1
|
Bojja SL, Singh N, Kolathur KK, Rao CM. What is the Role of Lithium in Epilepsy? Curr Neuropharmacol 2022; 20:1850-1864. [PMID: 35410603 PMCID: PMC9886805 DOI: 10.2174/1570159x20666220411081728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer's disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.
Collapse
Affiliation(s)
| | | | | | - Chamallamudi Mallikarjuna Rao
- Address correspondence to this author at the Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India; E-mails: ,
| |
Collapse
|
2
|
Abstract
New data have emerged over the past 10 years regarding the efficacy and mechanisms of action of lithium. This article briefly summarises the evidence for the use of lithium to treat affective disorders and psychosis, reviews its putative anti-suicidal effect, highlights new research on its mechanism of action and provides an update on some important side-effects and consequences of its use.
Collapse
|
3
|
Basselin M, Ramadan E, Rapoport SI. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res Bull 2012; 87:154-71. [PMID: 22178644 PMCID: PMC3274571 DOI: 10.1016/j.brainresbull.2011.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 02/05/2023]
Abstract
The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A(2) (PLA(2)) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M(1,3,5), serotonergic 5-HT(2A/2C), dopaminergic D(2)-like (D(2), D(3), D(4)) or glutamatergic N-methyl-d-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 2005; 30:1064-75. [PMID: 15812572 DOI: 10.1038/sj.npp.1300671] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the effect of lithium chloride on dopaminergic neurotransmission via D2-like receptors coupled to phospholipase A2 (PLA2). In unanesthetized rats injected i.v. with radiolabeled arachidonic acid (AA, 20:4 n-6), regional PLA2 activation was imaged by measuring regional incorporation coefficients k* of AA (brain radioactivity divided by integrated plasma radioactivity) using quantitative autoradiography, following administration of the D2-like receptor agonist, quinpirole. In rats fed a control diet, quinpirole at 1 mg/kg i.v. increased k* for AA significantly in 17 regions with high densities of D2-like receptors, of 61 regions examined. Increases in k* were found in the prefrontal cortex, frontal cortex, accumbens nucleus, caudate-putamen, substantia nigra, and ventral tegmental area. Quinpirole, 0.25 mg/kg i.v. enhanced k* significantly only in the caudate-putamen. In rats fed LiCl for 6 weeks to produce a therapeutically relevant brain lithium concentration, neither 0.25 mg/kg nor 1 mg/kg quinpirole increased k* significantly in any region. Orofacial movements following quinpirole were modified but not abolished by LiCl feeding. The results suggest that downregulation by lithium of D2-like receptor signaling involving PLA2 and AA may contribute to lithium's therapeutic efficacy in bipolar disorder.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
5
|
Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI. Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology 2005; 30:461-72. [PMID: 15562295 DOI: 10.1038/sj.npp.1300611] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of chronic lithium administration on regional brain incorporation coefficients k* of arachidonic acid (AA), a marker of phospholipase A2 (PLA2) activation, were determined in unanesthetized rats administered i.p. saline or 1 mg/kg i.p. (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), a 5-HT2A/2C receptor agonist. After injecting [1-(14)C]AA intravenously, k* (brain radioactivity/integrated plasma radioactivity) was measured in each of 94 brain regions by quantitative autoradiography. Studies were performed in rats fed a LiCl or a control diet for 6 weeks. In the control diet rats, DOI significantly increased k* in widespread brain areas containing 5-HT2A/2C receptors. In the LiCl-fed rats, the significant positive k* response to DOI did not differ from that in control diet rats in most brain regions, except in auditory and visual areas, where the response was absent. LiCl did not change the head turning response to DOI seen in control rats. In summary, LiCl feeding blocked PLA2-mediated signal involving AA in response to DOI in visual and auditory regions, but not generally elsewhere. These selective effects may be related to lithium's therapeutic efficacy in patients with bipolar disorder, particularly its ability to ameliorate hallucinations in that disease.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
6
|
Parker MS, Parker SL, Kane JK. Internalization of neuropeptide Y Y1 and Y5 and of pancreatic polypeptide Y4 receptors is inhibited by lithium in preference to sodium and potassium ions. ACTA ACUST UNITED AC 2004; 118:67-74. [PMID: 14759559 DOI: 10.1016/j.regpep.2003.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2003] [Revised: 10/16/2003] [Accepted: 10/16/2003] [Indexed: 11/21/2022]
Abstract
The receptor-linked internalization of [125I] human neuropeptide Y (NPY) in Chinese hamster ovary (CHO) cells expressing the guinea-pig Y1 receptors or in human endometrial carcinoma-1B (Hec-1B) cells expressing the human Y5 receptor, as well as the receptor-linked internalization of human pancreatic polypeptide (hPP) receptor expressed in CHO cells, is selectively inhibited by low molarities of the Li+ cation. The Na+ and K+ cations decreased the receptor-linked internalization of agonist peptides only at high molar inputs, and largely in proportion to the reduction of cell surface binding of Y ligand peptides, dependent on ion concentration and the type of Y receptor examined. With particulates isolated from disrupted cells, there was no preferential inhibition by Li+ relative to Na+ in the binding of type-specific ligand peptides to Y receptors of any type. The observed difference could be connected to the known ability of Li+ to modify active conformations of signal transducers, which may also directly or indirectly affect the internalization motors. The decrease in the rate of Y receptor internalization by Li+ also points to a possible alteration of Y receptor signaling in vivo by lithium at acute therapeutically employed dose levels.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN 38152, USA
| | | | | |
Collapse
|
7
|
Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI. Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats. J Neurochem 2003; 85:1553-62. [PMID: 12787074 DOI: 10.1046/j.1471-4159.2003.01811.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies were performed to determine if the reported 'proconvulsant' action of lithium in rats given cholinergic drugs is related to receptor-initiated phospholipase A2 signaling via arachidonic acid. Regional brain incorporation coefficients k* of intravenously injected [1-14C]arachidonic acid, which represent this signaling, were measured by quantitative autoradiography in unanesthetized rats at baseline and following administration of subconvulsant doses of the cholinergic muscarinic agonist, arecoline. In rats fed LiCl for 6 weeks to produce a therapeutically relevant brain lithium concentration, the mean baseline values of k* in brain auditory and visual areas were significantly greater than in rats fed control diet. Arecoline at doses of 2 and 5 mg/kg intraperitoneally increased k* in widespread brain areas in rats fed the control diet as well as the LiCl diet. However, the arecoline-induced increments often were significantly greater in the LiCl-fed than in the control diet-fed rats. Lithium's elevation of baseline k* in auditory and visual regions may correspond to its ability in humans to increase auditory and visual evoked responses. Additionally, its augmentation of the k* responses to arecoline may underlie its reported 'proconvulsant' action with cholinergic drugs, as arachidonic acid and its eicosanoid metabolites can increase neuronal excitability and seizure propagation.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
8
|
Williams MB, Jope RS. Circadian variation in rat brain AP-1 DNA binding activity after cholinergic stimulation: modulation by lithium. Psychopharmacology (Berl) 1995; 122:363-8. [PMID: 8657834 DOI: 10.1007/bf02246267] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The potential influence of a circadian rhythm and its modulation by lithium on the stimulation of AP-1 DNA binding activity by the cholinergic agonist pilocarpine was investigated in rat cerebral cortex. Stimulation of AP-1 binding after pilocarpine (30 mg/kg) was evident within 1 h and was maximally stimulated by 200% at 2 h. Pilocarpine-stimulated AP-1 binding exhibited a circadian rhythm in AP-1 binding measured at 0800, 1200, and 1600 hours, 2 h after pilocarpine. Pilocarpine-stimulated AP-1 binding at 0800 hours was approximately twice the level measured at 1600 hours. After acute lithium treatment, pilocarpine administration induced generalized seizures after about 20 min and stimulated AP-1 binding which increased continuously for 4.5 h, at which time the stimulation was 900% above control. A circadian variation was apparent in AP-1 binding stimulated by acute lithium plus pilocarpine, with stimulation at 0800 hours being 1.5 times that at 1600 hours. After chronic lithium and pilocarpine, which also produced seizures, there was no circadian variation in pilocarpine-stimulated AP-1 binding. Thus pilocarpine-induced AP-1 binding in rat cerebral cortex was influenced by a circadian rhythm, but this was abolished by chronic lithium administration.
Collapse
Affiliation(s)
- M B Williams
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham 35294-0017, USA
| | | |
Collapse
|
9
|
Williams MB, Jope RS. Modulation by inositol of cholinergic- and serotonergic-induced seizures in lithium-treated rats. Brain Res 1995; 685:169-78. [PMID: 7583243 DOI: 10.1016/0006-8993(95)00395-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hippocampal and cortical EEG recordings in rats were used to monitor the in vivo modulation by lithium of responses to agonists for 5HT2/5HT1c serotonergic (DOI) and cholinergic (pilocarpine) receptors and the influence of inositol administration. Administration of DOI (8 mg/kg) or pilocarpine (30 mg/kg) to rats pretreated with lithium acutely (3 mmol/kg) or chronically (dietary, 4 weeks) resulted in seizures, whereas these doses did not cause seizures without lithium pretreatment. This indicated that lithium most likely affects a signal transduction process common to both systems, which is the phosphoinositide second messenger system. To examine the potential influence of altered inositol levels on these responses, we tested the effects of infusions (10 mg, i.c.v.) of myo-inositol, a precursor of phosphoinositide synthesis, and of epi-inositol, an isomer not used for phosphoinositide synthesis. Administration of myo-inositol (10 mg) slightly reduced the incidence of seizures induced by acute lithium plus DOI but almost completely blocked seizures induced by acute lithium plus pilocarpine. This was surprising since seizures induced by acute lithium plus DOI were less severe than those after acute lithium plus pilocarpine, but myo-inositol was more effective in blocking the latter. Epi-inositol also blocked seizures under both conditions but it was less effective than myo-inositol after treatment with acute lithium plus pilocarpine. The latencies to seizures and/or severity of seizures were potentiated more by chronic than acute lithium pretreatment with both DOI and pilocarpine, but attenuation by myo-inositol was less with each agonist after chronic lithium compared with acute lithium treatment. Peripheral administration of a high dose of myo-inositol blocked seizures induced by acute lithium plus pilocarpine, but the inositol treatment itself was toxic and caused seizures prior to pilocarpine administration, so the mechanism of action cannot simply be attributed to increased brain inositol levels. These results demonstrate that lithium modulates the in vivo responses to DOI and pilocarpine, most probably through an effect on the phosphoinositide signal transduction system. They also show that centrally administered myo-inositol modifies responses to these agents, but the effectiveness of epi-inositol and other results leave unclear the mechanistic basis of its actions.
Collapse
Affiliation(s)
- M B Williams
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham 35294-0017, USA
| | | |
Collapse
|