibitors of the mitochondrial ribosome, which is upstream of deformylase activity, followed by treatment with actinonin, resulted in reversal of the biochemical events and abrogation of the apoptosis induced by actinonin. This reversal was specific to inhibitors of HsPDF. Inhibition of HsPDF resulted in a mitochondrial unfolded protein response (increased transcription factors CHOP and CEB/P and the mitochondrial protease Lon), which may be a mechanism mediating cell death. Therefore, HsPDF may be a therapeutic target for these hematopoietic cancers, acting via a new mechanism.
Collapse
Affiliation(s)
- A Sheth
- 1] Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA [2] Department of Pharmacology, Weill Graduate School of Biomedical Sciences of Cornell University, New York, NY, USA
| | - S Escobar-Alvarez
- 1] Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA [2] Department of Pharmacology, Weill Graduate School of Biomedical Sciences of Cornell University, New York, NY, USA
| | - J Gardner
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA
| | - L Ran
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA
| | - M L Heaney
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D A Scheinberg
- 1] Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA [2] Department of Pharmacology, Weill Graduate School of Biomedical Sciences of Cornell University, New York, NY, USA [3] Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Fieulaine S, Desmadril M, Meinnel T, Giglione C. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart. ACTA ACUST UNITED AC 2014; 70:242-52. [DOI: 10.1107/s1399004713026461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/24/2013] [Indexed: 11/11/2022]
Abstract
Peptide deformylases (PDFs), which are essential and ubiquitous enzymes involved in the removal of theN-formyl group from nascent chains, are classified into four subtypes based on the structural and sequence similarity of specific conserved domains. All PDFs share a similar three-dimensional structure, are functionally interchangeablein vivoand display similar propertiesin vitro, indicating that their molecular mechanism has been conserved during evolution. The human mitochondrial PDF is the only exception as despite its conserved fold it reveals a unique substrate-binding pocket together with an unusual kinetic behaviour. Unlike human PDF, the closely related mitochondrial PDF1As from plants have catalytic efficiencies and enzymatic parameters that are similar to those of other classes of PDFs. Here, the aim was to identify the structural basis underlying the properties of human PDF compared with all other PDFs by focusing on plant mitochondrial PDF1A. The construction of a chimaera composed of plant PDF1A with the nonrandom substitutions found in a conserved motif of its human homologue converted it into an enzyme with properties similar to the human enzyme, indicating the crucial role of these positions. The crystal structure of this human-like plant PDF revealed that substitution of two residues leads to a reduction in the volume of the ligand-binding site together with the introduction of negative charges, unravelling the origin of the weak affinity of human PDF for its substrate. In addition, the substitution of the two residues of human PDF modifies the transition state of the reaction through alteration of the network of interactions between the catalytic residues and the substrate, leading to an overall reduced reaction rate.
Collapse
|
16
|
Carroll J, Ding S, Fearnley IM, Walker JE. Post-translational modifications near the quinone binding site of mammalian complex I. J Biol Chem 2013; 288:24799-808. [PMID: 23836892 PMCID: PMC3750175 DOI: 10.1074/jbc.m113.488106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex I (NADH:ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 protein subunits with one arm buried in the inner membrane of the mitochondrion and the orthogonal arm protruding about 100 Å into the matrix. The protruding arm contains the binding sites for NADH, the primary acceptor of electrons flavin mononucleotide (FMN), and a chain of seven iron-sulfur clusters that carries the electrons one at a time from FMN to a coenzyme Q molecule bound in the vicinity of the junction between the two arms. In the structure of the closely related bacterial enzyme from Thermus thermophilus, the quinone is thought to bind in a tunnel that spans the interface between the two arms, with the quinone head group close to the terminal iron-sulfur cluster, N2. The tail of the bound quinone is thought to extend from the tunnel into the lipid bilayer. In the mammalian enzyme, it is likely that this tunnel involves three of the subunits of the complex, ND1, PSST, and the 49-kDa subunit. An arginine residue in the 49-kDa subunit is symmetrically dimethylated on the ω-NG and ω-NG′ nitrogen atoms of the guanidino group and is likely to be close to cluster N2 and to influence its properties. Another arginine residue in the PSST subunit is hydroxylated and probably lies near to the quinone. Both modifications are conserved in mammalian enzymes, and the former is additionally conserved in Pichia pastoris and Paracoccus denitrificans, suggesting that they are functionally significant.
Collapse
Affiliation(s)
- Joe Carroll
- Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | | | | | | |
Collapse
|
17
|
Richter U, Lahtinen T, Marttinen P, Myöhänen M, Greco D, Cannino G, Jacobs H, Lietzén N, Nyman T, Battersby B. A Mitochondrial Ribosomal and RNA Decay Pathway Blocks Cell Proliferation. Curr Biol 2013; 23:535-41. [DOI: 10.1016/j.cub.2013.02.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 12/28/2022]
|
18
|
Battersby BJ, Richter U. Why translation counts for mitochondria – retrograde signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell proliferation. J Cell Sci 2013; 126:4331-8. [DOI: 10.1242/jcs.131888] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Organelle biosynthesis is a key requirement for cell growth and division. The regulation of mitochondrial biosynthesis exhibits additional layers of complexity compared with that of other organelles because they contain their own genome and dedicated ribosomes. Maintaining these components requires gene expression to be coordinated between the nucleo-cytoplasmic compartment and mitochondria in order to monitor organelle homeostasis and to integrate the responses to the physiological and developmental demands of the cell. Surprisingly, the parameters that are used to monitor or count mitochondrial abundance are not known, nor are the signalling pathways. Inhibiting the translation on mito-ribosomes genetically or with antibiotics can impair cell proliferation and has been attributed to defects in aerobic energy metabolism, even though proliferating cells rely primarily on glycolysis to fuel their metabolic demands. However, a recent study indicates that mitochondrial translational stress and the rescue mechanisms that relieve this stress cause the defect in cell proliferation and occur before any impairment of oxidative phosphorylation. Therefore, the process of mitochondrial translation in itself appears to be an important checkpoint for the monitoring of mitochondrial homeostasis and might have a role in establishing mitochondrial abundance within a cell. This hypothesis article will explore the evidence supporting a role for mito-ribosomes and translation in a mitochondria-counting mechanism.
Collapse
|
19
|
Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 2011; 14:428-34. [PMID: 21907147 PMCID: PMC3486727 DOI: 10.1016/j.cmet.2011.07.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/06/2011] [Accepted: 07/26/2011] [Indexed: 01/19/2023]
Abstract
The metazoan mitochondrial translation machinery is unusual in having a single tRNA(Met) that fulfills the dual role of the initiator and elongator tRNA(Met). A portion of the Met-tRNA(Met) pool is formylated by mitochondrial methionyl-tRNA formyltransferase (MTFMT) to generate N-formylmethionine-tRNA(Met) (fMet-tRNA(met)), which is used for translation initiation; however, the requirement of formylation for initiation in human mitochondria is still under debate. Using targeted sequencing of the mtDNA and nuclear exons encoding the mitochondrial proteome (MitoExome), we identified compound heterozygous mutations in MTFMT in two unrelated children presenting with Leigh syndrome and combined OXPHOS deficiency. Patient fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of MTFMT. Furthermore, patient fibroblasts have dramatically reduced fMet-tRNA(Met) levels and an abnormal formylation profile of mitochondrially translated COX1. Our findings demonstrate that MTFMT is critical for efficient human mitochondrial translation and reveal a human disorder of Met-tRNA(Met) formylation.
Collapse
Affiliation(s)
- Elena J. Tucker
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Steven G. Hershman
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute, Cambridge, MA, 02142, USA
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Casey A. Belcher-Timme
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute, Cambridge, MA, 02142, USA
| | | | - Olga A. Goldberger
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute, Cambridge, MA, 02142, USA
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Children's Hospital at Westmead, Sydney, NSW, 2006, Australia
- Discipline of Paediatrics & Child Health, University of Sydney, Sydney, NSW, 2006, Australia
- Discipline of Genetic Medicine, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jonathon M. Silberstein
- Department of Neurology, Princess Margaret Hospital for Children, Perth, WA, 6008, Australia
| | - Matthew McKenzie
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Michael T. Ryan
- Department of Biochemistry, La Trobe University, Melbourne, VIC, 3086, Australia
- ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alison G. Compton
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | | | | | - Sarah E. Calvo
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute, Cambridge, MA, 02142, USA
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - David R. Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia
- Genetic Health Services Victoria, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Vamsi K. Mootha
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute, Cambridge, MA, 02142, USA
| |
Collapse
|
20
|
Seki T, Fukamizu A, Kiso Y, Mukai H. Mitocryptide-2, a neutrophil-activating cryptide, is a specific endogenous agonist for formyl-peptide receptor-like 1. Biochem Biophys Res Commun 2011; 404:482-7. [DOI: 10.1016/j.bbrc.2010.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
21
|
Abstract
Deformylases are metalloproteases in bacteria, plants, and humans that remove the N-formyl-methionine off peptides in vitro. The human homolog of peptide deformylase (HsPDF) resides in the mitochondria, along with its putative formylated substrates; however, the cellular function of HsPDF remains elusive. Here we report on the function of HsPDF in mitochondrial translation and oxidative phosphorylation complex biogenesis. Functional HsPDF appears to be necessary for the accumulation of mitochondrial DNA-encoded proteins and assembly of new respiratory complexes containing these proteins. Consequently, inhibition of HsPDF reduces respiratory function and cellular ATP levels, causing dependence on aerobic glycolysis for cell survival. A series of structurally different HsPDF inhibitors and control peptidase inhibitors confirmed that inhibition of HsPDF decreases mtDNA-encoded protein accumulation. Therefore, HsPDF appears to have a role in maintenance of mitochondrial respiratory function, and this function is analogous to that of chloroplast PDF.
Collapse
|
22
|
Abstract
Complex I (NADH:quinone oxidoreductase) is crucial to respiration in many aerobic organisms. In mitochondria, it oxidizes NADH (to regenerate NAD+ for the tricarboxylic acid cycle and fatty-acid oxidation), reduces ubiquinone (the electrons are ultimately used to reduce oxygen to water) and transports protons across the mitochondrial inner membrane (to produce and sustain the protonmotive force that supports ATP synthesis and transport processes). Complex I is also a major contributor to reactive oxygen species production in the cell. Understanding the mechanisms of energy transduction and reactive oxygen species production by complex I is not only a significant intellectual challenge, but also a prerequisite for understanding the roles of complex I in disease, and for the development of effective therapies. One approach to defining a complicated reaction mechanism is to break it down into manageable parts that can be tackled individually, before being recombined and integrated to produce the complete picture. Thus energy transduction by complex I comprises NADH oxidation by a flavin mononucleotide, intramolecular electron transfer from the flavin to bound quinone along a chain of iron–sulfur clusters, quinone reduction and proton translocation. More simply, molecular oxygen is reduced by the flavin, to form the reactive oxygen species superoxide and hydrogen peroxide. The present review summarizes and evaluates experimental data that pertain to the reaction mechanisms of complex I, and describes and discusses contemporary mechanistic hypotheses, proposals and models.
Collapse
|
23
|
Carroll J, Fearnley IM, Wang Q, Walker JE. Measurement of the molecular masses of hydrophilic and hydrophobic subunits of ATP synthase and complex I in a single experiment. Anal Biochem 2009; 395:249-55. [DOI: 10.1016/j.ab.2009.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 02/04/2023]
|