1
|
The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci 2021; 272:119252. [PMID: 33636170 DOI: 10.1016/j.lfs.2021.119252] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Bear bile has been used in Traditional Chinese Medicine for thousands of years due to its therapeutic potential and clinical applications. The tauroursodeoxycholic acid (TUDCA), one of the acids found in bear bile, is a hydrophilic bile acid and naturally produced in the liver by conjugation of taurine to ursodeoxycholic acid (UDCA). Several studies have shown that TUDCA has neuroprotective action in several models of neurodegenerative disorders (ND), including Alzheimer's disease, Parkinson's disease, and Huntington's disease, based on its potent ability to inhibit apoptosis, attenuate oxidative stress, and reduce endoplasmic reticulum stress in different experimental models of these illnesses. Our research extends the knowledge of the bile acid TUDCA actions in ND and the mechanisms and pathways involved in its cytoprotective effects on the brain, providing a novel perspective and opportunities for treatment of these diseases.
Collapse
|
2
|
Invited review: Utilizing peripheral nerve regenerative elements to repair damage in the CNS. J Neurosci Methods 2020; 335:108623. [DOI: 10.1016/j.jneumeth.2020.108623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
|
3
|
Abstract
Research endeavors originally generated stem cell definitions for the purpose of describing normally sustainable developmental and tissue turnover processes in various species, including humans. The notion of investigating cells that possess a vague capacity of “stamm (phylum)” can be traced back to the late 19th century, mainly concentrating on cells that could produce the germline or the entire blood system. Lately, such undertakings have been recapitulated for oncogenesis, tumor growth, and cancer cell resistance to oncolytic therapies. However, due to the complexity and basic life-origin mechanisms comprising the genetic and epigenetic repertoire of the stemness in every developing or growing cell, presently there are ongoing debates regarding the biological essentials of the stem cell-like tumor initiation cells (ie, cancer stem cells; CSCs). This conceptual analysis focuses on the potential pitfalls of extrapolating that CSCs bear major traits of stemness. We propose a novel nomenclature of Tumor Survival Cells (TSCs) to further define tumor cells behaving like CSCs, based on the ruthless and detrimental features of Cancer Cell Survivology that appears fundamentally different from stem cell biology. Hence, precise academic separation of TSCs from all the stem cell-related labels applied to these unique tumor cells may help to improve scientific reasoning and strategies to decode the desperado-like survival behaviors of TSCs to eventually overcome cancer.
Collapse
Affiliation(s)
- Yang D Teng
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Lei Wang
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Serdar Kabatas
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Henning Ulrich
- 4 Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo, São Paulo, Brazil
| | - Ross D Zafonte
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts
| |
Collapse
|
4
|
Moriarty N, Parish CL, Dowd E. Primary tissue for cellular brain repair in Parkinson's disease: Promise, problems and the potential of biomaterials. Eur J Neurosci 2018; 49:472-486. [PMID: 29923311 DOI: 10.1111/ejn.14051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
The dopamine precursor, levodopa, remains the "gold standard" treatment for Parkinson's disease, and, although it provides superlative efficacy in the early stages of the disease, its long-term use is limited by the development of severe motor side effects and a significant abating of therapeutic efficacy. Therefore, there remains a major unmet clinical need for the development of effective neuroprotective, neurorestorative or neuroreparatory therapies for this condition. The relatively selective loss of dopaminergic neurons from the nigrostriatal pathway makes Parkinson's disease an ideal candidate for reparative cell therapies, wherein the dopaminergic neurons that are lost in the condition are replaced through direct cell transplantation into the brain. To date, this approach has been developed, validated and clinically assessed using dopamine neuron-rich foetal ventral mesencephalon grafts which have been shown to survive and reinnervate the denervated brain after transplantation, and to restore motor function. However, despite long-term symptomatic relief in some patients, significant limitations, including poor graft survival and the impact this has on the number of foetal donors required, have prevented this therapy being more widely adopted as a restorative approach for Parkinson's disease. Injectable biomaterial scaffolds have the potential to improve the delivery, engraftment and survival of these grafts in the brain through provision of a supportive microenvironment for cell adhesion, growth and immune shielding. This article will briefly review the development of primary cell therapies for brain repair in Parkinson's disease and will consider the emerging literature which highlights the potential of using injectable biomaterial hydrogels in this context.
Collapse
Affiliation(s)
- Niamh Moriarty
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
5
|
Moriarty N, Pandit A, Dowd E. Encapsulation of primary dopaminergic neurons in a GDNF-loaded collagen hydrogel increases their survival, re-innervation and function after intra-striatal transplantation. Sci Rep 2017; 7:16033. [PMID: 29167483 PMCID: PMC5700093 DOI: 10.1038/s41598-017-15970-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022] Open
Abstract
Poor graft survival limits the use of primary dopaminergic neurons for neural repair in Parkinson’s disease. Injectable hydrogels have the potential to significantly improve the outcome of such reparative approaches by providing a physical matrix for cell encapsulation which can be further enriched with pro-survival factors. Therefore, this study sought to determine the survival and efficacy of primary dopaminergic grafts after intra-striatal delivery in a glial-derived neurotrophic factor (GDNF)-loaded collagen hydrogel in a rat model of Parkinson’s disease. After intra-striatal transplantation into the lesioned striatum, the GDNF-enriched collagen hydrogel significantly improved the survival of dopaminergic neurons in the graft (5-fold), increased their capacity for striatal re-innervation (3-fold), and enhanced their functional efficacy. Additional studies suggested that this was due to the hydrogel’s ability to retain GDNF in the microenvironment of the graft, and to protect the transplanted cells from the host immune response. In conclusion, the encapsulation of dopaminergic neurons in a GDNF-loaded hydrogel dramatically increased their survival and function, providing further evidence of the potential of biomaterials for neural transplantation and brain repair in neurodegenerative diseases such as Parkinson’s disease.
Collapse
Affiliation(s)
- Niamh Moriarty
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
6
|
Duan WM, Rodrigures CMP, Zhao LR, Steer CJ, Low WC. Tauroursodeoxycholic Acid Improves the Survival and Function of Nigral Transplants in a Rat Model of Parkinson's Disease. Cell Transplant 2017; 11:195-205. [PMID: 28858601 DOI: 10.3727/096020198389960] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is accumulating evidence showing that the majority of cell death in neural grafts results from apoptosis when cells are implanted into the brain. Tauroursodeoxycholic acid (TUDCA), a taurine-conjugated hydrophilic bile acid, has been found to possess antiapoptotic properties. In the present study we have examined whether the supplementation of TUDCA to cell suspensions prior to transplantation can lead to enhanced survival of nigral grafts. We first conducted an in vitro study to examine the effects of TUDCA on the survival of dopamine neurons in serum-free conditions. The number of tyrosine hydroxylase (TH)-positive neurons in the TUDCA-treated cultures was significantly greater than that of control cultures 7 days in vitro. In addition, a terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assay showed that the number of apoptotic cells in the TUDCA-treated cultures was dramatically smaller than that in the control cultures. In the transplantation study, a 50 μM concentration of TUDCA was added to the media when nigral tissue from Sprague-Dawley (SD) rats was trypsinized and dissociated. Two microliters of cell suspension containing TUDCA was then stereotaxically injected into the striatum of adult SD rats subjected to an extensive unilateral 6-hydroxydopamine lesion of the nigrastriatal dopamine pathway. At 2 weeks after transplantation, the rats that received a cell suspension with TUDCA exhibited a significant reduction in amphetamine-induced rotation scores when compared with pretransplantation value. There was a significant increase (approximately threefold) in the number of TH-positive cells in the neural grafts for the TUDCA-treated group when compared with the controls 6 weeks postgrafting. The number of apoptotic cells was much smaller in the graft areas in the TUDCA-treated groups than in the control group 4 days after transplantation. These data demonstrate that pretreatment of the cell suspension with TUDCA can reduce apoptosis and increase the survival of grafted cells, resulting in an improvement of behavioral recovery.
Collapse
Affiliation(s)
- Wei-Ming Duan
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Cecilia M P Rodrigures
- Departments of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455.,Centro de Patogénese Molecular, Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| | - Li-Ru Zhao
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Clifford J Steer
- Departments of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Walter C Low
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
7
|
Witt TC, Triarhou LC. Transplantation of Mesencephalic Cell Suspensions from Wild-Type and Heterozygous Weaver Mice into the Denervated Striatum: Assessing the Role of Graft-Derived Dopaminergic Dendrites in the Recovery of Function. Cell Transplant 2017; 4:323-33. [PMID: 7640872 DOI: 10.1177/096368979500400311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Weaver (wv) mutation leads to a loss of mesencephalic dopamine cells and nigrostriatal dopamine axons in homozygosity (wv/wv) and to a deficiency of nigral dopaminergic dendrites without a concomitant loss of dopamine cell somata or axons in heterozygosity (wv/+). Previous studies have shown that grafts of foetal dopamine cells from wild-type (+/+) donors can survive when implanted into the wv/wv striatum, supply both an axonal and a dendritic innervation to the host, establish synaptic connections with host striatal neurons, and bring about a functional recovery evidenced by rotational asymmetry tests. The aims of the present study were to examine whether wv/+ dopamine cells maintain a “dendrite-poor” phenotype after transplantation to the denervated striatum, and to compare their functional effects with those of wild-type (+/+) grafts in reversing amphetamine-induced turning behaviour. To that end, +/+ and wv/+ ventral mesencephalic tissue (dissected out from E10-E12 foetal mice and made into a cell suspension by enzymatic and mechanical dissociation) was stereotactically grafted into the right striatum of either wv/wv hosts or +/+ hosts subjected in advance to 6-OHDA lesions of the right substantia nigra. Viability and morphology of grafted neurons were assessed by tyrosine hydroxylase immunocytochemistry on serial sections of the host forebrains. Dopamine cell bodies survived in comparable numbers in the grafts regardless of donor genotype; however, grafts of either genotype contained fewer dopaminergic cells when they were hosted in the wv/wv striatum as compared to the striatum of +/+ mice with 6-OHDA lesions. Despite the survival of cell somata, the dendritic arborisation of wv/+ cells was strikingly poorer than that of +/+ cells in grafts placed into both host types, most likely reflecting their in situ phenotypic abnormality. Recipient wv/wv mice with +/+ and wv/+ grafts exhibited 88% and 83% left rotations, respectively; 6-OHDA hosts with +/+ and wv/+ grafts showed 178% and 165% reversals of asymmetry, respectively. The differences between the effects of +/+ and wv/+ grafts were not statistically significant. We conclude that (i) wv/+ and +/+ dopamine cell somata survive in comparable numbers after intrastriatal grafting; (ii) grafted wv/+ dopamine cells express an anatomical phenotype consistent with that seen in the wv/+ substantia nigra in situ; and (iii) the axonal innervation supplied by wv/+ grafts to the denervated striatum induces a functional recovery comparable to that brought about by +/+ cells, which in addition supply a substantial dendritic innervation to the host; (iv) the wv/wv host environment may be associated with smaller numbers of graft dopamine neurons compared to the environment of +/+ mouse hosts with 6-OHDA lesions.
Collapse
Affiliation(s)
- T C Witt
- Department of Surgery, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
8
|
Watts C, Caldwell MA, Dunnett SB. The Development of Intracerebral Cell-Suspension Implants is Influenced by the Grafting Medium. Cell Transplant 2017; 7:573-83. [PMID: 9853586 DOI: 10.1177/096368979800700608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effect of preparing and grafting embryonic striatal and nigral tissue in four different media was evaluated in vitro and in vivo. The proportion of TH-positive and DARPP-32–positive neurons was determined after 2 days in vitro in standard culture medium following preparation in the different media. The effects were more marked for striatal neurons where DARPP-32 expression in tissue prepared in HBSS was poor compared to other media. TH expression was unaffected by the preparation medium. Striatal grafts derived from tissue prepared and grafted in HBSS were smaller, with fewer DARPP-32 cells, compared to other media. Survival of grafts in combined HBSS and DMEM was very poor. Graft volume and TH cell content was enhanced in tissue prepared in DMEM. These results suggest that preparation protocols optimized for one type of embryonic neuronal population do not necessarily transfer to other neuronal populations. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- C Watts
- MRC Cambridge Centre for Brain Repair, and the Department of Neurosurgery, University of Cambridge, UK
| | | | | |
Collapse
|
9
|
Macauley SL, Horsch AD, Oterdoom M, Zheng MH, Stewart GR. The Effects of Transforming Growth Factor-β2 on Dopaminergic Graft Survival. Cell Transplant 2017; 13:245-52. [PMID: 15191162 DOI: 10.3727/000000004783984043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dopaminergic cell transplantation is a promising therapeutic approach for the treatment of Parkinson's disease, the potential of which is limited due to poor survival and low dopamine content within engrafted tissue. In this study, the ability of transforming growth factor-β2 (TGF-β2) to influence transplant survival was evaluated. Cell suspensions containing fetal rat ventral mesencephalon (VM) cells were incubated prior to surgery with vehicle (DPBS), varying concentrations of TGF-β2 (5–1000 ng/ml), or a pan-specific antibody against TGF-β (1D11, 100 ng/ml). VM cell suspensions (200,000 cells) were unilaterally implanted into the striatum of adult Sprague-Dawley rats (n = 5–11 animals/group). Following a 3-week survival period, small but viable VM grafts containing tyrosine hydroxylase-positive (TH+) neurons and fibers were present in all animals. Addition of TGF-β2 resulted in a steep, bell-shaped dose-response curve with a significant effect on TH+/dopamine cell survival. At 50 ng/ml TGF-β2, the number of surviving dopamine neurons was increased twofold compared with controls. Addition of TGF-β2 or 1D11 did not significantly influence graft volume. Further studies, possibly in combination with other neurotrophic factors, need to be performed to obtain a greater understanding of the effects of TGF-β on dopamine neurons and fetal VM cell engraftment.
Collapse
|
10
|
Thajeb P, Ling ZD, Potter ED, Carvey PM. The Effects of Storage Conditions and Trophic Supplementation on the Survival of Fetal mesencephalic cells. Cell Transplant 2017; 6:297-307. [PMID: 9171162 DOI: 10.1177/096368979700600312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is estimated that only 5-10% of dopamine (DA) neurons implanted into the striatum of patients undergoing fetal-nigral transplantation as a treatment for Parkinson's Disease survive. Because it is often necessary to store fetal tissue prior to transplantation, we evaluated various storage parameters that could influence DA neuron viability in rostral mesencephalic tegmentum (RMT) cultures using tyrosine hydroxylase immunoreactive (THir) cell counts as an index of DA neuron survival. A high K+ hibernation media (HM) was used in all studies. We found that RMT cell viability and THir cell counts decreased as storage duration increased (up to 120 h). Storage at 37°C in HM killed all cells, while storage at 10°C yielded higher survival rates than 4° C. In comparison to trypsinization, mechanical dissociation of tissue increased cell viability. Neutral pH and a storage density of at least 1 × 106 cells/mL were found to be optimal, while striatal coculture of RMT cells with striatal feeder layers increased THir viability up to 16-fold in comparison to monocultures. The nurturing effect of striatal coculture may be explained by the release of autotrophic factors, and we tested this hypothesis by supplementing the HM with human placental cord serum (HPCS, 8%), glial-derived neurotrophic factor (GDNF; 10 μg/mL), and brain-derived neurotrophic factor (BDNF; 10 μg/mL). GDNF and HPCS supplements increased RMT cell viability by 10-15%, while GDNF, BDNF, and HPCS increased viability of THir cells by approximately 40% at all time points studied. As Klenow enzyme labeling technique indicated that 33% of stored RMT cells were undergoing apoptosis, we found that GDNF, BDNF, and HPCS reduced apoptosis by 50%. DNA laddering and DAPI nuclear stain confirmed the presence of apoptosis in hibernated RMT cells, leading us to postulate that the high viability counts seen with trypan blue exclusion are misleading.
Collapse
Affiliation(s)
- P Thajeb
- Division of Neurology, Cathay General Hospital, Taipei, Taiwan, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Kordower JH, Styren S, Clarke M, DeKosky ST, Olanow CW, Freeman TB. Fetal Grafting for Parkinson's Disease: Expression of Immune Markers in Two Patients with Functional Fetal Nigral Implants. Cell Transplant 2017; 6:213-9. [PMID: 9171154 DOI: 10.1177/096368979700600304] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In a number of centers throughout the world, fetal nigral transplantation is being performed for the treatment of Parkinson's disease (PD). Clinical results have been inconsistent. One parameter that differs among transplant studies is the degree and manner by which patients are immunosuppressed following transplantation. Indeed, the role of the immune system following fetal grafting in humans is not well understood. Recently, two patients from our open label trial that received fetal nigral implants have come to autopsy. These patients were immunosuppressed with cyclosporin for 6 mo posttransplantation and survived for a total of 18 mo postgrafting. Robust survival of grafted dopamine-containing cells was observed in both cases. Immunostaining for HLA-DR revealed a dense collection of cells within grafts from both cases. HLA-DR staining was rarely observed within the host including non-grafted regions of the striatum. A more detailed analysis of immune markers was performed in Case 2. Numerous pan macrophages, T-cells, and B-cells were observed within graft sites located in the postcommissural putamen. In contrast, staining for these immune cells was not observed within the ungrafted anterior putamen. These findings suggest that even in healthy appearing functional nigral implants, grafts are invaded by host immune cells that could compromise their long-term viability and function. Alternatively, immune cells are known to secrete trophic factors, which may ultimately favor graft survival and function. Further work is needed to understand the role of the immune system in fetal grafting.
Collapse
Affiliation(s)
- J H Kordower
- Research Center for Brain Repair and Department of Neurological Sciences, Rush Presbyterian St.-Lukes Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kopyov OV, Jacques D, Lieberman A, Duma CM, Rogers RL. Clinical Study of Fetal Mesencephalic Intracerebral Transplants for the Treatment of Parkinson's Disease. Cell Transplant 2017; 5:327-37. [PMID: 8689043 DOI: 10.1177/096368979600500221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
This study reports our findings from 22 patients (ages ranging from 42 to 73 yr; mean = 55.2) with recalcitrant idiopathic Parkinson's disease (PD) who received implants of fetal ventral mesencephalic tissue using an MRI-guided stereotactic procedure and who have been followed for at least 6 mo postoperatively, employing the guidelines established by the Core Assessment Program for Intracerebral Transplantations. Evaluations were videotaped and were performed both on and off levodopa medications. To date, we have seven patients with 24 mo, three with 18 mo, three with 12 mo, and nine with 6 mo of postsurgical assessments. Comparing surgical outcomes to levels prior to fetal transplants we found: 1) mean levodopa levels were reduced 46% at 6 mo, 12% at 12 mo, 20% at 18 mo, and 54% at 24 mo; 2) Unified Parkinson's Disease Rating Scale (UPDRS) scores with patients on levodopa were improved by an average of 38% (6 mo), 50.2% (12 mo), 69.3% (18 mo), and 73.9% (24 mo), while off medication scores showed reductions ranging from 24.7% at 6 mo to 55.1% at 24 mo. Other measures, including Hoehn-Yahr staging, Activities of Daily Living, and dyskinesia rating scales, were also significantly improved following fetal transplants. Timed motor tasks (finger dexterity, supination-pronation, foot tapping, and Stand-Walk-Sit) performance also demonstrated highly significant improvements. Patient's self-rating scores indicated that the patients typically perceived substantial improvements in their condition. However, substantial variability in the improvements following surgery still persists and range from nominal improvements in performance to significant changes that can be classified as altering the overall lifestyle of the patients. To date, 4 of the 22 subjects were considered by the physicians to be nonresponders; that is, there were no clinically relevant improvements in these patients' conditions.
Collapse
Affiliation(s)
- O V Kopyov
- Neurosciences Institute, Good Samaritan Hospital, Los Angeles, CA 90017, USA
| | | | | | | | | |
Collapse
|
13
|
Onifer SM, Cannon AB, Whittemore SR. Altered Differentiation of Cns Neural Progenitor Cells after Transplantation into the Injured Adult Rat Spinal Cord. Cell Transplant 2017; 6:327-38. [PMID: 9171165 DOI: 10.1177/096368979700600315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphé nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI. They also indicate that the fate of immortalized neural progenitor cell lines in injured CNS must be stringently characterized.
Collapse
Affiliation(s)
- S M Onifer
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, FL 33136, USA
| | | | | |
Collapse
|
14
|
Bagga V, Dunnett S, Fricker R. The 6-OHDA mouse model of Parkinson's disease – Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behav Brain Res 2015; 288:107-17. [DOI: 10.1016/j.bbr.2015.03.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022]
|
15
|
Bloch J, Brunet JF, McEntire CRS, Redmond DE. Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys. J Comp Neurol 2014; 522:2729-40. [PMID: 24610674 DOI: 10.1002/cne.23579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 02/03/2023]
Abstract
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts.
Collapse
Affiliation(s)
- Jocelyne Bloch
- Department of Clinical Neurosciences, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | | | | | | |
Collapse
|
16
|
Does early cell death cause germ cell loss after intratesticular tissue grafting? Fertil Steril 2013; 99:1264-1272.e1. [PMID: 23312508 DOI: 10.1016/j.fertnstert.2012.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To assess cell death in intratesticular grafts. DESIGN Experimental animal study. SETTING University. ANIMAL(S) F1-hybrids from SV129 X C57BL. INTERVENTION(S) Intratesticular tissue transplantation was performed and cell death in the grafts was evaluated at different time points after transplantation. MAIN OUTCOME MEASURE(S) Apoptotic cell death in spermatogonia was evaluated by flow cytometry with the use of the annexin V assay. Immunohistochemistry was used to evaluate graft development and the global occurrence of cell death. RESULT(S) The highest level of spermatogonia-specific cell death was found on days 4 and 10, although no statistical difference was observed compared with control tissue. Statistically significant reductions in tubule integrity were observed 1 day and 2 months after transplantation. More degenerated tubules were observed in the center of the grafts 1 and 4 days after transplantation, and higher numbers of apoptotic tubules were found 1 day after transplantation. No difference in overall cell death was observed between grafts and controls for any time point except for the frozen grafts 1 day after transplantation. CONCLUSION(S) Spermatogonia-specific apoptosis does not explain the stem cell loss observed after intratesticular tissue grafting; it probably results from degeneration of tubules in the center of the graft owing to hypoxia during the first days after transplantation.
Collapse
|
17
|
COMMUNICATION. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1987.tb16603.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Ganz J, Lev N, Melamed E, Offen D. Cell replacement therapy for Parkinson's disease: how close are we to the clinic? Expert Rev Neurother 2012; 11:1325-39. [PMID: 21864078 DOI: 10.1586/ern.11.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell replacement therapy (CRT) offers great promise as the future of regenerative medicine in Parkinson´s disease (PD). Three decades of experiments have accumulated a wealth of knowledge regarding the replacement of dying neurons by new and healthy dopaminergic neurons transplanted into the brains of animal models and affected patients. The first clinical trials provided the proof of principle for CRT in PD. In these experiments, intrastriatal transplantation of human embryonic mesencephalic tissue reinnervated the striatum, restored dopamine levels and showed motor improvements. Sequential controlled studies highlighted several problems that should be addressed prior to the wide application of CRT for PD patients. Moreover, owing to ethical and practical problems, embryonic stem cells require replacement by better-suited stem cells. Several obstacles remain to be surpassed, including identifying the best source of stem cells for A9 dopaminergic neuron generation, eliminating the risk of tumor formation and the development of graft-induced dyskinesias, and standardizing dopaminergic cell production in order to enable clinical application. In this article, we present an update on CRT for PD, reviewing the research milestones, various stem cells used and tailored differentiation methods, and analyze the information gained from the clinical trials.
Collapse
Affiliation(s)
- Javier Ganz
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
19
|
Survival, differentiation, and connectivity of ventral mesencephalic dopamine neurons following transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00004-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Wakeman DR, Dodiya HB, Kordower JH. Cell transplantation and gene therapy in Parkinson's disease. ACTA ACUST UNITED AC 2011; 78:126-58. [PMID: 21259269 DOI: 10.1002/msj.20233] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder affecting, in part, dopaminergic motor neurons of the ventral midbrain and their terminal projections that course to the striatum. Symptomatic strategies focused on dopamine replacement have proven effective at remediating some motor symptoms during the course of disease but ultimately fail to deliver long-term disease modification and lose effectiveness due to the emergence of side effects. Several strategies have been experimentally tested as alternatives for Parkinson's disease, including direct cell replacement and gene transfer through viral vectors. Cellular transplantation of dopamine-secreting cells was hypothesized as a substitute for pharmacotherapy to directly provide dopamine, whereas gene therapy has primarily focused on restoration of dopamine synthesis or neuroprotection and restoration of spared host dopaminergic circuitry through trophic factors as a means to enhance sustained controlled dopamine transmission. This seems now to have been verified in numerous studies in rodents and nonhuman primates, which have shown that grafts of fetal dopamine neurons or gene transfer through viral vector delivery can lead to improvements in biochemical and behavioral indices of dopamine deficiency. However, in clinical studies, the improvements in parkinsonism have been rather modest and variable and have been plagued by graft-induced dyskinesias. New developments in stem-cell transplantation and induced patient-derived cells have opened the doors for the advancement of cell-based therapeutics. In addition, viral-vector-derived therapies have been developed preclinically with excellent safety and efficacy profiles, showing promise in clinical trials thus far. Further progress and optimization of these therapies will be necessary to ensure safety and efficacy before widespread clinical use is deemed appropriate.
Collapse
|
21
|
Freeman LR, Small BJ, Bickford PC, Umphlet C, Granholm AC. A high-fat/high-cholesterol diet inhibits growth of fetal hippocampal transplants via increased inflammation. Cell Transplant 2011; 20:1499-514. [PMID: 21396159 PMCID: PMC4830280 DOI: 10.3727/096368910x557281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A diet containing high levels of saturated fat and cholesterol is detrimental to many aspects of health and is known to lead to obesity, metabolic syndrome, heart disease, diabetes, and cancer. However, the effects of a diet rich in saturated fat and cholesterol on the brain are not currently well understood. In order to determine direct effects of a high saturated fat and cholesterol diet upon fetal hippocampal tissue, we transplanted hippocampal grafts from embryonic day 18 rats to the anterior eye chamber of 16-month-old host animals that were fed either a normal rat chow diet or a 10% hydrogenated coconut oil + 2% cholesterol diet (HFHC diet) for 8 weeks. One eye per rat received topical application of an IL-1 receptor antagonist (IL-1Ra, Kineret®) and the other served as a saline control. Results revealed that the HFHC diet led to a marked reduction in hippocampal transplant growth, and detrimental effects of the diet were alleviated by the IL-1 receptor antagonist IL-1Ra. Graft morphology demonstrated that the HFHC diet reduced organotypical development of the hippocampal neuronal cell layers, which was also alleviated by IL-1Ra. Finally, grafts were evaluated with markers for glucose transporter expression, astrocytes, and activated microglia. Our results demonstrate significant effects of the HFHC diet on hippocampal morphology, including elevated microglial activation and reduced neuronal development. IL-1Ra largely blocked the detrimental effects of this diet, suggesting a potential use for this agent in neurological disorders involving neuroinflammation.
Collapse
Affiliation(s)
- L R Freeman
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | |
Collapse
|
22
|
Petrova ES. Studies of histogenetic and neurodegenerative processes in the nervous system using heterotopic neurotransplantation. ACTA ACUST UNITED AC 2010; 40:823-32. [PMID: 20680478 DOI: 10.1007/s11055-010-9333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Indexed: 12/25/2022]
Abstract
The aim of the present article is to summarize our own experimental and published data on neurotransplantation into ectopic sites such as peripheral nerves (mainly) and the anterior chamber of the eye in rats. The review addresses questions touching on the following problems: the histogenesis and survival of nervous tissue after transplantation, the interaction between transplanted tissues with recipient tissues, assessment of long-term living transplants, simultaneous transplantation of different embryonic rudiments, transplantation of spinal cord ganglia, and the effects of trophic factors on the development of transplants. New data on stem cell transplantation into peripheral nerves are discussed.
Collapse
Affiliation(s)
- E S Petrova
- Department of General and Specific Morphology, Research Institute of Experimental Medicine, North West Branch, Russian Academy of Medical Sciences, St. Petersburg, Russia
| |
Collapse
|
23
|
Willis LM, Freeman L, Bickford PC, Quintero EM, Umphlet CD, Moore AB, Goetzl L, Granholm AC. Blueberry supplementation attenuates microglial activation in hippocampal intraocular grafts to aged hosts. Glia 2010; 58:679-90. [PMID: 20014277 PMCID: PMC2834232 DOI: 10.1002/glia.20954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transplantation of central nervous tissue has been proposed as a therapeutic intervention for age-related neurodegenerative diseases and stroke. However, survival of embryonic neuronal cells is hampered by detrimental factors in the aged host brain such as circulating inflammatory cytokines and oxidative stress. We have previously found that supplementation with 2% blueberry in the diet increases graft growth and neuronal survival in intraocular hippocampal grafts to aged hosts. In the present study we explored possible biochemical mechanisms for this increased survival, and we here report decreased microglial activation and astrogliosis in intraocular hippocampal grafts to middle-aged hosts fed a 2% blueberry diet. Markers for astrocytes and for activated microglial cells were both decreased long-term after grafting to blueberry-treated hosts compared with age-matched rats on a control diet. Similar findings were obtained in the host brain, with a reduction in OX-6 immunoreactive microglial cells in the hippocampus of those recipients treated with blueberry. In addition, immunoreactivity for the pro-inflammatory cytokine IL-6 was found to be significantly attenuated in intraocular grafts by the 2% blueberry diet. These studies demonstrate direct effects of blueberry upon microglial activation both during isolated conditions and in the aged host brain and suggest that this nutraceutical can attenuate age-induced inflammation.
Collapse
Affiliation(s)
- Lauren M. Willis
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Linnea Freeman
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Paula C. Bickford
- Department of Neurosurgery, Center for Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital Medical Center, Tampa, FL, USA
| | - E. Matthew Quintero
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Claudia D. Umphlet
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Alfred B. Moore
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Goetzl
- Department of Ob/Gyn, Division of Maternal Fetal Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ann-Charlotte Granholm
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
24
|
Brunet JF, Redmond DE, Bloch J. Primate adult brain cell autotransplantation, a pilot study in asymptomatic MPTP-treated monkeys. Cell Transplant 2009; 18:787-99. [PMID: 19500480 DOI: 10.3727/096368909x470847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Autologous brain cell transplantation might be useful for repairing lesions and restoring function of the central nervous system. We have demonstrated that adult monkey brain cells, obtained from cortical biopsy and kept in culture for a few weeks, exhibit neural progenitor characteristics that make them useful for brain repair. Following MPTP treatment, primates were dopamine depleted but asymptomatic. Autologous cultured cells were reimplanted into the right caudate nucleus of the donor monkey. Four months after reimplantation, histological analysis by stereology and TH immunolabeling showed that the reimplanted cells successfully survived, bilaterally migrated in the whole striatum, and seemed to have a neuroprotection effect over time. These results may add a new strategy to the field of brain neuroprotection or regeneration and could possibly lead to future clinical applications.
Collapse
Affiliation(s)
- Jean-François Brunet
- Department of Neurosurgery, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
25
|
|
26
|
Functions and effects of creatine in the central nervous system. Brain Res Bull 2008; 76:329-43. [DOI: 10.1016/j.brainresbull.2008.02.035] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/15/2008] [Accepted: 02/25/2008] [Indexed: 12/12/2022]
|
27
|
In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 2008; 210:656-70. [PMID: 18279854 DOI: 10.1016/j.expneurol.2007.12.020] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 11/24/2007] [Accepted: 12/16/2007] [Indexed: 01/11/2023]
Abstract
Hypoxic preconditioning (HP) and stem cell transplantation have been extensively studied as individual therapies for ischemic stroke. The present investigation is an initial effort to combine these methods to achieve increased therapeutic effects after brain ischemia. Sublethal in vitro hypoxia pretreatment significantly enhanced the tolerance of neurally-differentiating embryonic stem (ES) cells and primary bone marrow mesenchymal stem cells (BMSC) to apoptotic cell death (40-50% reduction in cell death and caspase-3 activation). The HP protective effects on cultured cells lasted for at least 6 days. HP increased secretion of erythropoietin (EPO) and upregulated expression of bcl-2, hypoxia-inducible factor (HIF-1alpha), erythropoietin receptor (EPOR), neurofilament (NF), and synaptophysin in ES cell-derived neural progenitor cells (ES-NPCs). The HP cytoprotective effect was diminished by blocking EPOR, while pretreatment of ES-NPCs with recombinant human EPO mimicked the HP effect. HP-primed ES-NPCs survived better 3 days after transplantation into the ischemic brain (30-40% reduction in cell death and caspase-3 activation). Finally, transplanted HP-primed ES-NPCs exhibited extensive neuronal differentiation in the ischemic brain, accelerated and enhanced recovery of sensorimotor function when compared to transplantation of non-HP-treated ES-NPCs. The cell-priming strategy aimed to promote transplanted cell survival and their tissue repair capability provides a simple yet effective way of optimizing cell transplantation therapy.
Collapse
|
28
|
Hall VJ, Li JY, Brundin P. Restorative cell therapy for Parkinson's disease: A quest for the perfect cell. Semin Cell Dev Biol 2007; 18:859-69. [DOI: 10.1016/j.semcdb.2007.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 09/05/2007] [Indexed: 12/09/2022]
|
29
|
Marchionini DM, Lehrmann E, Chu Y, He B, Sortwell CE, Becker KG, Freed WJ, Kordower JH, Collier TJ. Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson's disease. Brain Res 2007; 1147:77-88. [PMID: 17368428 DOI: 10.1016/j.brainres.2007.02.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/11/2006] [Accepted: 02/06/2007] [Indexed: 11/17/2022]
Abstract
The developmental biology of the dopamine (DA) system may hold important clues to its reconstruction. We hypothesized that factors highly expressed during nigrostriatal development and re-expressed after injury and disease may play a role in protection and reconstruction of the nigrostriatal system. Examination of gene expression in the developing striatum suggested an important role for the heparin binding growth factor family at time points relevant to establishment of dopaminergic innervation. Midkine, pleiotrophin (PTN), and their receptors syndecan-3 and receptor protein tyrosine phosphatase beta/zeta, were highly expressed in the striatum during development. Furthermore, PTN was up-regulated in the degenerating substantia nigra of Parkinson's patients. The addition of PTN to ventral mesencephalic cultures augmented DA neuron survival and neurite outgrowth. Thus, PTN was identified as a factor that plays a role in the nigrostriatal system during development and in response to disease, and may therefore be useful for neuroprotection or reconstruction of the DA system.
Collapse
Affiliation(s)
- Deanna M Marchionini
- Dept. Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cesnulevicius K, Timmer M, Wesemann M, Thomas T, Barkhausen T, Grothe C. Nucleofection is the most efficient nonviral transfection method for neuronal stem cells derived from ventral mesencephali with no changes in cell composition or dopaminergic fate. Stem Cells 2006; 24:2776-91. [PMID: 16902196 DOI: 10.1634/stemcells.2006-0176] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuronal progenitor cells (NPCs) play an important role in potential regenerative therapeutic strategies for neurodegenerative diseases, such as Parkinson disease. However, survival of transplanted cells is, as yet, limited, and the identification of grafted cells in situ remains difficult. The use of NPCs could be more effective with regard to a better survival and maturation when transfected with one or more neurotrophic factors. Therefore, we investigated the possibility of transfecting mesencephalic neuronal progenitors with different constructs carrying neurotrophic factors or the expression reporters enhanced green fluorescence protein (EGFP) and red fluorescent protein (DsRed). Different techniques for transfection were compared, and the highest transfection rate of up to 47% was achieved by nucleofection. Mesencephalic neuronal progenitors survived the transfection procedure; 6 hours after transfection, viability was approximately 40%, and the transfected cells differentiated into, for example, tyrosine hydroxylase-positive neurons. Within the group of transfected cells, many progenitors and several neurons were found. To provide the progenitor cells with a neurotrophic factor, different isoforms of fibroblast growth factor-2 were introduced. To follow the behavior of the transfected cells in vitro, functional tests such as the cell viability assay (water-soluble tetrazolium salt assay [WST-1]) and the cell proliferation assay (5-bromo-2'-deoxyuridine-enzyme-linked immunosorbent assay) were performed. In addition, these transfected NPCs were viable after transplantation, expressed tyrosine hydroxylase in vivo, and could easily be detected within the host striatum because of their EGFP expression. This study shows that genetic modification of neural progenitors could provide attractive perspectives for new therapeutic concepts in neurodegenerative diseases.
Collapse
|
31
|
Willis L, Bickford P, Zaman V, Moore A, Granholm AC. Blueberry extract enhances survival of intraocular hippocampal transplants. Cell Transplant 2005; 14:213-23. [PMID: 15929556 DOI: 10.3727/000000005783983142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of neural tissue has been explored as a potential therapy to replace dead or dying cells in the brain, such as after brain injury or neurodegenerative disease. However, survival of transplanted tissue is poor, especially when the transplant recipient is of advanced age. Recent studies have demonstrated improvement of neuronal deficits in aged animals given a diet supplemented with blueberry extract. The present study focuses on the survival of fetal hippocampal transplants to young (4 months) or middle-aged (16 months) animals with or without dietary supplementation with blueberry extract. Results indicate that fetal hippocampus transplanted to middle-aged host animals exhibits poor survival characterized by reduced growth and compromised tissue organization. However, when middle-aged animals were maintained on a diet supplemented with 2% blueberry extract, hippocampal graft growth was significantly improved and cellular organization of grafts was comparable to that seen in tissue grafted to young host animals. Thus, the data suggest that factor(s) in blueberries may have significant effects on development and organization of this important brain region.
Collapse
Affiliation(s)
- Lauren Willis
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
32
|
Rafuse VF, Soundararajan P, Leopold C, Robertson HA. Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. Neuroscience 2005; 131:899-916. [PMID: 15749344 DOI: 10.1016/j.neuroscience.2004.11.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2004] [Indexed: 01/13/2023]
Abstract
Numerous studies have shown that abnormal motor behavior improves when neural progenitor cells (NPCs) are transplanted into animal models of neurodegeneration. The mechanisms responsible for this improvement are not fully understood. Indirect anatomical evidence suggests that attention of abnormal motor behavior is attributed, at least in part, to the secretion of trophic factors from the transplanted NPCs. However, there is little direct evidence supporting this hypothesis. Here we show that NPCs isolated from the subventricular zone (SVZ) of neonatal mice are highly teratogenic when transplanted into the neural tube of developing chick embryos and are neuroprotective for fetal dopaminergic neurons in culture because they release sonic hedgehog (Shh). In addition, the neuroprotective properties of NPCs can be exploited to promote better long-term survival of transplanted fetal neurons in an animal model of Parkinson's disease. Thus, cultured NPCs isolated from the SVZ can secrete at least one potent mitogen (Shh) that dramatically affects the fate of neighboring cells. This trait may account for some of the improvement in motor behavior often reported in animal models of neurodegeneration after transplantation of cultured NPCs that were isolated from the SVZ.
Collapse
Affiliation(s)
- V F Rafuse
- Department of Anatomy and Neurobiology, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5.
| | | | | | | |
Collapse
|
33
|
Sortwell CE, Collier TJ, Camargo MD, Pitzer MR. An in vitro interval before transplantation of mesencephalic reaggregates does not compromise survival or functionality. Exp Neurol 2004; 187:58-64. [PMID: 15081588 DOI: 10.1016/j.expneurol.2003.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 09/09/2003] [Accepted: 12/02/2003] [Indexed: 11/28/2022]
Abstract
Grafts of primary ventral mesencephalic tissue and cell suspensions to the denervated striatum are currently utilized as a treatment strategy for Parkinson's disease. Survival rates of grafted dopamine (DA) neurons are extremely poor (5-20%) and is even poorer in grafts to the aged striatum. Short pretreatment of grafted cells with various survival-promoting agents has elicited 2- to 3-fold improvements in these survival rates. However, the duration of pretreatment is limited by the necessity of implanting the embryonic cells within a critical period after tissue harvest, potentially limiting the beneficial effects of these interventions. This study details the use of a modified mesencephalic reaggregate culture system combined with striatal-derived trophic factor support to provide an extended ex vivo cell culture interval before grafting. Mesencephalic cell suspension grafts implanted immediately following dissociation were compared to grafts of an equivalent number of cells reaggregated in the presence of striatal oligodendrocyte-type-2 astrocyte (SO2A) conditioned medium for 3 or 7 days. All grafts were placed in the denervated striatum of young adult male Fischer 344 rats. Rotational assessment of amphetamine-induced rotations indicates that aggregates maintained for 3 days in culture present statistically similar functional recovery profiles as compared to cell suspension grafts. Grafts of mesencephalic reaggregates maintained in vitro for 7 days did not display significant improvements in functional recovery. Immunohistochemical analysis for tyrosine hydroxylase immunoreactive (THir) neurons conducted at 10 weeks post-grafting revealed equivalent survival rates of THir neurons in grafts of fresh cell suspensions and aggregates held in culture for 3 days. Grafts of reaggregates held in culture for 7 days possessed significantly fewer THir neurons, about 25% of the cell suspension or 3-day aggregate grafts. This ex vivo reaggregate system allows for extended pretreatment (3 days) of mesencephalic cells with survival-promoting agents and immunological screening of tissue before transplantation.
Collapse
Affiliation(s)
- Caryl E Sortwell
- Department of Neurological Sciences, Research Center for Brain Repair, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
34
|
Marchionini DM, Collier TJ, Camargo M, McGuire S, Pitzer M, Sortwell CE. Interference with anoikis-induced cell death of dopamine neurons: implications for augmenting embryonic graft survival in a rat model of Parkinson's disease. J Comp Neurol 2003; 464:172-9. [PMID: 12898610 DOI: 10.1002/cne.10785] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One promising therapy for the treatment of Parkinson's disease is transplantation of embryonic ventral mesencephalic tissue. Unfortunately, up to 95% of grafted cells die, many via apoptosis. In this study we attempted to prevent anoikis-induced cell death, which is triggered during the preparation of cells for grafting, and examine the impact on graft viability and function. We utilized the extracellular matrix molecule tenascin-C (tenascin) and an antibody (Ab) to the cell adhesion molecule L1 to specifically mimic survival signals induced by cell-matrix and cell-cell interactions. In vitro, both tenascin- and L1 Ab-treated cultures doubled the number of tyrosine hydroxylase immunoreactive (THir) neurons compared to control. Additionally, cell survival assays determined that tenascin and L1 Ab-treated cell suspensions yielded more metabolically active and fewer dead cells than control suspensions. In contrast to the culture results, tenascin- and L1 Ab-treated mesencephalic grafts did not yield an increase in the number of THir neurons using our standard grafting paradigm (3 microl of 100,000 cells/microl). However, under low-density conditions (3 microl of 3,000 cells/microl), tenascin augmented grafted THir neuron survival. These findings are consistent with the view that cell density can dramatically influence the degree of stress placed on THir neurons and consequently affect the success of survival strategies in vivo. In conclusion, pretreatment with tenascin may prove beneficial to prevent anoikis in dilute cell suspension grafts, while long-term in vivo delivery methods need to be explored to determine if L1 can prevent anoikis in grafts of mesencephalic dopamine neurons after transplantation.
Collapse
Affiliation(s)
- Deanna M Marchionini
- Department of Neurological Sciences, Research Center for Brain Repair, Rush-Presbyterian-St. Luke's Medical Center, 2422 West Harrison St., Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
35
|
Pitzer MR, Sortwell CE, Daley BF, McGuire SO, Marchionini D, Fleming M, Collier TJ. Angiogenic and neurotrophic effects of vascular endothelial growth factor (VEGF165): studies of grafted and cultured embryonic ventral mesencephalic cells. Exp Neurol 2003; 182:435-45. [PMID: 12895454 DOI: 10.1016/s0014-4886(03)00100-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present series of experiments investigated the effects of vascular endothelial growth factor (VEGF165) on adult rat striatal cerebrovasculature and embryonic dopamine (DA) neuron allografts in a rat model of Parkinson's disease (PD). We examined VEGF165's ability to (1) alter the vascular network of the adult rat striatum, (2) influence the vascular growth of solid embryonic day 14 (E14) ventral mesencephalic (VM) grafts when placed into a VEGF-pretreated host striatum, (3) alter the function and survival of E14 VM grafts when transplanted into an adult DA-deleted striatum, and (4) influence cell survival and neurite growth in cultures of E14 VM cells. We demonstrate here that a single bolus injection of VEGF165 into the adult rat striatum significantly increases the amount of vasculature in the vicinity of the injection site in a delayed and transient manner when compared to saline controls. Transplanting solid E14 VM grafts into the VEGF165-pretreated striatum resulted in a homogeneous distribution of small blood vessels throughout the graft, a pattern that closely resembles mature adult vasculature. In contrast, grafts in the control condition contained a patchy distribution of heavily dilated vessels. Behavioral measurements indicate that VEGF pretreatment of the intrastriatal graft site accelerates recovery of amphetamine-induced rotational asymmetry in unilateral 6-OHDA lesioned rats. Unexpectedly, however, VEGF pretreatments failed to increase survival of tyrosine hydroxylase-immunoreactive (THir) neurons in the grafts. In contrast to this finding in vivo, adding VEGF165 to glial-reduced E14 rat VM cultures produced a fourfold increase in THir cell survival and a doubling in the length of THir neurites. We conclude that with the proper method of delivery, VEGF165 may prove to be one of several strategies necessary to significantly improve the survival and function of fetal VM tissue grafts.
Collapse
Affiliation(s)
- Mark R Pitzer
- Department of Neurological Sciences and Research Center for Brain Repair, Rush Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Triarhou LC. Histochemical properties of intrastriatal mesencephalic grafts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 517:43-61. [PMID: 12580306 DOI: 10.1007/978-1-4615-0699-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lazaros C Triarhou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Medical Science Building A142, Indiana University Medical Center, 635 Barnhill Drive, Indianapolis, Indiana 46202-5120, USA
| |
Collapse
|
37
|
Doucet G, Brundin P, Descarries L, Björklund A. Effect of Prior Dopamine Denervation on Survival and Fiber Outgrowth from Intrastriatal Fetal Mesencephalic Grafts. Eur J Neurosci 2002; 2:279-290. [PMID: 12106034 DOI: 10.1111/j.1460-9568.1990.tb00419.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
[3H]Dopamine (DA) uptake radioautography and tyrosine hydroxylase (TH) immunocytochemistry were used to assess quantitatively the effects of the presence or absence of host mesostriatal DA afferents on the survival and fiber outgrowth from fetal ventral mesencephalic DA neurons grafted into the neostriatum of adult recipient rats. Rats received bilateral intrastriatal transplants of fetal ventral mesencephalic tissue 1 month after a unilateral injection of 6-hydroxydopamine (6-OHDA) into the right nigrostriatal bundle (denervated side). Five to six months later, some of the grafted rats received a second 6-OHDA injection in the left nigrostriatal bundle (acutely denervated or 'intact' side). After a further 7 days, slices of each hemisphere from the latter rats were incubated with [3H]DA and processed for film and high resolution radioautography. The density of the film radioautographs was measured with a computerized image analysis system and calibrated by silver grain cluster (i.e. DA terminal) counting over selected areas of the same sections in light microscope radioautographs. The brains of the remaining grafted rats were processed for TH immunoreactivity 6 - 12 months after graft surgery. Neither the size of the grafts, nor the number of surviving TH-positive graft neurons showed any significant difference between the nondenervated and the denervated sides. However, the size of the TH-positive cell bodies was significantly greater in the grafts on the denervated side. In the [3H]DA uptake radioautographs, considerable outgrowth of DA fibers was evident in the neostriatum on the 'intact' side in spite of the presence of an intact host DA innervation until 7 days before sacrifice. The overall DA fiber outgrowth was nevertheless almost two-fold greater on the denervated side, and extended deeper into the host neostriatum than on the 'intact' side; only 7% of the total neostriatal area, on average, was at background level compared to 30% on the 'intact' side, and the overall density of neostriatal DA innervation amounted to 36% of normal as compared to 20% on the 'intact' side. The correlation between the overall density of graft-derived DA innervation and the size of the grafts was linear on the 'intact' side, but reached a plateau with relatively small grafts on the denervated side. However, the ventral striatum on both sides was very poorly innervated by these grafts. These findings demonstrate that the mature neostriatal tissue can support axonal growth and innervation from grafted fetal DA neurons even in the presence of a normal complement of endogenous DA fibers. Prior removal of the host striatal DA innervation does not influence the overall size of the grafts nor the number of surviving DA neurons, but induces an increase in the cell body size and fiber outgrowth of the grafted DA neurons.
Collapse
Affiliation(s)
- G. Doucet
- Department of Medical Cell Research, Section of Neurobiology, University of Lund, Lund, Sweden
| | | | | | | |
Collapse
|
38
|
Abstract
Neural transplantation provides a powerful novel technique for investigating the neurobiological basis and potential strategies for repair of a variety of neurodegenerative conditions. The present review considers applications of this technique to dementia. After a general introduction (section 1), attempts to replace damaged neural systems by transplantation are considered in the context of distinct animal models of dementia. These include grafting into aged animals (section 2), into animals with neurotransmitter-selective lesions of subcortical nuclei, in particular involving basal forebrain cholinergic systems (section 3), and into animals with non-specific lesions of neocortical and hippocampal systems (section 4). The next section considers the alternative use of grafts as a source of growth/trophic factors to inhibit degeneration and promote regeneration in the aged brain (section 5). Finally, a number of recent studies have employed transplanted tissues to model and study the neurodegenerative processes associated with ageing and Alzheimer's disease taking place within the transplant itself (section 6). It is concluded (section 7) that although neural transplantation does not offer any immediate prospect of therapeutic repair in clinical dementia, the technique does offer a powerful neurobiological tool for studying the neuropathological processes involved in both spontaneous degeneration and specific diseases of ageing. New understandings derived from neural transplantation may be expected to lead to rational development of novel strategies to inhibit the neurodegenerative process and to promote regeneration in the aged brain.
Collapse
Affiliation(s)
- S. B. Dunnett
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
39
|
|
40
|
Sortwell CE, Camargo MD, Pitzer MR, Gyawali S, Collier TJ. Diminished survival of mesencephalic dopamine neurons grafted into aged hosts occurs during the immediate postgrafting interval. Exp Neurol 2001; 169:23-9. [PMID: 11312554 DOI: 10.1006/exnr.2001.7644] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The survival rate of dopamine (DA) neurons in mesencephalic grafts to young adult rats is poor, estimated at 5-20%, and even poorer in grafts to the aged striatum. Grafted cells die in young adult rats during the first 4 days after implantation. The present study was undertaken to determine whether the decreased survival of DA neurons in grafts to aged rats is (1) due to additional cell death during the immediate postgrafting interval or (2) due to protracted cell loss during longer postgrafting intervals. We compared survival rates of tyrosine hydroxylase-immunoreactive (THir) neurons in cell suspension grafts to young adult (3 months) and aged (24 months) male Fischer 344 rats at 4 days and 2 weeks after transplantation. At 4 days after grafting, mesencephalic grafts within the aged rat striatum contain approximately 25% of the number of THir neurons in the same mesencephalic cell suspension grafted to young adult rats. This corroborates the decreased survival of grafted DA neurons we have demonstrated previously at 10 weeks postgrafting. THir neurons in grafts to the intact striatum possessed a significantly shorter "long axis" than their counterparts on the lesioned side. No significant differences in the number of apoptotic nuclear profiles or total alkaline phosphatase staining between mesencephalic grafts to young and aged rats were detectable at 4 days postgrafting. In summary, the present study indicates that the exaggerated cell death of grafted DA neurons that occurs following implantation to the aged striatum occurs during the immediate postgrafting interval, timing identical to that documented for young adult hosts.
Collapse
Affiliation(s)
- C E Sortwell
- Department of Neurological Sciences, Research Center for Brain Repair, Rush-Presbyterian-St. Luke's Medical Center, Suite 200, 2242 West Harrison Street, Chicago, Illinois, 60612, USA
| | | | | | | | | |
Collapse
|
41
|
Yu TS, Wang SD, Liu JC, Yin HS. Changes in the gene expression of GABA(A) receptor alpha1 and alpha2 subunits and metabotropic glutamate receptor 5 in the basal ganglia of the rats with unilateral 6-hydroxydopamine lesion and embryonic mesencephalic grafts. Exp Neurol 2001; 168:231-41. [PMID: 11259111 DOI: 10.1006/exnr.2000.7590] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By using an animal model of parkinsonism, we examined the expression of GABA(A) receptor (R) and metabotropic glutamate receptor (mGluR) 5 in the basal ganglia after transplantation with dopamine-rich tissue. The adult rats were unilaterally lesioned by the injection of 6-hydroxydopamine to their left medial forebrain bundles. At 5-10 weeks following the dopaminergic denervation, the levels of GABA(A)R in the left caudate-putamen and globus pallidus were about 20 and 16% lower than that of the right intact (control) sides, as shown by [3H]flunitrazepam binding autoradiography on the brain sections. However, the receptor density increased to around 132 and 130% of control levels in the entopeduncular nucleus and substantia nigra pars reticulata of the lesioned sides. Furthermore, in situ hybridization analysis exhibited parallel trends of changes in the levels of the GABA(A)R alpha1 and alpha2 subunit and mGluR5 mRNAs in the neurons of the brain regions with that of the proteins detected by the binding assay. A number of the rats 5 weeks postlesion were transplanted with the ventral mesencephalon of the embryonic rat into their left striata. Five weeks later, the changes in the [3H]flunitrazepam binding seemed to be recovered by approximately 50-63% on the grafted sides of the areas. Moreover, the transplantation appeared to produce a nearly complete reversal of the lesion-induced alterations in the levels of the mRNAs. Thus, the data indicate the mechanism of gene regulation for the modified expression of the receptors and could implicate the participation of the receptors in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- T S Yu
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Republic of China
| | | | | | | |
Collapse
|
42
|
Kordower JH, Sortwell CE. Neuropathology of fetal nigra transplants for Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:333-44. [PMID: 11142034 DOI: 10.1016/s0079-6123(00)27016-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- J H Kordower
- Research Center for Brain Repair and Department of Neurological Sciences, Rush Presbyterian St. Lukes Medical Center, 2242 West Harrison Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
43
|
Höglinger GU, Widmer HR, Spenger C, Meyer M, Seiler RW, Oertel WH, Sautter J. Influence of time in culture and BDNF pretreatment on survival and function of grafted embryonic rat ventral mesencephalon in the 6-OHDA rat model of Parkinson's disease. Exp Neurol 2001; 167:148-57. [PMID: 11161602 DOI: 10.1006/exnr.2000.7546] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic midbrain can be maintained as free-floating roller tube cultures prior to grafting in experimental Parkinson's disease. We examined the influence of pregrafting culture time and pretreatment with brain-derived neurotrophic factor on graft survival and function. Cultures were prepared from solid pieces of embryonic (E14) rat ventral mesencephalon and maintained 4, 8, or 12 days in vitro with or without brain-derived neurotrophic factor (100 ng/ml) and grafted into the striatum of 6-hydroxydopamine-lesioned rats. Graft survival and function were evaluated by amphetamine-induced rotation behavior, number of tyrosine hydroxylase-immunoreactive neurons, striatal reinnervation, and graft volume. Rats receiving untreated tissue cultured for 4 or 8 days displayed no differences in graft quality, while grafts from 12-day-old cultures contained significantly fewer (P < 0.05) tyrosine hydroxylase-immunoreactive neurons (340 +/- 97, 267 +/- 92, and 62 +/- 19) and displayed a lower survival rate (9.6 +/- 2.7, 7.9 +/- 2.7, and 2.6 +/- 0.8% for 4, 8, and 12 days in vitro, respectively). Only rats grafted with 4- and 8-day-old cultures recovered significantly (P < 0.05) from lesion-induced rotations (69.4 +/- 18.6, 70.3 +/- 13.9, and 23.2 +/- 12.1% for 4, 8, and 12 days in vitro, respectively). Striatal reinnervation decreased with increasing culture time (P < 0.05). Pretreatment of the cultures with brain-derived neurotrophic factor affected only graft-induced fiber reinnervation, which was reduced even after short culture times. We therefore suggest that a storage period of 8 days is well suited to maintain embryonic rat ventral mesencephalon with the free-floating roller tube culture technique prior to transplantation. BDNF pretreatment as a new strategy to improve graft survival and function, however, was not effective.
Collapse
Affiliation(s)
- G U Höglinger
- Department of Neurology, University of Marburg, Marburg, 35039, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Sortwell CE, Pitzer MR, Collier TJ. Time course of apoptotic cell death within mesencephalic cell suspension grafts: implications for improving grafted dopamine neuron survival. Exp Neurol 2000; 165:268-77. [PMID: 10993687 DOI: 10.1006/exnr.2000.7476] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vast majority ( congruent with 90%) of embryonic mesencephalic dopamine (DA) neurons die following transplantation to the striatum. Recent reports indicate that at least a subpopulation of grafted cells undergo apoptotic cell death at early times following implantation. This study examines the temporal pattern and magnitude of apoptotic cell death following the implantation of mesencephalic cell suspension grafts. Two techniques, a modified terminal deoxynucleotide-mediated nucleotide end labeling (TUNEL) technique and cresyl violet staining, are used to assess apoptotic cell death by detection of its biochemical and morphological identifiers, respectively. Male, Fischer 344 rats were examined at 1, 4, 7, and 28 days following implantation of embryonic day 14 (E14) ventral mesencephalic cells to the DA-denervated striatum. Results indicate that the overwhelming majority of apoptotic cell death occurs within the first 7 days after transplantation. However, the impact of the apoptosis that occurs over the first week following grafting only appears to limit grafted tyrosine hydroxylase-immunoreactive (THir) neuron survival during the first 4 days. No significant differences between the survival rates of THir neurons at 4 days after grafting and at 28 days after grafting were found. Therefore, it appears that the critical interval during which an estimated 90% of grafted DA neurons die is during the first 4 days postimplantation and that a major contributor to this cell death is apoptosis.
Collapse
Affiliation(s)
- C E Sortwell
- Department of Neurological Sciences, Research Center for Brain Repair, Rush-Presbyterian-St. Luke's Medical Center, Suite 200, 2242 West Harrison Street, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
45
|
Rosenstein JM, Silverman WF. Protein synthesis inhibition in neocortical grafts evaluated by systemic amino acid uptake autoradiography. Exp Neurol 2000; 162:268-77. [PMID: 10739633 DOI: 10.1006/exnr.1999.7328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The temporal pattern of protein synthesis inhibition was examined in grafted neocortical neurons using [(3)H]valine in vivo autoradiography. Neuronal uptake levels of systemically administered (3)H-labeled amino acids which cross the blood-brain barrier (BBB) via endothelial cell neutral carriers have long been a hallmark in studies of experimental ischemic pathology; there is likely a strong correlation between persistent protein synthesis inhibition and the progression of cell damage. Because the grafting procedure involves the loss of blood flow and the subsequent reperfusion of the donor tissue there are, mechanistically, important similarities to reversible ischemia models. The effects of ischemic injury on grafted CNS neurons are not fully understood. Quantitative analysis of grain distribution in individual graft or control (adjacent host cortex) neurons indicated an initial breakdown of the amino acid barrier system, subsequent recovery, and progressive reduction of amino acid uptake by 1 year. Up to 3 weeks after surgery grafts were flooded with the [(3)H]valine tracer but individual neurons contained relatively few silver grains. After this time, the tracer was normally distributed within graft neurons but at significantly lower levels than in controls. Grain density gradually decreased over time such that 12-month grafted neurons had approximately half that compared to control and only 58% of that in 2-month grafts; the 12-month levels were comparable to those observed at early (10 days) postoperative times. Autoradiography of immunostained sections for MAP-2, SMI 311 (neurofilament marker), and neuron-specific enolase showed reduced expression of these proteins in neurons coupled with weak amino acid tracer uptake. The results further suggest that grafted neurons bear intriguing similarities to neurons placed at ischemic risk, particularly "penumbral" neurons, which are affected by reduced blood flow and are metabolically weakened. The loss of BBB properties in early grafts may also extend to the endothelial cell amino acid carrier system, and the delayed revascularization process could affect neuronal uptake mechanisms.
Collapse
Affiliation(s)
- J M Rosenstein
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | |
Collapse
|
46
|
Brundin P, Karlsson J, Emgård M, Schierle GS, Hansson O, Petersén A, Castilho RF. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant 2000; 9:179-95. [PMID: 10811392 DOI: 10.1177/096368970000900205] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neural transplantation is developing into a therapeutic alternative in Parkinson's disease. A major limiting factor is that only 3-20% of grafted dopamine neurons survive the procedure. Recent advances regarding how and when the neurons die indicate that events preceding actual tissue implantation and during the first week thereafter are crucial, and that apoptosis plays a pivotal role. Triggers that may initiate neuronal death in grafts include donor tissue hypoxia and hypoglycemia, mechanical trauma, free radicals, growth factor deprivation, and excessive extracellular concentrations of excitatory amino acids in the host brain. Four distinct phases during grafting that can involve cell death have been identified: retrieval of the embryo; dissection and preparation of the donor tissue; implantation procedure followed by the immediate period after graft injection; and later stages of graft maturation. During these phases, cell death processes involving free radicals and caspase activation (leading to apoptosis) may be triggered, possibly involving an increase in intracellular calcium. We review different approaches that reduce cell death and increase survival of grafted neurons, typically by a factor of 2-4. For example, changes in transplantation procedure such as improved media and implantation technique can be beneficial. Calcium channel antagonists such as nimodipine and flunarizine improve nigral graft survival. Agents that counteract oxidative stress and its consequences, such as superoxide dismutase overexpression, and lazaroids can significantly increase the survival of transplanted dopamine neurons. Also, the inhibition of apoptosis by a caspase inhibitor has marked positive effects. Finally, basic fibroblast growth factor and members of the transforming growth factor-beta superfamily, such as glial cell line-derived neurotrophic factor, significantly improve the outcome of nigral transplants. These recent advances provide hope for improved survival of transplanted neurons in patients with Parkinson's disease, reducing the need for human embryonic donor tissue and increasing the likelihood of a successful outcome.
Collapse
Affiliation(s)
- P Brundin
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
49
|
Emgård M, Karlsson J, Hansson O, Brundin P. Patterns of cell death and dopaminergic neuron survival in intrastriatal nigral grafts. Exp Neurol 1999; 160:279-88. [PMID: 10630212 DOI: 10.1006/exnr.1999.7198] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies indicate that 80-95% of grafted dopamine neurons die following implantation of embryonic ventral mesencephalic tissue into the striatum. It is believed that the majority die within the first 1-3 weeks after surgery. The aim of this study was to study when and where the implanted neurons die, using the novel fluorescent stain Fluoro-Jade. Fluoro-Jade has recently been shown to stain cell bodies, dendrites, axons, and terminals of degenerating neurons. We transplanted dissociated ventral mesencephalic tissue from embryonic day 14 rat embryos into intact adult rat striatum. After perfusion and sectioning of the implanted rat brains, the number and distribution of Fluoro-Jade and tyrosine hydroxylase-positive neurons were evaluated at 6, 10, 14, and 42 days posttransplantation. Intensely Fluoro-Jade stained neurons were numerous in the grafts at 6 and 10 days after graft surgery; appeared in reduced numbers at 14 days; and had disappeared by the 42-day time point. The number of surviving tyrosine hydroxylase-positive, dopaminergic neurons in the grafts did not change between 6 and 42 days and the low survival rate confirmed that over 90% of these neurons had died during the first week. Assessment of the distribution of neurons positive for Fluoro-Jade or tyrosine hydroxylase revealed higher numbers of neurons stained for these markers located at the periphery than the center of the grafts, and this pattern did not change over time. This study indicates that transplanted neurons continue to die up to 14 days after grafting. Since the majority of transplanted tyrosine hydroxylase-positive neurons most probably die before 6 days after transplantation, neuroprotective strategies should primarily focus on the transplantation procedure and the first week after implantation.
Collapse
Affiliation(s)
- M Emgård
- Department of Physiological Sciences, Lund University, Sweden.
| | | | | | | |
Collapse
|
50
|
Onifer SM, Cannon AB, Whittemore SR. Potential of immortalized neural progenitor cells to replace lost adult central nervous system neurons. Transplant Proc 1997; 29:2221-3. [PMID: 9193602 DOI: 10.1016/s0041-1345(97)00308-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S M Onifer
- Department of Neurological Surgery, University of Miami School of Medicine, Florida 33136, USA
| | | | | |
Collapse
|