1
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 410] [Impact Index Per Article: 136.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
3
|
Si T, Tian Q, Min Y, Zhang L, Sweedler JV, van der Donk WA, Zhao H. Rapid Screening of Lanthipeptide Analogs via In-Colony Removal of Leader Peptides in Escherichia coli. J Am Chem Soc 2018; 140:11884-11888. [PMID: 30183279 DOI: 10.1021/jacs.8b05544] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most native producers of ribosomally synthesized and post-translationally modified peptides (RiPPs) utilize N-terminal leader peptides to avoid potential cytotoxicity of mature products to the hosts. Unfortunately, the native machinery of leader peptide removal is often difficult to reconstitute in heterologous hosts. Here we devised a general method to produce bioactive lanthipeptides, a major class of RiPP molecules, in Escherichia coli colonies using synthetic biology principles, where leader peptide removal is programmed temporally by protease compartmentalization and inducible cell autolysis. We demonstrated the method for producing two lantibiotics, haloduracin and lacticin 481, and performed analog screening for haloduracin. This method enables facile, high throughput discovery, characterization, and engineering of RiPPs.
Collapse
Affiliation(s)
- Tong Si
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Qiqi Tian
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yuhao Min
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Linzixuan Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jonathan V Sweedler
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemical and Biomolecular Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
4
|
Kakkar N, Perez JG, Liu WR, Jewett MC, van der Donk WA. Incorporation of Nonproteinogenic Amino Acids in Class I and II Lantibiotics. ACS Chem Biol 2018; 13:951-957. [PMID: 29439566 PMCID: PMC5910287 DOI: 10.1021/acschembio.7b01024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lantibiotics are ribosomally synthesized and post-translationally modified peptide natural products that contain thioether cross-links formed by lanthionine and methyllanthionine residues. They exert potent antimicrobial activity against Gram-positive bacteria. We herein report production of analogues of two lantibiotics, lacticin 481 and nisin, that contain nonproteinogenic amino acids using two different strategies involving amber stop codon suppression technology. These methods complement recent alternative approaches to incorporate nonproteinogenic amino acids into lantibiotics.
Collapse
Affiliation(s)
- Nidhi Kakkar
- Howard Hughes Medical Institute and Roger Adams Laboratory, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jessica G. Perez
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843m United States
| | - Michael C. Jewett
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Howard Hughes Medical Institute and Roger Adams Laboratory, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
A Novel Microbisporicin Producer Identified by Early Dereplication during Lantibiotic Screening. BIOMED RESEARCH INTERNATIONAL 2015; 2015:419383. [PMID: 26346738 PMCID: PMC4539421 DOI: 10.1155/2015/419383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 11/20/2022]
Abstract
With the increasing need of effective antibiotics against multi-drug resistant pathogens, lantibiotics are an attractive option of a new class of molecules. They are ribosomally synthetized and posttranslationally modified peptides possessing potent antimicrobial activity against aerobic and anaerobic Gram-positive pathogens, including those increasingly resistant to β-lactams and glycopeptides. Some of them (actagardine, mersacidin, planosporicin, and microbisporicin) inhibit cell wall biosynthesis in pathogens and their effect is not antagonized by vancomycin. Hereby, we apply an efficient strategy for lantibiotic screening to 240 members of a newly described genus of filamentous actinomycetes, named Actinoallomurus, that is considered a yet-poorly-exploited promising source for novel bioactive metabolites. By combining antimicrobial differential assay against Staphylococcus aureus and its L-form (also in the presence of a β-lactamase cocktail or Ac-Lys-D-alanyl-D-alanine tripeptide), with LC-UV-MS dereplication coupled with bioautography, a novel producer of the potent microbisporicin complex was rapidly identified. Under the commercial name of NAI-107, it is currently in late preclinical phase for the treatment of multi-drug resistant Gram-positive pathogens. To our knowledge, this is the first report on a lantibiotic produced by an Actinoallomurus sp. and on a microbisporicin producer not belonging to the Microbispora genus.
Collapse
|
7
|
Bindman NA, Bobeica SC, Liu WR, van der Donk WA. Facile Removal of Leader Peptides from Lanthipeptides by Incorporation of a Hydroxy Acid. J Am Chem Soc 2015; 137:6975-8. [PMID: 26006047 PMCID: PMC4505723 DOI: 10.1021/jacs.5b04681] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The biosynthesis of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products typically involves a precursor peptide which contains a leader peptide that is important for the modification process, and that is removed in the final step by a protease. Genome mining efforts for new RiPPs are often hampered by the lack of a general method to remove the leader peptides. We describe here the incorporation of hydroxy acids into the precursor peptides in E. coli which results in connection of the leader peptide via an ester linkage that is readily cleaved by simple hydrolysis. We demonstrate the method for two lantibiotics, lacticin 481 and nukacin ISK-1.
Collapse
Affiliation(s)
- Noah A. Bindman
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign
| | - Silvia C. Bobeica
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
8
|
Abstract
The lantibiotics are a class of bacterially produced antimicrobial peptides (bacteriocins) that contain several unusual amino acids resulting from enzyme-mediated post-translational modifications. They exhibit high specific activity against Gram-positive targets, including many antibiotic-resistant pathogens, and consequently have been investigated with a view to their application as antimicrobials in both the food and medical arenas. Importantly, the gene-encoded nature of lantibiotics makes them more amenable to bioengineering strategies to further enhance their antimicrobial and physicochemical properties. However, although the bioengineering of lantibiotics has been underway for over 2 decades, significant progress has only been reported in recent years. This review charts recent developments with regard to the implementation of bioengineering strategies to enhance the functional characteristics of the prototypical and most studied lantibiotic nisin.
Collapse
Affiliation(s)
- Des Field
- a Department of Microbiology ; University College Cork ; Cork , Ireland
| | | | | | | |
Collapse
|
9
|
Sandiford SK. Advances in the arsenal of tools available enabling the discovery of novel lantibiotics with therapeutic potential. Expert Opin Drug Discov 2014; 9:283-97. [PMID: 24410252 DOI: 10.1517/17460441.2014.877882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lantibiotics are ribosomally synthesised peptides, which undergo extensive post-translational modification. Their mode of action and effectiveness against multi-drug-resistant pathogens, and relatively low toxicity, makes them attractive therapeutic options. AREAS COVERED This article provides background information on the four classes of lanthipeptides that have been described to date. Due to the clinical potential of these agents, specifically those from Class I and II, it is essential to identify organisms that harbour potentially interesting clusters encoding novel lantibiotics. Multiple emerging technologies have been applied to address this issue, including genome mining and specific bioinformatics programs designed to identify lantibiotic clusters present within the genome sequences. These clusters can then be effectively expressed using optimised heterologous expression systems, which are ideally amenable to large-scale production. EXPERT OPINION The continuing expansion of publicly available genomes, particularly genomes from microorganisms isolated from under-explored environments, combined with powerful bioinformatics tools able to accurately identify clusters of interest are of paramount importance in the discovery of novel lantibiotics. Detailed analysis of clusters drastically reduces dereplication time, which was often problematic when using the traditional method of isolation, purification and then identification. Allowing a more focused direction of 'wet lab' work, targeting the most promising agents, greatly increases the chance of novel lantibiotic discovery and development. High-throughput screening strategies are also required to enable the efficient analysis of these potentially clinically relevant agents.
Collapse
Affiliation(s)
- Stephanie Kate Sandiford
- Leiden University, Institute of Biology, Molecular Biotechnology, Sylvius Laboratories , Wassenaarseweg 72, 2333 BE, Leiden , The Netherlands +31 71 527 4759 ; +31 71 527 4900 ;
| |
Collapse
|
10
|
Bindman NA, van der Donk WA. A general method for fluorescent labeling of the N-termini of lanthipeptides and its application to visualize their cellular localization. J Am Chem Soc 2013; 135:10362-71. [PMID: 23789944 DOI: 10.1021/ja4010706] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Labeling of natural products with biophysical probes has greatly contributed to investigations of their modes of action and has provided tools for visualization of their targets. A general challenge is the availability of a suitable functional group for chemoselective modification. We demonstrate here that an N-terminal ketone is readily introduced into various lanthipeptides by the generation of a cryptic N-terminal dehydro amino acid by the cognate biosynthetic enzymes. Spontaneous hydrolysis of the N-terminal enamines results in α-ketoamides that site-specifically react with an aminooxy-derivatized alkyne or fluorophore. The methodology was successfully applied to prochlorosins 1.7 and 2.8, as well as the lantibiotics lacticin 481, haloduracin α, and haloduracin β. The fluorescently modified lantibiotics were added to bacteria, and their cellular localization was visualized by confocal fluorescence microscopy. Lacticin 481 and haloduracin α localized predominantly at sites of new and old cell division as well as in punctate patterns along the long axis of rod-shaped bacilli, similar to the localization of lipid II. On the other hand, haloduracin β was localized nonspecifically in the absence of haloduracin α, but formed specific patterns when coadministered with haloduracin α. Using two-color labeling, colocalization of both components of the two-component lantibiotic haloduracin was demonstrated. These data with living cells supports a model in which the α component recognizes lipid II and then recruits the β-component.
Collapse
Affiliation(s)
- Noah A Bindman
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | |
Collapse
|
11
|
Knerr P, van der Donk WA. Chemical synthesis and biological activity of analogues of the lantibiotic epilancin 15X. J Am Chem Soc 2012; 134:7648-51. [PMID: 22524291 PMCID: PMC3349288 DOI: 10.1021/ja302435y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Indexed: 01/30/2023]
Abstract
Lantibiotics are a large family of antibacterial peptide natural products containing multiple post-translational modifications, including the thioether structures lanthionine and methyllanthionine. Efforts to probe structure-activity relationships and engineer improved pharmacological properties have driven the development of new methods to produce non-natural analogues of these compounds. In this study, solid-supported chemical synthesis was used to produce analogues of the potent lantibiotic epilancin 15X, in order to assess the importance of several N-terminal post-translational modifications for biological activity. Surprisingly, substitution of these moieties, including the unusual N-terminal D-lactyl moiety, resulted in relatively small changes in the antimicrobial activity and pore-forming ability of the peptides.
Collapse
Affiliation(s)
- Patrick
J. Knerr
- Howard Hughes Medical
Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Howard Hughes Medical
Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Oman TJ, Knerr PJ, Bindman NA, Velásquez JE, van der Donk WA. An engineered lantibiotic synthetase that does not require a leader peptide on its substrate. J Am Chem Soc 2012; 134:6952-5. [PMID: 22480178 PMCID: PMC3350211 DOI: 10.1021/ja3017297] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ribosomally synthesized and post-translationally modified
peptides
are a rapidly expanding class of natural products. They are typically
biosynthesized by modification of a C-terminal segment of the precursor
peptide (the core peptide). The precursor peptide also contains an
N-terminal leader peptide that is required to guide the biosynthetic
enzymes. For bioengineering purposes, the leader peptide is beneficial
because it allows promiscuous activity of the biosynthetic enzymes
with respect to modification of the core peptide sequence. However,
the leader peptide also presents drawbacks as it needs to be present
on the core peptide and then removed in a later step. We show that
fusing the leader peptide for the lantibiotic lacticin 481 to its
biosynthetic enzyme LctM allows the protein to act on core peptides
without a leader peptide. We illustrate the use of this methodology
for preparation of improved lacticin 481 analogues containing non-proteinogenic
amino acids.
Collapse
Affiliation(s)
- Trent J Oman
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Aided by genome-mining strategies, knowledge of the prevalence and diversity of ribosomally synthesized natural products (RNPs) is rapidly increasing. Among these are the lantipeptides, posttranslationally modified peptides containing characteristic thioether cross-links imperative for bioactivity and stability. Though this family was once thought to be a limited class of antimicrobial compounds produced by gram-positive bacteria, new insights have revealed a much larger diversity of activity, structure, biosynthetic machinery, and producing organisms than previously appreciated. Detailed investigation of the enzymes responsible for installing the posttranslational modifications has resulted in improved in vivo and in vitro engineering systems focusing on enhancement of the therapeutic potential of these compounds. Although dozens of new lantipeptides have been isolated in recent years, bioinformatic analyses indicate that many hundreds more await discovery owing to the widespread frequency of lantipeptide biosynthetic machinery in bacterial genomes.
Collapse
Affiliation(s)
- Patrick J Knerr
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
14
|
Rouse S, Field D, Daly KM, O'Connor PM, Cotter PD, Hill C, Ross RP. Bioengineered nisin derivatives with enhanced activity in complex matrices. Microb Biotechnol 2012; 5:501-8. [PMID: 22260415 PMCID: PMC3815327 DOI: 10.1111/j.1751-7915.2011.00324.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nisin A is the best known and most extensively characterized lantibiotic. As it is ribosomally synthesized, bioengineering‐based strategies can be used to generate variants. We have previously demonstrated that bioengineering of the hinge region of nisin A can result in the generation of variants with enhanced anti‐microbial activity against Gram‐positive pathogens. Here we created a larger bank of hinge variant producers and screened for producers that exhibit enhanced bioactivity as assessed by agar‐based assays against a selection of target strains. Further analysis of 12 ‘lead’ variants reveals that in many cases enhanced bioactivity is not attributable to enhanced specific activity but is instead as a consequence of an enhanced ability to diffuse through complex polymers. In the case of two variants, which contain the residues SVA and NAK, respectively, within the hinge region, we demonstrate that this enhanced trait enables the peptides to dramatically outperform nisin A with respect to controlling Listeria monocytogenes in commercially produced chocolate milk that contains carrageenan as a stabilizer.
Collapse
Affiliation(s)
- Susan Rouse
- Department of Microbiology Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
15
|
Li J, Girard G, Florea BI, Geurink PP, Li N, van der Marel GA, Overhand M, Overkleeft HS, van Wezel GP. Identification and isolation of lantibiotics from culture: a bioorthogonal chemistry approach. Org Biomol Chem 2012; 10:8677-83. [DOI: 10.1039/c2ob26050f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Tabor AB. The challenge of the lantibiotics: synthetic approaches to thioether-bridged peptides. Org Biomol Chem 2011; 9:7606-28. [PMID: 21960309 DOI: 10.1039/c1ob05946g] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique antibacterial properties and structural complexity of the lantibiotics has stimulated considerable interest in the development of methodology to synthesise these peptides. One of the most challenging issues has been the synthesis of polycyclic peptides with multiple thioether bridges between side-chains, which are a characteristic feature of the lantibiotics. In this perspective, the different approaches to this problem, including solution-phase synthesis, solid-phase synthesis, biomimetic approaches and biotransformation strategies, are reviewed, highlighting the advances resulting from each of these approaches.
Collapse
Affiliation(s)
- Alethea B Tabor
- Department of Chemistry, UCL, Christopher Ingold Laboratories, UK WC1H 0AJ.
| |
Collapse
|
17
|
Caetano T, Krawczyk JM, Mösker E, Süssmuth RD, Mendo S. Heterologous expression, biosynthesis, and mutagenesis of type II lantibiotics from Bacillus licheniformis in Escherichia coli. ACTA ACUST UNITED AC 2011; 18:90-100. [PMID: 21276942 DOI: 10.1016/j.chembiol.2010.11.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/19/2010] [Accepted: 11/04/2010] [Indexed: 11/28/2022]
Abstract
Lichenicidin is a class II two-component lantibiotic produced by Bacillus licheniformis. It is composed of the two peptides Bliα and Bliβ, which act synergistically against various Gram-positive bacteria. The lichenicidin gene cluster was successfully expressed in Escherichia coli, thus constituting the first report to our knowledge of a full reconstitution of a lantibiotic biosynthetic pathway in vivo by a Gram-negative host. This system was further exploited to characterize and assign the function of proteins encoded in the biosynthetic gene cluster in the maturation of lichenicidin peptides. Moreover, a trans complementation system was developed for expression of Bliα and Bliβ variants in vivo. This contribution will spur future studies in the heterologous expression and engineering of lantibiotics.
Collapse
Affiliation(s)
- Tânia Caetano
- Department of Biology and CESAM, University of Aveiro, 3810 Aveiro, Portugal; Medinfar-Pharmaceutical Products SA, Amadora, 2700 Venda Nova, Portugal
| | | | | | | | | |
Collapse
|
18
|
Abstract
![]()
Lantipeptides are ribosomally synthesized and posttranslationally modified peptides containing thioether cross-links. We describe the preparation of seven different lantipeptides in Escherichia coli and demonstrate that this methodology can be used to incorporate nonproteinogenic amino acids.
Collapse
Affiliation(s)
- Yanxiang Shi
- Howard Hughes Medical Institute, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
19
|
Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci U S A 2010; 107:16297-302. [PMID: 20805503 DOI: 10.1073/pnas.1008608107] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranslational modification of amino acids confers a range of structural features and activities on ribosomally synthesized peptides, many of which have potent antimicrobial or other biological activities. Cypemycin is an extensively modified linear peptide produced by Streptomyces sp. OH-4156 with potent in vitro activity against mouse leukemia cells. Cypemycin does not contain lanthionine bridges but exhibits some of the structural features of lantibiotics, notably dehydrated threonines (dehydrobutyrines) and a C-terminal S-[(Z)-2-aminovinyl]-D-cysteine. Consequently it was classified as a member of the lantibiotic family of posttranslationally modified peptides. Cypemycin also possesses two L-allo-isoleucine residues and an N-terminal N,N-dimethylalanine, both unique amino acid modifications. We identified and heterologously expressed the cypemycin biosynthetic gene cluster and performed a mutational analysis of each individual gene. We show that even the previously described modifications are carried out by unusual enzymes or via a modification pathway unrelated to lantibiotic biosynthesis. Bioinformatic analysis revealed the widespread occurrence of cypemycin-like gene clusters within the bacterial kingdom and in the Archaea. Cypemycin is the founding member of an unusual class of posttranslationally modified ribosomally synthesized peptides, the linaridins.
Collapse
|
20
|
Abstract
Lantibiotics are biologically active peptides produced by several strains from the phyla Firmicutes and Actinobacteria. They are ribosomally synthesized and undergo posttranslational modifications that endow them with the characteristic (methyl)-lanthionine residues. As a result, lantibiotics contain a variable number of rings, each carrying one thioether link. Many lantibiotics inhibit growth of Gram-positive bacterial strains by interfering with peptidoglycan formation. Because they bind to the key intermediate lipid II at a site not affected by clinically used antibiotics, they are effective against multidrug-resistant strains. We describe a bioassay-based method suitable for finding antibacterial lantibiotics from actinomycete strains and provide selected procedures for characterizing newly discovered lantibiotics for their antibacterial properties.
Collapse
|
21
|
Oman TJ, van der Donk WA. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 2010; 6:9-18. [PMID: 20016494 PMCID: PMC3799897 DOI: 10.1038/nchembio.286] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avalanche of genomic information in the past decade has revealed that natural product biosynthesis using the ribosomal machinery is much more widespread than originally anticipated. Nearly all of these compounds are crafted through post-translational modifications of a larger precursor peptide that often contains the marching orders for the biosynthetic enzymes. We review here the available information for how the peptide sequences in the precursors govern the post-translational tailoring processes for several classes of natural products. In addition, we highlight the great potential these leader peptide-directed biosynthetic systems offer for engineering conformationally restrained and pharmacophore-rich products with structural diversity that greatly expands the proteinogenic repertoire.
Collapse
Affiliation(s)
- Trent J. Oman
- Department of Chemistry, Howard Hughes Medical Institute, and Institute for Genomic Biology. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Telephone: (217) 244 5360, FAX: (217) 244 8533
| | - Wilfred A. van der Donk
- Department of Chemistry, Howard Hughes Medical Institute, and Institute for Genomic Biology. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Telephone: (217) 244 5360, FAX: (217) 244 8533
| |
Collapse
|