1
|
Crossman SH, Khabooshan MA, Stamatis SA, Vandestadt C, Kaslin J. Mechanical Ablation of Larval Zebrafish Spinal Cord. Methods Mol Biol 2024; 2746:47-56. [PMID: 38070078 DOI: 10.1007/978-1-0716-3585-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Unlike mammals, adult and larval zebrafish exhibit robust regeneration following traumatic spinal cord injury. This remarkable regenerative capacity, combined with exquisite imaging capabilities and an abundance of powerful genetic techniques, has established the zebrafish as an important vertebrate model for the study of neural regeneration. Here, we describe a protocol for the complete mechanical ablation of the larval zebrafish spinal cord. With practice, this protocol can be used to reproducibly injure upward of 100 samples per hour, facilitating the high-throughput screening of factors involved in spinal cord regeneration and repair.
Collapse
Affiliation(s)
- Samuel Henry Crossman
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| | - Mitra Amiri Khabooshan
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Celia Vandestadt
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Jan Kaslin
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Matthews J, Surey S, Grover LM, Logan A, Ahmed Z. Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury. Sci Rep 2021; 11:18124. [PMID: 34518601 PMCID: PMC8438067 DOI: 10.1038/s41598-021-97604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
The treatment of spinal cord injury (SCI) is a complex challenge in regenerative medicine, complicated by the low intrinsic capacity of CNS neurons to regenerate their axons and the heterogeneity in size, shape and extent of human injuries. For example, some contusion injuries do not compromise the dura mater and in such cases implantation of preformed scaffolds or drug delivery systems may cause further damage. Injectable in situ thermosensitive scaffolds are therefore a less invasive alternative. In this study, we report the development of a novel, flowable, thermosensitive, injectable drug delivery system comprising bovine collagen (BC) and fibrinogen (FB) that forms a solid BC/FB gel (Gel) immediately upon exposure to physiological conditions and can be used to deliver reparative drugs, such as the naturally occurring anti-inflammatory, anti-scarring agent Decorin, into adult rat spinal cord lesion sites. In dorsal column lesions of adult rats treated with the Gel + Decorin, cavitation was completely suppressed and instead lesion sites became filled with injury-responsive cells and extracellular matrix materials, including collagen and laminin. Decorin increased the intrinsic potential of dorsal root ganglion neurons (DRGN) by increasing their expression of regeneration associated genes (RAGs), enhanced local axon regeneration/sprouting, as evidenced both histologically and by improved electrophysiological, locomotor and sensory function recovery. These results suggest that this drug formulated, injectable hydrogel has the potential to be further studied and translated into the clinic.
Collapse
Affiliation(s)
- Jacob Matthews
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarina Surey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Abstract
Mammals fail in sensory and motor recovery following spinal cord injury due to lack of axonal regrowth below the level of injury as well as an inability to reinitiate spinal neurogenesis. However, some anamniotes including the zebrafish Danio rerio exhibit both sensory and functional recovery even after complete transection of the spinal cord. The adult zebrafish is an established model organism for studying regeneration following spinal cord injury, with sensory and motor recovery by 6 weeks post-injury. To take advantage of in vivo analysis of the regenerative process available in the transparent larval zebrafish as well as genetic tools not accessible in the adult, we use the larval zebrafish to study regeneration after spinal cord transection. Here we demonstrate a method for reproducibly and verifiably transecting the larval spinal cord. After transection, our data shows sensory recovery beginning at 2 days post-injury (dpi), with the C-bend movement detectable by 3 dpi and resumption of free swimming by 5 dpi. Thus we propose the larval zebrafish as a companion tool to the adult zebrafish for the study of recovery after spinal cord injury.
Collapse
Affiliation(s)
- Lisa K Briona
- Department of Neurobiology & Anatomy, University of Utah
| | | |
Collapse
|
4
|
HUANG YICHENG, HUANG YIYOU. TISSUE ENGINEERING FOR NERVE REPAIR. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s101623720600018x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nerve regeneration is a complex biological phenomenon. Once the nervous system is impaired, its recovery is difficult and malfunctions in other parts of the body may occur because mature neurons don't undergo cell division. To increase the prospects of axonal regeneration and functional recovery, researches have focused on designing “nerve guidance channels” or “nerve conduits”. For developing tissue engineered nerve conduits, four components come to mind, including a scaffold for axonal proliferation, supporting cells such as Schwann cells, growth factors, and extracelluar matrix. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the advanced technologies that are explored to fabricate nerve conduits. Furthermore, we also introduce a new method we developed to create longitudinally oriented channels within biodegradable polymers, Chitosan and PLGA, using a combined lyophilizing and wire-heating process. This innovative method using Ni-Cr wires as mandrels to create nerve guidance channels. The process is easy, straightforward, highly reproducible, and could easily be tailored to other polymer and solvent systems. These scaffolds could be useful for guided regeneration after transection injury in either the peripheral nerve or spinal cord.
Collapse
Affiliation(s)
- YI-CHENG HUANG
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
| | - YI-YOU HUANG
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Kruse F, Bosse F, Vogelaar CF, Brazda N, Küry P, Gasis M, Müller HW. Cortical gene expression in spinal cord injury and repair: insight into the functional complexity of the neural regeneration program. Front Mol Neurosci 2011; 4:26. [PMID: 21994489 PMCID: PMC3182759 DOI: 10.3389/fnmol.2011.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/05/2011] [Indexed: 11/29/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in the formation of a fibrous scar acting as a growth barrier for regenerating axons at the lesion site. We have previously shown (Klapka et al., 2005) that transient suppression of the inhibitory lesion scar in rat spinal cord leads to long distance axon regeneration, retrograde rescue of axotomized cortical motoneurons, and improvement of locomotor function. Here we applied a systemic approach to investigate for the first time specific and dynamic alterations in the cortical gene expression profile following both thoracic SCI and regeneration-promoting anti-scarring treatment (AST). In order to monitor cortical gene expression we carried out microarray analyses using total RNA isolated from layer V/VI of rat sensorimotor cortex at 1–60 days post-operation (dpo). We demonstrate that cortical neurons respond to injury by massive changes in gene expression, starting as early as 1 dpo. AST, in turn, results in profound modifications of the lesion-induced expression profile. The treatment attenuates SCI-triggered transcriptional changes of genes related to inhibition of axon growth and impairment of cell survival, while upregulating the expression of genes associated with axon outgrowth, cell protection, and neural development. Thus, AST not only modifies the local environment impeding spinal cord regeneration by reduction of fibrous scarring in the injured spinal cord, but, in addition, strikingly changes the intrinsic capacity of cortical pyramidal neurons toward enhanced cell maintenance and axonal regeneration.
Collapse
Affiliation(s)
- Fabian Kruse
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Huang F, Wang J, Chen A. Effects of co-grafts mesenchymal stem cells and nerve growth factor suspension in the repair of spinal cord injury. ACTA ACUST UNITED AC 2008; 26:206-10. [PMID: 16850748 DOI: 10.1007/bf02895817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen's method. One week after the injury, the injured cords were injected with Dubecco-modified Eagles medium (DMEM, Group I), MSCs (Group II), NGF (Group III), and MSCs plus NGF (Group IV). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunocytochemical staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunocytochemical staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P<0. 05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astrocytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.
Collapse
|
7
|
Kim BG, Dai HN, Lynskey JV, McAtee M, Bregman BS. Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats. J Comp Neurol 2006; 497:182-98. [PMID: 16705682 PMCID: PMC2570641 DOI: 10.1002/cne.20980] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transplantation of growth-permissive cells or tissues was used to bridge a lesion cavity and induce axonal growth in experimental spinal cord injury (SCI). Axonal interactions between host and transplant may be affected by upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) following various transplantation strategies. The extent of axonal growth and functional recovery after transplantation of embryonic spinal cord tissue decreases in adult compared to neonatal host. We hypothesized that CSPGs contribute to the decrease in the extent to which transplant supports axonal remodeling and functional recovery. Expression of CSPGs increased after overhemisection SCI in adult rats but not in neonates. Embryonic spinal cord transplant was surrounded by CSPGs deposited in host cord, and the interface between host and transplant seemed to contain a large amount of CSPGs. Intrathecally delivered chondroitinase ABC (C'ase) improved recovery of distal forelimb usage and skilled motor behavior after C4 overhemisection injury and transplantation in adults. This behavioral recovery was accompanied by an increased amount of raphespinal axons growing into the transplant, and raphespinal innervation to the cervical motor region was promoted by C'ase plus transplant. Moreover, C'ase increased the number of transplanted neurons that grew axons to the host cervical enlargement, suggesting that degradation of CSPGs supports remodeling not only of host axons but also axons from transplanted neurons. Our results suggest that CSPGs constitute an inhibitory barrier to prevent axonal interactions between host and transplant in adults, and degradation of the inhibitory barrier can potentiate transplant-mediated axonal remodeling and functional recovery after SCI.
Collapse
Affiliation(s)
- Byung G Kim
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
8
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Abstract
Nerve regeneration is a complex biological phenomenon. Once the nervous system is impaired, its recovery is difficult and malfunctions in other parts of the body may occur because mature neurons do not undergo cell division. To increase the prospects of axonal regeneration and functional recovery, researches have focused on designing "nerve guidance channels" or "nerve conduits." When developing ideal tissue-engineered nerve conduits, several components come to mind. They include a biodegradable and porous channel wall, the ability to deliver bioactive growth factors, incorporation of support cells, an internal oriented matrix to support cell migration, intraluminal channels to mimic the structure of nerve fascicles, and electrical activities. This article reviews the factors that are critical for nerve repair, and the advanced technologies that are explored to fabricate nerve conduits. To more accurately mimic natural repair in the body, recent studies have focused on the use of various advanced approaches to create ideal nerve conduits that combine multiple stimuli in an effort to better mimic the complex signals normally found in the body.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
10
|
Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. ACTA ACUST UNITED AC 2005; 49:48-64. [PMID: 15960986 DOI: 10.1016/j.brainresrev.2004.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 09/29/2004] [Accepted: 11/29/2004] [Indexed: 02/04/2023]
Abstract
Owing to the profound impact of nervous system damage, extensive studies have been carried out aimed at facilitating axonal regeneration following injury. Tissue engineering, as an emerging and rapidly growing field, has received extensive attention for nervous system axonal guidance. Numerous engineered substrates containing oriented extracellular matrix molecules, cells or channels have displayed potential of supporting axonal regeneration and functional recovery. Most attempts are focused on seeking new biomaterials, new cell sources, as well as novel designs of tissue-engineered neuronal bridging devices, to generate safer and more efficacious neuronal tissue repairs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Bioengineering, Clemson University, BSB# 303, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
11
|
Kraus KS, Illing RB. Cell death or survival: Molecular and connectional conditions for olivocochlear neurons after axotomy. Neuroscience 2005; 134:467-81. [PMID: 15964701 DOI: 10.1016/j.neuroscience.2005.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/24/2005] [Accepted: 04/12/2005] [Indexed: 12/11/2022]
Abstract
We aimed to determine whether rat olivocochlear neurons survive axotomy inflicted through cochlear ablation, or if they degenerate. To estimate their intrinsic potential for axonal regeneration, we investigated the expression of the transcription factor c-Jun and the growth-associated protein-43 (GAP43). Axonal tracing studies based on application of Fast Blue into the cochlea and calcitonin gene-related peptide immunostaining revealed that many, but not all, lateral olivocochlear neurons in the ipsilateral lateral superior olive degenerated upon cochleotomy. A decrease of their number was noticed 2 weeks after the lesion, and 2 months postoperative the population was reduced to approximately one quarter (27-29%) of its original size. No further reduction took place at longer survival times up to 1 year. Most or all shell neurons and medial olivocochlear neurons survived axotomy. Following cochleotomy, 56-60% of the lateral olivocochlear neurons in the ipsilateral lateral superior olive were found to co-express c-Jun and GAP43. Only a small number of shell and medial olivocochlear neurons up-regulated c-Jun expression, and only a small number of shell neurons expressed GAP43. Up-regulation of c-Jun and GAP43 in lateral olivocochlear neurons upon axotomy suggests that they have an intrinsic potential to regenerate after axotomy, but cell counts based on the markers Fast Blue and calcitonin gene-related peptide indicate that this potential cannot be exploited and degeneration is induced instead. The survival of one quarter of the axotomized lateral olivocochlear neurons and of all, or almost all, shell and medial olivocochlear neurons appeared to depend on connections of these cells to other regions than the cochlea by means of axon collaterals, which remained intact after cochleotomy.
Collapse
Affiliation(s)
- K S Kraus
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Killianstrasse 5, D-79106 Freiburg, Germany
| | | |
Collapse
|
12
|
Abstract
Nerve regeneration is a complex biological phenomenon. In the peripheral nervous system, nerves can regenerate on their own if injuries are small. Larger injuries must be surgically treated, typically with nerve grafts harvested from elsewhere in the body. Spinal cord injury is more complicated, as there are factors in the body that inhibit repair. Unfortunately, a solution to completely repair spinal cord injury has not been found. Thus, bioengineering strategies for the peripheral nervous system are focused on alternatives to the nerve graft, whereas efforts for spinal cord injury are focused on creating a permissive environment for regeneration. Fortunately, recent advances in neuroscience, cell culture, genetic techniques, and biomaterials provide optimism for new treatments for nerve injuries. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the current approaches that are being explored to aid peripheral nerve regeneration and spinal cord repair.
Collapse
Affiliation(s)
- Christine E Schmidt
- Department of Biomedical Engineering The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
13
|
Hendriks WT, Ruitenberg MJ, Blits B, Boer GJ, Verhaagen J. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. PROGRESS IN BRAIN RESEARCH 2004; 146:451-76. [PMID: 14699980 DOI: 10.1016/s0079-6123(03)46029-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injuries to the adult mammalian spinal cord often lead to severe damage to both ascending (sensory) pathways and descending (motor) nerve pathways without the perspective of complete functional recovery. Future spinal cord repair strategies should comprise a multi-factorial approach addressing several issues, including optimalization of survival and function of spared central nervous system neurons in partial lesions and the modulation of trophic and inhibitory influences to promote and guide axonal regrowth. Neurotrophins have emerged as promising molecules to augment neuroprotection and neuronal regeneration. Although intracerebroventricular, intrathecal and local protein delivery of neurotrophins to the injured spinal cord has resulted in enhanced survival and regeneration of injured neurons, there are a number of drawbacks to these methods. Viral vector-mediated transfer of neurotrophin genes to the injured spinal cord is emerging as a novel and effective strategy to express neurotrophins in the injured nervous system. Ex vivo transfer of neurotrophic factor genes is explored as a way to bridge lesions cavities for axonal regeneration. Several viral vector systems, based on herpes simplex virus, adenovirus, adeno-associated virus, lentivirus, and moloney leukaemia virus, have been employed. The genetic modification of fibroblasts, Schwann cells, olfactory ensheathing glia cells, and stem cells, prior to implantation to the injured spinal cord has resulted in improved cellular nerve guides. So far, neurotrophic factor gene transfer to the injured spinal cord has led to results comparable to those obtained with direct protein delivery, but has a number of advantages. The steady advances that have been made in combining new viral vector systems with a range of promising cellular platforms for ex vivo gene transfer (e.g., primary embryonic neurons, Schwann cells, olfactory ensheating glia cells and neural stem cells) holds promising perspectives for the development of new neurotrophic factor-based therapies to repair the injured nervous system.
Collapse
Affiliation(s)
- William T Hendriks
- Graduate School for Neurosciences Amsterdam, Department of Neuroregeneration, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Schwartz M, Hauben E. T cell-based therapeutic vaccination for spinal cord injury. PROGRESS IN BRAIN RESEARCH 2002; 137:401-6. [PMID: 12440382 DOI: 10.1016/s0079-6123(02)37031-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal cord injury results in a massive loss of neurons, due not only to the direct effects of the primary injury but also to self-destructive processes triggered by the insult. Our group has recently reported that traumatic injury of the central nervous system (CNS) spontaneously evokes a purposeful T cell-mediated autoimmune response that reduces the injury-induced degeneration in the CNS; in its absence, the outcome of the injury is worse. Using a rat model of spinal cord contusion, we show here that this autoimmune protection can be induced and/or boosted by post-traumatic immunization with CNS myelin-associated self antigens such as myelin basic protein (MBP). In an attempt to reduce the risk of pathogenic autoimmunity while retaining the benefit of the immunization, we immunized spinally injured rats with MBP-derived peptides with attenuated pathogenic properties created by replacement of one amino acid in the T cell receptor-binding site. Immunization with these altered peptide ligands immediately after spinal cord contusion resulted in a significant improvement in recovery, assessed by locomotor activity in an open field. The feasibility of T cell-based vaccination, as opposed to vaccination mediated by antibodies for the treatment of nerve trauma, is further suggested by the relatively rapid onset of the T cell response following immunization. Such cell-mediated therapy is not only a way to evoke and boost a physiological remedy; it also has the advantage of being mediated by mobile cells, which can produce a variety of neurotrophic factors and cytokines in accordance with the tissue needs. T cells can also regulate other immune cells in a way that favors tissue maintenance and repair.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
15
|
Novikova LN, Novikov LN, Kellerth JO. Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats. J Comp Neurol 2002; 452:255-63. [PMID: 12353221 DOI: 10.1002/cne.10381] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) induces retrograde cell death in descending pathways, which can be prevented by long-term intrathecal infusion of neurotrophins (Novikova et al. [2000] Eur J Neurosci 12:776-780). The present study investigates whether the same treatment also leads to improved regeneration of the injured tracts. After cervical SCI in adult rats, a peripheral nerve graft was attached to the rostral wall of the lesion cavity. The animals were treated by local application into the cavity of Gelfoam soaked in (1) phosphate buffered saline (untreated controls) or (2) a mixture of the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) (local treatment), or by intrathecal infusion of BDNF + NT-3 for (3) 2 weeks (short-term treatment) or (4) 5-8 weeks (long-term treatment). Despite a very strong survival effect, long-term treatment failed to stimulate ingrowth of descending tracts into the nerve graft. In comparison with untreated controls, the latter treatment also caused 35% reduction in axonal sprouting of descending pathways rostral to the lesion site and 72% reduction in the number of spinal cord neurons extending axons into the nerve graft. Local and short-term treatments neither prevented retrograde cell death nor enhanced regeneration of descending tracts, but induced robust regeneration of spinal cord neurons into the nerve graft. These results indicate that the signal pathways promoting neuronal survival and axonal regeneration, respectively, in descending tracts after SCI respond differently to neurotrophic stimuli and that efficient rescue of axotomized tract neurons is not a sufficient prerequisite for regeneration.
Collapse
Affiliation(s)
- Liudmila N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
16
|
Abstract
There is a devastating loss of function when substantial numbers of axons are interrupted by injury to the spinal cord. This loss may be eventually reversed by providing bridging prostheses that will enable axons to regrow across the injury site and enter the spinal cord beyond. This review addresses the bridging strategies that are being developed in a number of spinal cord lesion models: complete and partial transection and cavities arising from contusion. Bridges containing peripheral nerve, Schwann cells, olfactory ensheathing glia, fetal tissue, stem cells/neuronal precursor cells, and macrophages are being evaluated as is the administration of neurotrophic factors, administered by infusion or secreted by genetically engineered cells. Biomaterials may be an important factor in developing successful strategies. Due to the complexity of the sequelae following spinal cord injury, no one strategy will be effective. The compelling question today is: What combinations of the strategies discussed, or new ones, along with an initial neuroprotective treatment, will substantially improve outcome after spinal cord injury?
Collapse
Affiliation(s)
- M B Bunge
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, FL 33101, USA.
| |
Collapse
|
17
|
Affiliation(s)
- M S Rao
- Department of Neurobiology and Anatomy, University of Utah Medical School, Salt Lake City 84132, USA.
| | | |
Collapse
|
18
|
Abstract
Although medical advancements have significantly increased the survival of spinal cord injury patients, restoration of function has not yet been achieved. Neural transplantation has been studied over the past decade in animal models as a repair strategy for spinal cord injury. Although spinal cord neural transplantation has yet to reach the point of clinical application and much work remains to be done, reconstructive strategies offer the greatest hope for the treatment of spinal cord injury in the future. This article presents the scientific basis of neural transplantation as a repair strategy and reviews the current status of neural transplantation in spinal cord injury.
Collapse
Affiliation(s)
- S D Christie
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
19
|
Abstract
Partial injury to the spinal cord can propagate itself, sometimes leading to paralysis attributable to degeneration of initially undamaged neurons. We demonstrated recently that autoimmune T cells directed against the CNS antigen myelin basic protein (MBP) reduce degeneration after optic nerve crush injury in rats. Here we show that not only transfer of T cells but also active immunization with MBP promotes recovery from spinal cord injury. Anesthetized adult Lewis rats subjected to spinal cord contusion at T7 or T9, using the New York University impactor, were injected systemically with anti-MBP T cells at the time of contusion or 1 week later. Another group of rats was immunized, 1 week before contusion, with MBP emulsified in incomplete Freund's adjuvant (IFA). Functional recovery was assessed in a randomized, double-blinded manner, using the open-field behavioral test of Basso, Beattie, and Bresnahan. The functional outcome of contusion at T7 differed from that at T9 (2.9+/-0.4, n = 25, compared with 8.3+/-0.4, n = 12; p<0.003). In both cases, a single T cell treatment resulted in significantly better recovery than that observed in control rats treated with T cells directed against the nonself antigen ovalbumin. Delayed treatment with T cells (1 week after contusion) resulted in significantly better recovery (7.0+/-1; n = 6) than that observed in control rats treated with PBS (2.0+/-0.8; n = 6; p<0.01; nonparametric ANOVA). Rats immunized with MBP obtained a recovery score of 6.1+/-0.8 (n = 6) compared with a score of 3.0+/-0.8 (n = 5; p<0.05) in control rats injected with PBS in IFA. Morphometric analysis, immunohistochemical staining, and diffusion anisotropy magnetic resonance imaging showed that the behavioral outcome was correlated with tissue preservation. The results suggest that T cell-mediated immune activity, achieved by either adoptive transfer or active immunization, enhances recovery from spinal cord injury by conferring effective neuroprotection. The autoimmune T cells, once reactivated at the lesion site through recognition of their specific antigen, are a potential source of various protective factors whose production is locally regulated.
Collapse
|
20
|
Joosten EA, Majewska B, Houweling DA, Bär PR, Gispen WH. Alpha-melanocyte stimulating hormone promotes regrowth of injured axons in the adult rat spinal cord. J Neurotrauma 1999; 16:543-53. [PMID: 10391370 DOI: 10.1089/neu.1999.16.543] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptides related to melanotropin (alphaMSH) and corticotropin (ACTH), collectively termed melanocortins, are known to improve the postlesion repair of injured peripheral nerves. In addition, melanocortins exert trophic effects on the outgrowth of neurites from central nervous system neurons in vitro. Here we report, for the first time, the stimulation by alpha-MSH of spinal neurite outgrowth in vivo after injury. In the in vivo model, spinal cord trauma was produced at lower thoracic spinal levels of adult rats. Under a surgical microscope a laminectomy was performed exposing the dorsum of the spinal cord. Then the dura was cut longitudinally and the dorsal columns were identified. Iridectomy scissors were used to transect the dorsal half of the spinal cord bilaterally, thereby completely lesioning the main corticospinal tract component. Then the lesion gap was immediately filled with a solid collagen matrix. Ingrowth of fibers was quantified using an advanced image analyser using a video image of sections transmitted by a camera. In the control situation virtually no ingrowth of sprouting injured fibers into the collagen implant in the lesion gap was seen. However, when the collagen matrix contained 10(-8) M alpha-MSH, a profound and significant stimulation of fiber ingrowth into the implant was observed (alpha-MSH, 21.5 +/- 2.9%; control, 1.4 +/- 0.6% p < 0.01). A small percentage of these ingrowing fibers was CGRP-immunoreactive (17.0 +/- 4%), whereas no serotonergic ingrowth was observed. Furthermore, we found that local application of alpha-MSH directs a substantial amount of lesioned anterogradely labelled corticospinal tract axons to regrow into the collagen implant (alpha-MSH, 15.2 +/- 5.2%; control, 0.5 +/- 0.3%, p < 0.01). The observed fiber ingrowth is not accompanied by an invasion of astroglial or reactive microglial cells into the implant. In conclusion, inclusion of alpha-MSH in the collagen implant stimulates the regrowth of injured axons in the adult rat spinal cord.
Collapse
Affiliation(s)
- E A Joosten
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|