1
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
2
|
Shin SM, Song SH, Lee JW, Kwak MK, Kang SO. Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis. Int J Biochem Cell Biol 2017; 91:14-28. [PMID: 28807600 DOI: 10.1016/j.biocel.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 01/03/2023]
Abstract
Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P<0.05) and 3.24±0.73μm (P<0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA-) and -overexpressing (mgsAOE) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB- and speE-) and -overexpressing (speBOE and speEOE) mutants. Importantly, both mgsA-depleted speBOE and speEOE mutants (speBOE/mgsA- and speEOE/mgsA-) were drastically shortened to 24.5% and 23.8% of parental speBOE and speEOE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ.
Collapse
Affiliation(s)
- Sang-Min Shin
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Hyun Song
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jin-Woo Lee
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
3
|
Pal A, Talukdar D, Roy A, Ray S, Mallick A, Mandal C, Ray M. Nanofabrication of methylglyoxal with chitosan biopolymer: a potential tool for enhancement of its anticancer effect. Int J Nanomedicine 2015; 10:3499-518. [PMID: 25999714 PMCID: PMC4435252 DOI: 10.2147/ijn.s78284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The normal metabolite methylglyoxal (MG) specifically kills cancer cells by inhibiting glycolysis and mitochondrial respiration without much adverse effect upon normal cells. Though the anticancer property of MG is well documented, its gradual enzymatic degradation in vivo has prompted interest in developing a nanoparticulate drug delivery system to protect it and also to enhance its efficacy. Materials and methods MG-conjugated chitosan nanoparticles (Nano-MG) were prepared by conjugating the carbonyl group of MG with the amino group of chitosan polymer (Schiff’s base formation). Nano-MG were characterized in detail using the dynamic light scattering method, zeta potential measurement, Fourier transform infrared spectroscopy, and transmission electron microscopic analysis. Amount of MG anchored to Nano-MG, stability of Nano-MG, and in vitro release of MG from Nano-MG were estimated spectrophotometrically. Ehrlich ascites carcinoma (EAC) cells, human breast cancer cell line HBL-100, and lung epithelial adenocarcinoma cell line A549 were used as test systems to compare Nano-MG with bare MG in vitro. Cytotoxicity to EAC cells was evaluated by the trypan blue dye exclusion test, and cell viability of HBL-100 and A549 cells were studied using 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis of HBL-100 cells was assessed by flow cytometry and confocal microscopy. In vivo studies were performed on both EAC cells inoculated and also in sarcoma-180-induced solid tumor-bearing Swiss albino mice to assess the anticancer activity of Nano-MG in comparison to bare MG with varying doses, times, and administrative routes. Results Fourier transform infrared spectroscopy revealed the presence of imine groups in Nano-MG due to conjugation of the amino group of chitosan and carbonyl group of MG with diameters of nanoparticles ranging from 50–100 nm. The zeta potential of Nano-MG was +21 mV and they contained approximately 100 μg of MG in 1 mL of solution. In vitro studies with Nano-MG showed higher cytotoxicity and enhanced rate of apoptosis in the HBL-100 cell line in comparison with bare MG, but no detrimental effect on normal mouse myoblast cell line C2C12 at the concerned doses. Studies with EAC cells also showed increased cell death of nearly 1.5 times. Nano-MG had similar cytotoxic effects on A549 cells. In vivo studies further demonstrated the efficacy of Nano-MG over bare MG and found them to be about 400 times more potent in EAC-bearing mice and nearly 80 times more effective in sarcoma-180-bearing mice. Administration of ascorbic acid and creatine during in vivo treatments augmented the anticancer effect of Nano-MG. Conclusion The results clearly indicate that Nano-MG may constitute a promising tool in anticancer therapeutics in the near future.
Collapse
Affiliation(s)
- Aparajita Pal
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Dipa Talukdar
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Anirban Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Subhankar Ray
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Asish Mallick
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Manju Ray
- Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
4
|
Chakraborty S, Gogoi M, Chakravortty D. Lactoylglutathione lyase, a critical enzyme in methylglyoxal detoxification, contributes to survival of Salmonella in the nutrient rich environment. Virulence 2015; 6:50-65. [PMID: 25517857 PMCID: PMC4603430 DOI: 10.4161/21505594.2014.983791] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 02/02/2023] Open
Abstract
Glyoxalase I which is synonymously known as lactoylglutathione lyase is a critical enzyme in methylglyoxal (MG) detoxification. We assessed the STM3117 encoded lactoylglutathione lyase (Lgl) of Salmonella Typhimurium, which is known to function as a virulence factor, due in part to its ability to detoxify methylglyoxal. We found that STM3117 encoded Lgl isomerises the hemithioacetal adduct of MG and glutathione (GSH) into S-lactoylglutathione. Lgl was observed to be an outer membrane bound protein with maximum expression at the exponential growth phase. The deletion mutant of S. Typhimurium (Δlgl) exhibited a notable growth inhibition coupled with oxidative DNA damage and membrane disruptions, in accordance with the growth arrest phenomenon associated with typical glyoxalase I deletion. However, growth in glucose minimal medium did not result in any inhibition. Endogenous expression of recombinant Lgl in serovar Typhi led to an increased resistance and growth in presence of external MG. Being a metalloprotein, Lgl was found to get activated maximally by Co(2+) ion followed by Ni(2+), while Zn(2+) did not activate the enzyme and this could be attributed to the geometry of the particular protein-metal complex attained in the catalytically active state. Our results offer an insight on the pivotal role of the virulence associated and horizontally acquired STM3117 gene in non-typhoidal serovars with direct correlation of its activity in lending survival advantage to Salmonella spp.
Collapse
Affiliation(s)
- Sangeeta Chakraborty
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore, India
| | - Mayuri Gogoi
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore, India
| |
Collapse
|
5
|
Role of methylglyoxal in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238485. [PMID: 24734229 PMCID: PMC3966409 DOI: 10.1155/2014/238485] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease.
Collapse
|
6
|
Immunomodulation of macrophages by methylglyoxal conjugated with chitosan nanoparticles against Sarcoma-180 tumor in mice. Cell Immunol 2014; 287:27-35. [DOI: 10.1016/j.cellimm.2013.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/24/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022]
|
7
|
Hasim S, Hussin NA, Alomar F, Bidasee KR, Nickerson KW, Wilson MA. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J Biol Chem 2013; 289:1662-74. [PMID: 24302734 DOI: 10.1074/jbc.m113.505784] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys(136)-His(137)-Glu(168). Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mM and kcat = 7.8 s(-1)) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.
Collapse
|
8
|
Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 2013; 47 Suppl 1:3-27. [PMID: 23767955 DOI: 10.3109/10715762.2013.815348] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.
Collapse
Affiliation(s)
- G Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, Milan, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Mohammadi M, Kashi MA, Zareian S, Mirshahi M, Khajeh K. Remarkable Improvement of Methylglyoxal Synthase Thermostability by His–His Interaction. Appl Biochem Biotechnol 2013; 172:157-67. [DOI: 10.1007/s12010-013-0404-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/17/2013] [Indexed: 12/01/2022]
|
10
|
Falahati H, Pazhang M, Zareian S, Ghaemi N, Rofougaran R, Hofer A, Rezaie AR, Khajeh K. Transmitting the allosteric signal in methylglyoxal synthase. Protein Eng Des Sel 2013; 26:445-52. [DOI: 10.1093/protein/gzt014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Zareian S, Khajeh K, Pazhang M, Ranjbar B. Rationalization of allosteric pathway in Thermus sp. GH5 methylglyoxal synthase. BMB Rep 2012; 45:748-53. [PMID: 23261063 PMCID: PMC4133812 DOI: 10.5483/bmbrep.2012.45.12.11-138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A sequence of 10 amino acids at the C-terminus region of methylglyoxal synthase from Escherichia coli (EMGS) provides an arginine, which plays a crucial role in forming a salt bridge with a proximal aspartate residue in the neighboring subunit, consequently transferring the allosteric signal between subunits. In order to verify the role of arginine, the gene encoding MGS from a thermophile species, Thermus sp. GH5 (TMGS) lacking this arginine was cloned with an additional 30 bp sequence at the 3´-end and then expressed in form of a fusion TMGS with a 10 residual segment at the C-terminus (TMGS(+)). The resulting recombinant enzyme showed a significant increase in cooperativity towards phosphate, reflected by a change in the Hill coefficient (nH) from 1.5 to 1.99. Experiments including site directed mutagenesis for Asp-10 in TMGS and TMGS(+), two dimentional structural survey, fluorescence and irreversible thermoinactivation were carried out to confirm this pathway.
Collapse
Affiliation(s)
- Shekufeh Zareian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
12
|
Farsi Z, Pein H, Pazhang M, Zareian S, Ranaei-Siadat SO, Khajeh K. Conferral of allostery to Thermus sp. GH5 methylglyoxal synthase by a single mutation. J Biochem 2012; 152:531-8. [DOI: 10.1093/jb/mvs115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Subedi KP, Choi D, Kim I, Min B, Park C. Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol Microbiol 2011; 81:926-36. [DOI: 10.1111/j.1365-2958.2011.07736.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2011; 90:1721-9. [DOI: 10.1007/s00253-011-3190-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/24/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
|
15
|
Sarkar P, Kar K, Mondal MC, Chakraborty I, Kar M. Elevated Level of Carbonyl Compounds Correlates with Insulin Resistance in Type 2 Diabetes. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2010. [DOI: 10.47102/annals-acadmedsg.v39n12p909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: Recent periodicals direct that reactive carbonyl compounds are formed due to existing oxidative stress in type 2 diabetes mellitus, which further nonenzymatically react with proteins and lipids to form irreversible advanced glycation end products (AGE) and advanced lipoxidation end products (ALE). In type 2 diabetes mellitus, insulin resistance plays a pivotal role in hyperglycaemia. In this study, we tried to find the relation between insulin resistance and carbonyl stress. Materials and Methods: Forty-seven patients of type 2 diabetes mellitus (age 51 ± 5.06 years) were selected and fasting plasma glucose, serum insulin, total carbonyl compounds, HbA1c, thiobarbituric acid reacting substances (TBARS) and Trolox equivalent antioxidant capacity (TEAC) were estimated using standard protocols. Homeostatic model assessment of insulin resistance (HOMA-IR) was evaluated from fasting plasma glucose and serum insulin levels. Results: We found highly significant correlations of carbonyl compounds with HOMA-IR, fasting plasma glucose and glycated haemoglobin (HbA1c). Correlations of lipid peroxidation end product, TBARS were not so significant. Conclusion: Findings from this study indicate that the level of carbonyl compounds can be a biomarker of insulin resistance in type 2 diabetes mellitus.
Keywords: Carbonyl stress, HOMA-IR, Oxidative stress
Collapse
Affiliation(s)
| | - Kaushik Kar
- N R S Medical College and Hospital, Kolkata, India
| | | | | | - Manoj Kar
- N R S Medical College and Hospital, Kolkata, India
| |
Collapse
|
16
|
Cloning, expression, and characterization of a novel methylglyoxal synthase from Thermus sp. strain GH5. Appl Biochem Biotechnol 2010; 162:1519-28. [PMID: 20419481 DOI: 10.1007/s12010-010-8933-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
A gene encoding methylglyoxal synthase from Thermus sp. GH5 (TMGS) was cloned, sequenced, overexpressed, and purified by Q-Sepharose. The TMGS gene was composed of 399 bp which encoded a polypeptide of 132 amino acids with a molecular mass of 14.3 kDa. The K (m) and k (cat) values of TMGS were 0.56 mM and 325 (s(-1)), respectively. The enzyme exhibited its optimum activity at pH 6 and 75 degrees C. Comparing the amino acid sequences and Hill coefficients of Escherichia coli MGS and TMGS revealed that the loss of Arg 150 in TMGS has caused a decrease in the cooperativity between the enzyme subunits in the presence of phosphate as an allosteric inhibitor. Gel filtration experiments showed that TMGS is a hexameric enzyme, and its quaternary structure did not change in the presence of phosphate.
Collapse
|
17
|
Chang T, Wu L. Methylglyoxal, oxidative stress, and hypertension. Can J Physiol Pharmacol 2007; 84:1229-38. [PMID: 17487230 DOI: 10.1139/y06-077] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic mechanisms for essential hypertension are unclear despite striking efforts from numerous research teams over several decades. Increased production of reactive oxygen species (ROS) has been associated with the development of hypertension and the role of ROS in hypertension has been well documented in recent years. In this context, it is important to better understand pathways and triggering factors for increased ROS production in hypertension. This review draws a causative linkage between elevated methylglyoxal level, methylglyoxal-induced production of ROS, and advanced glycation end products in the development of hypertension. It is proposed that elevated methylglyoxal level and resulting protein glycation and ROS production may be the upstream links in the chain reaction leading to the development of hypertension.
Collapse
Affiliation(s)
- Tuanjie Chang
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | | |
Collapse
|
18
|
Ghosh M, Talukdar D, Ghosh S, Bhattacharyya N, Ray M, Ray S. In vivo assessment of toxicity and pharmacokinetics of methylglyoxal. Toxicol Appl Pharmacol 2006; 212:45-58. [PMID: 16112157 DOI: 10.1016/j.taap.2005.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/24/2005] [Accepted: 07/02/2005] [Indexed: 10/25/2022]
Abstract
Previous in vivo studies from several laboratories had shown remarkable curative effect of methylglyoxal on cancer-bearing animals. In contrast, most of the recent in vitro studies have assigned a toxic role for methylglyoxal. The present study was initiated with the objective to resolve whether methylglyoxal is truly toxic in vivo and to reassess its therapeutic potential. Four species of animals, both rodent and non-rodent, were treated with different doses of methylglyoxal through oral, subcutaneous and intravenous routes. Acute (treatment for only 1 day) toxicity tests had been done with mouse and rat. These animals received 2, 1 and 0.3 g of methylglyoxal/kg of body weight in a day through oral, subcutaneous and intravenous routes respectively. Chronic (treatment for around a month) toxicity test had been done with mouse, rat, rabbit and dog. Mouse, rat and dog received 1, 0.3 and 0.1 g of methylglyoxal/kg of body weight in a day through oral, subcutaneous and intravenous routes respectively. Rabbit received 0.55, 0.3 and 0.1 g of methylglyoxal/kg of body weight in a day through oral, subcutaneous and intravenous routes respectively. It had been observed that methylglyoxal had no deleterious effect on the physical and behavioral pattern of the treated animals. Fertility and teratogenecity studies were done with rats that were subjected to chronic toxicity tests. It had been observed that these animals produced healthy litters indicating no damage of the reproductive systems as well as no deleterious effect on the offspring. Studies on several biochemical and hematological parameters of methylglyoxal-treated rats and dogs and histological studies of several organs of methylglyoxal-treated mouse were performed. These studies indicated that methylglyoxal had no apparent deleterious effect on some vital organs of these animals. A detailed pharmacokinetic study was done with mouse after oral administration of methylglyoxal. The effect of methylglyoxal alone and in combination with creatine and ascorbic acid on cancer-bearing animals had been investigated by measuring the increase in life span and tumor cell growth inhibition. The results indicated that anticancer effect of methylglyoxal was significantly augmented by ascorbic acid and further augmented by ascorbic acid and creatine. Nearly 80% of the animals treated with methylglyoxal plus ascorbic acid plus creatine were completely cured and devoid of any malignant cells within the peritoneal cavity.
Collapse
Affiliation(s)
- Manju Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The metabolic connection between glycerol and methylglyoxal (MG) is principally that DHAP, which is an intermediate in the aerobic breakdown of glycerol, is also the major precursor of MG, being the substrate for methylglyoxal synthase (MGS). The synthesis of MG is a consequence of unbalanced metabolism related either to a limitation for phosphate or to excessive carbon flux through the pathways that have the capacity to generate significant pools of DHAP. Cells producing MG produce a poison as an intermediate strategy for survival of metabolic imbalance. Indeed the panoply of metabolic regulation in this sector of catabolism can be seen as a strategy to avoid death by self-poisoning. Glycerol entry into Escherichia coli and Salmonella enterica serovar Typhimurium is facilitated by the aquaglyceroporin, GlpF. A homologous protein in serovar Typhimurium, PduF, facilitates the entry of 1,2-propanediol (Ppd) and is part of the Ppd metabolic pathway. MGS catalyzes the elimination of phosphate from DHAP, forming an enzyme-bound enediol(ate) intermediate that is released from the enzyme, followed by release of inorganic phosphate. The enzyme is highly specific for DHAP. Multiple MG detoxification pathways are found in both E. coli and serovar Typhimurium, but the dominant pathway is the GSH-dependent glyoxalase III system. The KefB and KefC systems have evolved to provide protection during detoxification of electrophiles. KefB and KefC are GSH-gated K+ efflux systems that are activated by the formation and binding of glutathione adducts that are generated during detoxification.
Collapse
Affiliation(s)
- Ian R Booth
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
20
|
SinhaRoy S, Banerjee S, Ray M, Ray S. Possible involvement of glutamic and/or aspartic acid residue(s) and requirement of mitochondrial integrity for the protective effect of creatine against inhibition of cardiac mitochondrial respiration by methylglyoxal. Mol Cell Biochem 2005; 271:167-76. [PMID: 15881668 DOI: 10.1007/s11010-005-6277-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We had previously shown that creatine exerted a protective effect against inhibition of cardiac mitochondrial respiration by methylglyoxal (SinhaRoy S, Biswas S, Ray M, Ray S. Biochem J 372: 661-669,2003). In the present study, we have investigated the mechanism of this protective effect by specific amino acid modifying reagent and by several compounds, which are structurally related to creatine. The results show that the compounds, which contain guanidine group such as arginine and guanidinopropionic acid, exert a protective effect, which is quantitatively similar to creatine. This result suggests the presence of carboxylic acid(s) such as glutamic and/or aspartic acid(s) in the creatine-binding site, which has been further supported by experiments with N-ethyl-5-phenyl isoxazolium-3'-sulfonate a reagent known to modify these amino acids. Both polarographic and spectrophotometric assays were performed with NADH as respiratory substrate by using a) submitochondrial particles by sonication, b) freeze-thawed mitochondria and c) mitochondria permeabilized by alamethicin treatment. The results of these studies as compared to that of intact mitochondria indicate that structural integrity of mitochondria is essential for the protective effect of creatine.
Collapse
Affiliation(s)
- Soumya SinhaRoy
- Department of Biological Chemistry, India Associationfor the Cultivation of Science, Jadavpur, Kolkata - 700 032, India
| | | | | | | |
Collapse
|
21
|
Roy SS, Biswas S, Ray M, Ray S. Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells. Biochem J 2003; 372:661-9. [PMID: 12605598 PMCID: PMC1223401 DOI: 10.1042/bj20021576] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 02/06/2003] [Accepted: 02/26/2003] [Indexed: 11/17/2022]
Abstract
Previous publications from our laboratory have shown that methylglyoxal inhibits mitochondrial respiration of malignant and cardiac cells, but it has no effect on mitochondrial respiration of other normal cells [Biswas, Ray, Misra, Dutta and Ray (1997) Biochem. J. 323, 343-348; Ray, Biswas and Ray (1997) Mol. Cell. Biochem. 171, 95-103]. However, this inhibitory effect of methylglyoxal is not significant in cardiac tissue slices. Moreover, post-mitochondrial supernatant (PMS) of cardiac cells could almost completely protect the mitochondrial respiration against the inhibitory effect of methylglyoxal. A systematic search indicated that creatine present in cardiac cells is responsible for this protective effect. Glutathione has also some protective effect. However, creatine phosphate, creatinine, urea, glutathione disulphide and beta-mercaptoethanol have no protective effect. The inhibitory and protective effects of methylglyoxal and creatine respectively on cardiac mitochondrial respiration were studied with various concentrations of both methylglyoxal and creatine. Interestingly, neither creatine nor glutathione have any protective effect on the inhibition by methylglyoxal on the mitochondrial respiration of Ehrlich ascites carcinoma cells. The creatine and glutathione contents of several PMS, which were tested for the possible protective effect, were measured. The activities of two important enzymes, namely glyoxalase I and creatine kinase, which act upon glutathione plus methylglyoxal and creatine respectively, were also measured in different PMS. Whether mitochondrial creatine kinase had any role in the protective effect of creatine had also been investigated using 1-fluoro-2,4-dinitrobenzene, an inhibitor of creatine kinase. The differential effect of creatine on mitochondria of cardiac and malignant cells has been discussed with reference to the therapeutic potential of methylglyoxal.
Collapse
MESH Headings
- Animals
- Carcinoma, Ehrlich Tumor/metabolism
- Carcinoma, Ehrlich Tumor/pathology
- Carcinoma, Ehrlich Tumor/prevention & control
- Cardiotonic Agents/pharmacology
- Cell Respiration/drug effects
- Chickens
- Creatine/metabolism
- Creatine/pharmacology
- Creatine Kinase/antagonists & inhibitors
- Creatine Kinase/metabolism
- Creatine Kinase, Mitochondrial Form
- Creatinine/pharmacology
- Dinitrofluorobenzene/pharmacology
- Dose-Response Relationship, Drug
- Glutathione Disulfide/metabolism
- Glutathione Disulfide/pharmacology
- Glycolysis
- Goats
- Heart/drug effects
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/metabolism
- Lactoylglutathione Lyase/metabolism
- Mercaptoethanol/pharmacology
- Mice
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Oxygen Consumption/drug effects
- Phosphocreatine/pharmacology
- Pyruvaldehyde/metabolism
- Pyruvaldehyde/pharmacology
- Rats
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Urea/pharmacology
Collapse
Affiliation(s)
- Soumya Sinha Roy
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | | | | | | |
Collapse
|
22
|
Huynh PL, Jankovic I, Schnell NF, Brückner R. Characterization of an HPr kinase mutant of Staphylococcus xylosus. J Bacteriol 2000; 182:1895-902. [PMID: 10714994 PMCID: PMC101872 DOI: 10.1128/jb.182.7.1895-1902.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 12/29/1999] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus xylosus gene hprK, encoding HPr kinase (HPrK), has been isolated from a genomic library. The HPrK enzyme, purified as a His(6) fusion protein, phosphorylated HPr, the phosphocarrier protein of the bacterial phosphotransferase system, at a serine residue in an ATP-dependent manner, and it also catalyzed the reverse reaction. Therefore, the enzyme constitutes a bifunctional HPr kinase/phosphatase. Insertional inactivation of the gene in the genome of S. xylosus resulted in the concomitant loss of both HPr kinase and His serine-phosphorylated-HPr phosphatase activities in cell extracts, strongly indicating that the HPrK enzyme is also responsible for both reactions in vivo. HPrK deficiency had a profound pleiotropic effect on the physiology of S. xylosus. The hprK mutant strain showed a severe growth defect in complex medium upon addition of glucose. Glucose uptake in glucose-grown cells was strongly enhanced compared with the wild type. Carbon catabolite repression of three tested enzyme activities by glucose, sucrose, and fructose was abolished. These results clearly demonstrate the prominent role of HPr kinase in global control to adjust catabolic capacities of S. xylosus according to the availability of preferred carbon sources.
Collapse
Affiliation(s)
- P L Huynh
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
23
|
Kalapos MP. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 1999; 110:145-75. [PMID: 10597025 DOI: 10.1016/s0378-4274(99)00160-5] [Citation(s) in RCA: 380] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Despite the growing interest towards methylglyoxal and glyoxalases their real role in metabolic network is still obscure. In the light of developments several reviews have been published in this field mainly dealing with only a narrow segment of this research area. In this article a trial is made to present a comprehensive overview of methylglyoxal research, extending discussion from chemistry to biological implications by reviewing some important characteristics of methylglyoxal metabolism and toxicity in a wide variety of species, and emphasizing the action of methylglyoxal on energy production, free radical generation and cell killing. Special attention is paid to the discussion of alpha-oxoaldehyde production in the environment as a potential risk factor and to the possible role of this a-dicarbonyl in diseases. Concerning the interaction of methylglyoxal with biological macromolecules (DNA, RNA, proteins) an earlier review (Kalapos, Toxicology Letters, 73, 1994, 3-24) means a supplementation to this paper, thus hoping the avoidance of unnecessary bombast. The paper arrives at the conclusion that since the early stage of evolution the function of methylglyoxalase pathway has been related to carbohydrate metabolism, but its significance has been changed over the thousands of years. Namely, at the beginning of evolution methylglyoxalase path was essential for the reductive citric acid cycle as an anaplerotic route, while in the extant metabolism it concerns with the detoxification of methylglyoxal and plays some regulatory role in triose-phosphate household. As there is a tight junction between methylglyoxal and carbohydrate metabolism its pathological role in the events of the development of diabetic complications emerges in a natural manner and further progress is hoped in this field. In contrast, significant advancement cannot be expected in relation to cancer research.
Collapse
Affiliation(s)
- M P Kalapos
- Theoretical Biology Research Group, Budapest, Hungary
| |
Collapse
|
24
|
Huang K, Rudolph FB, Bennett GN. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1, 2-propanediol. Appl Environ Microbiol 1999; 65:3244-7. [PMID: 10388730 PMCID: PMC91483 DOI: 10.1128/aem.65.7.3244-3247.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene encoding a putative 150-amino-acid methylglyoxal synthase was identified in Clostridium acetobutylicum ATCC 824. The enzyme was overexpressed in Escherichia coli and purified. Methylglyoxal synthase has a native molecular mass of 60 kDa and an optimum pH of 7.5. The Km and Vmax values for the substrate dihydroxyacetone phosphate were 0.53 mM and 1.56 mmol min(-1) microgram(-1), respectively. When E. coli glycerol dehydrogenase was coexpressed with methylglyoxal synthase in E. coli BL21(DE3), 3.9 mM 1,2-propanediol was produced.
Collapse
Affiliation(s)
- K Huang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | |
Collapse
|
25
|
Deng Y, Yu PH. Assessment of the deamination of aminoacetone, an endogenous substrate for semicarbazide-sensitive amine oxidase. Anal Biochem 1999; 270:97-102. [PMID: 10328770 DOI: 10.1006/abio.1999.4058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylglyoxal, a toxic aldehyde, has been reported to be increased in diabetes and has been claimed to be related to diabetic complications. Aminoacetone, an intermediate in the metabolism of threonine and glycine, has been proposed to be an endogenous substrate for semicarbazide-sensitive amine oxidase (SSAO). Methylglyoxal is the product. An HPLC procedure for the determination of SSAO activity toward aminoacetone in vitro is described. It was observed in previous assays that methylglyoxal formed via deamination of aminoacetone was quite unstable and led to erroneous results. o-Phenylenediamine (o-PD) was therefore employed for derivatization of methylglyoxal. o-PD does not affect SSAO activity and can be included in the enzyme reaction mixture for continuous trapping of methylglyoxal. This can avoid the loss of methylglyoxal during incubation. Deamination of aminoacetone by human umbilical artery SSAO was confirmed with this improved assay. The values of Km and Vmax, are 125.9 +/- 20.5 microM and 332.2 +/- 11.7 nmol/h/mg protein, respectively. Deamination of aminoacetone was nearly completely inhibited by 1 mM semicarbazide and 1 microM MDL-72974A, a potent selective SSAO inhibitor, whereas MAO inhibitors clorgyline (1 mM) and deprenyl (1 mM) had no inhibitory effect.
Collapse
Affiliation(s)
- Y Deng
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E4, Canada
| | | |
Collapse
|
26
|
Tötemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR. From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 1998; 27:553-62. [PMID: 9489667 DOI: 10.1046/j.1365-2958.1998.00700.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The enzyme methylglyoxal synthase (MGS) was partially purified from Escherichia coli extracts, and the amino-terminal sequence of candidate proteins was determined, based on the native protein being a tetramer of about 69 kDa. Database analysis identified an open reading frame in the E. coli genome, YccG, corresponding to a protein of 16.9 kDa. When amplified and expressed from a controlled promoter, it yielded extracts that contained high levels of MGS activity. MGS expressed from the trc promoter accumulated to approximately 20% of total cell protein, representing approximately 900-fold enhanced expression. This caused no detriment during growth on glucose, and the level of methylglyoxal (MG) in the medium rose to only 0.08 mM. High-level expression of MGS severely compromised growth on xylose, arabinose and glycerol. A mutant lacking MGS was constructed, and it grew normally on a range of carbon sources and on low-phosphate medium. However, the mutant failed to produce MG during growth on xylose in the presence of cAMP, and growth was inhibited.
Collapse
Affiliation(s)
- S Tötemeyer
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
27
|
Biswas S, Ray M, Misra S, Dutta DP, Ray S. Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal. Biochem J 1997; 323 ( Pt 2):343-8. [PMID: 9163322 PMCID: PMC1218325 DOI: 10.1042/bj3230343] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of methylglyoxal on the oxygen consumption of mitochondria of both normal and leukaemic leucocytes was tested by using different respiratory substrates and complex specific artificial electron donors and inhibitors. The results indicate that methylglyoxal strongly inhibits mitochondrial respiration in leukaemic leucocytes, whereas, at a much higher concentration, methylglyoxal fails to inhibit mitochondrial respiration in normal leucocytes. Methylglyoxal strongly inhibits ADP-stimulated alpha-oxoglutarate and malate plus NAD+-dependent respiration, whereas, at a higher concentration, methylglyoxal fails to inhibit succinate and alpha-glycerophosphate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinone and cannot inhibit oxygen consumption when the N,N,N', N'-tetramethyl-p-phenylenediamine by-pass is used. NADH oxidation by sub-mitochondrial particles of leukaemic leucocytes is also inhibited by methylglyoxal. Lactaldehyde, a catabolite of methylglyoxal, can exert a protective effect on the inhibition of leukaemic leucocyte mitochondrial respiration by methylglyoxal. Methylglyoxal also inhibits l-lactic acid formation by intact leukaemic leucocytes and critically reduces the ATP level of these cells, whereas methylglyoxal has no effect on normal leucocytes. We conclude that methylglyoxal inhibits glycolysis and the electron flow through mitochondrial complex I of leukaemic leucocytes. This is strikingly similar to our previous studies on mitochondrial respiration, glycolysis and ATP levels in Ehrlich ascites carcinoma cells [Ray, Dutta, Halder and Ray (1994) Biochem. J. 303, 69-72; Halder, Ray and Ray (1993) Int. J. Cancer 54, 443-449], which strongly suggests that the inhibition of electron flow through complex I of the mitochondrial respiratory chain and inhibition of glycolysis by methylglyoxal may be common characteristics of all malignant cells.
Collapse
Affiliation(s)
- S Biswas
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India
| | | | | | | | | |
Collapse
|
28
|
Misra K, Banerjee AB, Ray S, Ray M. Reduction of methylglyoxal in Escherichia coli K12 by an aldehyde reductase and alcohol dehydrogenase. Mol Cell Biochem 1996; 156:117-24. [PMID: 9095467 DOI: 10.1007/bf00426333] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two enzymes, one NADPH-dependent and another NADH-dependent which catalyze the reduction of methylglyoxal to acetol have been isolated and substantially purified from crude extracts of Escherichia coli K12 cells. Substrate specificity and formation of acetol as the reaction product by both the enzymes, reversibility of NADH-dependent enzyme with alcohols as substrates and inhibitor study with NADPH-dependent enzyme indicate that NADPH-dependent and NADH-dependent enzymes are identical with an aldehyde reductase (EC 1.1.1.2) and alcohol dehydrogenase (EC 1.1.1.1) respectively. The K(m) for methylglyoxal have been determined to be 0.77 mM for NADPH-dependent and 3.8 mM for NADH-dependent enzyme. Stoichiometrically equimolar amount of acetol is formed from methylglyoxal by both NADPH- and NADH-dependent enzymes. In phosphate buffer, both the enzymes are active in the pH range of 5.8-6.6 with no sharp pH optimum. Molecular weight of both the enzymes were found to be 100,000 +/- 3,000 by gel filtration on a Sephacryl S-200 column. Both NADPH- and NADH-dependent enzymes are sensitive to sulfhydryl group reagents.
Collapse
Affiliation(s)
- K Misra
- Department of Biochemistry, University College of Science, University of Calcutta, India
| | | | | | | |
Collapse
|
29
|
Misra K, Banerjee AB, Ray S, Ray M. Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem J 1995; 305 ( Pt 3):999-1003. [PMID: 7848303 PMCID: PMC1136357 DOI: 10.1042/bj3050999] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A single novel enzyme, glyoxalase III, which catalyses the conversion of methylglyoxal into D-lactate without involvement of GSH, has been detected in and purified from Escherichia coli. Of several carbonyl compounds tested, only the alpha-ketoaldehydes methylglyoxal and phenylglyoxal were found to be substrates for this enzyme. Glyoxalase III is active over a wide range of pH with no sharp pH optimum. In its native form it has an M(r) of 82000 +/- 2000, and it is composed of two subunits of equal M(r). Glutathione analogues, which are inhibitors of glyoxalase I, do not inhibit glyoxalase III. Glyoxalase III is found to be sensitive to thiol-blocking reagents. The p-hydroxymercuribenzoate-inactivated enzyme could be almost completely re-activated by dithiothreitol and other thiol-group-containing compounds, indicating the possible involvement of thiol group(s) at or near the active site of the enzyme.
Collapse
Affiliation(s)
- K Misra
- Department of Biochemistry, University College of Science, University of Calcutta, India
| | | | | | | |
Collapse
|
30
|
Ray S, Dutta S, Halder J, Ray M. Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J 1994; 303 ( Pt 1):69-72. [PMID: 7945267 PMCID: PMC1137558 DOI: 10.1042/bj3030069] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of methylglyoxal on the oxygen consumption of Ehrlich-ascites-carcinoma (EAC)-cell mitochondria was tested by using different respiratory substrates, electron donors at different segments of the mitochondrial respiratory chain and site-specific inhibitors to identify the specific respiratory complex which might be involved in the inhibitory effect of methylglyoxal on the oxygen consumption by these cells. The results indicate that methylglyoxal strongly inhibits ADP-stimulated alpha-oxo-glutarate and malate plus pyruvate-dependent respiration, whereas, at a much higher concentration, methylglyoxal fails to inhibit succinate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinol, an artificial electron donor. Moreover, methylglyoxal cannot inhibit oxygen consumption when the NNN'N'-tetramethyl-p-phenylenediamine by-pass is used. The inhibitory effect of methylglyoxal is identical on both ADP-stimulated and uncoupler-stimulated respiration. Lactaldehyde, a catabolite of methylglyoxal, can exert a protective effect on the inhibition of EAC-cell mitochondrial respiration by methylglyoxal. We suggest that methylglyoxal possibly inhibits the electron flow through complex I of the EAC-cell mitochondrial respiratory chain.
Collapse
Affiliation(s)
- S Ray
- Department of Biochemistry, University College of Science, University of Calcutta, India
| | | | | | | |
Collapse
|
31
|
Lyles GA, Chalmers J. The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol 1992; 43:1409-14. [PMID: 1567465 DOI: 10.1016/0006-2952(92)90196-p] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aliphatic amine aminoacetone has been described previously as a product of mitochondrial metabolism of threonine and glycine. Here, aminoacetone is shown to be deaminated to methylglyoxal by supernatants obtained by low speed centrifugation (600 g/10 min) of human umbilical artery homogenates, and also by membrane fractions isolated by high speed centrifugation (105,000 g/60 min) of these supernatants. Metabolism of 100 microM aminoacetone was completely inhibited by 1 mM propargylamine and MDL 72145, drugs which are capable of inhibiting the membrane-bound semicarbazide-sensitive amine oxidase (SSAO) activity found in vascular smooth muscle cells, whereas 1 mM pargyline and deprenyl which are inhibitors of monoamine oxidase, were without inhibitory effect. Estimated kinetic constants (at pH 7.8) for aminoacetone metabolism were Km = 92 microM; Vmax = 270 nmol/hr/mg protein. In addition, aminoacetone was a competitive inhibitor (Ki = 83 microM and 128 microM in low speed supernatants and high speed membrane fractions, respectively) of [14C]benzylamine metabolism by SSAO in this tissue. Aminoacetone would appear to be an endogenously occurring amine with a Km for metabolism by SSAO far lower than other aliphatic and aromatic biogenic amines examined previously as potential physiological substrates for the human vascular enzyme and possible implications of this are discussed.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology, Ninewells Hospital and Medical School, University of Dundee, U.K
| | | |
Collapse
|
32
|
Liang ZQ, Hayase F, Kato H. Purification and characterization of NADPH-dependent 2-oxoaldehyde reductase from porcine liver. A self-defence enzyme preventing the advanced stage of the Maillard reaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:373-9. [PMID: 2026159 DOI: 10.1111/j.1432-1033.1991.tb15921.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An enzyme which catalyzes the reduction of 3-deoxyglucosone to 3-deoxyfructose and methylglyoxal to acetol, was isolated and purified from porcine liver. 2-Oxoaldehyde compounds were found to be especially good substrates and monocarbonyl compounds were poor substrates for this reductase. The optimum pH of the enzyme activity was 6.5. The Km for 3-deoxyglucosone and methylglyoxal were 2.1 mM and 3.3 mM, respectively. The enzyme consisted of a single polypeptide chain with a molecular mass of 38 kDa. The activity of the enzyme was completely inhibited by p-chloromercuribenzoate. The enzyme inhibited the advanced stage of the Maillard reaction.
Collapse
Affiliation(s)
- Z Q Liang
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | |
Collapse
|
33
|
Vander Jagt DL, Hunsaker LA, Campos NM, Baack BR. D-lactate production in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol 1990; 42:277-84. [PMID: 2270109 DOI: 10.1016/0166-6851(90)90171-h] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The production of D-lactate that accompanies the metabolism of glucose to L-lactate in Plasmodium falciparum was evaluated with erythrocytes that contained either young or mature parasites. Infected cells with ring-stage parasites release L-lactate and D-lactate at rates 1340 and 81 nmol h-1 (10(8) cells)-1, respectively. These rates increase to 2050 and 136 nmol h-1 (10(8) cells)-1, respectively, in infected cells with trophozoite/schizont-stage parasites. D-Lactate represents 6-7% of the total lactate. The formation of D-lactate is by way of a methylgloxal pathway in which methylglyoxal is formed nonenzymatically from dihydroxyacetone phosphate and is then converted into D-lactate by the sequential action of parasite glycoxalase I and glyoxalase II. The kinetic properties of parasite glyoxalase I and glyoxalase II allow these enzymes to be distinguished from those in the host cell. D-Lactate production by the parasite appears to be a defense mechanism to protect the parasite from the toxic effects of methylglyoxal.
Collapse
Affiliation(s)
- D L Vander Jagt
- Department of Biochemistry, University of New Mexico School of Medicine, Albuquerque 87131
| | | | | | | |
Collapse
|
34
|
Nakayama T, Sawada H, Deyashiki Y, Kanazu T, Hara A, Shinoda M, Matsuura K, Bunai Y, Ohya I. Distribution of dimeric dihydrodiol dehydrogenase in pig tissues and its role in carbonyl metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 284:187-96. [PMID: 1905099 DOI: 10.1007/978-1-4684-5901-2_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- T Nakayama
- Department of Biochemistry, Gifu Pharmaceutical University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Several classes of compounds - flavones, coumarins, S- and N-substituted glutathione analogs, transition state analogs, porphyrins, nucleotides and nucleosides - have been reported to inhibit the enzyme gloxalase I. In the current study, examination of some of the aforementioned compounds has revealed that squaric acid does not function as an inhibitor of glyoxalase I and several other compounds are much less effective in this regard than previously reported. Several new potent inhibitors of yeast glyoxalase I have been identified. Compounds containing the tropolone structure were especially inhibitory. Glutathione adducts of benzoquinone and naphthoquinone were also inhibitory and may be of particular interest with regard to the toxicology of normal aromatic metabolites in vivo.
Collapse
Affiliation(s)
- J F Barnard
- Guelph-Waterloo Centre for Graduate Work in Chemistry University of Waterloo, Ontario, Canada
| | | |
Collapse
|
36
|
Darling TN, Blum JJ. D-lactate production by Leishmania braziliensis through the glyoxalase pathway. Mol Biochem Parasitol 1988; 28:121-7. [PMID: 3130573 DOI: 10.1016/0166-6851(88)90059-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Leishmania braziliensis promastigotes incubated anaerobically produce D-lactate from glucose, ribose, and methylglyoxal, but not from glycerol, alanine, or pyruvate, suggesting the presence of glyoxalases I and II but the absence of D-lactate dehydrogenase. Further support for this is shown by: (1) conversion of methylglyoxal to D-lactate in sonicates of promastigotes in the presence of reduced glutathione, (2) utilization of phenylglyoxal at rates comparable to methylglyoxal, (3) lack of utilization of exogenously supplied D-lactate by promastigotes under aerobic conditions. Sonicates of promastigotes catalyze the conversion of dihydroxyacetone phosphate to methylglyoxal, suggesting the presence of methylglyoxal synthase. Whereas the rate of production of D-lactate from glucose is much greater under anaerobic conditions, the rate from methylglyoxal is independent of oxygen tension, indicating that control of flux through the methylglyoxal pathway occurs at, or before, methylglyoxal synthase.
Collapse
Affiliation(s)
- T N Darling
- Dept. of Physiology, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
37
|
|
38
|
Ray M, Ray S. L-Threonine dehydrogenase from goat liver. Feedback inhibition by methylglyoxal. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88915-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Ray S, Ray M. Formation of methylglyoxal from aminoacetone by amine oxidase from goat plasma. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32683-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
|