1
|
Löscher W, Stafstrom CE. Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia 2023; 64:54-91. [PMID: 36197310 DOI: 10.1111/epi.17433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
It is well established that epilepsy is associated with numerous neurobehavioral comorbidities, with a bidirectional relationship; people with epilepsy have an increased incidence of depression, anxiety, learning and memory difficulties, and numerous other psychosocial challenges, and the occurrence of epilepsy is higher in individuals with those comorbidities. Although the cause-and-effect relationship is uncertain, a fuller understanding of the mechanisms of comorbidities within the epilepsies could lead to improved therapeutics. Here, we review recent data on epilepsy and its neurobehavioral comorbidities, discussing mainly rodent models, which have been studied most extensively, and emphasize that clinically relevant information can be gained from preclinical models. Furthermore, we explore the numerous potential factors that may confound the interpretation of emerging data from animal models, such as the specific seizure induction method (e.g., chemical, electrical, traumatic, genetic), the role of species and strain, environmental factors (e.g., laboratory environment, handling, epigenetics), and the behavioral assays that are chosen to evaluate the various aspects of neural behavior and cognition. Overall, the interplay between epilepsy and its neurobehavioral comorbidities is undoubtedly multifactorial, involving brain structural changes, network-level differences, molecular signaling abnormalities, and other factors. Animal models are well poised to help dissect the shared pathophysiological mechanisms, neurological sequelae, and biomarkers of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Brüning CA, Rosa SG, Quines CB, Magni DV, Nonemacher NT, Bortolatto CF, Nogueira CW. The role of nitric oxide in glutaric acid-induced convulsive behavior in pup rats. Eur J Neurosci 2020; 52:3738-3745. [PMID: 32459863 DOI: 10.1111/ejn.14840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Glutaric acidaemia type I (GA-I) is a cerebral organic disorder characterized by the accumulation of glutaric acid (GA) and seizures. As seizures are precipitated in children with GA-I and the mechanisms underlying this disorder are not well established, we decided to investigate the role of nitric oxide (NO) in GA-induced convulsive behaviour in pup rats. Pup male Wistar rats (18-day-old) were anesthetized and placed in stereotaxic apparatus for cannula insertion into the striatum for injection of GA. The experiments were performed 3 days after surgery (pup rats 21-day-old). An inhibitor of NO synthesis (N-G-nitro-l-arginine methyl ester-L-NAME, 40 mg/kg) or saline (vehicle) was administered intraperitoneally 30 min before the intrastriatal injection of GA (1 µl, 1.3 µmol/striatum) or saline. Immediately after the intrastriatal injections, the latency and duration of seizures were recorded for 20 min. The administration of L-NAME significantly increased the latency to the first seizure episode and reduced the duration of seizures induced by GA in pup rats. The administration of the NO precursor l-arginine (L-ARG; 80 mg/kg) prevented the effects of L-NAME. Besides, GA significantly increased nitrate and nitrite (NOx) levels in the striatum of pup rats and the preadministration of L-NAME prevented this alteration. L-ARG blocked the reduction of striatal NOx provoked by L-NAME. These results are experimental evidence that NO plays a role in the seizures induced by GA in pup rats, being valuable in understanding the physiopathology of neurological signs observed in children with this organic acidaemia and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Caroline Brandão Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Danieli Valnes Magni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Natália Tavares Nonemacher
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| |
Collapse
|
3
|
Rigas P, Sigalas C, Nikita M, Kaplanian A, Armaos K, Leontiadis LJ, Zlatanos C, Kapogiannatou A, Peta C, Katri A, Skaliora I. Long-Term Effects of Early Life Seizures on Endogenous Local Network Activity of the Mouse Neocortex. Front Synaptic Neurosci 2018; 10:43. [PMID: 30538627 PMCID: PMC6277496 DOI: 10.3389/fnsyn.2018.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding the long term impact of early life seizures (ELS) is of vital importance both for researchers and clinicians. Most experimental studies of how seizures affect the developing brain have drawn their conclusions based on changes detected at the cellular or behavioral level, rather than on intermediate levels of analysis, such as the physiology of neuronal networks. Neurons work as part of networks and network dynamics integrate the function of molecules, cells and synapses in the emergent properties of brain circuits that reflect the balance of excitation and inhibition in the brain. Therefore, studying network dynamics could help bridge the cell-to-behavior gap in our understanding of the neurobiological effects of seizures. To this end we investigated the long-term effects of ELS on local network dynamics in mouse neocortex. By using the pentylenetetrazole (PTZ)-induced animal model of generalized seizures, single or multiple seizures were induced at two different developmental stages (P9-15 or P19-23) in order to examine how seizure severity and brain maturational status interact to affect the brain's vulnerability to ELS. Cortical physiology was assessed by comparing spontaneous network activity (in the form of recurring Up states) in brain slices of adult (>5 mo) mice. In these experiments we examined two distinct cortical regions, the primary motor (M1) and somatosensory (S1) cortex in order to investigate regional differences in vulnerability to ELS. We find that the effects of ELSs vary depending on (i) the severity of the seizures (e.g., single intermittent ELS at P19-23 had no effect on Up state activity, but multiple seizures induced during the same period caused a significant change in the spectral content of spontaneous Up states), (ii) the cortical area examined, and (iii) the developmental stage at which the seizures are administered. These results reveal that even moderate experiences of ELS can have long lasting age- and region-specific effects in local cortical network dynamics.
Collapse
Affiliation(s)
- Pavlos Rigas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Maria Nikita
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ani Kaplanian
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | - Christos Zlatanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Charoula Peta
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anna Katri
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Irini Skaliora
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
4
|
Rigas P, Leontiadis LJ, Tsakanikas P, Skaliora I. Spontaneous Neuronal Network Persistent Activity in the Neocortex: A(n) (Endo)phenotype of Brain (Patho)physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 988:235-247. [PMID: 28971403 DOI: 10.1007/978-3-319-56246-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abnormal synaptic homeostasis in the cerebral cortex represents a risk factor for both psychiatric and neurodegenerative disorders, from autism and schizophrenia to Alzheimer's disease. Neurons via synapses form recurrent networks that are intrinsically active in the form of oscillating activity, visible at increasingly macroscopic neurophysiological levels: from single cell recordings to the local field potentials (LFPs) to the clinically relevant electroencephalography (EEG). Understanding in animal models the defects at the level of neural circuits is important in order to link molecular and cellular phenotypes with behavioral phenotypes of neurodevelopmental and/or neurodegenerative brain disorders. In this study we introduce the novel idea that recurring persistent network activity (Up states) in the neocortex at the reduced level of the brain slice may be used as an endophenotype of brain disorders that will help us understand not only how local microcircuits of the cortex may be affected in brain diseases, but also when, since an important issue for the design of successful treatment strategies concerns the time window available for intervention.
Collapse
Affiliation(s)
- Pavlos Rigas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens, 11527, Greece.
| | - Leonidas J Leontiadis
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens, 11527, Greece
| | - Panagiotis Tsakanikas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens, 11527, Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens, 11527, Greece
| |
Collapse
|
5
|
Shrivastava A, Johnston M, Shah N, Stitt L, Shrivastava S, Sousa AD. Clozapine response and pre-treatment EEG-is there some kind of relationship. Ind Psychiatry J 2014; 23:18-22. [PMID: 25535440 PMCID: PMC4261208 DOI: 10.4103/0972-6748.144951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Clozapine has been used widely in the management of treatment-resistant schizophrenia. The present study aims at determining whether pre-treatment electroencephalography (EEG) abnormalities would serve as a marker for response to clozapine treatment. SUBJECTS AND METHODS This was a cross-sectional study done in a tertiary care center in Mumbai where patients diagnosed with schizophrenia using DSM-IV criteria and resistant schizophrenia using Kane criteria were assessed using EEG prior to starting clozapine treatment. They were rated for symptomatic improvement using the Positive and Negative Syndrome Scale (PANSS) along with Clinical Global Improvement for Severity (CGI-S). The results were statistically analysed and presented. RESULTS 55 out of the 80 patients in the study showed baseline EEG abnormalities. The mean duration of illness in the patients were 2.65 years. Slow wave and background EEG abnormalities were common in pre-treatment EEG. 36.4% patients in the study showed clinical response. Patients with negative symptoms and baseline EEG abnormalities showed better response. CONCLUSIONS The study was circumscribed and had many limitations due to a small sample size. The relation between pre-treatment EEG abnormalities and clozapine response could not be statistically correlated and it could not be ascertained to be a marker for response to clozapine therapy.
Collapse
Affiliation(s)
- Amresh Shrivastava
- Department of Psychiatry, Elgin Early Intervention Program for Psychosis, The University of Western Ontario, Ontario, Canada ; Mental Health Resource Foundation, Mumbai, Maharashtra, India
| | - Megan Johnston
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Nilesh Shah
- Department of Psychiatry, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Larry Stitt
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Shivanshu Shrivastava
- Department of Psychiatry, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Avinash De Sousa
- Department of Psychiatry, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Iacobas DA, Iacobas S, Chachua T, Goletiani C, Sidyelyeva G, Velíšková J, Velíšek L. Prenatal corticosteroids modify glutamatergic and GABAergic synapse genomic fabric: insights from a novel animal model of infantile spasms. J Neuroendocrinol 2013; 25:964-79. [PMID: 23763471 PMCID: PMC3855178 DOI: 10.1111/jne.12061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/25/2013] [Accepted: 06/09/2013] [Indexed: 12/16/2022]
Abstract
Prenatal exposure to corticosteroids has long-term postnatal somatic and neurodevelopmental consequences. Animal studies indicate that corticosteroid exposure-associated alterations in the nervous system include hypothalamic function. Infants with infantile spasms, a devastating epileptic syndrome of infancy with characteristic spastic seizures, chaotic irregular waves on interictal electroencephalogram (hypsarhythmia) and mental deterioration, have decreased concentrations of adrenocorticotrophic hormone (ACTH) and cortisol in cerebrospinal fluid, strongly suggesting hypothalamic dysfunction. We have exploited this feature to develop a model of human infantile spasms by using repeated prenatal exposure to betamethasone and a postnatal trigger of developmentally relevant spasms with NMDA. The spasms triggered in prenatally primed rats are more severe compared to prenatally saline-injected ones and respond to ACTH, a treatment of choice for infantile spasms in humans. Using autoradiography and immunohistochemistry, we have identified a link between the spasms in our model and the hypothalamus, especially the arcuate nucleus. Transcriptomic analysis of the arcuate nucleus after prenatal priming with betamethasone but before trigger of spasms indicates that prenatal betamethasone exposure down-regulates genes encoding several important proteins participating in glutamatergic and GABAergic transmission. Interestingly, there were significant sex-specific alterations after prenatal betamethasone in synapse-related gene expression but no such sex differences were found in prenatally saline-injected controls. A pairwise relevance analysis revealed that, although the synapse gene expression in controls was independent of sex, these genes form topologically distinct gene fabrics in males and females and these fabrics are altered by betamethasone in a sex-specific manner. These findings may explain the sex differences with respect to both normal behaviour and the occurrence and severity of infantile spasms. Changes in transcript expression and their coordination may contribute to a molecular substrate of permanent neurodevelopmental changes (including infantile spasms) found after prenatal exposure to corticosteroids.
Collapse
Affiliation(s)
- D A Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Cardoso A, Lukoyanova EA, Madeira MD, Lukoyanov NV. Seizure-induced structural and functional changes in the rat hippocampal formation: Comparison between brief seizures and status epilepticus. Behav Brain Res 2011; 225:538-46. [DOI: 10.1016/j.bbr.2011.07.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 12/28/2022]
|
8
|
Chachua T, Yum MS, Velíšková J, Velíšek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia 2011; 52:1666-77. [PMID: 21854372 DOI: 10.1111/j.1528-1167.2011.03220.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine whether a new model of cryptogenic infantile spasms consisting of prenatal priming with betamethasone and postnatal trigger of spasms by N-methyl-D-aspartate (NMDA) responds to chronic adrenocorticotropic hormone (ACTH) treatment, and has electroencephalography (EEG) signature, efficacy of treatments, and behavioral impairments similar to those in human infantile spasms. METHODS Rats prenatally primed with betamethasone on gestational day 15 were used. Spasms were triggered with NMDA between postnatal days (P) 10 and 15 in a single session or in multiple sessions in one subject. The expression of spasms was compared to prenatally saline-injected controls. Effects of relevant treatments (ACTH, vigabatrin, methylprednisolone, rapamycin) were determined in betamethasone-primed rats. In the rats after spasms, behavioral evaluation was performed in the open field and elevated plus maze on P20-22. KEY FINDINGS NMDA at P10-15 (the rat "infant" period) triggers the spasms significantly earlier and in greater numbers in the prenatal betamethasone-exposed brain compared to controls. Similar to human condition, the spasms occur in clusters. Repeated trigger of spasms is associated with ictal EEG electrodecrements and interictal large-amplitude waves, a possible rat variant of hypsarrhythmia. Chronic ACTH treatment in a randomized experiment, and chronic pretreatment with methylprednisolone significantly suppress the number of spasms similar to the human condition. Pretreatment with vigabatrin, but not rapamycin, suppressed the spasms. Significant behavioral changes occurred following multiple bouts of spasms. SIGNIFICANCE The model of infantile spasms has remarkable similarities with the human condition in semiology, EEG, pharmacologic response, and long-term outcome. Therefore, the model can be used to search for novel and more effective treatments for infantile spasms.
Collapse
Affiliation(s)
- Tamar Chachua
- Department of Neurology, Albert Einstein College of Medicine Einstein/Montefiore Comprehensive Epilepsy Center, Bronx, New York, USA
| | | | | | | |
Collapse
|
9
|
Harmful effect of kainic acid on brain ischemic damage is not related to duration of status epilepticus. Neurol Sci 2009; 31:103-5. [PMID: 19779858 DOI: 10.1007/s10072-009-0115-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Status epilepticus is common in infants and may have long-term consequences on the brain persisting into adulthood. Vascular ischemia is a common cause of stroke in adulthood. The extent of stroke in 15-day-old rats is larger when previously exposed to kainic acid-induced status epilepticus. In this paper, we assess whether shortening the duration of seizures modifies subsequent susceptibility to middle cerebral artery occlusion. We administered pentobarbital 50 mg/kg to abort seizures after 1 h. Although administration of pentobarbital aborted seizures, it had no effect on volume of infarction following ischemia. This study indicates that there is dissociation between stopping status epilepticus and modifying its long-term consequences.
Collapse
|
10
|
Galanopoulou AS, Moshé SL. The epileptic hypothesis: developmentally related arguments based on animal models. Epilepsia 2009; 50 Suppl 7:37-42. [PMID: 19682049 DOI: 10.1111/j.1528-1167.2009.02217.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The significant morbidity linked to epileptic encephalopathies of childhood has prompted the need to identify and dissect the factors and mechanisms that contribute to the resultant functional regression. Although experiments specifically assessing language in rodents are difficult to design, a number of studies have shed light on the conditions that contribute to the functional deterioration. In particular, interictal spikes and seizures, especially if prolonged or frequent, may cause acute or long-lasting effects on brain functioning and development, which may impair performance in a variety of behavioral tests. These effects are further modified by a number of genetic, biological, and epigenetic factors, including age, sex, and underlying pathology, which further diversify outcome. Of special importance is the developmental age when the epileptic disorder manifests, because it may dictate outcome but also may be a deciding factor in selecting appropriate therapies.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, U.S.A.
| | | |
Collapse
|
11
|
Heida JG, Moshé SL, Pittman QJ. The role of interleukin-1beta in febrile seizures. Brain Dev 2009; 31:388-93. [PMID: 19217733 PMCID: PMC2699664 DOI: 10.1016/j.braindev.2008.11.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 09/10/2008] [Accepted: 11/04/2008] [Indexed: 11/19/2022]
Abstract
Febrile seizures (FS) occur in children as a result of fever. Despite their prevalence, the pathophysiology of FS has remained unclear. Recent evidence from clinical and experimental studies has highlighted a potential role of immune generated products in the genesis of FS. Of particular interest are the pro-inflammatory cytokine, interleukin-1beta (IL-1beta) and its naturally occurring antagonist, interleukin 1 receptor antagonist (IL-1ra). Using a novel animal model of FS, involving the generation of physiological fever, we investigated the role of the IL-1beta/IL-1ra system in the genesis of FS. We found that animals with FS had increased hippocampal and hypothalamic IL-1beta compared to equally treated animals without FS, which was first evident at onset of FS in the hippocampus. There were no differences in IL-1ra levels. ICV IL-1beta increased the number of animals with FS while IL-1ra had an opposite anti-convulsant effect. The data from these studies, in combination with recent results from other laboratories, have established a putative role for the IL-1beta/IL-1ra system in the genesis of FS.
Collapse
Affiliation(s)
- James G Heida
- The Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, The Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
12
|
Abstract
The autisms and epilepsies are heterogeneous disorders that have diverse etiologies and pathologies. The severity of impairment and of symptoms associated with autism or with particular epilepsy syndromes reflects focal or global, structurally abnormal or dysfunctional neuronal networks. The complex relationship between autism and epilepsy, as reflected in the autism-epilepsy phenotype, provides a bridge to further knowledge of shared neuronal networks that can account for both the autisms and the epilepsies. Although epilepsy is not a causal factor for autism, increased understanding of common genetic and molecular biological mechanisms of the autism-epilepsy phenotype has provided insight into the pathophysiology of the autisms. The autism-epilepsy phenotype provides a novel model to the study of interventions that may have a positive modulating effects on social cognitive outcome.
Collapse
Affiliation(s)
- Roberto Tuchman
- Department of Neurology, University of Miami, Miami Children's Hospital, Dan Marino Center, 2900 South Commerce Parkway, Weston, FL, USA.
| | | | | |
Collapse
|
13
|
Ben-Ari Y. Neuro-archaeology: pre-symptomatic architecture and signature of neurological disorders. Trends Neurosci 2008; 31:626-36. [DOI: 10.1016/j.tins.2008.09.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/26/2008] [Accepted: 09/26/2008] [Indexed: 01/16/2023]
|
14
|
Effective treatments of prolonged status epilepticus in developing rats. Epilepsy Behav 2008; 13:62-9. [PMID: 18337179 PMCID: PMC2517630 DOI: 10.1016/j.yebeh.2008.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
We determined the efficacy of diazepam (DZP) and pentobarbital (PTB) in controlling prolonged status epilepticus (SE) in developing rats. One-hour-long SE was induced with kainic acid (KA) or lithium pilocarpine (Li-Pilo) in Postnatal Day 9 (P9), 15 (P15) and 21 (P21) rats, which were then treated with varying doses of DZP (20-60 mg/kg) or PTB (20-60 mg/kg). At P9, neither drug stopped SE, and higher doses could not be used because of high mortality. At P15 and P21, DZP and PTB stopped both behavioral and electrographic SE in a dose-dependent fashion, with similar efficacy in the two seizure models. DZP stopped SE significantly faster than PTB. Administration of a low dose of PTB (20mg/kg) following an initially ineffective treatment with DZP 20mg/kg stopped SE in all rats. The data suggest that high doses of DZP and PTB are needed to stop prolonged SE in developing rats, but their effectiveness is age dependent.
Collapse
|
15
|
Stafstrom CE. Neurobiological mechanisms of developmental epilepsy: translating experimental findings into clinical application. Semin Pediatr Neurol 2007; 14:164-72. [PMID: 18070672 DOI: 10.1016/j.spen.2007.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although seizures are very common during early brain development, consequences of seizures during this age period are less severe than in the mature brain. Reasons for this discrepancy relate to both the sequential development of neural elements (ion channels, neurotransmitters, synapses, and circuits) and the effects of seizures on these ongoing processes at different ages. In this review, I critically discuss 2 recent experimental trends in developmental neurobiology that impact seizures and their consequences. First, the paradoxic excitatory effects of gamma-aminobutyric acid early in life are related to seizure susceptibility in this developmental period. Second, the plasticity of immature neuronal circuits and the effects of seizures on subsequent cognition and behavior as a function of age are considered. These topics are relevant to the pediatric neurologist when evaluating and treating a young child with seizures.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, Section of Pediatric Neurology, University of Wisconsin, Madison 53792, USA
| |
Collapse
|
16
|
Scantlebury MH, Heida JG, Hasson HJ, Velísková J, Velísek L, Galanopoulou AS, Moshé SL. Age-Dependent Consequences of Status Epilepticus: Animal Models. Epilepsia 2007; 48 Suppl 2:75-82. [PMID: 17571355 DOI: 10.1111/j.1528-1167.2007.01069.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Status epilepticus (SE) is a significant neurological emergency that occurs most commonly in children. Although SE has been associated with an elevated risk of brain injury, it is unclear from clinical studies in whom and under what circumstances brain injury will occur. The purpose of this review is to evaluate the effects of age on the consequences of SE. In this review, we focus mainly on the animal data that describe the consequences of a single episode of SE induced in the adult and immature rat brain. The experimental data suggest that the risk of developing SE-induced brain damage, subsequent epilepsy and cognitive deficits in large part depends on the age in which the SE occurs. Younger rats are more resistant to seizure-induced brain damage than older rats; however, when SE occurs in immature rats with abnormal brains, there is an increase in the severity of seizure-induced brain injury. Better understanding of the pathophysiologic mechanisms underlying the age-specific alterations to the brain induced by SE will lead to the development of novel and effective strategies to improve the deleterious consequences.
Collapse
Affiliation(s)
- Morris H Scantlebury
- Korey Department of Neurology, Albert Einstein College of Medicine, Pelham Parkway South, Kennedy Center, Bronx, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Marsh ED, Brooks-Kayal AR, Porter BE. Seizures and Antiepileptic Drugs: Does Exposure Alter Normal Brain Development? Epilepsia 2006; 47:1999-2010. [PMID: 17201696 DOI: 10.1111/j.1528-1167.2006.00894.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Seizures and antiepileptic drugs (AEDs) affect brain development and have long-term neurological consequences. The specific molecular and cellular changes, the precise timing of their influence during brain development, and the full extent of the long-term consequences of seizures and AEDs exposure have not been established. This review critically assesses both the basic and clinical science literature on the effects of seizures and AEDs on the developing brain and finds that evidence exists to support the hypothesis that both seizures and antiepileptic drugs influence a variety of biological process, at specific times during development, which alter long-term cognition and epilepsy susceptibility. More research, both clinical and experimental, is needed before changes in current clinical practice, based on the scientific data, can be recommended.
Collapse
Affiliation(s)
- Eric D Marsh
- Division of Child Neurology and Pediatric Regional Epilepsy Program, Children's Hospital of Philadelphia, and Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
18
|
Abstract
Prognosis for seizure control and cognitive development varies considerably among syndromes. Several factors may interact to influence outcome of an epilepsy including a causative etiology, ictal and interictal discharges, seizure-related trauma or systemic perturbations, and antiepileptic drug (AED) effects. Clinical evidence convincingly supporting Gowers' hypothesis that seizures beget seizures is lacking. Short-term seizure suppression by early treatment does not appear to influence long-term prognosis. Malignant epilepsy syndromes usually begin in infancy or childhood, have a high seizure frequency, resist the initial AED, and are often associated with progressive cognitive dysfunction. Prompt management of some severe epilepsy syndromes may lessen cognitive decline. However, aggressive AEDs therapy must be balanced against the potential for cognitive side effects, particularly if multiple AEDs are used. Several experimental paradigms closely parallel human TLE as both have an initial precipitating injury (IPI), a latent period, then recurrent spontaneous seizures. In humans, an IPI is any medical event with neurological implications. Although transition from a latent period to a seizure disorder certainly constitutes "progression" of the disorder, convincing clinical evidence of subsequent worsening has not emerged. Substantial clinical and experimental evidence indicates some cognitive regression and focal atrophy with time for TLE and other intractable syndromes. However, seizure frequency and severity, established early in the disorder, appear stable in most patients, and even regress in benign syndromes. Factors mitigating or extinguishing epilepsies need to be further sought.
Collapse
Affiliation(s)
- Warren T Blume
- Department of Clinical Neurological Sciences, London Health Sciences Centre London, Ontario, Canada.
| |
Collapse
|
19
|
Young NA, Teskey GC, Henry LC, Edwards HE. Exogenous antenatal glucocorticoid treatment reduces susceptibility for hippocampal kindled and maximal electroconvulsive seizures in infant rats. Exp Neurol 2006; 198:303-12. [PMID: 16445912 DOI: 10.1016/j.expneurol.2005.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 10/19/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
Dexamethasone (DEX) and betamethasone (BETA) are synthetic glucocorticoids used clinically to reduce morbidity and mortality in infants at risk of premature birth. While their main role is to facilitate lung development, their effect on the developing nervous system and seizure susceptibility is unclear. The present study tested the hypothesis that antenatal DEX or BETA treatment would alter seizure thresholds and spread of epileptiform activity in the brains of infant offspring. Pregnant dams received once daily injections with DEX, BETA, or vehicle on gestation days 15 to 18. Physical appearance, litter size, and weight of the pups were assessed postnatally. Seizure thresholds were determined on postnatal day 14 using electroconvulsive shock delivered through ear clips (i.e., generalized seizure) or kindling stimulation of the left hippocampus through indwelling electrodes (i.e., partial seizure). The rate of acquisition of kindled seizures was determined on postnatal days 14 and 15. Pups from dams treated with DEX and BETA were growth restricted. Antenatal BETA treatment increased seizure threshold for both models. Antenatal DEX treatment increased kindling threshold, but not electroconvulsive shock threshold. Kindling rate was unaffected by either antenatal treatment. In summary, repeated glucocorticoid treatments had adverse effects on weight, skin and litter size, raised seizure thresholds, and reduced seizure vulnerability. Although these effects are seemingly desirable with respect to seizure susceptibility, they suggest that the functional organization of the nervous system is altered with antenatal synthetic glucocorticoid treatment.
Collapse
Affiliation(s)
- Nicole A Young
- Behavioural Neuroscience Research Group, Department of Psychology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
20
|
Stefan H, Lopes da Silva FH, Löscher W, Schmidt D, Perucca E, Brodie MJ, Boon PAJM, Theodore WH, Moshé SL. Epileptogenesis and rational therapeutic strategies. Acta Neurol Scand 2006; 113:139-55. [PMID: 16441243 DOI: 10.1111/j.1600-0404.2005.00561.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The understanding of neurobiological mechanisms of epileptogenesis is essential for rational approaches for a possible disease modification as well as treatment of underlying causes of the epilepsies. More effort is necessary to translate results from basic investigations into new approaches for clinical research and to better understand a relationship with findings from clinical studies. The following report is a condensed synapsis in which molecular mechanisms of epileptogenesis, pharmacological modulation of epileptogenesis, evidence based therapy, refractoriness and prediction of outcome is provided in order to stimulate further collaborative international research.
Collapse
Affiliation(s)
- H Stefan
- Epilepsy Centre - Neurological Clinic, University Erlangen-Nuernberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stafstrom CE, Sutula TP. Models of epilepsy in the developing and adult brain: implications for neuroprotection. Epilepsy Behav 2005; 7 Suppl 3:S18-24. [PMID: 16242383 DOI: 10.1016/j.yebeh.2005.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 11/26/2022]
Abstract
Repeated seizures cause a sequence of molecular and cellular changes in both the developing and adult brain, which may lead to intractable epilepsy. This article reviews this sequence of neuronal alterations, with emphasis on the kindling model. At each step, the opportunity exists for strategic intervention to prevent or reduce the downstream consequences of epileptogenesis and seizure-induced adverse plasticity. The concept of seizure-induced brain damage must be expanded to include behavioral and cognitive deficits, as well as structural neuronal damage and increased predisposition to seizures.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, University of Wisconsin, Madison, WI 53792, USA.
| | | |
Collapse
|
22
|
Sayin U, Sutula TP, Stafstrom CE. Seizures in the developing brain cause adverse long-term effects on spatial learning and anxiety. Epilepsia 2005; 45:1539-48. [PMID: 15571512 DOI: 10.1111/j.0013-9580.2004.54903.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Seizures in the developing brain cause less macroscopic structural damage than do seizures in adulthood, but accumulating evidence shows that seizures early in life can be associated with persistent behavioral and cognitive impairments. We previously showed that long-term spatial memory in the eight-arm radial-arm maze was impaired in rats that experienced a single episode of kainic acid (KA)-induced status epilepticus during early development (postnatal days (P) 1-14). Here we extend those findings by using a set of behavioral paradigms that are sensitive to additional aspects of learning and behavior. METHODS On P1, P7, P14, or P24, rats underwent status epilepticus induced by intraperitoneal injections of age-specific doses of KA. In adulthood (P90-P100), the behavioral performance of these rats was compared with that of control rats that did not receive KA. A modified version of the radial-arm maze was used to assess short-term spatial memory; the Morris water maze was used to evaluate long-term spatial memory and retrieval; and the elevated plus maze was used to determine anxiety. RESULTS Compared with controls, rats with KA seizures at each tested age had impaired short-term spatial memory in the radial-arm maze (longer latency to criterion and more reference errors), deficient long-term spatial learning and retrieval in the water maze (longer escape latencies and memory for platform location), and a greater degree of anxiety in the elevated plus maze (greater time spent in open arms). CONCLUSIONS These findings provide additional support for the concept that seizures early in life may be followed by life-long impairment of certain cognitive and behavioral functions. These results may have clinical implications, favoring early and aggressive control of seizures during development.
Collapse
Affiliation(s)
- Umit Sayin
- Department of Neurology, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | |
Collapse
|