1
|
Alessandri M, Osorio-Forero A, Lüthi A, Chatton JY. The lactate receptor HCAR1: A key modulator of epileptic seizure activity. iScience 2024; 27:109679. [PMID: 38655197 PMCID: PMC11035371 DOI: 10.1016/j.isci.2024.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Epilepsy affects millions globally with a significant portion exhibiting pharmacoresistance. Abnormal neuronal activity elevates brain lactate levels, which prompted the exploration of its receptor, the hydroxycarboxylic acid receptor 1 (HCAR1) known to downmodulate neuronal activity in physiological conditions. This study revealed that HCAR1-deficient mice (HCAR1-KO) exhibited lowered seizure thresholds, and increased severity and duration compared to wild-type mice. Hippocampal and whole-brain electrographic seizure analyses revealed increased seizure severity in HCAR1-KO mice, supported by time-frequency analysis. The absence of HCAR1 led to uncontrolled inter-ictal activity in acute hippocampal slices, replicated by lactate dehydrogenase A inhibition indicating that the activation of HCAR1 is closely associated with glycolytic output. However, synthetic HCAR1 agonist administration in an in vivo epilepsy model did not modulate seizures, likely due to endogenous lactate competition. These findings underscore the crucial roles of lactate and HCAR1 in regulating circuit excitability to prevent unregulated neuronal activity and terminate epileptic events.
Collapse
Affiliation(s)
- Maxime Alessandri
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| | - Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| |
Collapse
|
2
|
Lenz M, Eichler A, Kruse P, Galanis C, Kleidonas D, Andrieux G, Boerries M, Jedlicka P, Müller U, Deller T, Vlachos A. The Amyloid Precursor Protein Regulates Synaptic Transmission at Medial Perforant Path Synapses. J Neurosci 2023; 43:5290-5304. [PMID: 37369586 PMCID: PMC10359033 DOI: 10.1523/jneurosci.1824-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The perforant path provides the primary cortical excitatory input to the hippocampus. Because of its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells remains to be characterized. Here, we have used mouse organotypic entorhino-hippocampal tissue cultures of either sex, in which the entorhinal cortex (EC) to dentate granule cell (GC; EC-GC) projection is present, and EC-GC pairs can be studied using whole-cell patch-clamp recordings. By using cultures of wild-type mice, the properties of EC-GC synapses formed by afferents from the lateral and medial entorhinal cortex were compared, and differences in short-term plasticity were identified. As the perforant path is severely affected in Alzheimer's disease, we used tissue cultures of amyloid precursor protein (APP)-deficient mice to examine the role of APP at this synapse. APP deficiency altered excitatory neurotransmission at medial perforant path synapses, which was accompanied by transcriptomic and ultrastructural changes. Moreover, presynaptic but not postsynaptic APP deletion through the local injection of Cre-expressing adeno-associated viruses in conditional APPflox/flox tissue cultures increased the neurotransmission efficacy at perforant path synapses. In summary, these data suggest a physiological role for presynaptic APP at medial perforant path synapses that may be adversely affected under altered APP processing conditions.SIGNIFICANCE STATEMENT The hippocampus receives input from the entorhinal cortex via the perforant path. These projections to hippocampal dentate granule cells are of utmost importance for learning and memory formation. Although there is detailed knowledge about perforant path projections, the functional synaptic properties at the level of individual connected pairs of neurons are not well understood. In this study, we investigated the role of APP in mediating functional properties and transmission rules in individually connected neurons using paired whole-cell patch-clamp recordings and genetic tools in organotypic tissue cultures. Our results show that presynaptic APP expression limits excitatory neurotransmission via the perforant path, which could be compromised in pathologic conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Peter Jedlicka
- Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Kim SH, GoodSmith D, Temme SJ, Moriya F, Ming GL, Christian KM, Song H, Knierim JJ. Global remapping in granule cells and mossy cells of the mouse dentate gyrus. Cell Rep 2023; 42:112334. [PMID: 37043350 PMCID: PMC10564968 DOI: 10.1016/j.celrep.2023.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Hippocampal place cells exhibit spatially modulated firing, or place fields, which can remap to encode changes in the environment or other variables. Unique among hippocampal subregions, the dentate gyrus (DG) has two excitatory populations of place cells, granule cells and mossy cells, which are among the least and most active spatially modulated cells in the hippocampus, respectively. Previous studies of remapping in the DG have drawn different conclusions about whether granule cells exhibit global remapping and contribute to the encoding of context specificity. By recording granule cells and mossy cells as mice foraged in different environments, we found that by most measures, both granule cells and mossy cells remapped robustly but through different mechanisms that are consistent with firing properties of each cell type. Our results resolve the ambiguity surrounding remapping in the DG and suggest that most spatially modulated granule cells contribute to orthogonal representations of distinct spatial contexts.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas GoodSmith
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Stephanie J Temme
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fumika Moriya
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
5
|
Miller LN, Weiss C, Disterhoft JF. Learning-related changes in cellular activity within mouse dentate gyrus during trace eyeblink conditioning. Hippocampus 2022; 32:776-794. [PMID: 36018285 PMCID: PMC9489639 DOI: 10.1002/hipo.23468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
Because the dentate gyrus serves as the first site for information processing in the hippocampal trisynaptic circuit, it an important structure for the formation of associative memories. Previous findings in rabbit had recorded populations of cells within dentate gyrus that may bridge the temporal gap between stimuli to support memory formation during trace eyeblink conditioning, an associative learning task. However, this previous work was unable to identify the types of cells demonstrating this type of activity. To explore these changes further, we did in vivo single-neuron recording in conjunction with physiological determination of cell types to investigate the functional role of granule cells, mossy cells, and interneurons in dentate gyrus during learning. Tetrode recordings were performed in young-adult mice during training on trace eyeblink conditioning, a hippocampal-dependent temporal associative memory task. Conditioned mice were able to successfully learn the task, with male mice learning at a faster rate than female mice. In the conditioned group, granule cells tended to show an increase in firing rate during conditioned stimulus presentation while mossy cells showed a decrease in firing rate during the trace interval and the unconditioned stimulus. Interestingly, populations of interneurons demonstrated learning-related increases and decreases in activity that began at onset of the conditioned stimulus and persisted through the trace interval. The current study also found a significant increase in theta power during stimuli presentation in conditioned animals, and this change in theta decreased over time. Ultimately, these data suggest unique involvement of granule cells, mossy cells, and interneurons in dentate gyrus in the formation of a trace associative memory. This work expands our knowledge of dentate gyrus function, helping to discern how aging and disease might disrupt this process.
Collapse
Affiliation(s)
- Lisa N. Miller
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Craig Weiss
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - John F. Disterhoft
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
6
|
Perrenoud Q, Leclerc C, Geoffroy H, Vitalis T, Richetin K, Rampon C, Gallopin T. Molecular and electrophysiological features of GABAergic neurons in the dentate gyrus reveal limited homology with cortical interneurons. PLoS One 2022; 17:e0270981. [PMID: 35802727 PMCID: PMC9269967 DOI: 10.1371/journal.pone.0270981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
GABAergic interneurons tend to diversify into similar classes across telencephalic regions. However, it remains unclear whether the electrophysiological and molecular properties commonly used to define these classes are discriminant in the hilus of the dentate gyrus. Here, using patch-clamp combined with single cell RT-PCR, we compare the relevance of commonly used electrophysiological and molecular features for the clustering of GABAergic interneurons sampled from the mouse hilus and primary sensory cortex. While unsupervised clustering groups cortical interneurons into well-established classes, it fails to provide a convincing partition of hilar interneurons. Statistical analysis based on resampling indicates that hilar and cortical GABAergic interneurons share limited homology. While our results do not invalidate the use of classical molecular marker in the hilus, they indicate that classes of hilar interneurons defined by the expression of molecular markers do not exhibit strongly discriminating electrophysiological properties.
Collapse
Affiliation(s)
- Quentin Perrenoud
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Clémence Leclerc
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Tania Vitalis
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Kevin Richetin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- * E-mail:
| |
Collapse
|
7
|
Abdulmajeed WI, Wang KY, Wu JW, Ajibola MI, Cheng IHJ, Lien CC. Connectivity and synaptic features of hilar mossy cells and their effects on granule cell activity along the hippocampal longitudinal axis. J Physiol 2022; 600:3355-3381. [PMID: 35671148 DOI: 10.1113/jp282804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022] Open
Abstract
The hippocampus is an elongated brain structure which runs along a ventral-to-dorsal axis in rodents, corresponding to the anterior-to-posterior axis in humans. A glutamatergic cell type in the dentate gyrus (DG), the mossy cells (MCs), establishes extensive excitatory collateral connections with the DG principal cells, the granule cells (GCs), and inhibitory interneurons in both hippocampal hemispheres along the longitudinal axis. Although coupling of two physically separated GC populations via long-axis projecting MCs is instrumental for information processing, the connectivity and synaptic features of MCs along the longitudinal axis are poorly defined. Here, using channelrhodopsin-2 assisted circuit mapping, we showed that MC excitation results in a low synaptic excitation-inhibition (E/I) balance in the intralamellar (local) GCs, but a high synaptic E/I balance in the translamellar (distant) ones. In agreement with the differential E/I balance along the ventrodorsal axis, activation of MCs either enhances or suppresses the local GC response to the cortical input, but primarily promotes the distant GC activation. Moreover, activation of MCs enhances the spike timing precision of the local GCs, but not that of the distant ones. Collectively, these findings suggest that MCs differentially regulate the local and distant GC activity through distinct synaptic mechanisms. KEY POINTS: Hippocampal mossy cell (MC) pathways differentially regulate granule cell (GC) activity along the longitudinal axis. MCs mediate a low excitation-inhibition balance in intralamellar (local) GCs, but a high excitation-inhibition balance in translamellar (distant) GCs. MCs enhance the spiking precision of local GCs, but not distant GCs. MCs either promote or suppress local GC activity, but primarily promote distant GC activation.
Collapse
Affiliation(s)
- Wahab Imam Abdulmajeed
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Kai-Yi Wang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jei-Wei Wu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Musa Iyiola Ajibola
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Zhao S, Chen B, Wang H, Luo Z, Zhang T. A Feed-Forward Neural Network for Increasing the Hopfield-Network Storage Capacity. Int J Neural Syst 2022; 32:2250027. [PMID: 35534937 DOI: 10.1142/s0129065722500277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the hippocampal dentate gyrus (DG), pattern separation mainly depends on the concepts of 'expansion recoding', meaning random mixing of different DG input channels. However, recent advances in neurophysiology have challenged the theory of pattern separation based on these concepts. In this study, we propose a novel feed-forward neural network, inspired by the structure of the DG and neural oscillatory analysis, to increase the Hopfield-network storage capacity. Unlike the previously published feed-forward neural networks, our bio-inspired neural network is designed to take advantage of both biological structure and functions of the DG. To better understand the computational principles of pattern separation in the DG, we have established a mouse model of environmental enrichment. We obtained a possible computational model of the DG, associated with better pattern separation ability, by using neural oscillatory analysis. Furthermore, we have developed a new algorithm based on Hebbian learning and coupling direction of neural oscillation to train the proposed neural network. The simulation results show that our proposed network significantly expands the storage capacity of Hopfield network, and more effective pattern separation is achieved. The storage capacity rises from 0.13 for the standard Hopfield network to 0.32 using our model when the overlap in patterns is 10%.
Collapse
Affiliation(s)
- Shaokai Zhao
- College of Life Sciences, Nankai University, 300071 Tianjin, P. R. China
| | - Bin Chen
- College of Life Sciences, Nankai University, 300071 Tianjin, P. R. China
| | - Hui Wang
- College of Life Sciences, Nankai University, 300071 Tianjin, P. R. China
| | - Zhiyuan Luo
- Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Tao Zhang
- College of Life Sciences, Nankai University, 300071 Tianjin, P. R. China
| |
Collapse
|
9
|
Li S, Zhou Q, Liu E, Du H, Yu N, Yu H, Wang W, Li M, Weng Y, Gao Y, Pi G, Wang X, Ke D, Wang J. Alzheimer-like tau accumulation in dentate gyrus mossy cells induces spatial cognitive deficits by disrupting multiple memory-related signaling and inhibiting local neural circuit. Aging Cell 2022; 21:e13600. [PMID: 35355405 PMCID: PMC9124302 DOI: 10.1111/acel.13600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Abnormal tau accumulation and spatial memory loss constitute characteristic pathology and symptoms of Alzheimer disease (AD). Yet, the intrinsic connections and the mechanism between them are not fully understood. In the current study, we observed a prominent accumulation of the AD‐like hyperphosphorylated and truncated tau (hTau N368) proteins in hippocampal dentate gyrus (DG) mossy cells of 3xTg‐AD mice. Further investigation demonstrated that the ventral DG (vDG) mossy cell‐specific overexpressing hTau for 3 months induced spatial cognitive deficits, while expressing hTau N368 for only 1 month caused remarkable spatial cognitive impairment with more prominent tau pathologies. By in vivo electrophysiological and optic fiber recording, we observed that the vDG mossy cell‐specific overexpression of hTau N368 disrupted theta oscillations with local neural network inactivation in the dorsal DG subset, suggesting impairment of the ventral to dorsal neural circuit. The mossy cell‐specific transcriptomic data revealed that multiple AD‐associated signaling pathways were disrupted by hTau N368, including reduction of synapse‐associated proteins, inhibition of AKT and activation of glycogen synthase kinase‐3β. Importantly, chemogenetic activating mossy cells efficiently attenuated the hTau N368‐induced spatial cognitive deficits. Together, our findings indicate that the mossy cell pathological tau accumulation could induce the AD‐like spatial memory deficit by inhibiting the local neural network activity, which not only reveals new pathogenesis underlying the mossy cell‐related spatial memory loss but also provides a mouse model of Mossy cell‐specific hTau accumulation for drug development in AD and the related tauopathies.
Collapse
Affiliation(s)
- Shihong Li
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Qiuzhi Zhou
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Enjie Liu
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Huiyun Du
- Department of Physiology School of Basic Medicine and Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Nana Yu
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Haitao Yu
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Weijin Wang
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Mengzhu Li
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ying Weng
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yang Gao
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Guilin Pi
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xin Wang
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Ke
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jian‐Zhi Wang
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| |
Collapse
|
10
|
GoodSmith D, Kim SH, Puliyadi V, Ming GL, Song H, Knierim JJ, Christian KM. Flexible encoding of objects and space in single cells of the dentate gyrus. Curr Biol 2022; 32:1088-1101.e5. [PMID: 35108522 PMCID: PMC8930604 DOI: 10.1016/j.cub.2022.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
The hippocampus is involved in the formation of memories that require associations among stimuli to construct representations of space and the items and events within that space. Neurons in the dentate gyrus (DG), an initial input region of the hippocampus, have robust spatial tuning, but it is unclear how nonspatial information may be integrated with spatial activity in this region. We recorded from the DG of 21 adult mice as they foraged for food in an environment that contained discrete objects. We found DG cells with multiple firing fields at a fixed distance and direction from objects (landmark vector cells) and cells that exhibited localized changes in spatial firing when objects in the environment were manipulated. By classifying recorded DG cells into putative dentate granule cells and mossy cells, we examined how the addition or displacement of objects affected the spatial firing of these DG cell types. Object-related activity was detected in a significant proportion of mossy cells. Although few granule cells with responses to object manipulations were recorded, likely because of the sparse nature of granule cell firing, there was generally no significant difference in the proportion of granule cells and mossy cells with object responses. When mice explored a second environment with the same objects, DG spatial maps completely reorganized, and a different subset of cells responded to object manipulations. Together, these data reveal the capacity of DG cells to detect small changes in the environment while preserving a stable spatial representation of the overall context.
Collapse
Affiliation(s)
- Douglas GoodSmith
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA; Department of Neurobiology and Neuroscience Institute, University of Chicago, 5801 S Ellis Avenue, Chicago, IL 60637, USA
| | - Sang Hoon Kim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Vyash Puliyadi
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA.
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Ma Y, Bayguinov PO, McMahon SM, Scharfman HE, Jackson MB. Direct synaptic excitation between hilar mossy cells revealed with a targeted voltage sensor. Hippocampus 2021; 31:1215-1232. [PMID: 34478219 DOI: 10.1002/hipo.23386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
The dentate gyrus not only gates the flow of information into the hippocampus, it also integrates and processes this information. Mossy cells (MCs) are a major type of excitatory neuron strategically located in the hilus of the dentate gyrus where they can contribute to this processing through networks of synapses with inhibitory neurons and dentate granule cells. Some prior work has suggested that MCs can form excitatory synapses with other MCs, but the role of these synapses in the network activity of the dentate gyrus has received little attention. Here, we investigated synaptic inputs to MCs in mouse hippocampal slices using a genetically encoded hybrid voltage sensor (hVOS) targeted to MCs by Cre-lox technology. This enabled optical recording of voltage changes from multiple MCs simultaneously. Stimulating granule cells and CA3 pyramidal cells activated well-established inputs to MCs and elicited synaptic responses as expected. However, the weak blockade of MC responses to granule cell layer stimulation by DCG-IV raised the possibility of another source of excitation. To evaluate synapses between MCs as this source, single MCs were stimulated focally. Stimulation of one MC above its action potential threshold evoked depolarizing responses in neighboring MCs that depended on glutamate receptors. Short latency responses of MCs to other MCs did not depend on release from granule cell axons. However, granule cells did contribute to the longer latency responses of MCs to stimulation of other MCs. Thus, MCs transmit their activity to other MCs both through direct synaptic coupling and through polysynaptic coupling with dentate granule cells. MC-MC synapses can redistribute information entering the dentate gyrus and thus shape and modulate the electrical activity underlying hippocampal functions such as navigation and memory, as well as excessive excitation during seizures.
Collapse
Affiliation(s)
- Yihe Ma
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shane M McMahon
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Helen E Scharfman
- New York University Langone Health and the Nathan Kline Institute for Psychiatric Research, Orangeburg, New Jersey, USA
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Botterill JJ, Lu YL, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, Leary P, Scharfman HE. An Excitatory and Epileptogenic Effect of Dentate Gyrus Mossy Cells in a Mouse Model of Epilepsy. Cell Rep 2020; 29:2875-2889.e6. [PMID: 31775052 PMCID: PMC6905501 DOI: 10.1016/j.celrep.2019.10.100] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
The sparse activity of hippocampal dentate gyrus (DG) granule cells (GCs) is thought to be critical for cognition and behavior, whereas excessive DG activity may contribute to disorders such as temporal lobe epilepsy (TLE). Glutamatergic mossy cells (MCs) of the DG are potentially critical to normal and pathological functions of the DG because they can regulate GC activity through innervation of GCs or indirectly through GABAergic neurons. Here, we test the hypothesis that MC excitation of GCs is normally weak, but under pathological conditions, MC excitation of GCs is dramatically strengthened. We show that selectively inhibiting MCs during severe seizures reduced manifestations of those seizures, hippocampal injury, and chronic epilepsy. In contrast, selectively activating MCs was pro-convulsant. Mechanistic in vitro studies using optogenetics further demonstrated the unanticipated ability of MC axons to excite GCs under pathological conditions. These results demonstrate an excitatory and epileptogenic effect of MCs in the DG.
Collapse
Affiliation(s)
- Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Yi-Ling Lu
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Hannah L Bernstein
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
13
|
Lee H, GoodSmith D, Knierim JJ. Parallel processing streams in the hippocampus. Curr Opin Neurobiol 2020; 64:127-134. [PMID: 32502734 PMCID: PMC8136469 DOI: 10.1016/j.conb.2020.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023]
Abstract
The hippocampus performs two complementary processes, pattern separation and pattern completion, to minimize interference and maximize the storage capacity of memories. Classic computational models have suggested that the dentate gyrus (DG) supports pattern separation and the putative attractor circuitry in CA3 supports pattern completion. However, recent evidence of functional heterogeneity along the CA3 transverse axis of the hippocampus suggests that the DG and proximal CA3 work as a functional unit for pattern separation, while distal CA3 forms an autoassociative network for pattern completion. We propose that the outputs of these functional circuits, combined with direct projections from entorhinal cortex to CA1, form interconnected, parallel processing circuits to support accurate memory storage and retrieval.
Collapse
Affiliation(s)
- Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas GoodSmith
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Place cell maps slowly develop via competitive learning and conjunctive coding in the dentate gyrus. Nat Commun 2020; 11:4550. [PMID: 32917862 PMCID: PMC7486408 DOI: 10.1038/s41467-020-18351-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
Place cells exhibit spatially selective firing fields that collectively map the continuum of positions in environments; how such activity pattern develops with experience is largely unknown. Here, we record putative granule cells (GCs) and mossy cells (MCs) from the dentate gyrus (DG) over 27 days as mice repetitively run through a sequence of objects fixed onto a treadmill belt. We observe a progressive transformation of GC spatial representations, from a sparse encoding of object locations and spatial patterns to increasingly more single, evenly dispersed place fields, while MCs show little transformation and preferentially encode object locations. A competitive learning model of the DG reproduces GC transformations via the progressive integration of landmark-vector cells and spatial inputs and requires MC-mediated feedforward inhibition to evenly distribute GC representations, suggesting that GCs slowly encode conjunctions of objects and spatial information via competitive learning, while MCs help homogenize GC spatial representations. Place cells in the hippocampus fire action potentials at spatially selective firing fields that collectively map the environments. Here, the authors show how these activity patterns develop with experience in mice and determine the importance of competitive learning in this process.
Collapse
|
15
|
Oh SJ, Cheng J, Jang JH, Arace J, Jeong M, Shin CH, Park J, Jin J, Greengard P, Oh YS. Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic antidepressant treatment. Mol Psychiatry 2020; 25:1215-1228. [PMID: 30837688 DOI: 10.1038/s41380-019-0384-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
Most antidepressants, including selective serotonin reuptake inhibitors (SSRIs), initiate their drug actions by rapid elevation of serotonin, but they take several weeks to achieve therapeutic onset. This therapeutic delay suggests slow adaptive changes in multiple neuronal subtypes and their neural circuits over prolonged periods of drug treatment. Mossy cells are excitatory neurons in the dentate hilus that regulate dentate gyrus activity and function. Here we show that neuronal activity of hippocampal mossy cells is enhanced by chronic, but not acute, SSRI administration. Behavioral and neurogenic effects of chronic treatment with the SSRI, fluoxetine, are abolished by mossy cell-specific knockout of p11 or Smarca3 or by an inhibition of the p11/AnxA2/SMARCA3 heterohexamer, an SSRI-inducible protein complex. Furthermore, simple chemogenetic activation of mossy cells using Gq-DREADD is sufficient to elevate the proliferation and survival of the neural stem cells. Conversely, acute chemogenetic inhibition of mossy cells using Gi-DREADD impairs behavioral and neurogenic responses to chronic administration of SSRI. The present data establish that mossy cells play a crucial role in mediating the effects of chronic antidepressant medication. Our results indicate that compounds that target mossy cell activity would be attractive candidates for the development of new antidepressant medications.
Collapse
Affiliation(s)
- Seo-Jin Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jia Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jeffrey Arace
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Minseok Jeong
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Chang-Hoon Shin
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jeongrak Park
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Junghee Jin
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea.
| |
Collapse
|
16
|
Swaminathan A, Wichert I, Schmitz D, Maier N. Involvement of Mossy Cells in Sharp Wave-Ripple Activity In Vitro. Cell Rep 2019; 23:2541-2549. [PMID: 29847786 DOI: 10.1016/j.celrep.2018.04.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The role of mossy cells (MCs) of the hippocampal dentate area has long remained mysterious. Recent research has begun to unveil their significance in spatial computation of the hippocampus. Here, we used an in vitro model of sharp wave-ripple complexes (SWRs), which contribute to hippocampal memory formation, to investigate MC involvement in this fundamental population activity. We find that a significant fraction of MCs (∼47%) is recruited into the active neuronal network during SWRs in the CA3 area. Moreover, MCs receive pronounced, ripple-coherent, excitatory and inhibitory synaptic input. Finally, we find evidence for SWR-related synaptic activity in granule cells that is mediated by MCs. Given the widespread connectivity of MCs within and between hippocampi, our data suggest a role for MCs as a hub functionally coupling the CA3 and the DG during ripple-associated computations.
Collapse
Affiliation(s)
- Aarti Swaminathan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Cluster of Excellence NeuroCure, 10117 Berlin, Germany
| | - Ines Wichert
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany; Cluster of Excellence NeuroCure, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| |
Collapse
|
17
|
Dentate Gyrus Mossy Cells Share a Role in Pattern Separation with Dentate Granule Cells and Proximal CA3 Pyramidal Cells. J Neurosci 2019; 39:9570-9584. [PMID: 31641051 DOI: 10.1523/jneurosci.0940-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/04/2023] Open
Abstract
The complementary processes of pattern completion and pattern separation are thought to be essential for successful memory storage and recall. The dentate gyrus (DG) and proximal CA3 (pCA3) regions have been implicated in pattern separation, in part through extracellular recording studies of these areas. However, the DG contains two types of excitatory cells: granule cells of the granule layer and mossy cells of the hilus. Little is known about the firing properties of mossy cells in freely moving animals, and it is unclear how their activity may contribute to the mnemonic functions of the hippocampus. Furthermore, tetrodes in the dentate granule layer and pCA3 pyramidal layer can also record mossy cells, thus introducing ambiguity into the identification of cell types recorded. Using a random forests classifier, we classified cells recorded in DG (Neunuebel and Knierim, 2014) and pCA3 (Lee et al., 2015) of 16 male rats and separately examined the responses of granule cells, mossy cells, and pCA3 pyramidal cells in a local/global cue mismatch task. All three cell types displayed low correlations between the population representations of the rat's position in the standard and cue-mismatch sessions. These results suggest that all three excitatory cell types within the DG/pCA3 circuit may act as a single functional unit to support pattern separation.SIGNIFICANCE STATEMENT Mossy cells in the dentate gyrus (DG) are an integral component of the DG/pCA3 circuit. While the role of granule cells in the circuitry and computations of the hippocampus has been a focus of study for decades, the contributions of mossy cells have been largely overlooked. Recent studies have revealed the spatial firing properties of mossy cells in awake behaving animals, but how the activity of these highly active cells contributes to the mnemonic functions of the DG is uncertain. We separately analyzed mossy cells, granule cells, and pCA3 cells and found that all three cell types respond similarly to a local/global cue mismatch, suggesting that they form a single functional unit supporting pattern separation.
Collapse
|
18
|
Jung D, Kim S, Sariev A, Sharif F, Kim D, Royer S. Dentate granule and mossy cells exhibit distinct spatiotemporal responses to local change in a one-dimensional landscape of visual-tactile cues. Sci Rep 2019; 9:9545. [PMID: 31267019 PMCID: PMC6606600 DOI: 10.1038/s41598-019-45983-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/19/2019] [Indexed: 11/09/2022] Open
Abstract
The dentate gyrus (DG) is critical for detecting changes in environments; however, how granule cells (GCs) and mossy cells (MCs), the two excitatory cell types of the DG, respond to small changes in the object layout is unclear. Here, we recorded GCs and MCs, identified by spike feature and optogenetic tagging, as mice ran on a treadmill belt enriched with visual-tactile cues. We observed that fixing a new cue on the belt induced a reconfiguration of GC and MC spatial representations via the emergence, extinction and rate alteration of firing fields. For both GCs and MCs, the response was maximal near the cue and spread over the entire belt. However, compared to the GC response, the MC response was stronger and more immediate, peaked at a slightly earlier belt position, and exhibited a transient component reminiscent of neuromodulatory activity. A competitive neural network model reproduced the GC response contingent on both the introduction of new object-vector inputs and the reconfiguration of MC activity, the former being critical for spreading the GC response in locations distant from the cue. These findings suggest that GCs operate as a competitive network and that MCs precede GCs in detecting changes and help expand the range of GC pattern separation.
Collapse
Affiliation(s)
- Dajung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soyoun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Anvar Sariev
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Farnaz Sharif
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sebastien Royer
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
19
|
Function of local circuits in the hippocampal dentate gyrus-CA3 system. Neurosci Res 2018; 140:43-52. [PMID: 30408501 DOI: 10.1016/j.neures.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
Anatomical observations, theoretical work and lesioning experiments have supported the idea that the CA3 in the hippocampus is important for encoding, storage and retrieval of memory while the dentate gyrus (DG) is important for the pattern separation of the incoming inputs from the entorhinal cortex. Study of the presumed function of the dentate gyrus in pattern separation has been hampered by the lack of reliable methods to identify different excitatory cell types in the DG. Recent papers have identified different cell types in the DG, in awake behaving animals, with more reliable methods. These studies have revealed each cell type's spatial representation as well as their involvement in pattern separation. Moreover, chronic electrophysiological recording from sleeping and waking animals also provided more insights into the operation of the DG-CA3 system for memory encoding and retrieval. This article will review the local circuit architectures and physiological properties of the DG-CA3 system and discuss how the local circuit in the DG-CA3 may function, incorporating recent physiological findings in the DG-CA3 system.
Collapse
|
20
|
Scharfman HE. Advances in understanding hilar mossy cells of the dentate gyrus. Cell Tissue Res 2018; 373:643-652. [PMID: 29222692 PMCID: PMC5993616 DOI: 10.1007/s00441-017-2750-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/21/2017] [Indexed: 02/01/2023]
Abstract
Hilar mossy cells (MCs) of the dentate gyrus (DG) distinguish the DG from other hippocampal subfields (CA1-3) because there are two glutamatergic cell types in the DG rather than one. Thus, in the DG, the main cell types include glutamatergic granule cells (GCs) and MCs, whereas in CA1-3, the only glutamatergic cell type is the pyramidal cell. In contrast to GCs, MCs are different in morphology, intrinsic electrophysiological properties, afferent input and axonal projections, so their function is likely to be very different from GCs. Why are MCs necessary to the DG? In past studies, the answer has been unclear because MCs not only excite GCs directly but also inhibit them disynaptically, by exciting GABAergic neurons that project to GCs. Results of new studies are discussed that shed light on this issue. These studies take advantage of recently available transgenic mice with Cre recombinase expression mostly in MCs and techniques such as optogenetics and DREADDs (designer receptors exclusively activated by designer drugs). The recent studies also address in vivo behavioral functions of MCs. Some of the results support past hypotheses whereas others suggest new conceptualizations of how the MCs contribute to DG circuitry and function. While substantial progess has been made, additional research is still needed to clarify the characteristics and functions of these unique cells.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, Psychiatry, and the New York University Neuroscience Institute, New York University Langone Medical Center, One Park Avenue, 7th floor, New York, NY, 10016, USA.
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Building 39, Orangeburg, NY, 10962, USA.
| |
Collapse
|
21
|
Excitatory Synaptic Input to Hilar Mossy Cells under Basal and Hyperexcitable Conditions. eNeuro 2017; 4:eN-NWR-0364-17. [PMID: 29214210 PMCID: PMC5714709 DOI: 10.1523/eneuro.0364-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/21/2022] Open
Abstract
Hilar mossy cells (HMCs) in the hippocampus receive glutamatergic input from dentate granule cells (DGCs) via mossy fibers (MFs) and back-projections from CA3 pyramidal neuron collateral axons. Many fundamental features of these excitatory synapses have not been characterized in detail despite their potential relevance to hippocampal cognitive processing and epilepsy-induced adaptations in circuit excitability. In this study, we compared pre- and postsynaptic parameters between MF and CA3 inputs to HMCs in young and adult mice of either sex and determined the relative contributions of the respective excitatory inputs during in vitro and in vivo models of hippocampal hyperexcitability. The two types of excitatory synapses both exhibited a modest degree of short-term plasticity, with MF inputs to HMCs exhibiting lower paired-pulse (PP) and frequency facilitation than was described previously for MF–CA3 pyramidal cell synapses. MF–HMC synapses exhibited unitary excitatory synaptic currents (EPSCs) of larger amplitude, contained postsynaptic kainate receptors, and had a lower NMDA/AMPA receptor ratio compared to CA3–HMC synapses. Pharmacological induction of hippocampal hyperexcitability in vitro transformed the abundant but relatively weak CA3–HMC connections to very large amplitude spontaneous bursts of compound EPSCs (cEPSCs) in young mice (∼P20) and, to a lesser degree, in adult mice (∼P70). CA3–HMC cEPSCs were also observed in slices prepared from mice with spontaneous seizures several weeks after intrahippocampal kainate injection. Strong excitation of HMCs during synchronous CA3 activity represents an avenue of significant excitatory network generation back to DGCs and might be important in generating epileptic networks.
Collapse
|
22
|
Linking neuronal structure to function in rodent hippocampus: a methodological prospective. Cell Tissue Res 2017; 373:605-618. [PMID: 29181629 DOI: 10.1007/s00441-017-2732-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Since the discovery of place cells, hippocampus-dependent spatial navigation has proven to be an ideal model system for resolving the relationship between neural coding and behavior. Electrical recordings from the hippocampal formation in freely moving animals have revealed a rich repertoire of spatial firing patterns and have enormously advanced our understanding of the neural principles of spatial representation. However, limited progress has been achieved in resolving the underlying cellular mechanisms. This is partially attributable to the inability of standard recording techniques to link neuronal structure to function directly. In this review, we summarize recent efforts aimed at filling this gap. We also highlight the development of methodologies that allow functional measurements from identified neuronal elements in behaving rodents. Recent progress in the dentate gyrus serves as a showcase to reveal the potential of such methodologies and the necessity of resolving structure-function relationships in order to access the cellular mechanisms of hippocampal circuit computations.
Collapse
|
23
|
Abstract
Three studies by Danielson et al. (2017), GoodSmith et al. (2017), and Sensai and Buzsáki (2017) distinguish in vivo firing properties of dentate mossy cells from granule cells during behavior. Robust spatial remapping of mossy cells, in contrast to sparse firing of granule cells, suggests differential involvement in pattern separation.
Collapse
|
24
|
Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci 2017; 37:9305-9319. [PMID: 28842412 DOI: 10.1523/jneurosci.1363-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information.SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In brain slices from these animals, single-trial hybrid optical voltage sensor recordings revealed voltage changes with submillisecond resolution in multiple neurons simultaneously. This imaging tool will allow for the study of the emergent properties of neural circuits and permit experimental tests of the roles of specific types of neurons in complex circuit activity.
Collapse
|
25
|
Physiological Properties and Behavioral Correlates of Hippocampal Granule Cells and Mossy Cells. Neuron 2017; 93:691-704.e5. [PMID: 28132824 DOI: 10.1016/j.neuron.2016.12.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 12/07/2016] [Indexed: 02/04/2023]
Abstract
The hippocampal dentate gyrus is often viewed as a segregator of upstream information. Physiological support for such function has been hampered by a lack of well-defined characteristics that can identify granule cells and mossy cells. We developed an electrophysiology-based classification of dentate granule cells and mossy cells in mice that we validated by optogenetic tagging of mossy cells. Granule cells exhibited sparse firing, had a single place field, and showed only modest changes when the mouse was tested in different mazes in the same room. In contrast, mossy cells were more active, had multiple place fields and showed stronger remapping of place fields under the same conditions. Although the granule cell-mossy cell synapse was strong and facilitating, mossy cells rarely "inherited" place fields from single granule cells. Our findings suggest that the granule cells and mossy cells could be modulated separately and their joint action may be critical for pattern separation.
Collapse
|
26
|
GoodSmith D, Chen X, Wang C, Kim SH, Song H, Burgalossi A, Christian KM, Knierim JJ. Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus. Neuron 2017; 93:677-690.e5. [PMID: 28132828 DOI: 10.1016/j.neuron.2016.12.026] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/01/2016] [Accepted: 12/12/2016] [Indexed: 01/12/2023]
Abstract
Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells.
Collapse
Affiliation(s)
- Douglas GoodSmith
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiaojing Chen
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cheng Wang
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Hoon Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA
| | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA.
| |
Collapse
|
27
|
Chavlis S, Petrantonakis PC, Poirazi P. Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus 2017; 27:89-110. [PMID: 27784124 PMCID: PMC5217096 DOI: 10.1002/hipo.22675] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/25/2016] [Indexed: 12/24/2022]
Abstract
The hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, nonverlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in diseases associated with pattern separation deficits, suggesting a possible role for dendrites in this phenomenon. To investigate whether and how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically relevant, computational model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern separation efficiency while their atrophy leads to increased excitability and performance impairments. These impairments can be rescued by restoring GC sparsity to control levels through various manipulations. We predict that dendrites contribute to pattern separation as a mechanism for controlling sparsity. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
- Department of Biology, School of Sciences and EngineeringUniversity of CreteHeraklionCreteGreece
| | - Panagiotis C. Petrantonakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH)HeraklionCreteGreece
| |
Collapse
|
28
|
Mojabi FS, Fahimi A, Moghadam S, Moghadam S, Windy McNerneny M, Ponnusamy R, Kleschevnikov A, Mobley WC, Salehi A. GABAergic hyperinnervation of dentate granule cells in the Ts65Dn mouse model of down syndrome: Exploring the role of App. Hippocampus 2016; 26:1641-1654. [PMID: 27701794 DOI: 10.1002/hipo.22664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/20/2022]
Abstract
It has been suggested that increased GABAergic innervation in the hippocampus plays a significant role in cognitive dysfunction in Down syndrome (DS). Bolstering this notion, are studies linking hyper-innervation of the dentate gyrus (DG) by GABAergic terminals to failure in LTP induction in the Ts65Dn mouse model of DS. Here, we used extensive morphometrical methods to assess the status of GABAergic interneurons in the DG of young and old Ts65Dn mice and their 2N controls. We detected an age-dependent increase in GABAergic innervation of dentate granule cells (DGCs) in Ts65Dn mice. The primary source of GABAergic terminals to DGCs somata is basket cells (BCs). For this reason, we assessed the status of these cells and found a significant increase in the number of BCs in Ts65Dn mice compared with controls. Then we aimed to identify the gene/s whose overexpression could be linked to increased number of BCs in Ts65Dn and found that deleting the third copy of App gene in Ts65Dn mice led to normalization of the number of BCs in these mice. Our data suggest that App overexpression plays a major role in the pathophysiology of GABAergic hyperinnervation of the DG in Ts65Dn mice. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fatemeh S Mojabi
- VA Palo Alto Health Care System, Palo Alto, California.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California
| | - Atoossa Fahimi
- VA Palo Alto Health Care System, Palo Alto, California.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California
| | | | | | - M Windy McNerneny
- VA Palo Alto Health Care System, Palo Alto, California.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California
| | | | | | - William C Mobley
- Department of Neurosciences, University of California, San Diego, California
| | - Ahmad Salehi
- VA Palo Alto Health Care System, Palo Alto, California.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
29
|
Abstract
Mossy cells comprise a large fraction of the cells in the hippocampal dentate gyrus, suggesting that their function in this region is important. They are vulnerable to ischaemia, traumatic brain injury and seizures, and their loss could contribute to dentate gyrus dysfunction in such conditions. Mossy cell function has been unclear because these cells innervate both glutamatergic and GABAergic neurons within the dentate gyrus, contributing to a complex circuitry. It has also been difficult to directly and selectively manipulate mossy cells to study their function. In light of the new data generated using methods to preferentially eliminate or activate mossy cells in mice, it is timely to ask whether mossy cells have become any less enigmatic than they were in the past.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Child and Adolescent Psychiatry, Physiology and Neuroscience, and Psychiatry, New York University Langone Medical Center, New York 10016, USA.,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
30
|
Neto JP, Lopes G, Frazão J, Nogueira J, Lacerda P, Baião P, Aarts A, Andrei A, Musa S, Fortunato E, Barquinha P, Kampff AR. Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. J Neurophysiol 2016; 116:892-903. [PMID: 27306671 PMCID: PMC5002440 DOI: 10.1152/jn.00103.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Cross-validating new methods for recording neural activity is necessary to accurately interpret and compare the signals they measure. Here we describe a procedure for precisely aligning two probes for in vivo "paired-recordings" such that the spiking activity of a single neuron is monitored with both a dense extracellular silicon polytrode and a juxtacellular micropipette. Our new method allows for efficient, reliable, and automated guidance of both probes to the same neural structure with micrometer resolution. We also describe a new dataset of paired-recordings, which is available online. We propose that our novel targeting system, and ever expanding cross-validation dataset, will be vital to the development of new algorithms for automatically detecting/sorting single-units, characterizing new electrode materials/designs, and resolving nagging questions regarding the origin and nature of extracellular neural signals.
Collapse
Affiliation(s)
- Joana P Neto
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Departamento de Ciência dos Materiais, CENIMAT/I3N and CEMOP/Uninova, Caparica, Portugal; Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Gonçalo Lopes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - João Frazão
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana Nogueira
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Pedro Lacerda
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Baião
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | | | - Elvira Fortunato
- Departamento de Ciência dos Materiais, CENIMAT/I3N and CEMOP/Uninova, Caparica, Portugal
| | - Pedro Barquinha
- Departamento de Ciência dos Materiais, CENIMAT/I3N and CEMOP/Uninova, Caparica, Portugal
| | - Adam R Kampff
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
31
|
Sosa M, Gillespie AK, Frank LM. Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. Curr Top Behav Neurosci 2016; 37:43-100. [PMID: 27885550 DOI: 10.1007/7854_2016_462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hippocampus is well known as a central site for memory processing-critical for storing and later retrieving the experiences events of daily life so they can be used to shape future behavior. Much of what we know about the physiology underlying hippocampal function comes from spatial navigation studies in rodents, which have allowed great strides in understanding how the hippocampus represents experience at the cellular level. However, it remains a challenge to reconcile our knowledge of spatial encoding in the hippocampus with its demonstrated role in memory-dependent tasks in both humans and other animals. Moreover, our understanding of how networks of neurons coordinate their activity within and across hippocampal subregions to enable the encoding, consolidation, and retrieval of memories is incomplete. In this chapter, we explore how information may be represented at the cellular level and processed via coordinated patterns of activity throughout the subregions of the hippocampal network.
Collapse
Affiliation(s)
- Marielena Sosa
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA
| | | | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA. .,Howard Hughes Medical Institute, Maryland, USA.
| |
Collapse
|
32
|
Blackstad JS, Osen KK, Scharfman HE, Storm-Mathisen J, Blackstad TW, Leergaard TB. Observations on hippocampal mossy cells in mink (Neovison vison) with special reference to dendrites ascending to the granular and molecular layers. Hippocampus 2015; 26:229-45. [PMID: 26286893 DOI: 10.1002/hipo.22518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/25/2022]
Abstract
Detailed knowledge about the neural circuitry connecting the hippocampus and entorhinal cortex is necessary to understand how this system contributes to spatial navigation and episodic memory. The two principal cell types of the dentate gyrus, mossy cells and granule cells, are interconnected in a positive feedback loop, by which mossy cells can influence information passing from the entorhinal cortex via granule cells to hippocampal pyramidal cells. Mossy cells, like CA3 pyramidal cells, are characterized by thorny excrescences on their proximal dendrites, postsynaptic to giant terminals of granule cell axons. In addition to disynaptic input from the entorhinal cortex and perforant path via granule cells, mossy cells may also receive monosynaptic input from the perforant path via special dendrites ascending to the molecular layer. We here report qualitative and quantitative descriptions of Golgi-stained hippocampal mossy cells in mink, based on light microscopic observations and three-dimensional reconstructions. The main focus is on the location, branching pattern, and length of dendrites, particularly those ascending to the granular and molecular layers. In mink, the latter dendrites are more numerous than in rat, but fewer than in primates. They form on average 12% (and up to 29%) of the total dendritic length, and appear to cover the terminal fields of both the lateral and medial perforant paths. In further contrast to rat, the main mossy cell dendrites in mink branch more extensively with distal dendrites encroaching upon the CA3 field. The dendritic arbors extend both along and across the septotemporal axis of the dentate gyrus, not conforming to the lamellar pattern of the hippocampus. The findings suggest that the afferent input to the mossy cells becomes more complex in species closer to primates.
Collapse
Affiliation(s)
- Jan Sigurd Blackstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten K Osen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg New York and Departments of Psychiatry, Physiology & Neuroscience, New York University Langone Medical Center, New York, New York
| | - Jon Storm-Mathisen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Theodor W Blackstad
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Voltage Imaging in the Study of Hippocampal Circuit Function and Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:197-211. [DOI: 10.1007/978-3-319-17641-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
34
|
Abstract
The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus.
Collapse
|
35
|
Etter G, Krezel W. Dopamine D2 receptor controls hilar mossy cells excitability. Hippocampus 2014; 24:725-32. [PMID: 24753432 DOI: 10.1002/hipo.22280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
Hippocampal control of memory formation is regulated by dopaminergic signaling. Whereas the role of dopamine D1 receptors is well documented in such regulations, functions of dopamine D2 receptors (DRD2) are not fully understood. Using fluorescence in situ hybridization we demonstrate that Drd2 expression in the hippocampus of wild-type mice is limited to glutamatergic hilar mossy cells. Using whole cell electrophysiological recordings in hippocampal slice preparations, we provide evidence that unlike in basal ganglia, activation of DRD2 by the selective agonist, quinpirole, induces a long-lasting increase in excitability of hilar mossy cells, which can be blocked by the DRD2 antagonist raclopride. Such activity is mediated by the Akt/GSK pathway, as application of specific inhibitors such as A1070722 or SB216763 prevented quinpirole activity. Long-term effects of acute DRD2 activation in vitro suggest that volume transmission of dopamine may modulate mossy cell activities in vivo. This is supported by the presence of dense tyrosine hydroxylase positive varicosities in the hilus, which are rarely seen in the vicinity of mossy cell dendrites. From these data we discuss how dopamine could control mossy cell activity and thus dentate gyrus functions.
Collapse
Affiliation(s)
- Guillaume Etter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS, U 964 INSERM, Université de Strasbourg, B.P. 10142, 67404 Illkirch, Cedex, France
| | | |
Collapse
|
36
|
Scharfman HE, Brooks-Kayal AR. Is plasticity of GABAergic mechanisms relevant to epileptogenesis? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:133-50. [PMID: 25012373 DOI: 10.1007/978-94-017-8914-1_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Numerous changes in GABAergic neurons, receptors, and inhibitory mechanisms have been described in temporal lobe epilepsy (TLE), either in humans or in animal models. Nevertheless, there remains a common assumption that epilepsy can be explained by simply an insufficiency of GABAergic inhibition. Alternatively, investigators have suggested that there is hyperinhibition that masks an underlying hyperexcitability. Here we examine the status epilepticus (SE) models of TLE and focus on the dentate gyrus of the hippocampus, where a great deal of data have been collected. The types of GABAergic neurons and GABAA receptors are summarized under normal conditions and after SE. The role of GABA in development and in adult neurogenesis is discussed. We suggest that instead of "too little or too much" GABA there is a complexity of changes after SE that makes the emergence of chronic seizures (epileptogenesis) difficult to understand mechanistically, and difficult to treat. We also suggest that this complexity arises, at least in part, because of the remarkable plasticity of GABAergic neurons and GABAA receptors in response to insult or injury.
Collapse
Affiliation(s)
- Helen E Scharfman
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA,
| | | |
Collapse
|
37
|
Duffy AM, Schaner MJ, Chin J, Scharfman HE. Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo. Hippocampus 2013; 23:649-55. [PMID: 23640815 PMCID: PMC3732572 DOI: 10.1002/hipo.22138] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 01/15/2023]
Abstract
Granule cells (GCs) of the dentate gyrus (DG) are considered to be quiescent--they rarely fire action potentials. In contrast, the other glutamatergic cell type in the DG, hilar mossy cells (MCs) often have a high level of spontaneous activity based on recordings in hippocampal slices. MCs project to GCs, so activity in MCs could play an important role in activating GCs. Therefore, we investigated whether MCs were active under basal conditions in vivo, using the immediate early gene c-fos as a tool. We hypothesized that MCs would exhibit c-fos expression even if rats were examined randomly, under normal housing conditions. Therefore, adult male rats were perfused shortly after removal from their home cage and transfer to the laboratory. Remarkably, most c-fos immunoreactivity (ir) was in the hilus, especially temporal hippocampus. C-fos-ir hilar cells co-expressed GluR2/3, suggesting that they were MCs. C-fos-ir MCs were robust even when the animal was habituated to the investigator and laboratory where they were euthanized. However, c-fos-ir in dorsal MCs was reduced under these circumstances, suggesting that ventral and dorsal MCs are functionally distinct. Interestingly, there was an inverse relationship between MC and GC layer c-fos expression, with little c-fos expression in the GC layer in ventral sections where MC expression was strong, and the opposite in dorsal hippocampus. The results support the hypothesis that a subset of hilar MCs are spontaneously active in vivo and provide other DG neurons with tonic depolarizing input.
Collapse
Affiliation(s)
- Aine M. Duffy
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Michael J. Schaner
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Jeannie Chin
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Child & Adolescent Psychiatry, Psychiatry, Physiology & Neuroscience, New York University Langone, Medical Center, New York, NY 10016
| |
Collapse
|
38
|
Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proc Natl Acad Sci U S A 2013; 110:9106-11. [PMID: 23671081 DOI: 10.1073/pnas.1306912110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New neurons, which have been implicated in pattern separation, are continually generated in the dentate gyrus in the adult hippocampus. Using a genetically modified rabies virus, we demonstrated that molecular layer perforant pathway (MOPP) cells innervated newborn granule neurons in adult mouse brain. Stimulating the perforant pathway resulted in the activation of MOPP cells before the activation of dentate granule neurons. Moreover, activation of MOPP cells by focal uncaging of glutamate induced strong inhibition of granule cells. Together, these results indicate that MOPP cells located in the molecular layer of the dentate gyrus contribute to feed-forward inhibition of granule cells via perforant pathway activation.
Collapse
|
39
|
SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 2013; 152:831-43. [PMID: 23415230 DOI: 10.1016/j.cell.2013.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/14/2012] [Accepted: 01/08/2013] [Indexed: 02/02/2023]
Abstract
p11, through unknown mechanisms, is required for behavioral and cellular responses to selective serotonin reuptake inhibitors (SSRIs). We show that SMARCA3, a chromatin-remodeling factor, is a target for the p11/annexin A2 heterotetrameric complex. Determination of the crystal structure indicates that SMARCA3 peptide binds to a hydrophobic pocket in the heterotetramer. Formation of this complex increases the DNA-binding affinity of SMARCA3 and its localization to the nuclear matrix fraction. In the dentate gyrus, both p11 and SMARCA3 are highly enriched in hilar mossy cells and basket cells. The SSRI fluoxetine induces expression of p11 in both cell types and increases the amount of the ternary complex of p11/annexin A2/SMARCA3. SSRI-induced neurogenesis and behavioral responses are abolished by constitutive knockout of SMARCA3. Our studies indicate a central role for a chromatin-remodeling factor in the SSRI/p11 signaling pathway and suggest an approach to the development of improved antidepressant therapies. PAPERCLIP:
Collapse
|
40
|
Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K. Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 2013; 76:1189-200. [PMID: 23259953 DOI: 10.1016/j.neuron.2012.10.036] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 02/08/2023]
Abstract
Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity's net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5-6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jinde S, Zsiros V, Nakazawa K. Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits 2013; 7:14. [PMID: 23407806 PMCID: PMC3569840 DOI: 10.3389/fncir.2013.00014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability—the “dormant basket cell” and the “irritable mossy cell” hypotheses. The “dormant basket cell” hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The “irritable mossy cell” hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
42
|
Wang D, McMahon S, Zhang Z, Jackson MB. Hybrid voltage sensor imaging of electrical activity from neurons in hippocampal slices from transgenic mice. J Neurophysiol 2012; 108:3147-60. [PMID: 22993267 DOI: 10.1152/jn.00722.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene targeting with genetically encoded optical voltage sensors brings the methods of voltage imaging to genetically defined neurons and offers a method of studying circuit activity in these selected populations. The present study reports the targeting of genetically encoded hybrid voltage sensors (hVOS) to neurons in transgenic mice. The hVOS family of probes employs a membrane-targeted fluorescent protein, which generates voltage-dependent fluorescence changes in the presence of dipicrylamine (DPA) as the result of a voltage-dependent optical interaction between the two molecules. We generated transgenic mice with two different high-performance hVOS probes under control of a neuron-specific thy-1 promoter. Hippocampal slices from these animals present distinct spatial patterns of expression, and electrical stimulation evoked fluorescence changes as high as 3%. Glutamate receptor and Na(+) channel antagonists blocked these responses. One hVOS probe tested here harbors an axonal targeting motif (from GAP-43) and shows preferential expression in axons; this probe can thus report axonal voltage changes. Voltage imaging in transgenic mice expressing hVOS probes opens the door to the study of functional activity in genetically defined populations of neurons in intact neural circuits.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
43
|
Abstract
The dentate gyrus (DG) occupies a key position in information flow through the hippocampus. Its principal cell, the granule cell, has spatially selective place fields. However, the behavioral correlates of cells located in the hilus of the rat dentate gyrus are unknown. We report here that cells below the granule layer show spatially selective firing that consists of multiple subfields. Other cells recorded from the DG had single place fields. Compared with cells with multiple fields, cells with single fields fired at lower rates during sleep were less bursty, and were more likely to be recorded simultaneously with large populations of neurons that were active during sleep and silent during behavior. We propose that cells with single fields are likely to be mature granule cells that use sparse encoding to potentially disambiguate input patterns. Furthermore, we hypothesize that cells with multiple fields might be cells of the hilus or newborn granule cells. These data are the first demonstration, based on physiological criteria, that single- and multiple-field cells constitute at least two distinct cell classes in the DG. Because of the heterogeneity of firing correlates and cell types in the DG, understanding which cell types correspond to which firing patterns, and how these correlates change with behavioral state and between different environments, are critical questions for testing long-standing computational theories that the DG performs a pattern separation function using a very sparse coding strategy.
Collapse
|
44
|
Todkar K, Scotti AL, Schwaller B. Absence of the calcium-binding protein calretinin, not of calbindin D-28k, causes a permanent impairment of murine adult hippocampal neurogenesis. Front Mol Neurosci 2012; 5:56. [PMID: 22536174 PMCID: PMC3332231 DOI: 10.3389/fnmol.2012.00056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/05/2012] [Indexed: 12/21/2022] Open
Abstract
Calretinin (CR) and calbindin D-28k (CB) are cytosolic EF-hand Ca(2+)-binding proteins and function as Ca(2+) buffers affecting the spatiotemporal aspects of Ca(2+) transients and possibly also as Ca(2+) sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG) niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR, and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ) neurogenic niche of the DG. Effects were evaluated (1) two and four weeks postnatally, during the transition period of the proliferative matrix to the adult state, and (2) in adult animals (3 months) to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: (1) to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and (2) it may contribute to retrograde signaling required for maintenance of the progenitor pool.
Collapse
Affiliation(s)
- Kiran Todkar
- Unit of Anatomy, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | | | | |
Collapse
|
45
|
Membrane properties and the balance between excitation and inhibition control gamma-frequency oscillations arising from feedback inhibition. PLoS Comput Biol 2012; 8:e1002354. [PMID: 22275859 PMCID: PMC3261914 DOI: 10.1371/journal.pcbi.1002354] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/03/2011] [Indexed: 11/19/2022] Open
Abstract
Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30-80 Hz gamma rhythm in which network oscillations arise through 'stochastic synchrony' capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs.
Collapse
|
46
|
Agarwal A, Dibaj P, Kassmann CM, Goebbels S, Nave KA, Schwab MH. In vivo imaging and noninvasive ablation of pyramidal neurons in adult NEX-CreERT2 mice. ACTA ACUST UNITED AC 2011; 22:1473-86. [PMID: 21880656 DOI: 10.1093/cercor/bhr214] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To study the function of individual neurons that are embedded in a complex neural network is difficult in mice. Conditional mutagenesis permits the spatiotemporal control of gene expression including the ablation of cells by toxins. To direct expression of a tamoxifen-inducible variant of Cre recombinase (CreERT2) selectively to cortical neurons, we replaced the coding region of the murine Nex1 gene by CreERT2 cDNA via homologous recombination in embryonic stem cells. When injected with tamoxifen, adult NEX-CreERT2 mice induced reporter gene expression exclusively in projection neurons of the neocortex and hippocampus. By titrating the tamoxifen dosage, we achieved recombination in single cells, which allowed multiphoton imaging of neocortical neurons in live mice. When hippocampal projection neurons were genetically ablated by induced expression of diphteria toxin, within 20 days the inflammatory response included the infiltration of CD3+ T cells. This marks a striking difference from similar studies, in which dying oligodendrocytes failed to recruit cells of the adaptive immune system.
Collapse
Affiliation(s)
- Amit Agarwal
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Hofmann ME, Frazier CJ. Muscarinic receptor activation modulates the excitability of hilar mossy cells through the induction of an afterdepolarization. Brain Res 2010; 1318:42-51. [PMID: 20079344 DOI: 10.1016/j.brainres.2010.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/19/2022]
Abstract
In the present study we used electrophysiological techniques in an in vitro preparation of the rat dentate gyrus to examine the effect of muscarinic acetylcholine receptor activation on the intrinsic excitability of hilar neurons. We found that bath application of muscarine caused a direct depolarization in approximately 80% of mossy cells tested, and also produced a clear afterdepolarization (ADP) in nearly 100% of trials. The ADP observed in hilar mossy cells is produced by the opening of a Na(+) permeant and yet largely TTX insensitive ion channel. It requires an increase in postsynaptic calcium for activation, and is blocked by flufenamic acid, an antagonist of a previously identified calcium activated non-selective cation channel (I(CAN)). Further, we demonstrate that induction of an ADP in current clamp causes release of cannabinoids, and subsequent depression of GABAergic transmission that is comparable to that produced in the same cells by a more conventional 5s depolarization in voltage clamp. By contrast, other types of hilar neurons were less strongly depolarized by bath application of muscarinic agonists, and uniformly lacked a similar muscarinic ADP. Overall, the data presented here extend our understanding of the specific mechanisms through which muscarinic agonists are likely to modulate neuronal excitability in the hilar network, and further reveal a mechanism that could plausibly promote endocannabinoid mediated signaling in vivo.
Collapse
Affiliation(s)
- Mackenzie E Hofmann
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, USA; Department of Neuroscience, College of Medicine, University of Florida, USA
| | | |
Collapse
|
48
|
Li G, Pleasure SJ. Ongoing interplay between the neural network and neurogenesis in the adult hippocampus. Curr Opin Neurobiol 2010; 20:126-33. [PMID: 20079627 DOI: 10.1016/j.conb.2009.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/19/2009] [Accepted: 12/28/2009] [Indexed: 01/06/2023]
Abstract
As a unique form of structural plasticity in the central nervous system, adult neurogenesis in the hippocampus alters network functions by continuously adding new neurons to the mature network, while at the same time is subjected to regulation by surrounding network activity. Here, we review the recently identified mechanisms through which network activity exerts its impacts on multiple steps of adult neurogenesis in rodents and culminates in the selective recruitment of new neurons. We also review recent progress on the study of cellular connectivity modified by new neurons in the dentate gyrus and its physiological functions in rodents. We believe that understanding these processes will allow eventual elucidation of the mechanisms controlling the development of balanced inputs and outputs for the adult-born neurons and reveal important insights into the cellular organization of learning and memory.
Collapse
Affiliation(s)
- Guangnan Li
- Department of Neurology, Programs in Neuroscience and Developmental Biology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, USA
| | | |
Collapse
|
49
|
Target-cell specificity of kainate autoreceptor and Ca2+-store-dependent short-term plasticity at hippocampal mossy fiber synapses. J Neurosci 2009; 28:13139-49. [PMID: 19052205 DOI: 10.1523/jneurosci.2932-08.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic kainate receptors (KARs) modulate transmission between dentate granule cells and CA3 pyramidal neurons. Whether presynaptic KARs affect other synapses made by granule cell axons [mossy fibers (MFs)], on hilar mossy cells or interneurons, is not known. Nor is it known whether glutamate release from a single MF is sufficient to activate these receptors. Here, we monitor Ca(2+) in identified MF boutons traced from granule cell bodies. We show that a single action potential in a single MF activates both presynaptic KARs and Ca(2+) stores, contributing to use-dependent facilitation at MF-CA3 pyramidal cell synapses. Rapid local application of kainate to the giant MF bouton has no detectable effect on the resting Ca(2+) but facilitates action-potential-evoked Ca(2+) entry through a Ca(2+) store-dependent mechanism. Localized two-photon uncaging of the Ca(2+) store receptor ligand IP(3) directly confirms the presence of functional Ca(2+) stores at these boutons. In contrast, presynaptic Ca(2+) kinetics at MF synapses on interneurons or mossy cells are insensitive to KAR blockade, to local kainate application or to photolytic release of IP(3). Consistent with this, postsynaptic responses evoked by activation of a single MF show KAR-dependent paired-pulse facilitation in CA3 pyramidal cells, but not in interneurons or mossy cells. Thus, KAR-Ca(2+) store coupling acts as a synapse-specific, short-range autoreceptor mechanism.
Collapse
|
50
|
Leutgeb JK, Leutgeb S. Book review: The dentate gyrus: A comprehensive guide to structure, function, and clinical implications. Hippocampus 2009. [DOI: 10.1002/hipo.20662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|