1
|
Zhao H, Xu Y, Lin S, Spain JC, Zhou NY. The molecular basis for the intramolecular migration (NIH shift) of the carboxyl group duringpara-hydroxybenzoate catabolism. Mol Microbiol 2018; 110:411-424. [PMID: 30070064 DOI: 10.1111/mmi.14094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Zhao
- State Key Laboratory of Microbial Metabolism; and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism; and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism; and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Jim C. Spain
- Center for Environmental Diagnostics & Bioremediation; University of West Florida; 11000 University Parkway Pensacola FL 32514-5751 USA
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism; and School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
2
|
|
3
|
Rocaboy-Faquet E, Barthelmebs L, Calas-Blanchard C, Noguer T. A novel amperometric biosensor for ß-triketone herbicides based on hydroxyphenylpyruvate dioxygenase inhibition: A case study for sulcotrione. Talanta 2015; 146:510-6. [PMID: 26695298 DOI: 10.1016/j.talanta.2015.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022]
Abstract
An amperometric biosensor was designed for the determination of sulcotrione, a β-triketone herbicide, based on inhibition of hydroxyphenylpyruvate dioxygenase (HPPD), an enzyme allowing the oxidation of hydroxyphenylpyruvate (HPP) in homogentisic acid (HGA). HPPD was produced by cloning the hppd gene from Arabidopsis thaliana in E. coli, followed by overexpression and purification by nickel-histidine affinity. The electrochemical detection of HPPD activity was based on the electrochemical oxidation of HGA at +0.1 V vs. Ag/AgCl, using a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate-modified screen-printed electrode. Assays were performed at 25°C in 0.1 M phosphate buffer pH 8 containing 0.1M KCl. The purified HPPD was shown to display a maximum velocity of 0.51 µM(HGA) min(-1), and an apparent K(M) of 22.6 µM for HPP. HPPD inhibition assays in presence of sulcotrione confirmed a competitive inhibition of HPPD, the calculated inhibition constant K(I) was 1.11.10(-8) M. The dynamic range for sulcotrione extended from 5.10(-10) M to 5.10(-6) M and the limit of detection (LOD), estimated as the concentration inducing 20% of inhibition, was 1.4.10(-10) M.
Collapse
Affiliation(s)
- Emilie Rocaboy-Faquet
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Lise Barthelmebs
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Carole Calas-Blanchard
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Thierry Noguer
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France.
| |
Collapse
|
4
|
Abstract
Nitisinone 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1,3-dione (NTBC), an effective herbicide, is the licensed treatment for the human condition, hereditary tyrosinaemia type 1 (HT-1). Its mode of action interrupts tyrosine metabolism through inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD). Nitisinone is a remarkable safe drug to use with few side effects reported. Therefore, we propose that it should be investigated as a potential treatment for other disorders of tyrosine metabolism. These include alkaptonuria (AKU), a rare disease resulting is severe, early-onset osteoarthritis. We present a case study from the disease, and attempts to use the drug both off-label and in clinical research through the DevelopAKUre consortium.
Collapse
|
5
|
Reactions of 3-benzoyl-7-dimethylamino-4-hydroxycoumarin and their potential applications in solution- and solid-phase synthesis. Mol Divers 2009; 13:253-60. [DOI: 10.1007/s11030-009-9107-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 12/26/2008] [Indexed: 10/21/2022]
|
6
|
Huang Y, Lai X, He X, Cao L, Zeng Z, Zhang J, Zhou S. Characterization of a deep-sea sediment metagenomic clone that produces water-soluble melanin in Escherichia coli. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:124-131. [PMID: 18648877 DOI: 10.1007/s10126-008-9128-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 06/13/2008] [Indexed: 05/26/2023]
Abstract
To access to the microbial genetic resources of deep-sea sediment by a culture-independent approach, the sediment DNA was extracted and cloned into fosmid vector (pCC1FOS) generating a library of 39,600 clones with inserts of 24-45 kb. The clone fss6 producing red-brown pigment was isolated and characterized. The pigment was identified as melanin according to its physico-chemical characteristics. Subcloning and sequences analyses of fss6 demonstrated that one open reading frame (ORF2) was responsible for the pigment production. The deduced protein from ORF2 revealed significant amino acid similarity to the 4-hydroxyphenylpyruvate dioxygenase (HPPD) from deep-sea bacteria Idiomarina loihiensis. Further study demonstrated that the production of melanin was correlated with homogentistic acid (HGA). The p-hydroxyphenylpyruvate produced by the Escherichia coli host was converted to HGA through the oxidation reaction of introduced HPPD. The results demonstrate that expression of DNA extracted directly from the environment might generate applicable microbial gene products. The construction and analysis of the metagenomic library from deep-sea sediment contributed to our understanding for the reservoir of unexploited deep-sea microorganisms.
Collapse
Affiliation(s)
- Yali Huang
- State Key Laboratory for Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an Fe(II)-dependent, non-heme oxygenase that catalyzes the conversion of 4-hydroxyphenylpyruvate to homogentisate. This reaction involves decarboxylation, substituent migration and aromatic oxygenation in a single catalytic cycle. HPPD is a member of the alpha-keto acid dependent oxygenases that typically require an alpha-keto acid (almost exclusively alpha-ketoglutarate) and molecular oxygen to either oxygenate or oxidize a third molecule. As an exception in this class of enzymes HPPD has only two substrates, does not use alpha-ketoglutarate, and incorporates both atoms of dioxygen into the aromatic product, homogentisate. The tertiary structure of the enzyme would suggest that its mechanism converged with that of other alpha-keto acid enzymes from an extradiol dioxygenase progenitor. The transformation catalyzed by HPPD has both agricultural and therapeutic significance. HPPD catalyzes the second step in the pathway for the catabolism of tyrosine, that is common to essentially all aerobic forms of life. In plants this pathway has an anabolic branch from homogentisate that forms essential isoprenoid redox cofactors such as plastoquinone and tocopherol. Naturally occurring multi-ketone molecules act as allelopathic agents by inhibiting HPPD and preventing the production of homogentisate and hence required redox cofactors. This has been the basis for the development of a range of very effective herbicides that are currently used commercially. In humans, deficiencies of specific enzymes of the tyrosine catabolism pathway give rise to a number of severe metabolic disorders. Interestingly, HPPD inhibitor/herbicide molecules act also as therapeutic agents for a number of debilitating and lethal inborn defects in tyrosine catabolism by preventing the accumulation of toxic metabolites.
Collapse
Affiliation(s)
- Graham R Moran
- Department of Chemistry and Biochemistry. University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211-3029, USA.
| |
Collapse
|
8
|
Carreira A, Ferreira LM, Loureiro V. Brown pigments produced by Yarrowia lipolytica result from extracellular accumulation of homogentisic acid. Appl Environ Microbiol 2001; 67:3463-8. [PMID: 11472920 PMCID: PMC93044 DOI: 10.1128/aem.67.8.3463-3468.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yarrowia lipolytica produces brown extracellular pigments that correlate with tyrosine catabolism. During tyrosine depletion, the yeast accumulated homogentisic acid, p-hydroxyphenylethanol, and p-hydroxyphenylacetic acid in the medium. Homogentisic acid accumulated under all aeration conditions tested, but its concentration decreased as aeration decreased. With moderate aeration, equimolar concentrations of alcohol and p-hydroxyphenylacetic acid (1:1) were detected, but with lower aeration the alcohol concentration was twice that of the acid (2:1). p-Hydroxyphenylethanol and p-hydroxyphenylacetic acid may result from the spontaneous disproportionation of the corresponding aldehyde, p-hydroxyphenylacetaldehyde. The catabolic pathway of tyrosine in Y. lipolytica involves the formation of p-hydroxyphenylacetaldehyde, which is oxidized to p-hydroxyphenylacetic acid and then further oxidized to homogentisic acid. Brown pigments are produced when homogentisic acid accumulates in the medium. This acid can spontaneously oxidize and polymerize, leading to the formation of pyomelanins. Mn(2+) accelerated and intensified the oxidative polymerization of homogentisic acid, and lactic acid enhanced the stimulating role of Mn(2+). Alkaline conditions also accelerated pigment formation. The proposed tyrosine catabolism pathway appears to be unique for yeast, and this is the first report of a yeast producing pigments involving homogentisic acid.
Collapse
Affiliation(s)
- A Carreira
- Laboratório de Microbiologia, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | | | | |
Collapse
|
9
|
Crouch NP, Lee MH, Iturriagagoitia-Bueno T, MacKinnon CH. Cloning, expression, and purification of mammalian 4-hydroxyphenylpyruvate dioxygenase/alpha-ketoisocaproate dioxygenase. Methods Enzymol 2001; 324:342-55. [PMID: 10989443 DOI: 10.1016/s0076-6879(00)24244-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- N P Crouch
- Dyson Perrins Laboratory, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
10
|
Lock EA, Gaskin P, Ellis MK, McLean Provan W, Robinson M, Smith LL. Tissue distribution of 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione (NTBC) and its effect on enzymes involved in tyrosine catabolism in the mouse. Toxicology 2000; 144:179-87. [PMID: 10781886 DOI: 10.1016/s0300-483x(99)00205-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Administration of a single oral dose of 2-(2-nitro-4-trifluoromethyl-benzoyl)-cyclohexane-1,3-dione (NTBC) to mice increases the concentration of tyrosine in the plasma and aqueous humour. The tyrosinaemia is both time and dose-dependent with a single dose of 30 micromol NTBC/kg (10 mg/kg) producing maximal concentrations of tyrosine in plasma of about 1200 nmol/ml and in aqueous humour of about 2200 nmol/ml at 16 h after dosing. Analysis of the key hepatic enzymes involved in tyrosine catabolism, following a single dose of 30 micromol NTBC/kg, showed that 4-hydroxyphenylpyruvate dioxygenase (HPPD) was markedly inhibited soon after dosing and that the activity recovered very slowly. In response to the tyrosinaemia, the activity of hepatic tyrosine aminotransferase (TAT) was induced about two-fold, while the activity of hepatic homogentisic acid oxidase (HGO) was reduced at 4 and 5 days after dosing. Daily oral administration of NTBC at doses up to 480 micromol NTBC/kg (160mg/kg/day) to mice produced a maximal tyrosinaemia of about 600-700nmol/ml plasma, showing some adaptation relative to a single dose. Unlike the rat, no treatment-related corneal lesions of the eye were seen at any dose levels up to 6 weeks. Administration of a single oral dose of [14C]-NTBC at 30 micromol/kg led to selective retention of radiolabel in the liver and to a lesser extent the kidneys. Our studies show that NTBC is a potent inhibitor of mouse liver HPPD, which following repeat exposure produces a marked and persistent tyrosinaemia, which does not result in ocular toxicity.
Collapse
Affiliation(s)
- E A Lock
- AstraZeneca Central Toxicology Laboratory, Alderley Park, Macclesfield, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Lock EA, Ellis MK, Gaskin P, Robinson M, Auton TR, Provan WM, Smith LL, Prisbylla MP, Mutter LC, Lee DL. From toxicological problem to therapeutic use: the discovery of the mode of action of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), its toxicology and development as a drug. J Inherit Metab Dis 1998; 21:498-506. [PMID: 9728330 DOI: 10.1023/a:1005458703363] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
NTBC is a triketone with herbicidal activity that has been shown to have a novel mode of action by inhibiting the enzyme 4-hydroxyphenylpyruvate dioxygenase in plants. Early studies on the toxicity of this compound found that rats treated with NTBC developed corneal lesions. Investigations aimed at understanding the mechanistic basis for the ocular toxicity discovered that the rats developed tyrosinaemia and excreted large amounts of 4-hydroxyphenylpyruvate and 4-hydroxyphenyllactate, owing to inhibition of the hepatic enzyme 4-hydroxyphenylpyruvate dioxygenase. The corneal lesions resemble those seen when rats are fed a diet supplemented with tyrosine, leading us to conclude that the ocular toxicity seen with NTBC is a consequence of a marked and sustained tyrosinaemia. Studies in collaboration with Professor Sven Lindstedt showed that NTBC was a potent inhibitor of purified human liver 4-hydroxyphenylpyruvate dioxygenase. This interaction lead to the concept of using NTBC to treat patients with tyrosinaemia type 1, to block or reduce the formation of toxic metabolites such as succinylacetoacetate in the liver. Zeneca Agrochemicals and Zeneca Pharmaceuticals made NTBC available for clinical use and, with the approval of the Swedish Medical Products Agency, a seriously ill child with an acute form of tyrosinaemia type 1 was successfully treated in February 1991. Subsequently, other children with this inborn error of metabolism in Sweden and other countries have been treated with NTBC. The drug is now available to those in need via Swedish Orphan AB.
Collapse
Affiliation(s)
- E A Lock
- Zeneca, Central Toxicology Laboratory, Alderley Park, Cheshire, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Overlapping DNA fragments spanning approximately 21 kb of genomic DNA and encompassing the human 4-hydroxyphenylpyruvate dioxygenase gene (HPD) have been cloned by screening a human leukocyte genomic library and by PCR amplification of human fibroblastic DNA. A continuous gene sequence of 20,890 nucleotides was established, including 1957 bp of the 5'-flanking region. The 4-hydroxyphenylpyruvate dioxygenase gene is composed of 14 exons interrupted by 13 introns, all exhibiting conventional vertebrate splicing. Computer analysis of the DNA sequence revealed 12 complete repetitive Alu elements, 1 in the 5'-flanking region and 11 in the intervening segments of the gene. The transcriptional initiation site was mapped to a position 35 nt upstream of the translational start point. The computer analysis also identified several potential transcription regulatory elements, including one CRE site, two AP-2 sites, and two Sp1 sites, in the sequence upstream of the transcription initiation site. Functional analysis of promoter activity by transient transfection of chloramphenicolacetyl transferase reporter plasmids revealed a possible involvement of cyclic adenosine monophosphate in the regulation of transcription. The highest level of expression of 4-hydroxyphenylpyruvate dioxygenase was found in human liver tissue as demonstrated by Northern blot analysis.
Collapse
Affiliation(s)
- U Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Göteborg University, Sahlgrenska University Hospital, Sweden.
| | | | | |
Collapse
|
13
|
Lee MH, Zhang ZH, MacKinnon CH, Baldwin JE, Crouch NP. The C-terminal of rat 4-hydroxyphenylpyruvate dioxygenase is indispensable for enzyme activity. FEBS Lett 1996; 393:269-72. [PMID: 8814303 DOI: 10.1016/0014-5793(96)00902-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have cloned and overexpressed rat 4-hydroxyphenylpyruvate dioxygenase (4HPPD) in Escherichia coli. The soluble, active recombinant enzyme was shown to contain both 4HPPD and alpha-ketoisocaproate dioxygenase (alpha KICD) activity. However, upon truncation of the 14 amino acids at the C-terminus by site-directed mutagenesis, the resulting mutant enzyme (rat F antigen) exhibited complete loss of 4HPPD and alpha KICD activities. This finding suggests that the C-terminal extension domain plays an essential role in the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- M H Lee
- Dyson Perrins Laboratory, University of Oxford, UK
| | | | | | | | | |
Collapse
|
14
|
Denoya CD, Skinner DD, Morgenstern MR. A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J Bacteriol 1994; 176:5312-9. [PMID: 8071207 PMCID: PMC196716 DOI: 10.1128/jb.176.17.5312-5319.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A 1.5-kb genomic fragment isolated from Streptomyces avermitilis that directs the synthesis of a brown pigment in Escherichia coli was characterized. Since pigment production in recombinant E. coli was enhanced by the addition of tyrosine to the medium, it had been inferred that the cloned DNA might be associated with melanin biosynthesis. Hybridization studies, however, showed that the pigment gene isolated from S. avermitilis was unrelated to the Streptomyces antibioticus melC2 determinant, which is the prototype of melanin genes in Streptomyces spp. Sequence analysis of the 1.5-kb DNA that caused pigment production revealed a single open reading frame encoding a protein of 41.6 kDa (380 amino acids) that resembled several prokaryotic and eukaryotic 4-hydroxyphenylpyruvate dioxygenases (HPDs). When this open reading frame was overexpressed in E. coli, a protein of about 41 kDa was detected. This E. coli clone produced homogentisic acid (HGA), which is the expected product of the oxidation of 4-hydroxyphenylpyruvate catalyzed by an HPD, and also a brown pigment with characteristics similar to the pigment observed in the urine of alkaptonuric patients. Alkaptonuria is a genetic disease in which inability to metabolize HGA leads to increasing concentrations of this acid in urine, followed by oxidation and polymerization of HGA to an ochronotic pigment. Similarly, the production of ochronotic-like pigment in the recombinant E. coli clone overexpressing the S. avermitilis gene encoding HPD is likely to be due to the spontaneous oxidation and polymerization of the HGA accumulated in the medium by this clone.
Collapse
Affiliation(s)
- C D Denoya
- Central Research Division, Pfizer Inc., Groton, Connecticut 06340
| | | | | |
Collapse
|
15
|
Rüetschi U, Dellsén A, Sahlin P, Stenman G, Rymo L, Lindstedt S. Human 4-hydroxyphenylpyruvate dioxygenase. Primary structure and chromosomal localization of the gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:1081-9. [PMID: 8504803 DOI: 10.1111/j.1432-1033.1993.tb17857.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the primary structure of 4-hydroxyphenylpyruvate dioxygenase [4-hydroxyphenyl-pyruvate:oxygen oxidoreductase (hydroxylating, decarboxylating)]. The work is based on the isolation of cDNA clones from human liver lambda gt11 libraries. Several overlapping clones covering the coding sequence were characterized. In parallel, peptides from four different digests of the purified protein were analysed for their amino-acid sequence. These peptide sequences covered 86% of the cDNA-derived amino-acid sequence. This gives the sequence for a polypeptide of 392 amino acids with a calculated molecular mass of 44.8 kDa. There is more than 80% identity between the human and the pig enzymes and also between these enzymes and the F antigen from rat and the two allelic forms of this antigen from mouse. The enzyme has 53% conserved amino acids and 27% identical amino acids in common with 4-hydroxyphenylpyruvate dioxygenase from Pseudomonas sp. P.J. 874 and 52% conserved and 28% identical residues, with a protein from Shewanella colwelliana. At the C-terminus there is 61% identity between the seven proteins. These results indicate that these proteins are all 4-hydroxyphenylpyruvate dioxygenases. The identity of the C-terminus makes this part of the molecule a candidate for a functional role in the catalytic process. At conserved positions in all seven enzymes, there are two tyrosine residues and three histidine residues, i.e. amino acids which have been implicated as ligands for iron in 2-oxoacid-dependent dioxygenases. The gene encoding the enzyme was localized to chromosome 12q14-->qter by Southern-blot analysis of human-rodent somatic-cell hybrids.
Collapse
Affiliation(s)
- U Rüetschi
- Department of Clinical Chemistry, Gothenburg University, Sahlgren's Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Schulz A, Ort O, Beyer P, Kleinig H. SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett 1993; 318:162-6. [PMID: 8382628 DOI: 10.1016/0014-5793(93)80013-k] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growth inhibition of Lemna gibba plantlets by the bleaching herbicide, SC-0051 (2-(2-chloro-4-methanesulfonylbenzoyl)-1,3-cyclohexanedione)) was alleviated by the addition of homogentisic acid to the growth medium. Homogentisic acid is a key intermediate in the biosynthesis of tyrosine-derived plant quinones as well as in tyrosine metabolism. The herbicide prevented the incorporation of radioactivity from [14C]tyrosine into lipophilic plant metabolites and, in rat liver extracts, the herbicide inhibited the conversion of tyrosine to homogentisic acid. The enzyme p-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27) from both Zea mays seedlings and liver tissues, was found to be subject to strong inhibition by SC-0051. Inhibition of plant quinone biosynthesis is a new mode of herbicidal action. One of the consequences of quinone depletion in plants by SC-0051. Inhibition of plant quinone biosynthesis is a new mode of herbicidal action. One of the consequences of quinone depletion in plants in vivo is apparently an indirect inhibition of phytoene desaturation. The enzyme phytoene desaturase itself, however, is not afflicted by the herbicide.
Collapse
Affiliation(s)
- A Schulz
- Hoechst AG, Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
17
|
Primary structure deduced from complementary DNA sequence and expression in cultured cells of mammalian 4-hydroxyphenylpyruvic acid dioxygenase. Evidence that the enzyme is a homodimer of identical subunits homologous to rat liver-specific alloantigen F. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35755-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Rüetschi U, Odelhög B, Lindstedt S, Barros-Söderling J, Persson B, Jörnvall H. Characterization of 4-hydroxyphenylpyruvate dioxygenase. Primary structure of the Pseudomonas enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:459-66. [PMID: 1572351 DOI: 10.1111/j.1432-1033.1992.tb16800.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary structure of Pseudomonas 4-hydroxyphenylpyruvate dioxygenase was determined. Sequence degradation of the intact protein and of peptides from three different digests of the carboxymethylated protein established a 357-residue polypeptide chain with a free alpha-amino group. Hydroxylamine cleavage at a single Asn-Gly sequence was useful. Comparisons with known structures in data banks revealed no close relationship with other characterized proteins. The human enzyme has a related composition, suggesting that also the eukaryotic form belongs to this protein type, but with a blocked N-terminus like in many other eukaryotic intracellular proteins. Secondary structure predictions suggest an alpha/beta mixed structure, fairly typical of globular proteins, without long segments of hydrophobicity or charge, although a region in the middle of the C-terminal third of the subunit appears to have the most extreme properties. A ferric centre, correlating with enzyme activity and absorbance at 595 nm, has previously been assigned to tyrosinate coordination. The Tyr and His distributions, and the position of a single Cys residue, all suggest a few likely sites, outside the C-terminal segment, for this centre.
Collapse
Affiliation(s)
- U Rüetschi
- Department of Clinical Chemistry, Gothenburg, University, Sahlgren's Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Endo F, Awata H, Tanoue A, Eda Y, Matsuda I. Tyrosinaemia type III: immunochemical studies on 4-hydroxyphenylpyruvic acid dioxygenase and molecular cloning of cDNA for the enzyme. J Inherit Metab Dis 1991; 14:783-6. [PMID: 1779624 DOI: 10.1007/bf01799950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- F Endo
- Department of Pediatrics, Kumamoto University Medical School, Japan
| | | | | | | | | |
Collapse
|