1
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
2
|
Abe M, Masuda M, Mizukami Y, Inoue S, Mizutani Y. Epidermal keratinocytes regulate hyaluronan metabolism via extracellularly secreted hyaluronidase 1 and hyaluronan synthase 3. J Biol Chem 2024; 300:107449. [PMID: 38844132 PMCID: PMC11292368 DOI: 10.1016/j.jbc.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Hyaluronan (HA) is a high-molecular-weight (HMW) glycosaminoglycan, which is a fundamental component of the extracellular matrix that is involved in a variety of biological processes. We previously showed that the HYBID/KIAA1199/CEMIP axis plays a key role in the depolymerization of HMW-HA in normal human dermal fibroblasts (NHDFs). However, its roles in normal human epidermal keratinocytes (NHEKs) remained unclear. HYBID mRNA expression in NHEKs was lower than that in NHDFs, and NHEKs showed no depolymerization of extracellular HMW-HA in culture, indicating that HYBID does not contribute to extracellular HA degradation. In this study, we found that the cell-free conditioned medium of NHEKs degraded HMW-HA under weakly acidic conditions (pH 4.8). This degrading activity was abolished by hyaluronidase 1 (HYAL1) knockdown but not by HYAL2 knockdown. Newly synthesized HYAL1 was mainly secreted extracellularly, and the secretion of HYAL1 was increased during differentiation, suggesting that epidermal interspace HA is physiologically degraded by HYAL1 according to pH decrease during stratum corneum formation. In HA synthesis, hyaluronan synthase 3 (HAS3) knockdown reduced HA production by NHEKs, and interferon-γ-dependent HA synthesis was correlated with increased HAS3 expression. Furthermore, HA production was increased by TMEM2 knockdown through enhanced HAS3 expression. These results indicate that NHEKs regulate HA metabolism via HYAL1 and HAS3, and TMEM2 is a regulator of HAS3-dependent HA production.
Collapse
Affiliation(s)
- Minori Abe
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Masuda
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube, Yamaguchi, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
3
|
Le T, Ferling I, Qiu L, Nabaile C, Assunção L, Roskelley CD, Grinstein S, Freeman SA. Redistribution of the glycocalyx exposes phagocytic determinants on apoptotic cells. Dev Cell 2024; 59:853-868.e7. [PMID: 38359833 DOI: 10.1016/j.devcel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.
Collapse
Affiliation(s)
- Trieu Le
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Iuliia Ferling
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lanhui Qiu
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Clement Nabaile
- Department of Learning and Research in Biology, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Leonardo Assunção
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Size matters: differential property of hyaluronan and its fragments in the skin- relation to pharmacokinetics, immune activity and wound healing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023. [DOI: 10.1007/s40005-023-00614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Buckley C, Murphy EJ, Montgomery TR, Major I. Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide. Polymers (Basel) 2022; 14:polym14173442. [PMID: 36080515 PMCID: PMC9460006 DOI: 10.3390/polym14173442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The inclusion of physiologically active molecules into a naturally occurring polymer matrix can improve the degradation, absorption, and release profile of the drug, thus boosting the therapeutic impact and potentially even reducing the frequency of administration. The human body produces significant amounts of polysaccharide hyaluronic acid, which boasts exceptional biocompatibility, biodegradability, and one-of-a-kind physicochemical features. In this review, we will examine the clinical trials currently utilizing hyaluronic acid and address the bright future of this versatile polymer, as well as summarize the numerous applications of hyaluronic acid in drug delivery and immunomodulation.
Collapse
Affiliation(s)
- Ciara Buckley
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Biosciences Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Emma J. Murphy
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- LIFE Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Therese R. Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Correspondence:
| |
Collapse
|
6
|
Kainulainen K, Takabe P, Heikkinen S, Aaltonen N, Motte CDL, Rauhala L, Durst FC, Oikari S, Hukkanen T, Rahunen E, Ikonen E, Hartikainen JM, Ketola K, Pasonen-Seppänen S. M1 macrophages induce pro-tumor inflammation in melanoma cells via TNFR–NF-κB signaling. J Invest Dermatol 2022; 142:3041-3051.e10. [DOI: 10.1016/j.jid.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
|
7
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
8
|
Mylvaganam S, Riedl M, Vega A, Collins RF, Jaqaman K, Grinstein S, Freeman SA. Stabilization of Endothelial Receptor Arrays by a Polarized Spectrin Cytoskeleton Facilitates Rolling and Adhesion of Leukocytes. Cell Rep 2021; 31:107798. [PMID: 32579925 PMCID: PMC7548125 DOI: 10.1016/j.celrep.2020.107798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Multivalent complexes of endothelial adhesion receptors (e.g., selectins) engage leukocytes to orchestrate their migration to inflamed tissues. Proper anchorage and sufficient density (clustering) of endothelial receptors are required for efficient leukocyte capture and rolling. We demonstrate that a polarized spectrin network dictates the stability of the endothelial cytoskeleton, which is attached to the apical membrane, at least in part, by the abundant transmembrane protein CD44. Single-particle tracking revealed that CD44 undergoes prolonged periods of immobilization as it tethers to the cytoskeleton. The CD44-spectrin "picket fence" alters the behavior of bystander molecules-notably, selectins-curtailing their mobility, inducing their apical accumulation, and favoring their clustering within caveolae. Accordingly, depletion of either spectrin or CD44 virtually eliminated leukocyte rolling and adhesion to the endothelium. Our results indicate that a unique spectrin-based apical cytoskeleton tethered to transmembrane pickets-notably, CD44-is essential for proper extravasation of leukocytes in response to inflammation.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Iriyama S, Nishikawa S, Hosoi J, Amano S. Basement Membrane Helps Maintain Epidermal Hyaluronan Content. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1010-1019. [PMID: 33753027 DOI: 10.1016/j.ajpath.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix of most mammalian tissues, including the epidermis. It is synthesized in epidermis, and mainly metabolized after transfer to the liver via lymphatic vessels in the dermis following its passage through the basement membrane (BM) at the dermal-epidermal junction. The aim of the present study was to investigate the influence of BM integrity on the level of HA in the epidermis. Epidermal HA content was decreased in sun-exposed skin of older subjects, whose BM structure was impaired, compared with sun-exposed young skin and sun-protected skin, in which BM integrity was well maintained. In an organotypic culture model of sun-exposed facial skin, epidermal HA was increased in the presence of inhibitors of BM-degrading matrix metalloproteinases and heparanase. In a skin equivalent model treated with these inhibitors, HA content was increased in the epidermis, but decreased in conditioned medium. These findings suggest that the BM at the dermal-epidermal junction plays an important role in maintaining epidermal HA levels.
Collapse
|
10
|
Tavianatou AG, Piperigkou Z, Koutsakis C, Barbera C, Beninatto R, Franchi M, Karamanos NK. The action of hyaluronan in functional properties, morphology and expression of matrix effectors in mammary cancer cells depends on its molecular size. FEBS J 2021; 288:4291-4310. [PMID: 33512780 DOI: 10.1111/febs.15734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes a heterogeneous disease. The expression profiles of estrogen receptors (ERs), as well as the expression patterns of extracellular matrix (ECM) macromolecules, determine its development and progression. Hyaluronan (HA) is an ECM molecule that regulates breast cancer cells' properties in a molecular size-dependent way. Previous studies have shown that 200-kDa HA fragments modulate the functional properties, morphology, and expression of several matrix mediators of the highly metastatic ERα- /ERβ+ MDA-MB-231 cells. In order to evaluate the effects of HA fragments (< 10, 30 and 200-kDa) in ERβ-suppressed breast cancer cells, the shERβ MDA-MB-231 cells were used. These cells are less aggressive when compared with MDA-MB-231 cells. To this end, the functional properties, the morphology, and the expression of the molecules associated with breast cancer cells metastatic potential were studied. Notably, both cell proliferation and invasion were significantly reduced after treatment with 200-kDa HA. Moreover, as assessed by scanning electron microscopy, 200-kDa HA affected cellular morphology, and as assessed by qPCR, upregulated the epithelial marker Ε-cadherin. The expression profiles of ECM mediators, such as HAS2, CD44, and MMP7, were also altered. On the other hand, cellular migration and the expression levels of syndecan-4 (SDC-4) were not significantly affected in contrast to our observations regarding MDA-MB-231 cells. These novel data demonstrate that the molecular size of the HA determines its effects on ERβ-suppressed breast cancer cells and that 200-kDa HA exhibits antiproliferative effects on these cells. A deeper understanding of this mechanism may contribute to the development of therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | | | | | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
11
|
Hyaluronic acid electrospinning: Challenges, applications in wound dressings and new perspectives. Int J Biol Macromol 2021; 173:251-266. [PMID: 33476622 DOI: 10.1016/j.ijbiomac.2021.01.100] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Hyaluronic acid (HA) has already been consolidated in the literature as an extremely efficient biopolymer for biomedical applications. In addition to its biodegradability, HA also has excellent biological properties. In the nanofiber form, this polymer can mimic biological tissues, mainly the layers of the skin, and therefore has great potential as structures for the construction of wound dressings. Despite the numerous efforts from the scientific community proposing new dressings, this is an area in constant evolution. A dressing that brings together all the properties of an ideal dressing has not been developed yet. Electrospinning is a simple and versatile technique that correctly aligned with the functional properties of HA can produce multifunctional nanofiber structures capable of promoting skin recover quickly. This review discusses (i) key strategies for successful electrospinning of HA, (ii) main challenges and advances found in the electrospinning process, (iii) the bioactive properties of this polymer in the treatment of wounds, as well as (iv) the results obtained in the last decade by the in vitro and in vivo evaluation of the healing properties of these nanosystems.
Collapse
|
12
|
Dokoshi T, Zhang LJ, Li F, Nakatsuji T, Butcher A, Yoshida H, Shimoda M, Okada Y, Gallo RL. Hyaluronan Degradation by Cemip Regulates Host Defense against Staphylococcus aureus Skin Infection. Cell Rep 2021; 30:61-68.e4. [PMID: 31914398 PMCID: PMC7029423 DOI: 10.1016/j.celrep.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/06/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a major human bacterial pathogen responsible for deep tissue skin infections. Recent observations have suggested that rapid, localized digestion of hyaluronic acid in the extracellular matrix (ECM) of the dermis may influence bacterial invasion and tissue inflammation. In this study we find that cell migration-inducing protein (Cemip) is the major inducible gene responsible for hyaluronan catabolism in mice. Cemip−/− mice failed to digest hyaluronan and had significantly less evidence of infection after intradermal bacterial challenge by S. aureus. Stabilization of large-molecular-weight hyaluronan enabled increased expression of cathelicidin antimicrobial peptide (Camp) that was due in part to enhanced differentiation of preadipocytes to adipocytes, as seen histologically and by increased expression of Pref1, PPARg, and Adipoq. Cemip−/− mice challenged with S. aureus also had greater IL-6 expression and neutrophil infiltration. These observations describe a mechanism for hyaluronan in the dermal ECM to regulate tissue inflammation and host antimicrobial defense. In this paper, Dokoshi et al. describe how the mammalian hyaluronidase Cemip is induced in the dermis during S. aureus infection. Cemip digests hyaluronan in the skin to regulate reactive adipogenesis and subsequent antimicrobial activity and skin inflammation.
Collapse
Affiliation(s)
- Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ling-Juan Zhang
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Anna Butcher
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Hiroyuki Yoshida
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Šínová R, Žádníková P, Šafránková B, Nešporová K. Anti-HA antibody does not detect hyaluronan. Glycobiology 2021; 31:520-523. [PMID: 33403389 DOI: 10.1093/glycob/cwaa118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
It is generally known that hyaluronic acid (HA) is a biocompatible and biodegradable glycosaminoglycan distributed widely throughout epithelial, connective and neural tissues. HA is one of the chief components of the extracellular matrix. Lack of immunogenicity is one of the biggest advantages of the therapeutic use of HA, but it also prevents the production of specific anti-HA antibodies. Contrary to this, there are still several studies performing HA detection by immunohistochemical or immunohistofluorescent method using an anti-HA antibody. Therefore, this short study discusses whether the anti-HA antibody is specific for HA. To verify the specificity of the HA staining the hyaluronidase treatment of histological samples was performed and the ability of anti-HA antibody and biotinylated HA binding protein (bHABP)-based probe to bind to their targets was evaluated. Additionally, the competitive binding assay with short HA oligosaccharides and subsequent histological staining was performed. Both assays showed that the anti-HA antibody is not sufficiently specific for HA and that the bHABP probe is a reliable method for HA detection in histological samples. The conclusion made by previous investigators based on using HA antibodies should be reevaluated and future use of anti-HA antibody should be avoided.
Collapse
Affiliation(s)
- Romana Šínová
- Contipro a.s., Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Petra Žádníková
- Contipro a.s., Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic
| | | | | |
Collapse
|
14
|
Nguyen VA, Ogura K, Matsue M, Takemoto N, Mukai K, Nakajima Y, Hoang TL, Iwata Y, Sakai N, Wada T, Hashimoto W, Okamoto S, Ichimura H. Novel Hyaluronate Lyase Involved in Pathogenicity of Streptococcus dysgalactiae subsp. equisimilis. Front Microbiol 2020; 11:552418. [PMID: 33072013 PMCID: PMC7541959 DOI: 10.3389/fmicb.2020.552418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes cellulitis, bacteremia, and invasive diseases, such as streptococcal toxic shock syndrome. Although SDSE infection is more prevalent among elderly individuals and those with diabetes mellitus than infections with Streptococcus pyogenes (Group A streptococci; GAS) and Streptococcus agalactiae (Group B streptococci; GBS), the mechanisms underlying the pathogenicity of SDSE remain unknown. SDSE possesses a gene hylD encoding a hyaluronate lyase (HylD), whose homologue (HylB) is involved in pathogenicity of GBS, while the role of HylD has not been characterized. In this study, we focused on the enzyme HylD produced by SDSE; HylD cleaves hyaluronate (HA) and generates unsaturated disaccharides via a β-elimination reaction. Hyaluronate-agar plate assays revealed that SDSE promoted dramatic HA degradation. SDSE expresses both HylD and an unsaturated glucuronyl hydrolase (UGL) that catalyzes the degradation of HA-derived oligosaccharides; as such, SDSE was more effective at HA degradation than other β-hemolytic streptococci, including GAS and GBS. Although HylD shows some homology to HylB, a similar enzyme produced by GBS, HylD exhibited significantly higher enzymatic activity than HylB at pH 6.0, conditions that are detected in the skin of both elderly individuals and those with diabetes mellitus. We also detected upregulation of transcripts from hylD and ugl genes from SDSE wild-type collected from the mouse peritoneal cavity; upregulated expression of ugl was not observed in ΔhylD SDSE mutants. These results suggested that disaccharides produced by the actions of HylD are capable of triggering downstream pathways that catalyze their destruction. Furthermore, we determined that infection with SDSEΔhylD was significantly less lethal than infection with the parent strain. When mouse skin wounds were infected for 2 days, intensive infiltration of neutrophils was observed around the wound areas infected with SDSE wild-type but not SDSEΔhylD. Our investigation suggested that HylD and UGL play important roles in nutrient acquisition from hosts, followed by the bacterial pathogenicity damaging host tissues.
Collapse
Affiliation(s)
- Van An Nguyen
- Department of Viral Infection and International Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Miki Matsue
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Shinjuku, Japan
| | - Kanae Mukai
- Department of Nursing Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukari Nakajima
- Department of Nursing Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Thuy Linh Hoang
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Division of Infection Control, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ichimura
- Department of Viral Infection and International Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
15
|
Sapudom J, Müller CD, Nguyen KT, Martin S, Anderegg U, Pompe T. Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3D Collagen Matrices. Gels 2020; 6:E33. [PMID: 33008082 PMCID: PMC7709683 DOI: 10.3390/gels6040033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is a key modulator in cancer progression and has become a novel target in cancer therapy. An increase in hyaluronan (HA) accumulation and metabolism can be found in advancing tumor progression and are often associated with aggressive malignancy, drug resistance and poor prognosis. Wound-healing related myofibroblasts or activated cancer-associated fibroblasts (CAF) are assumed to be the major sources of HA. Both cell types are capable to synthesize new matrix components as well as reorganize the extracellular matrix. However, to which extent myofibroblasts and CAF perform these actions are still unclear. In this work, we investigated the matrix remodeling and HA production potential in normal human dermal fibroblasts (NHFB) and CAF in the absence and presence of transforming growth factor beta -1 (TGF-β1), with TGF-β1 being a major factor of regulating fibroblast differentiation. Three-dimensional (3D) collagen matrix was utilized to mimic the extracellular matrix of the tumor microenvironment. We found that CAF appeared to response insensitively towards TGF-β1 in terms of cell proliferation and matrix remodeling when compared to NHFB. In regards of HA production, we found that both cell types were capable to produce matrix bound HA, rather than a soluble counterpart, in response to TGF-β1. However, activated CAF demonstrated higher HA production when compared to myofibroblasts. The average molecular weight of produced HA was found in the range of 480 kDa for both cells. By analyzing gene expression of HA metabolizing enzymes, namely hyaluronan synthase (HAS1-3) and hyaluronidase (HYAL1-3) isoforms, we found expression of specific isoforms in dependence of TGF-β1 present in both cells. In addition, HAS2 and HYAL1 are highly expressed in CAF, which might contribute to a higher production and degradation of HA in CAF matrix. Overall, our results suggested a distinct behavior of NHFB and CAF in 3D collagen matrices in the presence of TGF-β1 in terms of matrix remodeling and HA production pointing to a specific impact on tumor modulation.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Claudia Damaris Müller
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| | - Khiet-Tam Nguyen
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Steve Martin
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| |
Collapse
|
16
|
Connor RJ, Blouw B, Cowell J, Chen K, Zhao C, Kang DW. A Preclinical Investigation into the Effects of Aging on Dermal Hyaluronan Properties and Reconstitution Following Recombinant Human Hyaluronidase PH20 Administration. Dermatol Ther (Heidelb) 2020; 10:503-513. [PMID: 32361894 PMCID: PMC7211778 DOI: 10.1007/s13555-020-00380-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION There is currently no consensus in the literature concerning the impact of aging on the properties of hyaluronan (HA) in the subcutaneous (SC) space. Recombinant human hyaluronidase PH20 (rHuPH20) facilitates SC administration of injected therapeutics by depolymerizing SC HA, facilitating bulk fluid flow, dispersion and absorption. This study assessed the impact of intrinsic aging on HA in the SC space and thus the ability of rHuPH20 to enhance delivery of co-administered therapeutics. METHODS Histologic evaluations of HA levels and degradation were performed on human skin samples from six age groups, aged from 20 to 100 years. HA levels were evaluated by HA staining and degradation by staining samples for HA following incubation with rHuPH20. HA was extracted from samples and HA size determined by gel electrophoresis. Dermal reconstitution was assessed in young (aged 1.5 months) and elderly (aged > 16 months) mice. Baseline dye dispersion was measured at 5 and 20 min post-intradermal dye injection. Following treatment with rHuPH20, dye dispersion was measured again at 2, 24, 48, 72 and 96 h. RESULTS Distribution of HA was confined to the interstitial space between adipocytes, with similar pericellular presence and levels of HA found across all age groups. Substantial levels of high-molecular-weight HA were observed in all age groups at baseline. Incubation with a clinically relevant dose of rHuPH20 resulted in degradation of all SC HA and similar degradation profiles independent of age. No difference in dye dispersion time was observed between young and elderly mice across the range of time points assessed, with dye dispersion returning to baseline levels by 24 h after rHuPH20 treatment. CONCLUSIONS Subcutaneous delivery of approved therapeutics facilitated by co-administration with rHuPH20 should not be impacted by intrinsic aging, with this study providing no evidence for an effect of aging on HA distribution, structure or a loss of rHuPH20 efficacy.
Collapse
Affiliation(s)
| | - Barbara Blouw
- Halozyme Therapeutics, Inc., San Diego, CA, 92121, USA
| | | | - Kelly Chen
- Halozyme Therapeutics, Inc., San Diego, CA, 92121, USA
| | - Chunmei Zhao
- Halozyme Therapeutics, Inc., San Diego, CA, 92121, USA
| | - David W Kang
- Halozyme Therapeutics, Inc., San Diego, CA, 92121, USA.
| |
Collapse
|
17
|
High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online 2020; 22:6. [PMID: 32190011 PMCID: PMC7073015 DOI: 10.1186/s12575-020-00118-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Serine hydrolases (SHs) are a functionally diverse family of enzymes playing pivotal roles in health and disease and have emerged as important therapeutic targets in many clinical conditions. Activity-based protein profiling (ABPP) using fluorophosphonate (FP) probes has been a powerful chemoproteomic approach in studies unveiling roles of SHs in various biological systems. ABPP utilizes cell/tissue proteomes and features the FP-warhead, linked to a fluorescent reporter for in-gel fluorescence imaging or a biotin tag for streptavidin enrichment and LC-MS/MS-based target identification. Existing ABPP approaches characterize global SH activity based on mobility in gel or MS-based target identification and cannot reveal the identity of the cell-type responsible for an individual SH activity originating from complex proteomes. Results Here, by using an activity probe with broad reactivity towards the SH family, we advance the ABPP methodology to glioma brain cryosections, enabling for the first time high-resolution confocal fluorescence imaging of global SH activity in the tumor microenvironment. Tumor-associated cell types were identified by extensive immunohistochemistry on activity probe-labeled sections. Tissue-ABPP indicated heightened SH activity in glioma vs. normal brain and unveiled activity hotspots originating from tumor-associated neutrophils (TANs), rather than tumor-associated macrophages (TAMs). Thorough optimization and validation was provided by parallel gel-based ABPP combined with LC-MS/MS-based target verification. Conclusions Our study advances the ABPP methodology to tissue sections, enabling high-resolution confocal fluorescence imaging of global SH activity in anatomically preserved complex native cellular environment. To achieve global portrait of SH activity throughout the section, a probe with broad reactivity towards the SH family members was employed. As ABPP requires no a priori knowledge of the identity of the target, we envisage no imaginable reason why the presently described approach would not work for sections regardless of species and tissue source.
Collapse
|
18
|
Melanocyte Hyaluronan Coat Fragmentation Enhances the UVB-Induced TLR-4 Receptor Signaling and Expression of Proinflammatory Mediators IL6, IL8, CXCL1, and CXCL10 via NF-κB Activation. J Invest Dermatol 2019; 139:1993-2003.e4. [DOI: 10.1016/j.jid.2019.03.1135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
|
19
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
20
|
Mustonen AM, Salvén A, Kärjä V, Rilla K, Matilainen J, Nieminen P. Hyaluronan histochemistry-a potential new tool to assess the progress of liver disease from simple steatosis to hepatocellular carcinoma. Glycobiology 2019; 29:298-306. [PMID: 30689936 DOI: 10.1093/glycob/cwz002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease is among the most common liver diseases worldwide and one cause of cirrhosis that can result in the development of hepatocellular carcinoma (HCC). Hyaluronan (HA) is a high-molecular-mass glycosaminoglycan with diverse functions in tissue injury and repair, for instance, in inflammation and fibrogenesis. The aim of the present study was to investigate the relationships between the HA synthesizing and degrading enzymes in a spectrum of liver pathologies. This was realized by histological staining of liver sections from controls and patients with simple steatosis, steatohepatitis, cirrhosis and HCC (n = 90). HA-positive staining intensified in connective tissue in all liver pathologies, and staining of CD44, the major HA receptor, similarly increased in steatohepatitis and cirrhosis. HA synthase 1 (HAS1)-positive staining was reduced in steatosis, steatohepatitis and HCC. Staining of HAS3, which produces HA of a lower molecular mass, promotes inflammation and is pathogenic in animal models, increased in all diagnoses. The responses in staining intensity of HAS2 and hyaluronidases 1-2 were specific for different cell types. These findings suggest that HAS1-2 are responsible for HA synthesis in healthy livers, while HAS3 increases in importance in liver diseases. It is noteworthy that the pathological changes in HA metabolism are already visible in simple steatosis and, thus, precede the histological changes of inflammation and fibrosis. It could be possible to intervene in disease progression at an early stage by influencing HA metabolism. The results could have potential clinical applications with HAS3 immunostaining supplementing the existing HCC diagnostics.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland
| | - Anu Salvén
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Kirsi Rilla
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Matilainen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Nieminen
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
21
|
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 2019; 286:2883-2908. [PMID: 30724463 DOI: 10.1111/febs.14777] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA) is a linear nonsulfated glycosaminoglycan of the extracellular matrix that plays a pivotal role in a variety of biological processes. High-molecular weight HA exhibits different biological properties than oligomers and low-molecular weight HA. Depending on their molecular size, HA fragments can influence cellular behavior in a different mode of action. This phenomenon is attributed to the different manner of interaction with the HA receptors, especially CD44 and RHAMM. Both receptors can trigger signaling cascades that regulate cell functional properties, such as proliferation migration, angiogenesis, and wound healing. HA fragments are able to enhance or attenuate the HA receptor-mediated signaling pathways, as they compete with the endogenous HA for binding to the receptors. The modulation of these pathways could be crucial for the development of pathological conditions, such as inflammation and cancer. The primary goal of this review is to critically present the importance of HA molecular size on cellular signaling, functional cell properties, and morphology in normal and pathological conditions, including inflammation and cancer. A deeper understanding of these mechanisms could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia G Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
22
|
Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP, Woods EC, Bertozzi CR, Tammi MI, Lidke DS, Johnson P, Mayor S, Jaqaman K, Grinstein S. Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell 2018; 172:305-317.e10. [PMID: 29328918 DOI: 10.1016/j.cell.2017.12.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/03/2017] [Accepted: 12/18/2017] [Indexed: 01/17/2023]
Abstract
Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Phillip P Ostrowski
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elliot C Woods
- Departments of Chemistry and Molecular Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Departments of Chemistry and Molecular Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markku I Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Diane S Lidke
- Department of Pathology, Cancer Research Facility, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Satyajit Mayor
- Cellular Organization and Signaling, National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560 065, India
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada.
| |
Collapse
|
23
|
Bano F, Tammi MI, Kang DW, Harris EN, Richter RP. Single-Molecule Unbinding Forces between the Polysaccharide Hyaluronan and Its Binding Proteins. Biophys J 2018; 114:2910-2922. [PMID: 29925027 PMCID: PMC6026378 DOI: 10.1016/j.bpj.2018.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins). In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermolecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily, namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-associated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup, i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin⋅biotin bond. Implications for the molecular mechanism of unbinding of HA⋅hyaladherin bonds under force are discussed, which underpin the mechanical properties of HA⋅hyaladherin complexes and HA-rich extracellular matrices.
Collapse
Affiliation(s)
- Fouzia Bano
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; CIC biomaGUNE, Biosurfaces Laboratory, Donostia-San Sebastian, Spain
| | - Markku I Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - David W Kang
- Halozyme Therapeutics Inc., San Diego, California
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; CIC biomaGUNE, Biosurfaces Laboratory, Donostia-San Sebastian, Spain.
| |
Collapse
|
24
|
Extracellular ATP activates hyaluronan synthase 2 ( HAS2) in epidermal keratinocytes via P2Y 2, Ca 2+ signaling, and MAPK pathways. Biochem J 2018; 475:1755-1772. [PMID: 29626161 DOI: 10.1042/bcj20180054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.
Collapse
|
25
|
Hämäläinen L, Kärkkäinen E, Takabe P, Rauhala L, Bart G, Kärnä R, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Hyaluronan metabolism enhanced during epidermal differentiation is suppressed by vitamin C. Br J Dermatol 2018; 179:651-661. [PMID: 29405260 DOI: 10.1111/bjd.16423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hyaluronan is a large, linear glycosaminoglycan present throughout the narrow extracellular space of the vital epidermis. Increased hyaluronan metabolism takes place in epidermal hypertrophy, wound healing and cancer. Hyaluronan is produced by hyaluronan synthases and catabolized by hyaluronidases, reactive oxygen species and KIAA1199. OBJECTIVES To investigate the changes in hyaluronan metabolism during epidermal stratification and maturation, and the impact of vitamin C on these events. METHODS Hyaluronan synthesis and expression of the hyaluronan-related genes were analysed during epidermal maturation from a simple epithelium to a fully differentiated epidermis in organotypic cultures of rat epidermal keratinocytes using quantitative reverse transcriptase polymerase chain reaction, immunostaining and Western blotting, in the presence and absence of vitamin C. RESULTS With epidermal stratification, both the production and the degradation of hyaluronan were enhanced, resulting in an increase of hyaluronan fragments of various sizes. While the mRNA levels of Has3 and KIAA1199 remained stable during the maturation, Has1, Has2 and Hyal2 showed a transient upregulation during stratification, Hyal1 transcription remained permanently increased and transcription of the hyaluronan receptor, Cd44, decreased. At maturation, vitamin C downregulated Has2, Hyal2 and Cd44, whereas it increased high-molecular-mass hyaluronan in the epidermis, and reduced small fragments in the medium, suggesting stabilization of epidermal hyaluronan. CONCLUSIONS Epidermal stratification and maturation is associated with enhanced hyaluronan turnover, and release of large amounts of hyaluronan fragments. The high turnover is suppressed by vitamin C, which is suggested to enhance normal epidermal differentiation in part through its effect on hyaluronan.
Collapse
Affiliation(s)
- L Hämäläinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - E Kärkkäinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - P Takabe
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - L Rauhala
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - G Bart
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - R Kärnä
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - S Pasonen-Seppänen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - S Oikari
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - M I Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - R H Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
26
|
Abstract
The glycosaminoglycan hyaluronan (HA) is a key component of the microenvironment surrounding cells. In healthy tissues, HA molecules have extremely high molecular mass and consequently large hydrodynamic volumes. Tethered to the cell surface by clustered receptor proteins, HA molecules crowd each other, as well as other macromolecular species. This leads to severe nonideality in physical properties of the biomatrix, because steric exclusion leads to an increase in effective concentration of the macromolecules. The excluded volume depends on both polymer concentration and hydrodynamic volume/molecular mass. The biomechanical properties of the extracellular matrix, tissue hydration, receptor clustering, and receptor-ligand interactions are strongly affected by the presence of HA and by its molecular mass. In inflammation, reactive oxygen and nitrogen species fragment the HA chains. Depending on the rate of chain degradation relative to the rates of new synthesis and removal of damaged chains, short fragments of the HA molecules can be present at significant levels. Not only are the physical properties of the extracellular matrix affected, but the HA fragments decluster their primary receptors and act as endogenous danger signals. Bioanalytical methods to isolate and quantify HA fragments have been developed to determine profiles of HA content and size in healthy and diseased biological fluids and tissues. These methods have potential use in medical diagnostic tests. Therapeutic agents that modulate signaling by HA fragments show promise in wound healing and tissue repair without fibrosis.
Collapse
Affiliation(s)
- Mary K Cowman
- Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
27
|
Jokela T, Kärnä R, Rauhala L, Bart G, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Human Keratinocytes Respond to Extracellular UTP by Induction of Hyaluronan Synthase 2 Expression and Increased Hyaluronan Synthesis. J Biol Chem 2017; 292:4861-4872. [PMID: 28188289 DOI: 10.1074/jbc.m116.760322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
The release of nucleotides into extracellular space is triggered by insults like wounding and ultraviolet radiation, resulting in stimulatory or inhibitory signals via plasma membrane nucleotide receptors. As similar insults are known to activate hyaluronan synthesis we explored the possibility that extracellular UTP or its breakdown products UDP and UMP act as mediators for hyaluronan synthase (HAS) activation in human epidermal keratinocytes. UTP increased hyaluronan both in the pericellular matrix and in the culture medium of HaCaT cells. 10-100 μm UTP strongly up-regulated HAS2 expression, although the other hyaluronan synthases (HAS1, HAS3) and hyaluronidases (HYAL1, HYAL2) were not affected. The HAS2 response was rapid and transient, with the maximum stimulation at 1.5 h. UDP exerted a similar effect, but higher concentrations were required for the response, and UMP showed no stimulation at all. Specific siRNAs against the UTP receptor P2Y2, and inhibitors of UDP receptors P2Y6 and P2Y14, indicated that the response to UTP was mediated mainly through P2Y2 and to a lesser extent via UDP receptors. UTP increased the phosphorylation of p38, ERK, CREB, and Ser-727 of STAT3 and induced nuclear translocation of pCaMKII. Inhibitors of PKC, p38, ERK, CaMKII, STAT3, and CREB partially blocked the activation of HAS2 expression, confirming the involvement of these pathways in the UTP-induced HAS2 response. The present data reveal a selective up-regulation of HAS2 expression by extracellular UTP, which is likely to contribute to the previously reported rapid activation of hyaluronan metabolism in response to tissue trauma or ultraviolet radiation.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Leena Rauhala
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Genevieve Bart
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Sanna Oikari
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markku I Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Raija H Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
28
|
Koistinen V, Härkönen K, Kärnä R, Arasu UT, Oikari S, Rilla K. EMT induced by EGF and wounding activates hyaluronan synthesis machinery and EV shedding in rat primary mesothelial cells. Matrix Biol 2016; 63:38-54. [PMID: 28043889 DOI: 10.1016/j.matbio.2016.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/10/2016] [Indexed: 12/20/2022]
Abstract
The mesothelium is a membrane that forms the lining of several body cavities. It is composed of simple squamous mesothelial cells that secrete a glycosaminoglycan-rich lubricating fluid between inner organs. One of the most abundant glycosaminoglycans of those fluids is hyaluronan, which is synthesized on a plasma membrane and especially on apical filopodia of cultured cells. Our recent study showed that similar hyaluronan-rich protrusions are found in mesothelial lining in vivo, which suggests that hyaluronan synthesis in plasma membrane protrusions is a general process. However, the mesothelial lining was negative for the hyaluronan receptor CD44 while in many previous studies cultured mesothelial cells have been shown to express CD44. To further explore these findings we induced epithelial to mesenchymal transition in primary rat mesothelial cells by EGF-treatment and scratch wounding. Surprisingly, the results showed that at a normal epithelial, confluent stage the mesothelial cells are negative for CD44, but EMT induced by EGF or wounding activates CD44 expression and the whole hyaluronan synthesis machinery. In addition to typical EMT-like morphological changes, the growth of apical filopodia and budding of extracellular vesicles (EVs) were induced. In summary, the results of this study show that the activation of hyaluronan synthesis machinery, especially the expression of CD44 is strongly associated with EMT induced by EGF and wounding in mesothelial cells. Moreover, EMT enhances the secretion of EVs that carry CD44 and hyaluronan, which may be important regulators in EV interactions with their targets and ECM remodeling. The results of the present study also suggest that CD44 is a potential marker for EVs, especially those secreted from cells during tissue repair and pathological processes.
Collapse
Affiliation(s)
- Ville Koistinen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland.
| | - Kai Härkönen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Riikka Kärnä
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Uma Thanigai Arasu
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Sanna Oikari
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| |
Collapse
|
29
|
Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo. Histochem Cell Biol 2016; 145:531-44. [DOI: 10.1007/s00418-016-1405-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 11/27/2022]
|
30
|
Soroosh A, Albeiroti S, West GA, Willard B, Fiocchi C, de la Motte CA. Crohn's Disease Fibroblasts Overproduce the Novel Protein KIAA1199 to Create Proinflammatory Hyaluronan Fragments. Cell Mol Gastroenterol Hepatol 2016; 2:358-368.e4. [PMID: 27981209 PMCID: PMC5042354 DOI: 10.1016/j.jcmgh.2015.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Crohn's Disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. Fibrosis, a serious complication of CD, occurs when activated intestinal fibroblasts deposit excessive amounts of extracellular matrix (ECM) in affected areas. A major component of the ECM is high-molecular-weight hyaluronan (HA) that, when depolymerized to low-molecular-weight fragments, becomes proinflammatory and profibrotic. Mechanisms for HA degradation are incompletely understood, but the novel protein KIAA1199 recently was discovered to degrade HA. We hypothesized that KIAA1199 protein is increased in CD colon fibroblasts and generates HA fragments that foster inflammation and fibrosis. METHODS Fibroblasts were isolated from explants of surgically resected colon tissue from CD and non-inflammatory bowel disease control (ND) patients. Protein levels and tissue distribution of KIAA1199 were assessed by immunoblot and immunostaining, and functional HA degradation was measured biochemically. RESULTS Increased levels of KIAA1199 protein were produced and deposited in the ECM by cultured CD fibroblasts compared with controls. Treatment of fibroblasts with the proinflammatory cytokine interleukin (IL) 6 increased deposition of KIAA1199 in the ECM. CD fibroblasts also produce significantly higher levels of IL6 compared with controls, and antibody blockade of IL6 receptors in CD colon fibroblasts decreased the level of KIAA1199 protein in the ECM. Colon fibroblasts degrade HA, however, small interfering RNA silencing of KIAA1199 abrogated that ability. CONCLUSIONS CD fibroblasts produce increased levels of KIAA1199 primarily through an IL6-driven autocrine mechanism. This leads to excessive degradation of HA and the generation of proinflammatory HA fragments, which contributes to maintenance of gut inflammation and fibrosis.
Collapse
Key Words
- CD, Crohn’s disease
- Crohn’s Disease
- DAMP, damage-associated molecular pattern
- ECM, extracellular matrix
- FBS, fetal bovine serum
- Fibrosis
- HA, hyaluronan
- HBSS, Hank's balanced salt solution
- HIF, human intestinal fibroblasts
- HYAL, hyaluronidase
- Hyaluronan
- IBD, inflammatory bowel disease
- IL, interleukin
- IL6R, interleukin 6 receptor
- KIAA1199
- LC-MS, liquid chromatography–mass spectrometry
- ND, non–inflammatory bowel disease control
- NF-κB, nuclear factor-κB
- PAGE, polyacrylamide gel electrophoresis
- PBST, phosphate-buffered saline with 0.1% Tween-20
- SDS, sodium dodecyl sulfate
- TGF, transforming growth factor
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Artin Soroosh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sami Albeiroti
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Gail A. West
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Belinda Willard
- Research Core Services, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Carol A. de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio,Correspondence Address correspondence to: Carol A. de la Motte, PhD, Lerner Research Institute of the Cleveland Clinic, NC22, 9500 Euclid Avenue, Cleveland, Ohio 44195. fax: (216) 636-0104.Lerner Research Institute of the Cleveland ClinicNC22, 9500 Euclid AvenueClevelandOhio 44195
| |
Collapse
|
31
|
Syrjälä SO, Nykänen AI, Tuuminen R, Raissadati A, Keränen MAI, Arnaudova R, Krebs R, Koh GY, Alitalo K, Lemström KB. Donor Heart Treatment With COMP-Ang1 Limits Ischemia-Reperfusion Injury and Rejection of Cardiac Allografts. Am J Transplant 2015; 15:2075-84. [PMID: 25932532 DOI: 10.1111/ajt.13296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/01/2015] [Accepted: 02/17/2015] [Indexed: 01/25/2023]
Abstract
The major cause of death during the first year after heart transplantation is primary graft dysfunction due to preservation and ischemia-reperfusion injury (IRI). Angiopoietin-1 is a Tie2 receptor-binding paracrine growth factor with anti-inflammatory properties and indispensable roles in vascular development and stability. We used a stable variant of angiopoietin-1 (COMP-Ang1) to test whether ex vivo intracoronary treatment with a single dose of COMP-Ang1 in donor Dark Agouti rat heart subjected to 4-h cold ischemia would prevent microvascular dysfunction and inflammatory responses in the fully allogeneic recipient Wistar Furth rat. COMP-Ang1 reduced endothelial cell-cell junction disruption of the donor heart in transmission electron microscopy during 4-h cold ischemia, improved myocardial reflow, and reduced microvascular leakage and cardiomyocyte injury of transplanted allografts during IRI. Concurrently, the treatment reduced expression of danger signals, dendritic cell maturation markers, endothelial cell adhesion molecule VCAM-1 and RhoA/Rho-associated protein kinase activation and the influx of macrophages and neutrophils. Furthermore, COMP-Ang1 treatment provided sustained anti-inflammatory effects during acute rejection and prevented the development of cardiac fibrosis and allograft vasculopathy. These results suggest donor heart treatment with COMP-Ang1 having important clinical implications in the prevention of primary and subsequent long-term injury and dysfunction in cardiac allografts.
Collapse
Affiliation(s)
- S O Syrjälä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - A I Nykänen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - R Tuuminen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - A Raissadati
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - M A I Keränen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - R Arnaudova
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - R Krebs
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - G Y Koh
- Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - K Alitalo
- Wihuri Research Institute, Translational Cancer Biology Program and Helsinki University Central Hospital, Helsinki, Finland
| | - K B Lemström
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
32
|
Bodendorf MO, Willenberg A, Anderegg U, Grunewald S, Simon JC, Paasch U. Connective tissue response to fractionated thermo-ablative Erbium: YAG skin laser treatment. Int J Cosmet Sci 2015; 32:435-45. [PMID: 20384901 DOI: 10.1111/j.1468-2494.2009.00567.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indications for and prevalence of laser therapies with a fractionated laser beam have risen significantly. However, as of yet, little is known about the underlying molecular changes, especially with respect to dermal extracellular-matrix remodelling, wound healing and inflammation. This study aimed at the investigation of the connective tissue response of sun-damaged skin following fractionated laser treatment. Seven patients received a laser therapy on the lateral side of the neck of wrinkles grade III-IV (Glogau scale) using a fractionated thermo-ablative erbium yttrium aluminium garnet (Er:YAG) laser (2940 nm, BURANE XL; Quantel Derma, Erlangen, Germany). Skin biopsies were taken at baseline from untreated skin, 1 and 6 weeks after laser intervention to investigate hyaluronan (HA), collagen-I (Coll-I) and collagen-III (Coll-III) remodelling as well as alteration of matrix metalloproteinase 1 expression (MMP-1). To address this issue, HA synthesizing (HA synthetases, HAS) and degrading (hyaluronidases, HYAL) enzymes were measured at mRNA-level using a real-time PCR. Furthermore, immunohistochemical staining for HA was performed by using the HA binding protein (HAbP) and for Coll-I, Coll-III and MMP-1 by using monoclonal antibodies. The degree of inflammation was correlated descriptively. Our findings were that at the two examined read out points, HAS and HYAL showed a slight response alluding to HA synthesis under minimal signs of inflammatory reaction. Concordantly, although to a varying degree, an increase in the HA content of the skin after laser treatment could be detected by immunhistochemistry. During remodelling, Coll-I, Coll-III and MMP-1 showed a cyclic course with a peak after 1 week. Conclusively, our results indicate a light alteration of the HA metabolism towards synthesis and a transient collagen neogenesis caused by a single fractionated thermo-ablative laser skin intervention. Clinical improvement might be attributed to synergistic effects between collagen neogenesis and the water binding capacities of HA and its influence on skin contraction and remodelling.
Collapse
Affiliation(s)
- M O Bodendorf
- Department of Dermatology, Medical Faculty, University of Leipzig, Philipp-Rosenthalstr. 23, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Cowman MK, Lee HG, Schwertfeger KL, McCarthy JB, Turley EA. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front Immunol 2015; 6:261. [PMID: 26082778 PMCID: PMC4451640 DOI: 10.3389/fimmu.2015.00261] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
Hyaluronan is a simple repeating disaccharide polymer, synthesized at the cell surface by integral membrane synthases. The repeating sequence is perfectly homogeneous, and is the same in all vertebrate tissues and fluids. The polymer molecular mass is more variable. Most commonly, hyaluronan is synthesized as a high-molecular mass polymer, with an average molecular mass of approximately 1000–8000 kDa. There are a number of studies showing increased hyaluronan content, but reduced average molecular mass with a broader range of sizes present, in tissues or fluids when inflammatory or tissue-remodeling processes occur. In parallel studies, exogenous hyaluronan fragments of low-molecular mass (generally, <200 kDa) have been shown to affect cell behavior through binding to receptor proteins such as CD44 and RHAMM (gene name HMMR), and to signal either directly or indirectly through toll-like receptors. These data suggest that receptor sensitivity to hyaluronan size provides a biosensor of the state of the microenvironment surrounding the cell. Sensitive methods for isolation and characterization of hyaluronan and its fragments have been developed and continue to improve. This review provides an overview of the methods and our current state of knowledge of hyaluronan content and size distribution in biological fluids and tissues.
Collapse
Affiliation(s)
- Mary K Cowman
- Department of Chemical and Biomolecular Engineering, Biomatrix Research Center, New York University Polytechnic School of Engineering , New York, NY , USA
| | - Hong-Gee Lee
- Department of Chemical and Biomolecular Engineering, Biomatrix Research Center, New York University Polytechnic School of Engineering , New York, NY , USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, University of Minnesota , Minneapolis, MN , USA
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, University of Minnesota , Minneapolis, MN , USA
| | - Eva A Turley
- Department of Oncology, London Health Sciences Center, Schulich School of Medicine, Western University , London, ON , Canada ; Department of Biochemistry, London Health Sciences Center, Schulich School of Medicine, Western University , London, ON , Canada ; Department of Surgery, London Health Sciences Center, Schulich School of Medicine, Western University , London, ON , Canada
| |
Collapse
|
34
|
Jokela T, Oikari S, Takabe P, Rilla K, Kärnä R, Tammi M, Tammi R. Interleukin-1β-induced Reduction of CD44 Ser-325 Phosphorylation in Human Epidermal Keratinocytes Promotes CD44 Homomeric Complexes, Binding to Ezrin, and Extended, Monocyte-adhesive Hyaluronan Coats. J Biol Chem 2015; 290:12379-93. [PMID: 25809479 DOI: 10.1074/jbc.m114.620864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 12/13/2022] Open
Abstract
The proinflammatory cytokine interleukin-1β (IL-1β) attracts leukocytes to sites of inflammation. One of the recruitment mechanisms involves the formation of extended, hyaluronan-rich pericellular coats on local fibroblasts, endothelial cells, and epithelial cells. In the present work, we studied how IL-1β turns on the monocyte adhesion of the hyaluronan coat on human keratinocytes. IL-1β did not influence hyaluronan synthesis or increase the amount of pericellular hyaluronan in these cells. Instead, we found that the increase in the hyaluronan-dependent monocyte binding was associated with the CD44 of the keratinocytes. Although IL-1β caused a small increase in the total amount of CD44, a more marked impact was the decrease of CD44 phosphorylation at serine 325. At the same time, IL-1β increased the association of CD44 with ezrin and complex formation of CD44 with itself. Treatment of keratinocyte cultures with KN93, an inhibitor of calmodulin kinase 2, known to phosphorylate Ser-325 in CD44, caused similar effects as IL-1β (i.e. homomerization of CD44 and its association with ezrin) and resulted in increased monocyte binding to keratinocytes in a hyaluronan-dependent way. Overexpression of wild type CD44 standard form, but not a corresponding CD44 mutant mimicking the Ser-325-phosphorylated form, was able to induce monocyte binding to keratinocytes. In conclusion, treatment of human keratinocytes with IL-1β changes the structure of their hyaluronan coat by influencing the amount, post-translational modification, and cytoskeletal association of CD44, thus enhancing monocyte retention on keratinocytes.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sanna Oikari
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Piia Takabe
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kirsi Rilla
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Markku Tammi
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| | - Raija Tammi
- From the Institute of Biomedicine, Department of Medicine, University of Eastern Finland, Yliopistonranta 1E, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
35
|
Bart G, Vico NO, Hassinen A, Pujol FM, Deen AJ, Ruusala A, Tammi RH, Squire A, Heldin P, Kellokumpu S, Tammi MI. Fluorescence resonance energy transfer (FRET) and proximity ligation assays reveal functionally relevant homo- and heteromeric complexes among hyaluronan synthases HAS1, HAS2, and HAS3. J Biol Chem 2015; 290:11479-90. [PMID: 25795779 DOI: 10.1074/jbc.m115.640581] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Indexed: 01/04/2023] Open
Abstract
In vertebrates, hyaluronan is produced in the plasma membrane from cytosolic UDP-sugar substrates by hyaluronan synthase 1-3 (HAS1-3) isoenzymes that transfer N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) in alternative positions in the growing polysaccharide chain during its simultaneous extrusion into the extracellular space. It has been shown that HAS2 immunoprecipitates contain functional HAS2 homomers and also heteromers with HAS3 (Karousou, E., Kamiryo, M., Skandalis, S. S., Ruusala, A., Asteriou, T., Passi, A., Yamashita, H., Hellman, U., Heldin, C. H., and Heldin, P. (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647-23654). Here we have systematically screened in live cells, potential interactions among the HAS isoenzymes using fluorescence resonance energy transfer (FRET) and flow cytometric quantification. We show that all HAS isoenzymes form homomeric and also heteromeric complexes with each other. The same complexes were detected both in Golgi apparatus and plasma membrane by using FRET microscopy and the acceptor photobleaching method. Proximity ligation assays with HAS antibodies confirmed the presence of HAS1-HAS2, HAS2-HAS2, and HAS2-HAS3 complexes between endogenously expressed HASs. C-terminal deletions revealed that the enzymes interact mainly via uncharacterized N-terminal 86-amino acid domain(s), but additional binding site(s) probably exist in their C-terminal parts. Of all the homomeric complexes HAS1 had the lowest and HAS3 the highest synthetic activity. Interestingly, HAS1 transfection reduced the synthesis of hyaluronan obtained by HAS2 and HAS3, suggesting functional cooperation between the isoenzymes. These data indicate a general tendency of HAS isoenzymes to form both homomeric and heteromeric complexes with potentially important functional consequences on hyaluronan synthesis.
Collapse
Affiliation(s)
- Geneviève Bart
- From the Institute of Biomedicine/Anatomy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Nuria Ortega Vico
- the Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Antti Hassinen
- the Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Francois M Pujol
- the Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Ashik Jawahar Deen
- From the Institute of Biomedicine/Anatomy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Aino Ruusala
- the Ludwig Institute for Cancer Research, Uppsala University, SE-75124, Uppsala, Sweden, and
| | - Raija H Tammi
- From the Institute of Biomedicine/Anatomy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Anthony Squire
- the Institute for Experimental Immunology and Imaging, University Clinic Essen, 45147 Essen, Germany
| | - Paraskevi Heldin
- the Ludwig Institute for Cancer Research, Uppsala University, SE-75124, Uppsala, Sweden, and
| | - Sakari Kellokumpu
- the Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Markku I Tammi
- From the Institute of Biomedicine/Anatomy, University of Eastern Finland, FI-70211 Kuopio, Finland,
| |
Collapse
|
36
|
Yuan H, Amin R, Ye X, de la Motte CA, Cowman MK. Determination of hyaluronan molecular mass distribution in human breast milk. Anal Biochem 2015; 474:78-88. [PMID: 25579786 DOI: 10.1016/j.ab.2014.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 12/20/2022]
Abstract
Hyaluronan (HA) in human milk mediates host responses to microbial infection via TLR4- and CD44-dependent signaling. Signaling by HA is generally size specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low-M component. Here we report the size distribution of HA in human milk samples from 20 unique donors. A new method for HA analysis, employing ion exchange (IEX) chromatography to fractionate HA by size and specific quantification of each size fraction by competitive enzyme-linked sorbent assay (ELSA), was developed. When separated into four fractions, milk HA with M⩽20 kDa, M∼20 to 60 kDa, and M∼60 to 110 kDa comprised averages of 1.5, 1.4, and 2.0% of the total HA, respectively. The remaining 95% was HA with M⩾110 kDa. Electrophoretic analysis of the higher M HA from 13 samples showed nearly identical M distributions, with an average M of approximately 440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low-M HA components.
Collapse
Affiliation(s)
- Han Yuan
- Department of Chemical and Biomolecular Engineering, Polytechnic School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Ripal Amin
- Department of Chemical and Biomolecular Engineering, Polytechnic School of Engineering, New York University, Brooklyn, NY 11201, USA; Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Colorectal Surgery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xin Ye
- Department of Chemical and Biomolecular Engineering, Polytechnic School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Carol A de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Colorectal Surgery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mary K Cowman
- Department of Chemical and Biomolecular Engineering, Polytechnic School of Engineering, New York University, Brooklyn, NY 11201, USA.
| |
Collapse
|
37
|
Tateya I, Tateya T, Watanuki M, Bless DM. Homeostasis of hyaluronic acid in normal and scarred vocal folds. J Voice 2014; 29:133-9. [PMID: 25499520 DOI: 10.1016/j.jvoice.2014.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/31/2014] [Indexed: 01/27/2023]
Abstract
OBJECTIVES/HYPOTHESIS Vocal fold scarring is one of the most challenging laryngeal disorders to treat. Hyaluronic acid (HA) is the main component of lamina propria, and it plays an important role in proper vocal fold vibration and is also thought to be important in fetal wound healing without scarring. Although several animal models of vocal fold scarring have been reported, little is known about the way in which HA is maintained in vocal folds. The purpose of this study was to clarify the homeostasis of HA by examining the expression of hyaluronan synthase (Has) and hyaluronidase (Hyal), which produce and digest HA, respectively. STUDY DESIGN Experimental prospective animal study. METHODS Vocal fold stripping was performed on 38 Sprague-Dawley rats. Vocal fold tissue was collected at five time points (3 days-2 months). Expression of HA was examined by immunohistochemistry, and messenger RNA (mRNA) expression of Has and Hyal was examined by real-time polymerase chain reaction and in-situ hybridization. RESULTS In scarred vocal folds, expression of Has1 and Has2 increased at day 3 together with expression of HA and returned to normal at 2 weeks. At 2 months, Has3 and Hyal3 mRNA showed higher expressions than normal. CONCLUSIONS Expression patterns of Has and Hyal genes differed between normal, acute-scarred, and chronic-scarred vocal folds, indicating the distinct roles of each enzyme in maintaining HA. Continuous upregulation of Has genes in the acute phase may be necessary to achieve scarless healing of vocal folds.
Collapse
Affiliation(s)
- Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tomoko Tateya
- Institute for Virus Research, Kyoto University, Kyoto, Japan; The Hakubi Center, Kyoto University, Kyoto, Japan
| | | | - Diane M Bless
- Division of Otolaryngolosgy-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
38
|
Siponen M, Kullaa A, Nieminen P, Salo T, Pasonen-Seppänen S. Altered expression of hyaluronan, HAS1-2, and HYAL1-2 in oral lichen planus. J Oral Pathol Med 2014; 44:401-9. [PMID: 25421996 DOI: 10.1111/jop.12294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is an immune-mediated mucosal disease of unclear etiology and of unresolved pathogenesis. Hyaluronan (HA) is an extracellular matrix glycosaminoglycan involved in inflammation and tumor progression. However, its presence in OLP has not been reported. We therefore aimed to study the immunohistochemical expression of HA, its receptor CD44, hyaluronan synthases (HAS1-3), and hyaluronidases (HYAL1-2) in OLP. METHODS The presence of HA, CD44, HAS1-3, and HYAL1-2 was studied by immunohistochemical methods in 55 OLP and 23 control oral mucosal specimens (CTR). The localization, intensity, and differences of the epithelial expression between OLP and CTRs were analyzed. RESULTS HA and CD44 were found on cell membranes in the epithelial basal and intermediate layers in CTR and OLP specimens. The HA staining intensity was stronger in the basal layer of the epithelium in OLP than in CTRs (P < 0.001). HAS1 (P = 0.001) and HAS2 (P < 0.001) showed stronger staining in the basal and weaker staining in the superficial (P < 0.001) epithelial layers in OLP than in CTRs. The immunostaining of HAS3 was low in both OLP and CTRs. Positive HYAL1 and HYAL2 staining were mainly found in the basal and intermediate epithelial layers, and their intensities were significantly increased in OLP, except HYAL 2 in the intermediate epithelial layer. CONCLUSIONS HA, HAS1-2, and HYAL1-2 have altered expression in OLP compared to CTRs and may therefore have a role in OLP pathogenesis.
Collapse
Affiliation(s)
- Maria Siponen
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
| | - Arja Kullaa
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.,Educational Dental Clinic, Health Center of Oulu, Oulu, Finland
| | - Pentti Nieminen
- Medical Informatics and Statistics Research Group, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Institute of Dentistry, University of Helsinki, Helsinki, Finland.,Graduate Program in Estomatopatologia, Piracicaba Dental School, University of Campinas, Piracicaba-São Paulo, Brazil
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
39
|
Symonette CJ, Kaur Mann A, Tan XC, Tolg C, Ma J, Perera F, Yazdani A, Turley EA. Hyaluronan-phosphatidylethanolamine polymers form pericellular coats on keratinocytes and promote basal keratinocyte proliferation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:727459. [PMID: 25276814 PMCID: PMC4172883 DOI: 10.1155/2014/727459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022]
Abstract
Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA) cell coats, which are losses that contribute to atrophic skin characterized by reduced barrier and repair functions. We formulated HA-phospholipid (phosphatidylethanolamine, HA-PE) polymers that form pericellular coats around cultured dermal fibroblasts independently of CD44 or RHAMM display. We investigated the ability of these HA-PE polymers to penetrate into aged mouse skin and restore epidermal function in vivo. Topically applied Alexa(647)-HA-PE penetrated into the epidermis and dermis, where it associated with both keratinocytes and fibroblasts. In contrast, Alexa(647)-HA was largely retained in the outer cornified layer of the epidermis and quantification of fluorescence confirmed that significantly more Alexa(647)-HA-PE penetrated into and was retained within the epidermis than Alexa(647)-HA. Multiple topical applications of HA-PE to shaved mouse skin significantly stimulated basal keratinocyte proliferation and epidermal thickness compared to HA or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation and did not promote local or systemic inflammation. These effects of HA-PE polymers are similar to those reported for endogenous epidermal HA in youthful skin and show that topical application of HA-PE polymers can restore some of the impaired functions of aged epidermis.
Collapse
Affiliation(s)
- Caitlin J. Symonette
- Division of Plastic and Reconstructive Surgery, University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
| | - Aman Kaur Mann
- London Regional Cancer Program, London Health Sciences Centre, Room A4-931A, 790 Commissioners Road East, London, ON, Canada N6A 4L6
| | - Xiao Cherie Tan
- London Regional Cancer Program, London Health Sciences Centre, Room A4-931A, 790 Commissioners Road East, London, ON, Canada N6A 4L6
| | - Cornelia Tolg
- London Regional Cancer Program, London Health Sciences Centre, Room A4-931A, 790 Commissioners Road East, London, ON, Canada N6A 4L6
| | - Jenny Ma
- London Regional Cancer Program, London Health Sciences Centre, Room A4-931A, 790 Commissioners Road East, London, ON, Canada N6A 4L6
| | - Francisco Perera
- London Regional Cancer Program, London Health Sciences Centre, Room A4-931A, 790 Commissioners Road East, London, ON, Canada N6A 4L6
| | - Arjang Yazdani
- Division of Plastic and Reconstructive Surgery, University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
- London Health Science Center, Victoria Hospital, Room E2-647, 800 Commissioners Road East, London, ON, Canada N6A 4G5
| | - Eva A. Turley
- Division of Plastic and Reconstructive Surgery, University of Western Ontario, 1151 Richmond Street, London, ON, Canada N6A 3K7
- London Regional Cancer Program, London Health Sciences Centre, Room A4-931A, 790 Commissioners Road East, London, ON, Canada N6A 4L6
| |
Collapse
|
40
|
Hyaluronan and RHAMM in wound repair and the "cancerization" of stromal tissues. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103923. [PMID: 25157350 PMCID: PMC4137499 DOI: 10.1155/2014/103923] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
Abstract
Tumors and wounds share many similarities including loss of tissue architecture, cell polarity and cell differentiation, aberrant extracellular matrix (ECM) remodeling (Ballard et al., 2006) increased inflammation, angiogenesis, and elevated cell migration and proliferation. Whereas these changes are transient in repairing wounds, tumors do not regain tissue architecture but rather their continued progression is fueled in part by loss of normal tissue structure. As a result tumors are often described as wounds that do not heal. The ECM component hyaluronan (HA) and its receptor RHAMM have both been implicated in wound repair and tumor progression. This review highlights the similarities and differences in their roles during these processes and proposes that RHAMM-regulated wound repair functions may contribute to “cancerization” of the tumor microenvironment.
Collapse
|
41
|
Jokela TA, Kärnä R, Makkonen KM, Laitinen JT, Tammi RH, Tammi MI. Extracellular UDP-glucose activates P2Y14 Receptor and Induces Signal Transducer and Activator of Transcription 3 (STAT3) Tyr705 phosphorylation and binding to hyaluronan synthase 2 (HAS2) promoter, stimulating hyaluronan synthesis of keratinocytes. J Biol Chem 2014; 289:18569-81. [PMID: 24847057 DOI: 10.1074/jbc.m114.551804] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hyaluronan, a major matrix molecule in epidermis, is often increased by stimuli that enhance keratinocyte proliferation and migration. We found that small amounts of UDP-sugars were released from keratinocytes and that UDP-glucose (UDP-Glc) added into keratinocyte cultures induced a specific, rapid induction of hyaluronan synthase 2 (HAS2), and an increase of hyaluronan synthesis. The up-regulation of HAS2 was associated with JAK2 and ERK1/2 activation, and specific Tyr(705) phosphorylation of transcription factor STAT3. Inhibition of JAK2, STAT3, or Gi-coupled receptors blocked the induction of HAS2 expression by UDP-Glc, the latter inhibitor suggesting that the signaling was triggered by the UDP-sugar receptor P2Y14. Chromatin immunoprecipitations demonstrated increased promoter binding of Tyr(P)(705)-STAT3 at the time of HAS2 induction. Interestingly, at the same time Ser(P)(727)-STAT3 binding to its response element regions in the HAS2 promoter was unchanged or decreased. UDP-Glc also stimulated keratinocyte migration, proliferation, and IL-8 expression, supporting a notion that UDP-Glc signals for epidermal inflammation, enhanced hyaluronan synthesis as an integral part of it.
Collapse
Affiliation(s)
| | | | - Katri M Makkonen
- From the Institutes of Biomedicine and Dentistry, School of Medicine, University of Eastern Finland, P. O. Box 1627, FIN-70210 Kuopio, Finland
| | | | | | | |
Collapse
|
42
|
Hyaluronan synthase 1 (HAS1) produces a cytokine-and glucose-inducible, CD44-dependent cell surface coat. Exp Cell Res 2014; 320:153-63. [DOI: 10.1016/j.yexcr.2013.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 09/28/2013] [Indexed: 02/04/2023]
|
43
|
Hyaluronan synthases (HAS1-3) in stromal and malignant cells correlate with breast cancer grade and predict patient survival. Breast Cancer Res Treat 2013; 143:277-86. [PMID: 24337597 DOI: 10.1007/s10549-013-2804-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
Accumulation of hyaluronan (HA) in pericellular stroma and carcinoma cells is predictive of unfavorable patient prognosis in many epithelial cancers. However, it is not known whether the HA originates from carcinoma or stromal cells, or whether increased expression of hyaluronan synthase proteins (HAS1-3) contributes to HA accumulation. In this study, localization and expression of HAS1-3 were evaluated immunohistochemically in 278 cases of human breast cancer, and correlated with prognostic factors and patient outcome. Both carcinoma cells and stromal cells were HAS-positive. In carcinoma cells, HAS1 and HA stainings correlated with each other, and HAS1 associated with estrogen receptor negativity, HER2 positivity, high relapse rate, and short overall survival. In stromal cells, the staining levels of all HAS isoforms correlated with the stromal HA staining, stromal cell CD44, high relapse rate, and short overall survival of the patients. In addition, expression levels of stromal HAS1 and HAS2 were related to obesity, large tumor size, lymph node positivity, and estrogen receptor negativity. Thus, stromal HAS1 and HAS3 were independent prognostic factors in the multivariate analysis. The data suggest that increased levels of HAS enzymes contribute to the accumulation of HA in breast cancer, and that HA is synthesized in carcinoma cells and stromal cells. The study also indicates that HAS enzyme levels are related to tumor aggressiveness and poor patient outcome representing potential targets for therapy.
Collapse
|
44
|
Bourguignon LYW, Wong G, Xia W, Man MQ, Holleran WM, Elias PM. Selective matrix (hyaluronan) interaction with CD44 and RhoGTPase signaling promotes keratinocyte functions and overcomes age-related epidermal dysfunction. J Dermatol Sci 2013; 72:32-44. [PMID: 23790635 PMCID: PMC3775883 DOI: 10.1016/j.jdermsci.2013.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mouse epidermal chronologic aging is closely associated with aberrant matrix (hyaluronan, HA)-size distribution/production and impaired keratinocyte proliferation/differentiation, leading to a marked thinning of the epidermis with functional consequence that causes a slower recovery of permeability barrier function. OBJECTIVE The goal of this study is to demonstrate mechanism-based, corrective therapeutic strategies using topical applications of small HA (HAS) and/or large HA (HAL) [or a sequential small HA (HAS) and large HA(HAL) (HAs→HAL) treatment] as well as RhoGTPase signaling perturbation agents to regulate HA/CD44-mediated signaling, thereby restoring normal epidermal function, and permeability barrier homeostasis in aged mouse skin. METHODS A number of biochemical, cell biological/molecular, pharmacological and physiological approaches were used to investigate matrix HA-CD44-mediated RhoGTPase signaling in regulating epidermal functions and skin aging. RESULTS In this study we demonstrated that topical application of small HA (HAS) promotes keratinocyte proliferation and increases skin thickness, while it fails to upregulate keratinocyte differentiation or permeability barrier repair in aged mouse skin. In contrast, large HA (HAL) induces only minimal changes in keratinocyte proliferation and skin thickness, but restores keratinocyte differentiation and improves permeability barrier function in aged epidermis. Since neither HAS nor HAL corrects these epidermal defects in aged CD44 knock-out mice, CD44 likely mediates HA-associated epidermal functions in aged mouse skin. Finally, blockade of Rho-kinase activity with Y27632 or protein kinase-Nγ activity with Ro31-8220 significantly decreased the HA (HAS or HAL)-mediated changes in epidermal function in aged mouse skin. CONCLUSION The results of our study show first that HA application of different sizes regulates epidermal proliferation, differentiation and barrier function in aged mouse skin. Second, manipulation of matrix (HA) interaction with CD44 and RhoGTPase signaling could provide further novel therapeutic approaches that could be targeted for the treatment of various aging-related skin disorders.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California San Francisco and VA Medical Center, United States.
| | | | | | | | | | | |
Collapse
|
45
|
Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem Cell Biol 2013; 141:17-31. [PMID: 24057227 DOI: 10.1007/s00418-013-1143-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2013] [Indexed: 12/15/2022]
Abstract
Hyaluronan synthases (HAS) are unique plasma membrane glycosyltransferases secreting this glycosaminoglycan directly to the extracellular space. The three HAS isoenzymes (HAS1, HAS2, and HAS3) expressed in mammalian cells differ in their enzymatic properties and regulation by external stimuli, but clearly distinct functions have not been established. To overview the expression of different HAS isoenzymes during embryonic development and their subcellular localization, we immunostained mouse embryonic samples and cultured cells with HAS antibodies, correlating their distribution to hyaluronan staining. Their subcellular localization was further studied by GFP-HAS fusion proteins. Intense hyaluronan staining was observed throughout the development in the tissues of mesodermal origin, like heart and cartilages, but also for example during the maturation of kidneys and stratified epithelia. In general, staining for one or several HASs correlated with hyaluronan staining. The staining of HAS2 was most widespread, both spatially and temporally, correlating with hyaluronan staining especially in early mesenchymal tissues and heart. While epithelial cells were mostly negative for HASs, stratified epithelia became HAS positive during differentiation. All HAS isoenzymes showed cytoplasmic immunoreactivity, both in tissue sections and cultured cells, while plasma membrane staining was also detected, often in cellular extensions. HAS1 had brightest signal in Golgi, HAS3 in Golgi and microvillous protrusions, whereas most of the endogenous HAS2 immunoreactivity was localized in the ER. This differential pattern was also observed with transfected GFP-HASs. The large proportion of intracellular HASs suggests that HAS forms a reserve that is transported to the plasma membrane for rapid activation of hyaluronan synthesis.
Collapse
|
46
|
Combined donor simvastatin and methylprednisolone treatment prevents ischemia-reperfusion injury in rat cardiac allografts through vasculoprotection and immunomodulation. Transplantation 2013; 95:1084-91. [PMID: 23466635 DOI: 10.1097/tp.0b013e3182881b61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) and allograft dysfunction remain as two of the major clinical challenges after heart transplantation. Here, we investigated the effect of donor treatment with simvastatin and methylprednisolone on microvascular dysfunction and immunomodulation during IRI in rat cardiac allografts subjected to prolonged ischemia time. METHODS The DA rats received simvastatin, methylprednisolone, or both 2 hr before heart donation. The allografts were subjected to 4-hr hypothermic preservation and transplanted to the fully major histocompatibility complex-mismatched WF rat recipients. RESULTS Six hours after reperfusion, donor treatment either with simvastatin alone or with high dose of methylprednisolone alone or in combination with simvastatin and methylprednisolone significantly reduced cardiac troponin T release and the number of allograft infiltrating ED1 macrophages MPO neutrophils. However, the combination donor treatment was superior in the prevention of IRI and significantly prolonged allograft survival. Donor simvastatin treatment inhibited allograft microvascular RhoA GTPase pathway activation, whereas methylprednisolone prevented activation of innate immune response and mRNA expression of hypoxia-inducible factor-1α and its multiple target genes. CONCLUSIONS Our results show that donor treatment in combination with simvastatin and methylprednisolone prevents IRI and has beneficial effect on allograft survival in rat cardiac allografts. Minimizing microvascular injury and the activation of innate immunity may offer a novel therapeutic strategy to expand the donor pool and furthermore improve the function of the marginal donor organs.
Collapse
|
47
|
Rauhala L, Hämäläinen L, Salonen P, Bart G, Tammi M, Pasonen-Seppänen S, Tammi R. Low dose ultraviolet B irradiation increases hyaluronan synthesis in epidermal keratinocytes via sequential induction of hyaluronan synthases Has1-3 mediated by p38 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling. J Biol Chem 2013; 288:17999-8012. [PMID: 23645665 DOI: 10.1074/jbc.m113.472530] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan, a major epidermal extracellular matrix component, responds strongly to different kinds of injuries. This also occurs by UV radiation, but the mechanisms involved are poorly understood. The effects of a single ultraviolet B (UVB) exposure on hyaluronan content and molecular mass, and expression of genes involved in hyaluronan metabolism were defined in monolayer and differentiated, organotypic three-dimensional cultures of rat epidermal keratinocytes. The signals regulating the response were characterized using specific inhibitors and Western blotting. In monolayer cultures, UVB increased hyaluronan synthase Has1 mRNA already 4 h postexposure, with a return to control level by 24 h. In contrast, Has2 and Has3 were persistently elevated from 8 h onward. Silencing of Has2 and especially Has3 decreased the UVB-induced accumulation of hyaluronan. p38 and Ca(2+)/calmodulin-dependent protein kinase II pathways were found to be involved in the UVB-induced up-regulation of Has2 and Has3 expression, respectively, and their inhibition reduced hyaluronan deposition. However, the expressions of the hyaluronan-degrading enzymes Hyal1 and Hyal2 and the hyaluronan receptor Cd44 were also up-regulated by UVB. In organotypic cultures, UVB treatment also resulted in increased expression of both Has and Hyal genes and shifted hyaluronan toward a smaller size range. Histochemical stainings indicated localized losses of hyaluronan in the epidermis. The data show that exposure of keratinocytes to acute, low dose UVB increases hyaluronan synthesis via up-regulation of Has2 and Has3. The simultaneously enhanced catabolism of hyaluronan demonstrates the complexity of the UVB-induced changes. Nevertheless, enhanced hyaluronan metabolism is an important part of the adaptation of keratinocytes to radiation injury.
Collapse
Affiliation(s)
- Leena Rauhala
- School of Medicine, Institute of Biomedicine/Anatomy, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Siiskonen H, Poukka M, Tyynelä-Korhonen K, Sironen R, Pasonen-Seppänen S. Inverse expression of hyaluronidase 2 and hyaluronan synthases 1-3 is associated with reduced hyaluronan content in malignant cutaneous melanoma. BMC Cancer 2013; 13:181. [PMID: 23560496 PMCID: PMC3626669 DOI: 10.1186/1471-2407-13-181] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/02/2013] [Indexed: 01/08/2023] Open
Abstract
Background Hyaluronan is an extracellular matrix glycosaminoglycan involved in invasion, proliferation and metastasis of various types of carcinomas. In many cancers, aberrant hyaluronan expression implicates disease progression and metastatic potential. Melanoma is an aggressive skin cancer. The role of hyaluronan in melanoma progression including benign nevi and lymph node metastases has not been investigated earlier, nor the details of its synthesis and degradation. Methods The melanocytic and dysplastic nevi, in situ melanomas, superficially and deeply invasive melanomas and their lymph node metastases were analysed immunohistochemically for the amount of hyaluronan, its cell surface receptor CD44, hyaluronan synthases 1–3 and hyaluronidases 1–2. Results Hyaluronan content of tumoral cells in deeply invasive melanomas and metastatic lesions was clearly reduced compared to superficial melanomas or benign lesions. Furthermore, hyaluronan content in the stromal cells of benign nevi was higher than in the premalignant or malignant tumors. The immunopositivity of hyaluronidase 2 was significantly increased in the premalignant and malignant lesions indicating its specific role in the degradation of hyaluronan during tumor progression. Similarly, the expression of hyaluronan synthases 1–2 and CD44 receptor was decreased in the metastases compared to the primary melanomas. Conclusions These findings suggest that the reciprocal relationship between the degrading and synthesizing enzymes account for the alterations in hyaluronan content during the growth of melanoma. These results provide new information about hyaluronan metabolism in benign, premalignant and malignant melanocytic tumors of the skin.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O.B. 1627, FIN-70211, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
49
|
Hyaluronan in cytosol--Microinjection-based probing of its existence and suggested functions. Glycobiology 2012; 23:222-31. [DOI: 10.1093/glycob/cws149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Melanoma cell-derived factors stimulate hyaluronan synthesis in dermal fibroblasts by upregulating HAS2 through PDGFR-PI3K-AKT and p38 signaling. Histochem Cell Biol 2012; 138:895-911. [DOI: 10.1007/s00418-012-1000-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2012] [Indexed: 12/31/2022]
|