1
|
Singh K, Kaur A, Goyal B, Goyal D. Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer's Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress. ACS Chem Neurosci 2024; 15:2545-2564. [PMID: 38979773 DOI: 10.1021/acschemneuro.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.
Collapse
Affiliation(s)
- Kamaljot Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004 Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
2
|
Acharya NK, Grossman HC, Clifford PM, Levin EC, Light KR, Choi H, Swanson Ii RL, Kosciuk MC, Venkataraman V, Libon DJ, Matzel LD, Nagele RG. A Chronic Increase in Blood-Brain Barrier Permeability Facilitates Intraneuronal Deposition of Exogenous Bloodborne Amyloid-Beta1-42 Peptide in the Brain and Leads to Alzheimer's Disease-Relevant Cognitive Changes in a Mouse Model. J Alzheimers Dis 2024; 98:163-186. [PMID: 38393907 DOI: 10.3233/jad-231028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Increased blood-brain barrier (BBB) permeability and amyloid-β (Aβ) peptides (especially Aβ1-42) (Aβ42) have been linked to Alzheimer's disease (AD) pathogenesis, but the nature of their involvement in AD-related neuropathological changes leading to cognitive changes remains poorly understood. Objective To test the hypothesis that chronic extravasation of bloodborne Aβ42 peptide and brain-reactive autoantibodies and their entry into the brain parenchyma via a permeable BBB contribute to AD-related pathological changes and cognitive changes in a mouse model. Methods The BBB was rendered chronically permeable through repeated injections of Pertussis toxin (PT), and soluble monomeric, fluorescein isothiocyanate (FITC)-labeled or unlabeled Aβ42 was injected into the tail-vein of 10-month-old male CD1 mice at designated intervals spanning ∼3 months. Acquisition of learned behaviors and long-term retention were assessed via a battery of cognitive and behavioral tests and linked to neuropathological changes. Results Mice injected with both PT and Aβ42 demonstrated a preferential deficit in the capacity for long-term retention and an increased susceptibility to interference in selective attention compared to mice exposed to PT or saline only. Immunohistochemical analyses revealed increased BBB permeability and entry of bloodborne Aβ42 and immunoglobulin G (IgG) into the brain parenchyma, selective neuronal binding of IgG and neuronal accumulation of Aβ42 in animals injected with both PT and Aβ42 compared to controls. Conclusion Results highlight the potential synergistic role of BBB compromise and the influx of bloodborne Aβ42 into the brain in both the initiation and progression of neuropathologic and cognitive changes associated with AD.
Collapse
Affiliation(s)
- Nimish K Acharya
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Biomarker Discovery Center, New Jersey Institute for Successful Aging (NJISA), Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
- Rowan-Virtua Graduate School of Biomedical Sciences, Stratford, NJ, USA
- Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Glassboro, NJ, USA
| | - Henya C Grossman
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - Peter M Clifford
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- HNL Lab Medicine, Allentown, PA, USA
| | - Eli C Levin
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Department of Graduate Medical Education, Bayhealth Medical Center, Dover, DE, USA
| | - Kenneth R Light
- Department of Psychology, Barnard College of Columbia University, New York, NY, USA
| | - Hana Choi
- Rowan-Virtua Graduate School of Biomedical Sciences, Stratford, NJ, USA
| | - Randel L Swanson Ii
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Rehab Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary C Kosciuk
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Venkat Venkataraman
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Department of Academic and Student Affairs, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
| | - David J Libon
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Department of Psychology, Rowan University, Glassboro, NJ, USA
| | - Louis D Matzel
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - Robert G Nagele
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Biomarker Discovery Center, New Jersey Institute for Successful Aging (NJISA), Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
- Rowan-Virtua Graduate School of Biomedical Sciences, Stratford, NJ, USA
- Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
3
|
Ibuprofen Favors Binding of Amyloid-β Peptide to Its Depot, Serum Albumin. Int J Mol Sci 2022; 23:ijms23116168. [PMID: 35682848 PMCID: PMC9181795 DOI: 10.3390/ijms23116168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022] Open
Abstract
The deposition of amyloid-β peptide (Aβ) in the brain is a critical event in the progression of Alzheimer’s disease (AD). This Aβ deposition could be prevented by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). Previously, we revealed that specific endogenous ligands of HSA improve its affinity to monomeric Aβ. We show here that an exogenous HSA ligand, ibuprofen (IBU), exerts the analogous effect. Plasmon resonance spectroscopy data evidence that a therapeutic IBU level increases HSA affinity to monomeric Aβ40/Aβ42 by a factor of 3–5. Using thioflavin T fluorescence assay and transmission electron microcopy, we show that IBU favors the suppression of Aβ40 fibrillation by HSA. Molecular docking data indicate partial overlap between the IBU/Aβ40-binding sites of HSA. The revealed enhancement of the HSA–Aβ interaction by IBU and the strengthened inhibition of Aβ fibrillation by HSA in the presence of IBU could contribute to the neuroprotective effects of the latter, previously observed in mouse and human studies of AD.
Collapse
|
4
|
Mrdenovic D, Pieta IS, Nowakowski R, Kutner W, Lipkowski J, Pieta P. Amyloid β interaction with model cell membranes - What are the toxicity-defining properties of amyloid β? Int J Biol Macromol 2022; 200:520-531. [PMID: 35074328 DOI: 10.1016/j.ijbiomac.2022.01.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/26/2023]
Abstract
Disruption of the neuronal membrane by toxic amyloid β oligomers is hypothesized to be the major event associated with Alzheimer's disease's neurotoxicity. Misfolding of amyloid β is followed by aggregation via different pathways in which structurally different amyloid β oligomers can be formed. The respective toxic actions of these structurally diverse oligomers can vary significantly. Linking a particular toxic action to a structurally unique kind of amyloid β oligomers and resolving their toxicity-determining feature remains challenging because of their transient stability and heterogeneity. Moreover, the lipids that make up the membrane affect amyloid β oligomers' behavior, thus adding to the problem's complexity. The present review compares and analyzes the latest results to improve understanding of amyloid β oligomers' interaction with lipid bilayers.
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Izabela S Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Nowakowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
5
|
Khaibrakhmanova D, Nikiforova A, Li Z, Sedov I. Effect of ligands with different affinity on albumin fibril formation. Int J Biol Macromol 2022; 204:709-717. [PMID: 35134455 DOI: 10.1016/j.ijbiomac.2022.01.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/18/2022]
Abstract
The effect of binding of several ligands to bovine serum albumin on the kinetics of fibril formation at denaturing conditions is studied. The considered ligands are clinical drugs with different binding constants to albumin: relatively strong binders (naproxen, ibuprofen, warfarin with 105 to 107 binding constant values) and weak binders (isoniazid, ranitidine with 103 to 104 binding constant values). The data of thioflavin fluorescence binding assay, Congo red binding assay, and circular dichroism spectroscopy indicate ligand concentration-dependent suppression of fibril formation in the presence of strong binders and no effects in the presence of weak binders. Analysis of kinetic curves shows no induction lag associated with fibril nucleation and the first-order kinetics of fibril formation with respect to albumin concentration for all the studied systems. Using DSC method, the fractions of unfolded albumin at incubation temperature were determined for each albumin-ligand system and ligand concentration. Their magnitudes ranging from 0 to 1 correlate with the initial rates of fibril formation and with equilibrium concentrations of fibrils formed in the system after incubation for at least 120 min. The results indicate that fibrils are formed from partially or completely denatured albumin form with the rate proportional to the fraction of this form. Strong albumin binders act as thermodynamic inhibitors of fibrillation shifting the unfolding equilibrium to the side of the native ligand-bound protein.
Collapse
Affiliation(s)
| | - Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Ziying Li
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
| |
Collapse
|
6
|
Chen X, Guo X, Hao S, Yang T, Wang J. Iron Oxide Nanoparticles-loaded Hyaluronic Acid Nanogels for MRI-aided Alzheimer's disease Theranostics. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Diaz-Espinoza R. Recent High-Resolution Structures of Amyloids Involved in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:782617. [PMID: 34867305 PMCID: PMC8641661 DOI: 10.3389/fnagi.2021.782617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloids are highly ordered aggregates composed of proteins or peptides. They are involved in several pathologies, including hallmark neurodegenerative disorders such as Alzheimer’s (AD) and Parkinson’s (PD). Individuals affected by these diseases accumulate in their brains amyloids inclusions composed of misfolded forms of a peptide (Aβ) and a protein (Tau) in AD and α-synuclein protein (α-Sn) in PD. Tau and α-Sn aggregates are also present in other neurodegenerative diseases. The insoluble nature and heterogeneity of amyloids have hampered their study at the molecular level. However, the use of solid state NMR and Cryogenic-electron microscopy along with fine-tuned modulation of the aggregation in vitro and improved isolation methods of brain-derived amyloids has allowed the elucidation of these elusive conformations at high resolution. In this work, we review the latest progress on the recent amyloid structures reported for Aβ, Tau, and α-Sn. The two-fold symmetry emerges as a convergent feature in the tridimensional arrangement of the protofilaments in the fibrillary structure of these pathological amyloids, with many of them exhibiting a Greek-key topology as part of their overall architecture. These specific features can serve as novel guides to seek potential molecular targets in drug design efforts.
Collapse
Affiliation(s)
- Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Litus EA, Kazakov AS, Deryusheva EI, Nemashkalova EL, Shevelyova MP, Nazipova AA, Permyakova ME, Raznikova EV, Uversky VN, Permyakov SE. Serotonin Promotes Serum Albumin Interaction with the Monomeric Amyloid β Peptide. Int J Mol Sci 2021; 22:ijms22115896. [PMID: 34072751 PMCID: PMC8199245 DOI: 10.3390/ijms22115896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Prevention of amyloid β peptide (Aβ) deposition via facilitation of Aβ binding to its natural depot, human serum albumin (HSA), is a promising approach to preclude Alzheimer's disease (AD) onset and progression. Previously, we demonstrated the ability of natural HSA ligands, fatty acids, to improve the affinity of this protein to monomeric Aβ by a factor of 3 (BBRC, 510(2), 248-253). Using plasmon resonance spectroscopy, we show here that another HSA ligand related to AD pathogenesis, serotonin (SRO), increases the affinity of the Aβ monomer to HSA by a factor of 7/17 for Aβ40/Aβ42, respectively. Meanwhile, the structurally homologous SRO precursor, tryptophan (TRP), does not affect HSA's affinity to monomeric Aβ, despite slowdown of the association and dissociation processes. Crosslinking with glutaraldehyde and dynamic light scattering experiments reveal that, compared with the TRP-induced effects, SRO binding causes more marked changes in the quaternary structure of HSA. Furthermore, molecular docking reveals distinct structural differences between SRO/TRP complexes with HSA. The disintegration of the serotonergic system during AD pathogenesis may contribute to Aβ release from HSA in the central nervous system due to impairment of the SRO-mediated Aβ trapping by HSA.
Collapse
Affiliation(s)
- Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Aliya A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Elena V. Raznikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-0522 (S.E.P.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-0522 (S.E.P.)
| |
Collapse
|
9
|
Benoit SL, Maier RJ. The nickel-chelator dimethylglyoxime inhibits human amyloid beta peptide in vitro aggregation. Sci Rep 2021; 11:6622. [PMID: 33758258 PMCID: PMC7988135 DOI: 10.1038/s41598-021-86060-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
One of the hallmarks of the most common neurodegenerative disease, Alzheimer's disease (AD), is the extracellular deposition and aggregation of Amyloid Beta (Aβ)-peptides in the brain. Previous studies have shown that select metal ions, most specifically copper (Cu) and zinc (Zn) ions, have a synergistic effect on the aggregation of Aβ-peptides. In the present study, inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the metal content of a commercial recombinant human Aβ40 peptide. Cu and Zn were among the metals detected; unexpectedly, nickel (Ni) was one of the most abundant elements. Using a fluorescence-based assay, we found that Aβ40 peptide in vitro aggregation was enhanced by addition of Zn2+ and Ni2+, and Ni2+-induced aggregation was facilitated by acidic conditions. Nickel binding to Aβ40 peptide was confirmed by isothermal titration calorimetry. Addition of the Ni-specific chelator dimethylglyoxime (DMG) inhibited Aβ40 aggregation in absence of added metal, as well as in presence of Cu2+ and Ni2+, but not in presence of Zn2+. Finally, mass spectrometry analysis revealed that DMG can coordinate Cu or Ni, but not Fe, Se or Zn. Taken together, our results indicate that Ni2+ ions enhance, whereas nickel chelation inhibits, Aβ peptide in vitro aggregation. Hence, DMG-mediated Ni-chelation constitutes a promising approach towards inhibiting or slowing down Aβ40 aggregation.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, The University of Georgia, 805 Biological Sciences Bldg, Athens, GA, 30602, USA
- Center for Metalloenzyme Studies, The University of Georgia, Athens, GA, 30602, USA
| | - Robert J Maier
- Department of Microbiology, The University of Georgia, 805 Biological Sciences Bldg, Athens, GA, 30602, USA.
- Center for Metalloenzyme Studies, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Inhibition of aggregation of amyloid-β through covalent modification with benzylpenicillin; potential relevance to Alzheimer's disease. Biochem Biophys Rep 2021; 26:100943. [PMID: 33778168 PMCID: PMC7985693 DOI: 10.1016/j.bbrep.2021.100943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/28/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is correlated with the misfolding and aggregation of amyloid-beta protein (Aβ). Here we report that the antibiotic benzylpenicillin (BP) can specifically bind to Aβ, modulate the process of aggregation and supress its cytotoxic effect, initially via a reversible binding interaction, followed by covalent bonding between specific functional groups (nucleophiles) within the Aβ peptide and the beta-lactam ring. Mass spectrometry and computational docking supported covalent modification of Aβ by BP. BP was found to inhibit aggregation of Aβ as revealed by the Thioflavin T (ThT) fluorescence assay and atomic force microscopy (AFM). In addition, BP treatment was found to have a cytoprotective activity against Aβ-induced cell cytotoxicity as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell toxicity assay. The specific interaction of BP with Aβ suggests the possibility of structure-based drug design, leading to the identification of new drug candidates against AD. Moreover, good pharmacokinetics of beta-lactam antibiotics and safety on long-time use make them valuable candidates for drug repurposing towards neurological disorders such as AD.
Collapse
|
11
|
Stephens AD, Lu M, Fernandez-Villegas A, Kaminski Schierle GS. Fast Purification of Recombinant Monomeric Amyloid-β from E. coli and Amyloid-β-mCherry Aggregates from Mammalian Cells. ACS Chem Neurosci 2020; 11:3204-3213. [PMID: 32960567 PMCID: PMC7581289 DOI: 10.1021/acschemneuro.0c00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Alzheimer's disease related peptide, Amyloid-beta (Aβ)1-40 and 1-42, has proven difficult to be purified as a recombinant monomeric protein due its expression in E. coli leading to the formation of insoluble inclusion bodies and its tendency to quickly form insoluble aggregates. A vast array of methods have been used so far, yet many have pitfalls, such as the use of tags for ease of Aβ isolation, the formation of Aβ multimers within the time frame of extraction, or the need to reconstitute Aβ from a freeze-dried state. Here, we present a rapid protocol to produce highly pure and monomeric recombinant Aβ using a one-step ion exchange purification method and to label the peptide using a maleimide dye. The washing, solubilization, and purification steps take only 3 h. We also present a protocol for the isolation of Aβ-mCherry from mammalian cells.
Collapse
Affiliation(s)
- Amberley D. Stephens
- Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| | - Meng Lu
- Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| | - Ana Fernandez-Villegas
- Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| | - Gabriele S. Kaminski Schierle
- Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| |
Collapse
|
12
|
Hyaluronan-carnosine conjugates inhibit Aβ aggregation and toxicity. Sci Rep 2020; 10:15998. [PMID: 32994475 PMCID: PMC7524733 DOI: 10.1038/s41598-020-72989-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder. Finding a pharmacological approach that cures and/or prevents the onset of this devastating disease represents an important challenge for researchers. According to the amyloid cascade hypothesis, increases in extracellular amyloid-β (Aβ) levels give rise to different aggregated species, such as protofibrils, fibrils and oligomers, with oligomers being the more toxic species for cells. Many efforts have recently been focused on multi-target ligands to address the multiple events that occur concurrently with toxic aggregation at the onset of the disease. Moreover, investigating the effect of endogenous compounds or a combination thereof is a promising approach to prevent the side effects of entirely synthetic drugs. In this work, we report the synthesis, structural characterization and Aβ antiaggregant ability of new derivatives of hyaluronic acid (Hy, 200 and 700 kDa) functionalized with carnosine (Car), a multi-functional natural dipeptide. The bioactive substances (HyCar) inhibit the formation of amyloid-type aggregates of Aβ42 more than the parent compounds; this effect is proportional to Car loading. Furthermore, the HyCar derivatives are able to dissolve the amyloid fibrils and to reduce Aβ-induced toxicity in vitro. The enzymatic degradation of Aβ is also affected by the interaction with HyCar.
Collapse
|
13
|
Bibič L, Stokes L. Revisiting the Idea That Amyloid-β Peptide Acts as an Agonist for P2X7. Front Mol Neurosci 2020; 13:166. [PMID: 33071753 PMCID: PMC7530339 DOI: 10.3389/fnmol.2020.00166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/11/2020] [Indexed: 01/24/2023] Open
Abstract
The P2X7 receptor (P2X7) is a cell surface ligand-gated ion channel, activated by its physiological nucleotide agonist ATP and a synthetic analog (BzATP). However, it has also been suggested that there may be structurally unrelated, non-nucleotide agonists such as the amyloidogenic β peptide. Here we aimed to reassess the effect of amyloid β peptides in various in vitro cell models, namely HEK293 overexpressing human P2X7, the microglial BV-2 cell line, and BV-2 cells lacking P2X7. We measured YO-PRO-1 dye uptake in response to full-length amyloid β peptide (1-42) or the shorter amyloid β peptide (25-35) and there was a concentration-dependent increase in YO-PRO-1 dye uptake in HEK-hP2X7 cells. However, these amyloid β peptide-induced increases in YO-PRO-1 dye uptake were also identical in non-transfected HEK-293 cells. We could observe small transient increases in [Ca2+] i induced by amyloid β peptides in BV-2 cells, however these were identical in BV-2 cells lacking P2X7. Furthermore, our metabolic viability and LDH release experiments suggest no significant change in viability or cell membrane damage in HEK-hP2X7 cells. In the BV-2 cells we found that high concentrations of amyloid β peptides (1-42) and (25-35) could reduce cell viability by up to 35% but this was also seen in BV-2 cells lacking P2X7. We found no evidence of LDH release by amyloid β peptides. In summary, we found no evidence that amyloid β peptides act as agonists of P2X7 in our in vitro models. Our study raises the possibility that amyloid β peptides simply mimic features of P2X7 activation.
Collapse
Affiliation(s)
- Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
14
|
Moore C, Wing R, Pham T, Jokerst JV. Multispectral Nanoparticle Tracking Analysis for the Real-Time and Label-Free Characterization of Amyloid-β Self-Assembly In Vitro. Anal Chem 2020; 92:11590-11599. [PMID: 32786456 PMCID: PMC8411845 DOI: 10.1021/acs.analchem.0c01048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The deposition of amyloid β (Aβ) plaques and fibrils in the brain parenchyma is a hallmark of Alzheimer's disease (AD), but a mechanistic understanding of the role Aβ plays in AD has remained unclear. One important reason could be the limitations of current tools to size and count Aβ fibrils in real time. Conventional techniques from molecular biology largely use ensemble averaging; some microscopy analyses have been reported but suffer from low throughput. Nanoparticle tracking analysis is an alternative approach developed in the past decade for sizing and counting particles according to their Brownian motion; however, it is limited in sensitivity to polydisperse solutions because it uses only one laser. More recently, multispectral nanoparticle tracking analysis (MNTA) was introduced to address this limitation; it uses three visible wavelengths to quantitate heterogeneous particle distributions. Here, we used MNTA as a label-free technique to characterize the in vitro kinetics of Aβ1-42 aggregation by measuring the size distributions of aggregates during self-assembly. Our results show that this technology can monitor the aggregation of 106-108 particles/mL with a temporal resolution between 15 and 30 min. We corroborated this method with the fluorescent Thioflavin-T assay and transmission electron microscopy (TEM), showing good agreement between the techniques (Pearson's r = 0.821, P < 0.0001). We also used fluorescent gating to examine the effect of ThT on the aggregate size distribution. Finally, the biological relevance was demonstrated via fibril modulation in the presence of a polyphenolic Aβ disruptor. In summary, this approach measures Aβ assembly similar to ensemble-type measurements but with per-fibril resolution.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ryan Wing
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Timothy Pham
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Kaur A, Kaur A, Goyal D, Goyal B. How Does the Mono-Triazole Derivative Modulate Aβ 42 Aggregation and Disrupt a Protofibril Structure: Insights from Molecular Dynamics Simulations. ACS OMEGA 2020; 5:15606-15619. [PMID: 32637837 PMCID: PMC7331201 DOI: 10.1021/acsomega.0c01825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 05/31/2023]
Abstract
Clinical studies have identified that abnormal self-assembly of amyloid-β (Aβ) peptide into toxic fibrillar aggregates is associated with the pathology of Alzheimer's disease (AD). The most acceptable therapeutic approach to stop the progression of AD is to inhibit the formation of β-sheet-rich structures. Recently, we designed and evaluated a series of novel mono-triazole derivatives 4(a-x), where compound 4v was identified as the most potent inhibitor of Aβ42 aggregation and disaggregates preformed Aβ42 fibrils significantly. Moreover, 4v strongly averts the Cu2+-induced Aβ42 aggregation and disaggregates the preformed Cu2+-induced Aβ42 fibrils, halts the generation of reactive oxygen species, and shows neuroprotective effects in SH-SY5Y cells. However, the underlying molecular mechanism of inhibition of Aβ42 aggregation by 4v and disaggregation of preformed Aβ42 fibrils remains obscure. In this work, molecular dynamics (MD) simulations have been performed to explore the conformational ensemble of the Aβ42 monomer and a pentameric protofibril structure of Aβ42 in the presence of 4v. The MD simulations highlighted that 4v binds preferentially at the central hydrophobic core region of the Aβ42 monomer and chains D and E of the Aβ42 protofibril. The dictionary of secondary structure of proteins analysis indicated that 4v retards the conformational conversion of the helix-rich structure of the Aβ42 monomer into the aggregation-prone β-sheet conformation. The binding free energy calculated by the molecular mechanics Poisson-Boltzmann surface area method revealed an energetically favorable process with ΔG binding = -44.9 ± 3.3 kcal/mol for the Aβ42 monomer-4v complex. The free energy landscape analysis highlighted that the Aβ42 monomer-4v complex sampled conformations with significantly higher helical contents (35 and 49%) as compared to the Aβ42 monomer alone (17%). Compound 4v displayed hydrogen bonding with Gly37 (chain E) and π-π interactions with Phe19 (chain D) of the Aβ42 protofibril. Further, the per-residue binding free energy analysis also highlighted that Phe19 (chain D) and Gly37 (chain E) of the Aβ42 protofibril showed the maximum contribution in the binding free energy. The decreased binding affinity and residue-residue contacts between chains D and E of the Aβ42 protofibril in the presence of 4v indicate destabilization of the Aβ42 protofibril structure. Overall, the structural information obtained through MD simulations indicated that 4v stabilizes the native helical conformation of the Aβ42 monomer and persuades a destabilization in the protofibril structure of Aβ42. The results of the study will be useful in the rational design of potent inhibitors against amyloid aggregation.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Deepti Goyal
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Bhupesh Goyal
- School
of Chemistry & Biochemistry, Thapar
Institute of Engineering & Technology, Patiala 147004, Punjab, India
| |
Collapse
|
16
|
Teppang KL, Ehrlich RS, Yang J. Method to discriminate amyloids using fluorescent probes. Methods Enzymol 2020; 639:91-114. [PMID: 32475414 DOI: 10.1016/bs.mie.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The aggregation of misfolded proteins into amyloids is a common characteristic of many neurodegenerative and non-neurologic diseases. Fluorescent amyloid-targeting probes that discriminate amyloids based on differences in protein composition can provide rapid information to aid in disease diagnosis. In this chapter, we present protocols for the synthesis and use of ANCA-11 as an environmentally-sensitive amyloid-targeting probe that can fluorescently discriminate between amyloids with different disease origin. We also present a protocol for preparing amyloid samples of synthetic Amyloid-β(1-42), as problems with amyloid preparations can be a large driver of time and cost for research. The methods presented here can be generalized for evaluation of other amyloid-targeting fluorescent probes with different aggregates of amyloidogenic proteins in solution or in tissue.
Collapse
Affiliation(s)
- Kristine L Teppang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States
| | - Rachel S Ehrlich
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| |
Collapse
|
17
|
Strazdaite S, Navakauskas E, Kirschner J, Sneideris T, Niaura G. Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4766-4775. [PMID: 32251594 DOI: 10.1021/acs.langmuir.9b03826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We use vibrational sum-frequency generation (VSFG) spectroscopy to study the structure of hen egg-white lysozyme (HEWL) aggregates adsorbed to DOPG/D2O and air/D2O interfaces. We find that aggregates with a parallel and antiparallel β-sheet structure together with smaller unordered aggregates and a denaturated protein are adsorbed to both interfaces. We demonstrate that to retrieve this information, fitting of the VSFG spectra is essential. The number of bands contributing to the VSFG spectrum might be misinterpreted, due to interference between peaks with opposite orientation and a nonresonant background. Our study identified hydrophobicity as the main driving force for adsorption to the air/D2O interface. Adsorption to the DOPG/D2O interface is also influenced by hydrophobic interaction; however, electrostatic interaction between the charged protein's groups and the lipid's headgroups has the most significant effect on the adsorption. We find that the intensity of the VSFG spectrum at the DOPG/D2O interface is strongly enhanced by varying the pH of the solution. We show that this change is not due to a change of lysozyme's and its aggregates' charge but due to dipole reorientation at the DOPG/D2O interface. This finding suggests that extra care must be taken when interpreting the VSFG spectrum of proteins adsorbed at the lipid/water interface.
Collapse
Affiliation(s)
- S Strazdaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - E Navakauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - J Kirschner
- Institute of Solid State Physics, Vienna Technical University, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - T Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - G Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
18
|
Singh A, Kumar A, Verma RK, Shukla R. Silymarin encapsulated nanoliquid crystals for improved activity against beta amyloid induced cytotoxicity. Int J Biol Macromol 2020; 149:1198-1206. [PMID: 32044368 DOI: 10.1016/j.ijbiomac.2020.02.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
Silymarin (SLY) a natural Aβ aggregation inhibitor, antioxidant and act as neuroprotectant. In the present study, we have prepared nano liquid crystals (NLCs) of negatively charged glycerylmonooleate (GMO) loaded with SLY for enhancing activity against Aβ1-42 induced toxicity. SLY-NLCs are characterized for physicochemical parameters such as particle size, zeta potential, and drug-loading. The average particle size, zeta potential and % DL were found ≤200 nm, -22 mV, and 8.73% respectively. The amorphous form and entrapment of SLY in NLC were confirmed using DSC and FTIR analysis. The cubosomal SLY-NLCs shape was characterized by SEM and TEM. The cumulative drug release of SLY was ~76% at pH 7.4 (cerebrospinal fluid) from lyophilized SLY-NLC in 48 h. In order to understand the Aβ1-42 aggregation inhibition due to SLY-NLC ThT (Thioflavin T) kinetic binding assay was also performed. The cell viability assessment of SLY-NLC was performed on SHSY5Y cell line that showed the highest viability in comparison to free SLY treated groups. ROS and apoptosis activity study SLY-NLCs reduced the Aβ1-42 induced free radical with cell death. Cellular uptake study proved enhanced intracellular internalization of FITC tagged NLCs in 24 h. SLY-NLCs can offer great prospects in the field of drug delivery for neuroprotection.
Collapse
Affiliation(s)
- Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-R)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Ashish Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-R)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Rahul K Verma
- Institute of Nano Science and Technology (INST), Phase X, Sector 64, Mohali, Punjab 12 160062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-R)-Raebareli, Lucknow, Uttar Pradesh 226002, India.
| |
Collapse
|
19
|
Hasan AH, Amran SI, Saeed Hussain FH, Jaff BA, Jamalis J. Molecular Docking and Recent Advances in the Design and Development of Cholinesterase Inhibitor Scaffolds: Coumarin Hybrids. ChemistrySelect 2019. [DOI: 10.1002/slct.201903607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aso Hameed Hasan
- Department of ChemistryFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
- Department of ChemistryCollege of ScienceUniversity of Garmian- Kalar, Kurdistan Region-Iraq Iraq
| | - Syazwani Itri Amran
- Department of BiosciencesFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
| | | | - Baram Ahmed Jaff
- Charmo Research CenterChemistry DepartmentCharmo University 46023 Chamchamal, Kurdistan Region-Iraq Iraq
| | - Joazaizulfazli Jamalis
- Department of ChemistryFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
| |
Collapse
|
20
|
Kaur A, Narang SS, Kaur A, Mann S, Priyadarshi N, Goyal B, Singhal NK, Goyal D. Multifunctional Mono-Triazole Derivatives Inhibit Aβ42 Aggregation and Cu2+-Mediated Aβ42 Aggregation and Protect Against Aβ42-Induced Cytotoxicity. Chem Res Toxicol 2019; 32:1824-1839. [DOI: 10.1021/acs.chemrestox.9b00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Simranjeet Singh Narang
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| |
Collapse
|
21
|
Gulácsy CE, Meade R, Catici DAM, Soeller C, Pantos GD, Jones DD, Alibhai D, Jepson M, Valev VK, Mason JM, Williams RJ, Pudney CR. Excitation-Energy-Dependent Molecular Beacon Detects Early Stage Neurotoxic Aβ Aggregates in the Presence of Cortical Neurons. ACS Chem Neurosci 2019; 10:1240-1250. [PMID: 30346718 DOI: 10.1021/acschemneuro.8b00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is now crucial medical importance placed on understanding the role of early stage, subvisible protein aggregation, particularly in neurodegenerative disease. While there are strategies for detecting such aggregates in vitro, there is no approach at present that can detect these toxic species associated with cells and specific subcellular compartments. We have exploited excitation-energy-dependent fluorescence edge-shift of recombinant protein labeled with a molecular beacon, to provide a sensitive read out for the presence of subvisible protein aggregates. To demonstrate the potential utility of the approach, we examine the major peptide associated with the initiation of Alzheimer's disease, amyloid β-protein (Aβ) at a patho-physiologically relevant concentration in mouse cortical neurons. Using our approach, we find preliminary evidence that subvisible Aβ aggregates are detected at specific subcellular regions and that neurons drive the formation of specific Aβ aggregate conformations. These findings therefore demonstrate the potential of a novel fluorescence-based approach for detecting and imaging protein aggregates in a cellular context, which can be used to sensitively probe the association of early stage toxic protein aggregates within subcellular compartments.
Collapse
Affiliation(s)
| | | | | | - Christian Soeller
- Biomedical Physics, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | - D. Dafydd Jones
- School of Biosciences, Cardiff University, Cardiff CF10 3TL, United Kingdom
| | - Dominic Alibhai
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Mark Jepson
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Abstract
Abstract
Inhibition of amyloid β peptide (Aβ) aggregation is an important goal due to the connection of this process with Alzheimer’s disease. Traditionally, inhibitors were developed with an aim to retard the overall macroscopic aggregation. However, recent advances imply that approaches based on mechanistic insights may be more powerful. In such approaches, the microscopic steps underlying the aggregation process are identified, and it is established which of these step(s) lead to neurotoxicity. Inhibitors are then derived to specifically target steps involved in toxicity. The Aβ aggregation process is composed of at minimum three microscopic steps: primary nucleation of monomers only, secondary nucleation of monomers on fibril surface, and elongation of fibrils by monomer addition. The vast majority of toxic species are generated from the secondary nucleation process: this may be a key process to inhibit in order to limit toxicity. Inhibition of primary nucleation, which delays the emergence of toxic species without affecting their total concentration, may also be effective. Inhibition of elongation may instead increase the toxicity over time. Here we briefly review findings regarding secondary nucleation of Aβ, its dominance over primary nucleation, and attempts to derive inhibitors that specifically target secondary nucleation with an aim to limit toxicity.
Collapse
Affiliation(s)
- Sara Linse
- Lund University , Department of Biochemistry and Structural Biology , P.O. Box 124 , 221 00 Lund , Sweden
- Lund University , NanoLund , Lund , Sweden
| |
Collapse
|
23
|
Litus EA, Kazakov AS, Sokolov AS, Nemashkalova EL, Galushko EI, Dzhus UF, Marchenkov VV, Galzitskaya OV, Permyakov EA, Permyakov SE. The binding of monomeric amyloid β peptide to serum albumin is affected by major plasma unsaturated fatty acids. Biochem Biophys Res Commun 2019; 510:248-253. [PMID: 30685090 DOI: 10.1016/j.bbrc.2019.01.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/02/2023]
Abstract
Human serum albumin (HSA) serves as a natural depot of amyloid β peptide (Aβ). Improvement of Aβ binding to HSA should impede Alzheimer's disease (AD). We developed a method for quantitation of the interaction between monomeric Aβ40/42 and HSA using surface plasmon resonance spectroscopy. The dissociation constant of HSA complex with recombinant Aβ40/42 is 0.2-0.3 μM. Flemish variant of Aβ40 has 2.5-10-fold higher affinity to HSA. The parameters of the HSA-Aβ interaction are selectively sensitive to HSA binding of major plasma unsaturated fatty acids and Cu2+. Linoleic and arachidonic acids promote the HSA-Aβ42 interaction. The developed methodology for quantitation of HSA-Aβ interaction may serve as a tool for search of compounds favoring HSA-Aβ interaction, thereby preventing AD progression.
Collapse
Affiliation(s)
- E A Litus
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - A S Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - A S Sokolov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - E L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - E I Galushko
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | - U F Dzhus
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | - V V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | - O V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | - E A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - S E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| |
Collapse
|
24
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
25
|
Wallin C, Sholts SB, Österlund N, Luo J, Jarvet J, Roos PM, Ilag L, Gräslund A, Wärmländer SKTS. Alzheimer's disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci Rep 2017; 7:14423. [PMID: 29089568 PMCID: PMC5663743 DOI: 10.1038/s41598-017-13759-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoking is a significant risk factor for Alzheimer's disease (AD), which is associated with extracellular brain deposits of amyloid plaques containing aggregated amyloid-β (Aβ) peptides. Aβ aggregation occurs via multiple pathways that can be influenced by various compounds. Here, we used AFM imaging and NMR, fluorescence, and mass spectrometry to monitor in vitro how Aβ aggregation is affected by the cigarette-related compounds nicotine, polycyclic aromatic hydrocarbons (PAHs) with one to five aromatic rings, and the metal ions Cd(II), Cr(III), Pb(II), and Pb(IV). All PAHs and metal ions modulated the Aβ aggregation process. Cd(II), Cr(III), and Pb(II) ions displayed general electrostatic interactions with Aβ, whereas Pb(IV) ions showed specific transient binding coordination to the N-terminal Aβ segment. Thus, Pb(IV) ions are especially prone to interact with Aβ and affect its aggregation. While Pb(IV) ions affected mainly Aβ dimer and trimer formation, hydrophobic toluene mainly affected formation of larger aggregates such as tetramers. The uncharged and hydrophilic nicotine molecule showed no direct interactions with Aβ, nor did it affect Aβ aggregation. Our Aβ interaction results suggest a molecular rationale for the higher AD prevalence among smokers, and indicate that certain forms of lead in particular may constitute an environmental risk factor for AD.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Sabrina B Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jinghui Luo
- Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford Ox, 1 3TA, UK
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St.Göran Hospital, St.Göransplan 1, 112 19, Stockholm, Sweden
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
26
|
Grasso G, Santoro AM, Lanza V, Sbardella D, Tundo GR, Ciaccio C, Marini S, Coletta M, Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Abstract
BACKGROUND Drug delivery to the brain is a major roadblock to treatment of Alzheimer's disease. Recent results of the PRIME study indicate that increasing brain penetration of antibody drugs improves Alzheimer's treatment outcomes. New approaches are needed to better accomplish this goal. Based on prior evidence, the hypothesis that glycan modification alters antibody blood-brain barrier permeability was tested here. METHODS The blood-brain barrier permeability coefficient Pe of different glycosylated states of anti-amyloid IgG was measured using in vitro models of brain microvascular endothelial cells. Monoclonal antibodies 4G8, with sialic acid, and 6E10, lacking sialic acid, were studied. The amount of sialic acid was determined using quantitative and semi-quantitative surface plasmon resonance methods. RESULTS Influx of IgG was not saturable and was largely insensitive to IgG species and glycosylation state. By contrast, efflux of 4G8 efflux was significantly lower than both albumin controls and 6E10. Removal of α2,6-linked sialic acid group present on 12% of 4G8 completely restored efflux to that of 6E10 but increasing the α2,6-sialylated fraction to 15% resulted in no change. Removal of the Fc glycan from 4G8 partially restored efflux. Alternate sialic acid groups with α2,3 and α2,8 linkages, nor on the Fc glycan, were not detected at significant levels on either 4G8 or 6E10. CONCLUSIONS These results support a model in which surface-sialylated 4G8 inhibits its own efflux and that of asialylated 4G8. GENERAL SIGNIFICANCE Glycan modification has the potential to increase antibody drug penetration into the brain through efflux inhibition.
Collapse
|
28
|
Zheng X, Zhang C, Guo Q, Wan X, Shao X, Liu Q, Zhang Q. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety. Int J Pharm 2017; 525:237-248. [DOI: 10.1016/j.ijpharm.2017.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
|
29
|
Downregulation of RBO-PI4KIIIα Facilitates Aβ 42 Secretion and Ameliorates Neural Deficits in Aβ 42-Expressing Drosophila. J Neurosci 2017; 37:4928-4941. [PMID: 28424219 DOI: 10.1523/jneurosci.3567-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/12/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphoinositides and their metabolizing enzymes are involved in Aβ42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI4P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ42-expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ42 release and that PI4P facilitated the assembly or oligomerization of Aβ42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ42 release and consequently reduces neuronal Aβ42 accumulation likely via decreasing Aβ42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment.SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ42-expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI4P-against the defects caused by Aβ42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ42 accumulation, and interestingly increased neuronal Aβ42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates.
Collapse
|
30
|
Warner CJA, Dutta S, Foley AR, Raskatov JA. A Tailored HPLC Purification Protocol That Yields High-purity Amyloid Beta 42 and Amyloid Beta 40 Peptides, Capable of Oligomer Formation. J Vis Exp 2017. [PMID: 28448032 DOI: 10.3791/55482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Amyloidogenic peptides such as the Alzheimer's disease-implicated Amyloid beta (Aβ), can present a significant challenge when trying to obtain high purity material. Here we present a tailored HPLC purification protocol to produce high-purity amyloid beta 42 (Aβ42) and amyloid beta 40 (Aβ40) peptides. We have found that the combination of commercially available hydrophobic poly(styrene/divinylbenzene) stationary phase, polymer laboratory reverse phase - styrenedivinylbenzene (PLRP-S) under high pH conditions, enables the attainment of high purity (>95%) Aβ42 in a single chromatographic run. The purification is highly reproducible and can be amended to both semi-preparative and analytical conditions depending upon the amount of material wished to be purified. The protocol can also be applied to the Aβ40 peptide with identical success and without the need to alter the method.
Collapse
Affiliation(s)
| | - Subrata Dutta
- Department of Chemistry, University of California, Santa Cruz
| | | | | |
Collapse
|
31
|
Goyal D, Shuaib S, Mann S, Goyal B. Rationally Designed Peptides and Peptidomimetics as Inhibitors of Amyloid-β (Aβ) Aggregation: Potential Therapeutics of Alzheimer's Disease. ACS COMBINATORIAL SCIENCE 2017; 19:55-80. [PMID: 28045249 DOI: 10.1021/acscombsci.6b00116] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no clinically accepted treatment to cure or halt its progression. The worldwide effort to develop peptide-based inhibitors of amyloid-β (Aβ) aggregation can be considered an unplanned combinatorial experiment. An understanding of what has been done and achieved may advance our understanding of AD pathology and the discovery of effective therapeutic agents. We review here the history of such peptide-based inhibitors, including those based on the Aβ sequence and those not derived from that sequence, containing both natural and unnatural amino acid building blocks. Peptide-based aggregation inhibitors hold significant promise for future AD therapy owing to their high selectivity, effectiveness, low toxicity, good tolerance, low accumulation in tissues, high chemical and biological diversity, possibility of rational design, and highly developed methods for analyzing their mode of action, proteolytic stability (modified peptides), and blood-brain barrier (BBB) permeability.
Collapse
Affiliation(s)
- Deepti Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Suniba Shuaib
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| |
Collapse
|
32
|
Shuaib S, Saini RK, Goyal D, Goyal B. Insights into the Inhibitory Mechanism of Dicyanovinyl-Substituted J147 Derivative against Aβ42
Aggregation and Protofibril Destabilization: A Molecular Dynamics Simulation Study. ChemistrySelect 2017. [DOI: 10.1002/slct.201601970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Rajneet Kaur Saini
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Bhupesh Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| |
Collapse
|
33
|
Zhao Z, Zhu L, Li H, Cheng P, Peng J, Yin Y, Yang Y, Wang C, Hu Z, Yang Y. Antiamyloidogenic Activity of Aβ42-Binding Peptoid in Modulating Amyloid Oligomerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602857. [PMID: 27714968 DOI: 10.1002/smll.201602857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/12/2016] [Indexed: 06/06/2023]
Abstract
The oligomerization and aggregation of amyloid β (Aβ) play central role in the pathogenesis of Alzheimer's disease (AD). Molecular binding agents for modulating the formation of Aβ oligomers and fibrils have promising application potential in AD therapies. By screening a peptoid library using surface plasmon resonance imaging, amyloid inhibitory peptoid 1 (AIP1) that has high affinity to Aβ42 is identified. AIP1 is demonstrated to inhibit Aβ42 oligomerization and fibrillation and to rescue Aβ42-induced cytotoxicity through decreasing the content of Aβ42 oligomers that is related to cell membrane permeability. Molecular docking suggests that the binding sites of AIP1 may be at the N-terminus of Aβ42. The blood-brain barrier (BBB) permeability of AIP1 using an in vitro BBB model is also revealed. This work provides a strategy for the design and development of peptoid-based antiamyloidogenic agents. The obtained amyloid inhibitory peptoid shows prospects in the therapeutic application in AD.
Collapse
Affiliation(s)
- Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Haiyun Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peng Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiaxi Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yudan Yin
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
34
|
Randino R, Grimaldi M, Persico M, De Santis A, Cini E, Cabri W, Riva A, D’Errico G, Fattorusso C, D’Ursi AM, Rodriquez M. Investigating the Neuroprotective Effects of Turmeric Extract: Structural Interactions of β-Amyloid Peptide with Single Curcuminoids. Sci Rep 2016; 6:38846. [PMID: 28004737 PMCID: PMC5177957 DOI: 10.1038/srep38846] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/15/2016] [Indexed: 02/04/2023] Open
Abstract
A broad biophysical analysis was performed to investigate the molecular basis of the neuroprotective action of Curcuma longa extracts in Alzheimer's disease. By combining circular dichroism and electron paramagnetic resonance experiments with molecular modeling calculations, the minor components of Curcuma longa extracts, such as demethoxycurcumin (2, DMC), bisdemethoxycurcumin (3, BDMC) and cyclocurcumin (4, CYC), were analyzed in a membrane environment mimicking the phospholipid bilayer. Our study provides the first evidence on the relative role of single curcuminoids interacting with Aβ-peptide. When the CYC and curcumin metabolite tetrahydrocurcumin (5, THC) were inserted into an anionic lipid solution, a significant modification of the Aβ CD curves was detected. These data were implemented by EPR experiments, demonstrating that CYC reaches the inner part of the bilayer, while the other curcuminoids are localized close to the membrane interface. Computational studies provided a model for the curcuminoid-Aβ interaction, highlighting the importance of a constrained "semi-folded" conformation to interact with Aβ analogously to the pattern observed in α-helical coiled-coil peptide structures. This combined approach led to a better understanding of the intriguing in vitro and in vivo activity of curcuminoids as anti-Alzheimer agents, paving a new path for the rational design of optimized druggable analogues.
Collapse
Affiliation(s)
- Rosario Randino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084-Fisciano-Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084-Fisciano-Italy
| | - Marco Persico
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131-Naples-Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 80126-Naples-Italy
| | - Elena Cini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100-Siena-Italy
| | - Walter Cabri
- R&D Department, Indena, Viale Ortles, 12, 20139-Milan-Italy
- Innovation & Development Fresenius-Kabi, Piazza Maestri del Lavoro, 7, 20063-Cernusco sul Naviglio Milan-Italy
| | - Antonella Riva
- R&D Department, Indena, Viale Ortles, 12, 20139-Milan-Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 80126-Naples-Italy
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131-Naples-Italy
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084-Fisciano-Italy
| | - Manuela Rodriquez
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084-Fisciano-Italy
| |
Collapse
|
35
|
Hoarau M, Malbert Y, Irague R, Hureau C, Faller P, Gras E, André I, Remaud-Siméon M. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides. PLoS One 2016; 11:e0161209. [PMID: 27532547 PMCID: PMC4988814 DOI: 10.1371/journal.pone.0161209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/01/2016] [Indexed: 01/29/2023] Open
Abstract
An improved production and purification method for Alzheimer’s disease related methionine-modified amyloid-β 1–40 and 1–42 peptides is proposed, taking advantage of the formation of inclusion body in Escherichia coli. A Thioflavin-S assay was set-up to evaluate inclusion body formation during growth and optimize culture conditions for amyloid-β peptides production. A simple and fast purification protocol including first the isolation of the inclusion bodies and second, two cycles of high pH denaturation/ neutralization combined with an ultrafiltration step on 30-kDa cut-off membrane was established. Special attention was paid to purity monitoring based on a rational combination of UV spectrophotometry and SDS-PAGE analyses at the various stages of the process. It revealed that this chromatography-free protocol affords good yield of high quality peptides in term of purity. The resulting peptides were fully characterized and are appropriate models for highly reproducible in vitro aggregation studies.
Collapse
Affiliation(s)
- Marie Hoarau
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, INPT, Toulouse, France
| | - Yannick Malbert
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Romain Irague
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Christelle Hureau
- Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, INPT, Toulouse, France
| | - Peter Faller
- Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, INPT, Toulouse, France
| | - Emmanuel Gras
- Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, INPT, Toulouse, France
| | - Isabelle André
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Magali Remaud-Siméon
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- * E-mail:
| |
Collapse
|
36
|
β-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy? Future Med Chem 2016; 8:1179-89. [PMID: 27402297 DOI: 10.4155/fmc-2016-0006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND For long time Alzheimer's disease has been attributed to a cholinergic deficit. More recently, it has been considered dependent on the accumulation of the amyloid beta peptide (Aβ), which promotes neuronal loss and impairs neuronal function. Results/methodology: In the present study, using biophysical and biochemical experiments we tested the hypothesis that in addition to its role as a neurotransmitter, acetylcholine may exert its action as an anti-Alzheimer agent through a direct interaction with Aβ. CONCLUSION Our data provide evidence that acetylcholine favors the soluble peptide conformation and exerts a neuroprotective effect against the neuroinflammatory and toxic effects of Aβ. The present paper paves the way toward the development of new polyfunctional anti-Alzheimer therapeutics capable of intervening on both the cholinergic transmission and the Aβ aggregation.
Collapse
|
37
|
Chemuru S, Kodali R, Wetzel R. Improved chemical synthesis of hydrophobic Aβ peptides using addition of C-terminal lysines later removed by carboxypeptidase B. Biopolymers 2016; 102:206-21. [PMID: 24488729 DOI: 10.1002/bip.22470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023]
Abstract
Many amyloidogenic peptides are highly hydrophobic, introducing significant challenges to obtaining high quality peptides by chemical synthesis. For example, while good yield and purity can be obtained in the solid-phase synthesis of the Alzheimer's plaque peptide Aβ40, addition of a C-terminal Ile-Ala sequence to generate the more toxic Aβ42 molecule creates a much more difficult synthesis resulting in low yields and purities. We describe here a new method that significantly improves the Fmoc solid-phase synthesis of Aβ peptides. In our method, Lys residues are linked to the desired peptide's C-terminus through standard peptide bonds during the synthesis. These Lys residues are then removed post-purification using immobilized carboxypeptidase B (CPB). With this method we obtained both Aβ42 and Aβ46 of superior quality that, for Aβ42, rivals that obtained by recombinant expression. Intriguingly, the method appears to provide independent beneficial effects on both the total synthetic yield and on purification yield and final purity. Reversible Lys addition with CPB removal should be a generally useful method for making hydrophobic peptides that is applicable to any sequence not ending in Arg or Lys. As expected from the additional hydrophobicity of Aβ46, which is extended from the sequence Aβ42 by a C-terminal Thr-Val-Ile-Val sequence, this peptide makes typical amyloid at rates significantly faster than for Aβ42 or Aβ40. The enhanced amyloidogenicity of Aβ46 suggests that, even though it is present in relatively low amounts in the human brain, it could play a significant role in helping to initiate Aβ amyloid formation.
Collapse
Affiliation(s)
- Saketh Chemuru
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | |
Collapse
|
38
|
High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide. Biochem J 2016; 473:1563-78. [PMID: 27029347 PMCID: PMC4888463 DOI: 10.1042/bcj20160114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/30/2016] [Indexed: 01/25/2023]
Abstract
Anticalins engineered for high affinity and specificity towards the central VFFAED epitope in Aβ peptides potently inhibit their aggregation, thus providing novel reagents to study the molecular pathology of Alzheimer's disease (AD) and alternative drug candidates compared with current biopharmaceutical treatments. Amyloid beta (Aβ) peptides, in particular Aβ42 and Aβ40, exert neurotoxic effects and their overproduction leads to amyloid deposits in the brain, thus constituting an important biomolecular target for treatments of Alzheimer's disease (AD). We describe the engineering of cognate Anticalins as a novel type of neutralizing protein reagent based on the human lipocalin scaffold. Phage display selection from a genetic random library comprising variants of the human lipocalin 2 (Lcn2) with mutations targeted at 20 exposed amino acid positions in the four loops that form the natural binding site was performed using both recombinant and synthetic target peptides and resulted in three different Anticalins. Biochemical characterization of the purified proteins produced by periplasmic secretion in Escherichia coli revealed high folding stability in a monomeric state, with Tm values ranging from 53.4°C to 74.5°C, as well as high affinities for Aβ40, between 95 pM and 563 pM, as measured by real-time surface plasmon resonance analysis. The central linear VFFAED epitope within the Aβ sequence was mapped using a synthetic peptide array on membranes and was shared by all three Anticalins, despite up to 13 mutual amino acid differences in their binding sites. All Anticalins had the ability–with varying extent–to inhibit Aβ aggregation in vitro according to the thioflavin-T fluorescence assay and, furthermore, they abolished Aβ42-mediated toxicity in neuronal cell culture. Thus, these Anticalins provide not only useful protein reagents to study the molecular pathology of AD but they also show potential as alternative drug candidates compared with antibodies.
Collapse
|
39
|
Porzoor A, Caine JM, Macreadie IG. Pretreatment of chemically-synthesized Aβ42 affects its biological activity in yeast. Prion 2015; 8:404-10. [PMID: 25495906 DOI: 10.4161/19336896.2014.992275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The tendency of amyloid β (Aβ42) peptide to misfold and aggregate into insoluble amyloid fibrils in Alzheimer's disease (AD) has been well documented. Accumulation of Aβ42 fibrils has been correlated with abnormal apoptosis and unscheduled cell division which can also trigger the death of neuronal cells, while oligomers can also exhibit similar activities. While investigations using chemically-synthesized Aβ42 peptide have become common practice, there appear to be differences in outcomes from different preparations. In order to resolve this inconsistency, we report 2 separate methods of preparing chemically-synthesized Aβ42 and we examined their effects in yeast. Hexafluoroisopropanol pretreatment caused toxicity while, ammonium hydroxide treated Aβ42 induced cell proliferation in both C. glabrata and S. cerevisiae. The hexafluoroisopropanol prepared Aβ42 had greater tendency to form amyloid on yeast cells as determined by thioflavin T staining followed by flow cytometry and microscopy. Both quiescent and non-quiescent cells were analyzed by these methods of peptide preparation. Non-quiescent cells were susceptible to the toxicity of Aβ42 compared with quiescent cells (p < 0.005). These data explain the discrepancy in the previous publications about the effects of chemically-synthesized Aβ42 on yeast cells. The effect of Aβ42 on yeast cells was independent of the size of the peptide aggregates. However, the Aβ42 pretreatment determined whether the molecular conformation of peptide resulted in proliferation or toxicity in yeast based assays.
Collapse
Affiliation(s)
- Afsaneh Porzoor
- a School of Applied Sciences; Biosciences ; RMIT University ; Bundoora , Victoria , Australia
| | | | | |
Collapse
|
40
|
Pietropaolo A, Satriano C, Strano G, La Mendola D, Rizzarelli E. Different zinc(II) complex species and binding modes at Aβ N-terminus drive distinct long range cross-talks in the Aβ monomers. J Inorg Biochem 2015; 153:367-376. [PMID: 26298865 DOI: 10.1016/j.jinorgbio.2015.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
The present study addresses the reconstruction of the free-energy landscapes of amyloid-beta1-42 (Aβ42) coordinated respectively with one and two zinc ions, to scrutinize whether different Aβ-zinc complex species, i.e., mononuclear and dinuclear metal complexes, induce different Aβ conformation features. We found a subtle switch of intramolecular interactions, depending both on the zinc coordination environment and on the peptide to zinc stoichiometric ratio. On the one side, hairpin-like structures are predominant in mononuclear complexes, where a salt-bridge that involves Lys28-Glu22 and Lys16-Asp23 is stabilized. On the other side, elongated conformations are instead stabilized in the dinuclear zinc complexes. Experimental studies of atomic force microscopy as well as of zinc-Aβ complex species distribution diagrams provide evidence that the theoretical calculations can be rationalized in terms of the correlation between the increased amount of amorphous aggregates and the Aβ/Zn(2+) ratio.
Collapse
Affiliation(s)
- Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Cristina Satriano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale Andrea Doria, 6, 95125 Catania, Italy
| | - Gaetano Strano
- Fondazione RI.MED, Via Bandiera 11, 90133 Palermo, Italy
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimagini-Consiglio Nazionale delle Ricerche (IBB-CNR), Via Paolo Gaifami, 18, 95126 Catania, Italy.
| |
Collapse
|
41
|
Crisostomo AC, Dang L, Digambaranath JL, Klaver AC, Loeffler DA, Payne JJ, Smith LM, Yokom AL, Finke JM. Biophysical characterization data on Aβ soluble oligomers produced through a method enabling prolonged oligomer stability and biological buffer conditions. Data Brief 2015; 4:650-8. [PMID: 26401521 PMCID: PMC4560727 DOI: 10.1016/j.dib.2015.07.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022] Open
Abstract
The data here consists of time-dependent experimental parameters from chemical and biophysical methods used to characterize Aβ monomeric reactants as well as soluble oligomer and amyloid fibril products from a slow (3–4 week) assembly reaction under biologically-relevant solvent conditions. The data of this reaction are both of a qualitative and quantitative nature, including gel images from chemical cross-linking and Western blots, fractional solubility, thioflavin T binding, size exclusion chromatograms, transmission electron microscopy images, circular dichroism spectra, and fluorescence resonance energy transfer efficiencies of donor–acceptor pair labels in the Aβ chain. This data enables future efforts to produce the initial monomer and eventual soluble oligomer and amyloid fibril states by providing reference benchmarks of these states pertaining to physical properties (solubility), ligand-binding (thioflavin T binding), mesoscopic structure (electron microscopy, size exclusion chromatography, cross-linking products, SDS and native gels) and molecular structure (circular dichroism, FRET donor-acceptor distance). Aβ1-40 soluble oligomers are produced that are suitable for biophysical studies requiring sufficient transient stability to exist in their “native” conformation in biological phosphate-saline buffers for extended periods of time. The production involves an initial preparation of highly monomeric Aβ in a phosphate saline buffer that transitions to fibrils and oligomers through time incubation alone, without added detergents or non-aqueous chemicals. This criteria ensures that the only difference between initial monomeric Aβ reactant and subsequent Aβ oligomer products is their degree of peptide assembly. A number of chemical and biophysical methods were used to characterize the monomeric reactants and soluble oligomer and amyloid fibril products, including chemical cross-linking, Western blots, fraction solubility, thioflvain T binding, size exclusion chromatography, transmission electron micrscopy, circular dichroism spectroscopy, and fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Amanda C Crisostomo
- Sciences and Mathematics, IAS, University of Washington, Tacoma, WA 98402, United States
| | - Loan Dang
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
| | | | - Andrea C Klaver
- Department of Neurology Research, Beaumont Health System, Royal Oak MI, United States
| | - David A Loeffler
- Department of Neurology Research, Beaumont Health System, Royal Oak MI, United States
| | - Jeremiah J Payne
- Sciences and Mathematics, IAS, University of Washington, Tacoma, WA 98402, United States
| | - Lynnae M Smith
- Department of Neurology Research, Beaumont Health System, Royal Oak MI, United States
| | - Adam L Yokom
- Department of Chemistry, Oakland University, Rochester MI 48309, United States
| | - John M Finke
- Sciences and Mathematics, IAS, University of Washington, Tacoma, WA 98402, United States
| |
Collapse
|
42
|
Dworzak J, Renvoisé B, Habchi J, Yates EV, Combadière C, Knowles TP, Dobson CM, Blackstone C, Paulsen O, Murphy PM. Neuronal Cx3cr1 Deficiency Protects against Amyloid β-Induced Neurotoxicity. PLoS One 2015; 10:e0127730. [PMID: 26038823 PMCID: PMC4454597 DOI: 10.1371/journal.pone.0127730] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/20/2015] [Indexed: 01/06/2023] Open
Abstract
Cx3cr1, the receptor for the chemokine Cx3cl1 (fractalkine), has been implicated in the progression and severity of Alzheimer's disease-like pathology in mice, but the underlying mechanisms remain unclear. A complicating factor is that Cx3cr1 has been demonstrated in both neurons and microglia. Here, we have dissected the differences between neuronal and microglial Cx3cr1, specifically by comparing direct amyloid-β-induced toxicity in cultured, mature, microglia-depleted hippocampal neurons from wild-type and Cx3cr1-/- mice. Wild-type neurons expressed both Cx3cl1 and Cx3cr1 and released Cx3cl1 in response to amyloid-β. Knockout of neuronal Cx3cr1 abated amyloid-β-induced lactate dehydrogenase release. Furthermore, amyloid-β differentially induced depression of pre- and postsynaptic components of miniature excitatory postsynaptic currents, in a peptide conformation-dependent manner. Knockout of neuronal Cx3cr1 abated effects of both amyloid-β conformational states, which were differentiable by aggregation kinetics and peptide morphology. We obtained similar results after both acute and chronic treatment of cultured neurons with the Cx3cr1 antagonist F1. Thus, neuronal Cx3cr1 may impact Alzheimer's disease-like pathology by modulating conformational state-dependent amyloid-β-induced synaptotoxicity.
Collapse
Affiliation(s)
- Jenny Dworzak
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Neuronal Oscillations Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Benoît Renvoisé
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Johnny Habchi
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Emma V. Yates
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christophe Combadière
- Centre d'Immunologie et des Maladies Infectieuses-Paris, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Tuomas P. Knowles
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ole Paulsen
- Neuronal Oscillations Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (PMM); (OP)
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (PMM); (OP)
| |
Collapse
|
43
|
Liao YH, Chen YR. A novel method for expression and purification of authentic amyloid-β with and without (15)N labels. Protein Expr Purif 2015; 113:63-71. [PMID: 25969353 DOI: 10.1016/j.pep.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/03/2015] [Accepted: 05/04/2015] [Indexed: 01/22/2023]
Abstract
Amyloid-β (Aβ) is a major constituent in the senile plaques of patients with Alzheimer's disease (AD). Aβ has been intensively studied in amyloid research; however, challenges posed by data reproducibility arise from purity of synthetic Aβ and high expense for its isotope-labeling. The difficulties motivate development and optimization of recombinant Aβ (rAβ) production. Here, we report a new procedure to express and purify high quality rAβ40 from Escherichia coli. The new Aβ construct expressed insoluble Aβ fused with an N-terminal histidine-tag connected by a linker harboring TEV protease cut site. After purification and partial refolding, the fusion tag was removed by TEV protease cleavage, immobilized metal affinity chromatography (IMAC), and reversed phase-HPLC purification with a yield of 3.5 mg/L culture with and without (15)N label. The rAβ adopts classic amyloid fibrillization and is capable of binding to its clinical relevant metal ions.
Collapse
Affiliation(s)
- Yi-Hung Liao
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang Dist., Taipei 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang Dist., Taipei 115, Taiwan.
| |
Collapse
|
44
|
Kwon H, Crisostomo AC, Smalls HM, Finke JM. Anti-aβ oligomer IgG and surface sialic acid in intravenous immunoglobulin: measurement and correlation with clinical outcomes in Alzheimer's disease treatment. PLoS One 2015; 10:e0120420. [PMID: 25826319 PMCID: PMC4380445 DOI: 10.1371/journal.pone.0120420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/22/2015] [Indexed: 12/23/2022] Open
Abstract
The fraction of IgG antibodies with anti-oligomeric Aβ affinity and surface sialic acid was compared between Octagam and Gammagard intravenous immunoglobulin (IVIG) using two complementary surface plasmon resonance methods. These comparisons were performed to identify if an elevated fraction existed in Gammagard, which reported small putative benefits in a recent Phase III clinical trial for Alzheimer’s Disease. The fraction of anti-oligomeric Aβ IgG was found to be higher in Octagam, for which no cognitive benefits were reported. The fraction and location of surface-accessible sialic acid in the Fab domain was found to be similar between Gammagard and Octagam. These findings indicate that anti-oligomeric Aβ IgG and total surface sialic acid alone cannot account for reported clinical differences in the two IVIG products. A combined analysis of sialic acid in anti-oligomeric Aβ IgG did reveal a notable finding that this subgroup exhibited a high degree of surface sialic acid lacking the conventional α2,6 linkage. These results demonstrate that the IVIG antibodies used to engage oligomeric Aβ in both Gammagard and Octagam clinical trials did not possess α2,6-linked surface sialic acid at the time of administration. Anti-oligomeric Aβ IgG with α2,6 linkages remains untested as an AD treatment.
Collapse
Affiliation(s)
- Hyewon Kwon
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Amanda C. Crisostomo
- Division of Science and Mathematics, University of Washington, Tacoma, Washington, United States of America
| | - Hayley Marie Smalls
- Division of Science and Mathematics, University of Washington, Tacoma, Washington, United States of America
| | - John M. Finke
- Division of Science and Mathematics, University of Washington, Tacoma, Washington, United States of America
- * E-mail:
| |
Collapse
|
45
|
Aoraha E, Candreva J, Kim JR. Engineering of a peptide probe for β-amyloid aggregates. MOLECULAR BIOSYSTEMS 2015; 11:2281-9. [DOI: 10.1039/c5mb00280j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A non-self-aggregating peptide ligand for β-amyloid aggregates created by simple point mutation of an β-amyloid-derived segment.
Collapse
Affiliation(s)
- Edwin Aoraha
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | - Jason Candreva
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| |
Collapse
|
46
|
Jesus AR, Dias C, Matos AM, de Almeida RFM, Viana AS, Marcelo F, Ribeiro RT, Macedo MP, Airoldi C, Nicotra F, Martins A, Cabrita EJ, Jiménez-Barbero J, Rauter AP. Exploiting the Therapeutic Potential of 8-β-d-Glucopyranosylgenistein: Synthesis, Antidiabetic Activity, and Molecular Interaction with Islet Amyloid Polypeptide and Amyloid β-Peptide (1–42). J Med Chem 2014; 57:9463-72. [DOI: 10.1021/jm501069h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ana R. Jesus
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Catarina Dias
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Ana M. Matos
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
- CEDOC
Chronic Diseases Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, 6,
6a, 1150-082, Lisboa, Portugal
| | - Rodrigo F. M. de Almeida
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Ana S. Viana
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Filipa Marcelo
- REQUIMTE,
CQFB, Department of Chemistry, Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rogério T. Ribeiro
- CEDOC
Chronic Diseases Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, 6,
6a, 1150-082, Lisboa, Portugal
- APDP, Diabetes
Portugal Education and Research Center, APDP-ERC, Rua do Salitre, 118-120, 1250-203 Lisboa, Portugal
| | - Maria P. Macedo
- CEDOC
Chronic Diseases Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, 6,
6a, 1150-082, Lisboa, Portugal
- APDP, Diabetes
Portugal Education and Research Center, APDP-ERC, Rua do Salitre, 118-120, 1250-203 Lisboa, Portugal
| | - Cristina Airoldi
- Department
of Biotechnology and Biosciences, University Milano Bicocca, Piaza
della Sciencia 2-4, 20126, Milano, Italy
| | - Francesco Nicotra
- Department
of Biotechnology and Biosciences, University Milano Bicocca, Piaza
della Sciencia 2-4, 20126, Milano, Italy
| | - Alice Martins
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| | - Eurico J. Cabrita
- REQUIMTE,
CQFB, Department of Chemistry, Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Jesús Jiménez-Barbero
- Centro de Investigaciones
Biológicas, C.S.I.C., Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Amélia P. Rauter
- Center
of Chemistry and Biochemistry, Department of Chemistry and Biochemistry,
Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso
5, Campo Grande, 1749−016 Lisboa, Portugal
| |
Collapse
|
47
|
López Deber MP, Hickman DT, Nand D, Baldus M, Pfeifer A, Muhs A. Engineering amyloid-like assemblies from unstructured peptides via site-specific lipid conjugation. PLoS One 2014; 9:e105641. [PMID: 25207975 PMCID: PMC4160191 DOI: 10.1371/journal.pone.0105641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 11/21/2022] Open
Abstract
Aggregation of amyloid beta (Aβ) into oligomers and fibrils is believed to play an important role in the development of Alzheimer’s disease (AD). To gain further insight into the principles of aggregation, we have investigated the induction of β-sheet secondary conformation from disordered native peptide sequences through lipidation, in 1–2% hexafluoroisopropanol (HFIP) in phosphate buffered saline (PBS). Several parameters, such as type and number of lipid chains, peptide sequence, peptide length and net charge, were explored keeping the ratio peptide/HFIP constant. The resulting lipoconjugates were characterized by several physico-chemical techniques: Circular Dichroism (CD), Attenuated Total Reflection InfraRed (ATR-IR), Thioflavin T (ThT) fluorescence, Dynamic Light Scattering (DLS), solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy and Electron Microscopy (EM). Our data demonstrate the generation of β-sheet aggregates from numerous unstructured peptides under physiological pH, independent of the amino acid sequence. The amphiphilicity pattern and hydrophobicity of the scaffold were found to be key factors for their assembly into amyloid-like structures.
Collapse
Affiliation(s)
| | | | - Deepak Nand
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
48
|
Yoshiya T, Maruno T, Uemura T, Kubo S, Kiso Y, Sohma Y, Yoshizawa-Kumagaye K, Kobayashi Y, Nishiuchi Y. Non-pretreated O-acyl isopeptide of amyloid β peptide 1-42 is monomeric with a random coil structure but starts to aggregate in a concentration-dependent manner. Bioorg Med Chem Lett 2014; 24:3861-4. [PMID: 25017031 DOI: 10.1016/j.bmcl.2014.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/25/2022]
Abstract
An isopeptide of amyloid β peptide 1-42 (isoAβ42) was considered as a non-aggregative precursor molecule for the highly aggregative Aβ42. It has been applied to biological studies after several pretreatments. Here we report that isoAβ42 is monomeric with a random coil structure at 40 μM without any pretreatment. But we also found that isoAβ42 retains a slight aggregative nature, which is significantly weaker than that of the native Aβ42.
Collapse
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan.
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Tsuyoshi Uemura
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan
| | - Shigeru Kubo
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Yuji Nishiuchi
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan; Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
49
|
Lu X, Murphy RM. Synthesis and disaggregation of asparagine repeat-containing peptides. J Pept Sci 2014; 20:860-7. [PMID: 25044797 DOI: 10.1002/psc.2677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/12/2014] [Accepted: 06/26/2014] [Indexed: 01/21/2023]
Abstract
Of all amino acid repeats in eukaryotes, polyglutamine (polyQ) is the most frequent, followed by polyasparagine (polyN). Glutamine repeats are expanded in proteins associated with several neurodegenerative disorders. The expanded polyQ domain is known to induce aggregation, and it is hypothesized that aggregation is directly causative of pathology. Despite the widespread presence of asparagine repeats in invertebrate eukaryotes, polyN is curiously quite rare in vertebrates. Several investigators have characterized the conformational and aggregation properties of polyQ-containing peptides and proteins, and to a lesser extent, peptides containing mixed glutamine and asparagine, but to our knowledge, there is no detailed characterization of polyN-containing peptides. Such a comparison could elucidate reasons for the paucity of asparagine repeats in humans. In this study, we synthesized a peptide containing a 24-asparagine repeat (N24). For aggregation studies, it is critical to start with monomeric unaggregated peptide. A protocol involving dissolution in mixed trifluoroacetic acid and hexafluoroisopropanol (TFA + HFIP) solvents is widely used for disaggregation of polyQ peptides. We used the same protocol for N24 but discovered that there was both oxidative damage and insufficient disaggregation. Oxidation of tryptophan, used as a flanking residue, was common. Moreover, we found evidence of Förster resonance energy transfer between Trp and its oxidation product N-formylkynurenine, even in chemical denaturants. This suggested that N24 was insufficiently disaggregated, a conclusion that was further supported by gel electrophoresis analysis. Oxidation was reduced, but not eliminated, by addition of methionine to the buffer. Formic acid proved to be a better disaggregator and caused no oxidative damage. The glutamine repeat peptide Q24 also underwent some oxidation after extended incubation in TFA + HFIP, but there was no evidence of Förster resonance energy transfer, and samples appeared monomeric by gel electrophoresis. This result indicates that polyN-containing peptides self-associate more strongly than polyQ-containing peptides. Circular dichroism spectra reveal a greater propensity for β-turn formation in polyN than polyQ, providing an explanation for the increased stability of polyN aggregates relative to polyQ.
Collapse
Affiliation(s)
- Xiaomeng Lu
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | |
Collapse
|
50
|
Acerra N, Kad NM, Cheruvara H, Mason JM. Intracellular selection of peptide inhibitors that target disulphide-bridged Aβ42 oligomers. Protein Sci 2014; 23:1262-74. [PMID: 24947815 DOI: 10.1002/pro.2509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/31/2022]
Abstract
The β-amyloid (Aβ) peptide aggregates into a number of soluble and insoluble forms, with soluble oligomers thought to be the primary factor implicated in Alzheimer's disease pathology. As a result, a wide range of potential aggregation inhibitors have been developed. However, in addition to problems with solubility and protease susceptibility, many have inadvertently raised the concentration of these soluble neurotoxic species. Sandberg et al. previously reported a β-hairpin stabilized variant of Aβ42 that results from an intramolecular disulphide bridge (A21C/A31C; Aβ42cc), which generates highly toxic oligomeric species incapable of converting into mature fibrils. Using an intracellular protein-fragment complementation (PCA) approach, we have screened peptide libraries using E. coli that harbor an oxidizing environment to permit cytoplasmic disulphide bond formation. Peptides designed to target either the first or second β-strand have been demonstrated to bind to Aβ42cc, lower amyloid cytotoxicity, and confer bacterial cell survival. Peptides have consequently been tested using wild-type Aβ42 via ThT binding assays, circular dichroism, MTT cytotoxicity assays, fluorescence microscopy, and atomic force microscopy. Results demonstrate that amyloid-PCA selected peptides function by both removing amyloid oligomers as well as inhibiting their formation. These data further support the use of semirational design combined with intracellular PCA methodology to develop Aβ antagonists as candidates for modification into drugs capable of slowing or even preventing the onset of AD.
Collapse
Affiliation(s)
- Nicola Acerra
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom
| | | | | | | |
Collapse
|