1
|
Kanno T, Miyako K, Endo Y. Lipid metabolism: a central modulator of RORγt-mediated Th17 cell differentiation. Int Immunol 2024; 36:487-496. [PMID: 38824406 DOI: 10.1093/intimm/dxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Among the T helper cell subsets, Th17 cells contribute to the development of various inflammatory and autoimmune diseases, including psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, serves as a master transcription factor for Th17 cell differentiation. Recent findings have shown that modulating the metabolic pathway is critical for Th17 cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Suppression of lipid biosynthesis, either through the pharmacological inhibition or gene deletion of related enzymes in CD4+ T cells, results in significant impairment of Th17 cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways have a pivotal role in the regulation of RORγt activity through the generation of endogenous RORγt lipid ligands. This review discusses recent discoveries highlighting the importance of lipid metabolism in Th17 cell differentiation and function, as well as exploring specific molecular pathways involved in RORγt activation through cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach to improve inflammatory and autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
2
|
Xiong G, Obringer B, Jones A, Horton E, Xu R. Regulation of RORα Stability through PRMT5-Dependent Symmetric Dimethylation. Cancers (Basel) 2024; 16:1914. [PMID: 38791992 PMCID: PMC11120602 DOI: 10.3390/cancers16101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Retinoic acid receptor-related orphan receptor alpha (RORα), a candidate tumor suppressor, is prevalently downregulated or lost in malignant breast cancer cells. However, the mechanisms of how RORα expression is regulated in breast epithelial cells remain incompletely understood. Protein arginine N-methyltransferase 5 (PRMT5), a type II methyltransferase catalyzing the symmetric methylation of the amino acid arginine in target proteins, was reported to regulate protein stability. To study whether and how PRMT5 regulates RORα, we examined the direct interaction between RORα and PRMT5 by immunoprecipitation and GST pull-down assays. The results showed that PRMT5 directly bound to RORα, and PRMT5 mainly symmetrically dimethylated the DNA-binding domain (DBD) but not the ligand-binding domain (LBD) of RORα. To investigate whether RORα protein stability is regulated by PRMT5, we transfected HEK293FT cells with RORα and PRMT5-expressing or PRMT5-silencing (shPRMT5) vectors and then examined RORα protein stability by a cycloheximide chase assay. The results showed that PRMT5 increased RORα protein stability, while silencing PRMT5 accelerated RORα protein degradation. In PRMT5-silenced mammary epithelial cells, RORα protein expression was decreased, accompanied by an enhanced epithelial-mesenchymal transition morphology and cell invasion and migration abilities. In PRMT5-overexpressed mammary epithelial cells, RORα protein was accumulated, and cell invasion was suppressed. These findings revealed a novel mechanism by which PRMT5 regulates RORα protein stability.
Collapse
Affiliation(s)
- Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Brynne Obringer
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; (B.O.); (A.J.)
| | - Austen Jones
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; (B.O.); (A.J.)
| | - Elise Horton
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Wangen C, Raithel A, Tillmanns J, Gege C, Herrmann A, Vitt D, Kohlhof H, Marschall M, Hahn F. Validation of nuclear receptor RORγ isoform 1 as a novel host-directed antiviral target based on the modulation of cholesterol levels. Antiviral Res 2024; 221:105769. [PMID: 38056603 DOI: 10.1016/j.antiviral.2023.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Currently, the clinically approved repertoire of antiviral drugs predominantly comprises direct-acting antivirals (DAAs). However, the use of DAAs is frequently limited by adverse effects, restriction to individual virus species, or the induction of viral drug resistance. These issues will likely be resolved by the introduction of host-directed antivirals (HDAs) targeting cellular proteins crucial for viral replication. However, experiences with the development of antiviral HDAs and clinical applications are still in their infancy. With the present study, we explored the human nuclear receptor and transcription factor RORγ isoform 1 (RORγ1), a member of the retinoic acid receptor-related orphan receptor (ROR) family, as a putative target of antiviral HDAs. To this end, cell culture models were used to investigate major viral human pathogens, i.e. the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human cytomegalovirus (HCMV), varicella zoster virus (VZV) and human immunodeficiency virus 1 (HIV-1). Our results demonstrated (i) an antiviral activity of the clinically relevant RORγ modulators cedirogant and others, (ii) that isoform RORγ1 acts as the responsible determinant and drug target in the analyzed cell culture-based models, (iii) a selectivity of the antiviral effect for RORγ1 over related receptors RORα and RORβ, (iv) a late-phase inhibition exerted by cedirogant in HCMV replication and (v) a mechanistic link to the cellular cholesterol biosynthesis. Combined, the data highlight this novel RORγ-specific antiviral targeting concept and the developmental potential of RORγ-directed small molecules.
Collapse
Affiliation(s)
- Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Andrea Raithel
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | | | - Alexandra Herrmann
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Immunic AG, Gräfelfing, Germany.
| | | | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
4
|
Li H, Rahman MA, Ruesch M, Eisele CD, Anderson EM, Wright PW, Cao J, Ratnayake S, Chen Q, Yan C, Meerzaman D, Abraham RS, Freud AG, Anderson SK. Abundant binary promoter switches in lineage-determining transcription factors indicate a digital component of cell fate determination. Cell Rep 2023; 42:113454. [PMID: 37976160 PMCID: PMC10842785 DOI: 10.1016/j.celrep.2023.113454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Previous studies of the murine Ly49 and human KIR gene clusters implicated competing sense and antisense promoters in the control of variegated gene expression. In the current study, an examination of transcription factor genes defines an abundance of convergent and divergent sense/antisense promoter pairs, suggesting that competing promoters may control cell fate determination. Differentiation of CD34+ hematopoietic progenitors in vitro shows that cells with GATA1 antisense transcription have enhanced GATA2 transcription and a mast cell phenotype, whereas cells with GATA2 antisense transcription have increased GATA1 transcripts and an erythroblast phenotype. Detailed analyses of the AHR and RORC genes demonstrate the ability of competing promoters to act as binary switches and the association of antisense transcription with an immature/progenitor cell phenotype. These data indicate that alternative cell fates generated by promoter competition in lineage-determining transcription factors contribute to the programming of cell differentiation.
Collapse
Affiliation(s)
- Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Md Ahasanur Rahman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael Ruesch
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caprice D Eisele
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erik M Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Paul W Wright
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennie Cao
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shashikala Ratnayake
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunhua Yan
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
5
|
Zhang Y, Ma J, Bao X, Hu M, Wei X. The role of retinoic acid receptor-related orphan receptors in skeletal diseases. Front Endocrinol (Lausanne) 2023; 14:1302736. [PMID: 38027103 PMCID: PMC10664752 DOI: 10.3389/fendo.2023.1302736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Bone homeostasis, depending on the balance between bone formation and bone resorption, is responsible for maintaining the proper structure and function of the skeletal system. As an important group of transcription factors, retinoic acid receptor-related orphan receptors (RORs) have been reported to play important roles in bone homeostasis by regulating the transcription of target genes in skeletal cells. On the other hand, the dysregulation of RORs often leads to various skeletal diseases such as osteoporosis, rheumatoid arthritis (RA), and osteoarthritis (OA). Herein, we summarized the roles and mechanisms of RORs in skeletal diseases, aiming to provide evidence for potential therapeutic strategies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Jun Ma
- Department of Oral Anatomy and Physiology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xingfu Bao
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xiaoxi Wei
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Pastwińska J, Karwaciak I, Karaś K, Bachorz RA, Ratajewski M. RORγT agonists as immune modulators in anticancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189021. [PMID: 37951483 DOI: 10.1016/j.bbcan.2023.189021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
RORγT is a transcription factor that directs the development of Th17 lymphocytes and other IL-17-expressing cells (e.g., Tc17 and ILC3 cells). These cells are involved in the body's defense against pathogenic bacteria and fungi, but they also participate in maintaining the proinflammatory environment in some autoimmune diseases and play a role in the immune system's response to cancer. Similar to other members of the nuclear receptor superfamily, the activity of RORγT is regulated by low-molecular-weight ligands. Therefore, extensive efforts have been dedicated to identifying inverse agonists that diminish the activity of this receptor and subsequently inhibit the development of autoimmune diseases. Unfortunately, in the pursuit of an ideal inverse agonist, the development of agonists has been overlooked. It is important to remember that these types of compounds, by stimulating lymphocytes expressing RORγT (Th17 and Tc17), can enhance the immune system's response to tumors. In this review, we present recent advancements in the biology of RORγT agonists and their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
7
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
8
|
Zeng J, Li M, Zhao Q, Chen M, Zhao L, Wei S, Yang H, Zhao Y, Wang A, Shen J, Du F, Chen Y, Deng S, Wang F, Zhang Z, Li Z, Wang T, Wang S, Xiao Z, Wu X. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. J Pharm Anal 2023; 13:545-562. [PMID: 37440911 PMCID: PMC10334362 DOI: 10.1016/j.jpha.2023.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
As a ligand-dependent transcription factor, retinoid-associated orphan receptor γt (RORγt) that controls T helper (Th) 17 cell differentiation and interleukin (IL)-17 expression plays a critical role in the progression of several inflammatory and autoimmune conditions. An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORγt to decrease Th17 cell development and IL-17 production. Several RORγt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORγt by binding to orthosteric- or allosteric-binding sites in the ligand-binding domain. Some of small-molecule inhibitors have entered clinical evaluations. Therefore, in current review, the role of RORγt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted. Notably, the recently developed RORγt inhibitors were summarized, with an emphasis on their optimization from lead compounds, efficacy, toxicity, mechanisms of action, and clinical trials. The limitations of current development in this area were also discussed to facilitate future research.
Collapse
Affiliation(s)
- Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shulin Wei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
9
|
Kanno T, Nakajima T, Miyako K, Endo Y. Lipid metabolism in Th17 cell function. Pharmacol Ther 2023; 245:108411. [PMID: 37037407 DOI: 10.1016/j.pharmthera.2023.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Among the subset of T helper cells, Th17 cells are known to play a crucial role in the pathogenesis of various autoimmune disorders, such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. The master transcription factor retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, plays a vital role in inducing Th17-cell differentiation. Recent findings suggest that metabolic control is critical for Th17-cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Inhibition of lipid biosynthesis, either through the use of pharmacological inhibitors or by the deficiency of related enzymes in CD4+ T cells, results in significant suppression of Th17-cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways are essential for controlling RORγt activity through the generation of a lipid ligand of RORγt. This review highlights recent findings that underscore the significant role of lipid metabolism in the differentiation and function of Th17 cells, as well as elucidating the distinctive molecular pathways that drive the activation of RORγt by cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach for ameliorating autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.
| |
Collapse
|
10
|
Chen Y, Zhang SP, Gong WW, Zheng YY, Shen JR, Liu X, Gu YH, Shi JH, Meng GL. Novel Therapeutic Potential of Retinoid-Related Orphan Receptor α in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24043462. [PMID: 36834872 PMCID: PMC9959049 DOI: 10.3390/ijms24043462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The retinoid-related orphan receptor α (RORα) is one subfamily of nuclear hormone receptors (NRs). This review summarizes the understanding and potential effects of RORα in the cardiovascular system and then analyzes current advances, limitations and challenges, and further strategy for RORα-related drugs in cardiovascular diseases. Besides regulating circadian rhythm, RORα also influences a wide range of physiological and pathological processes in the cardiovascular system, including atherosclerosis, hypoxia or ischemia, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, hypertension, and myocardial hypertrophy. In terms of mechanism, RORα was involved in the regulation of inflammation, apoptosis, autophagy, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial function. Besides natural ligands for RORα, several synthetic RORα agonists or antagonists have been developed. This review mainly summarizes protective roles and possible mechanisms of RORα against cardiovascular diseases. However, there are also several limitations and challenges of current research on RORα, especially the difficulties on the transformability from the bench to the bedside. By the aid of multidisciplinary research, breakthrough progress on RORα-related drugs to combat cardiovascular disorder may appear.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shu-Ping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wei-Wei Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yang-Yang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie-Ru Shen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Xiao Liu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Yun-Hui Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jia-Hai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
- Correspondence: (J.-H.S.); (G.-L.M.); Tel.: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1728 (G.-L.M.)
| | - Guo-Liang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (J.-H.S.); (G.-L.M.); Tel.: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1728 (G.-L.M.)
| |
Collapse
|
11
|
Liu CH, Yemanyi F, Bora K, Kushwah N, Blomfield AK, Kamenecka TM, SanGiovanni JP, Sun Y, Solt LA, Chen J. Genetic deficiency and pharmacological modulation of RORα regulate laser-induced choroidal neovascularization. Aging (Albany NY) 2023; 15:37-52. [PMID: 36626253 PMCID: PMC9876633 DOI: 10.18632/aging.204480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Choroidal neovascularization (CNV) causes acute vision loss in neovascular age-related macular degeneration (AMD). Genetic variations of the nuclear receptor RAR-related orphan receptor alpha (RORα) have been linked with neovascular AMD, yet its specific role in pathological CNV development is not entirely clear. In this study, we showed that Rora was highly expressed in the mouse choroid compared with the retina, and genetic loss of RORα in Staggerer mice (Rorasg/sg) led to increased expression levels of Vegfr2 and Tnfa in the choroid and retinal pigment epithelium (RPE) complex. In a mouse model of laser-induced CNV, RORα expression was highly increased in the choroidal/RPE complex post-laser, and loss of RORα in Rorasg/sg eyes significantly worsened CNV with increased lesion size and vascular leakage, associated with increased levels of VEGFR2 and TNFα proteins. Pharmacological inhibition of RORα also worsened CNV. In addition, both genetic deficiency and inhibition of RORα substantially increased vascular growth in isolated mouse choroidal explants ex vivo. RORα inhibition also promoted angiogenic function of human choroidal endothelial cell culture. Together, our results suggest that RORα negatively regulates pathological CNV development in part by modulating angiogenic response of the choroidal endothelium and inflammatory environment in the choroid/RPE complex.
Collapse
Affiliation(s)
- Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Felix Yemanyi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neetu Kushwah
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - John Paul SanGiovanni
- BIO5 Institute and Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura A. Solt
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Retinoid orphan nuclear receptor alpha (RORα) suppresses the epithelial-mesenchymal transition (EMT) by directly repressing Snail transcription. J Biol Chem 2022; 298:102059. [PMID: 35605663 PMCID: PMC9218514 DOI: 10.1016/j.jbc.2022.102059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoid orphan nuclear receptor alpha (RORα) is a member of the orphan nuclear factor family and regulates gene expression by binding to ROR response elements (ROREs). RORα has been identified as a potential tumor suppressor; however, how downregulation of RORα promotes cancer progression is not fully understood. Here, we showed that protein levels of RORα were downregulated during the Snail-, Twist-, or transforming growth factor-β–induced epithelial–mesenchymal transition (EMT). We found that silencing of RORα induced expression of mesenchymal markers in MCF10A cells, accompanied by enhanced cell invasion, migration, and mammosphere formation. Furthermore, ectopic expression of RORα suppressed transforming growth factor-β–induced EMT processes in MCF10A and HMLE cells. These results indicate that downregulation of RORα is crucial for the induction of EMT in mammary epithelial cells. By analyzing gene expression profiles in control and RORα-expressing cells, we also identified Snail, a key regulator of EMT, as a potential target of RORα. We show that RORα expression significantly inhibits Snail transcription in breast cancer cells. Chromatin immunoprecipitation analysis demonstrated that RORα bound to the ROREs in promoter region of SNAI1 gene, and using the luciferase reporter assay, we showed that binding to the ROREs was critical for RORα to repress Snail transcription. Finally, rescue experiments substantiated that Snail mediates RORα function in suppressing EMT and mammosphere formation. These results reveal a novel function of RORα in suppressing EMT and identify Snail as a direct target of RORα in mammary epithelial cells.
Collapse
|
13
|
Kumar R, Theiss AL, Venuprasad K. RORγt protein modifications and IL-17-mediated inflammation. Trends Immunol 2021; 42:1037-1050. [PMID: 34635393 PMCID: PMC8556362 DOI: 10.1016/j.it.2021.09.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
RORγt, the master transcription factor for cytokine interleukin (IL)-17, is expressed explicitly in Th17 cells, γδT cells, and type 3 innate lymphoid cells in mice and humans. Since dysregulated IL-17 expression is strongly linked to several human inflammatory diseases, the RORγt-IL-17 axis has been the focus of intense research. Recently, several studies have shown that RORγt is modified by multiple post-translational mechanisms, including ubiquitination, acetylation, SUMOylation, and phosphorylation. This review discusses how post-translational modifications modulate RORγt function and its turnover to regulate IL-17-driven inflammation. Broad knowledge of these pathways is crucial for a clear understanding of the pathogenic role of RORγt+IL-17+ cells and for the development of putative therapeutic strategies to target IL-17-driven diseases such as multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arianne L Theiss
- University of Colorado, School of Medicine, Division of Gastroenterology and Hepatology, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Venuprasad
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Yi S, Yang Y. Melatonin attenuates low shear stress-induced pyroptosis and endothelial cell dysfunction via the RORα/miR-223/STAT-3 signalling pathway. Exp Ther Med 2021; 22:1392. [PMID: 34650640 PMCID: PMC8506941 DOI: 10.3892/etm.2021.10828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells sense changes in blood flow shear stress and affect the progression of atherosclerotic plaques. Pyroptosis is an inflammatory form of cell death and has been implicated in cardiovascular diseases. Melatonin and its nuclear receptor retinoid-related orphan receptor α (RORα) have protective effects on the development of atherosclerosis. To date, whether melatonin can prevent endothelial cell pyroptosis and dysfunction in pathological shear stress remains unclear. In the present study, human umbilical vein endothelial cells (ECs) were cultured under low shear stress conditions (5 dyne/cm2) for 24 h and treated with or without melatonin (2 µmol/l). The binding sites of the microRNA (miR)-223 promoter and RORα were predicted using the JASPAR website. Expression of pyroptosis-related proteins, including cleaved N-terminal gasdermin D, caspase-1, intercellular adhesion molecule 1 (ICAM-1) and nitric oxide (NO) were assessed. The results indicated that low shear stress increased pyroptosis and ICAM-1 expression, whereas it decreased NO levels. Melatonin alleviated pyroptosis and ICAM-1 expression and increased the production of NO in ECs. Further assessment revealed that low-level shear stress decreased RORα protein and mRNA expression, whereas melatonin would bind to RORα and thereby promoted miR-223 transcription in ECs. The present study also identified signal transducer and activator of transcription 3 (STAT-3) as a potential target gene of miR-223-3p. When transfected with miR-223 inhibitor, ECs up-regulated the expression of pyroptosis-related proteins and ICAM-1, and down-regulated NO levels. By contrast, silencing STAT-3 expression diminished the protective effect of miR-223. These results indicated that melatonin prevented ECs from undergoing pyroptosis and alleviated dysfunction via the RORα/miR-223/STAT-3 signalling pathway. This information could aid in the development of novel therapeutic approaches and provide new insights into atherosclerosis.
Collapse
Affiliation(s)
- Sui Yi
- The Intensive Care Unit Department, Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yang Yang
- The Neurology Department, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
15
|
Mao W, Xiong G, Wu Y, Wang C, St. Clair D, Li JD, Xu R. RORα Suppresses Cancer-Associated Inflammation by Repressing Respiratory Complex I-Dependent ROS Generation. Int J Mol Sci 2021; 22:ijms221910665. [PMID: 34639006 PMCID: PMC8509002 DOI: 10.3390/ijms221910665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer development is associated with macrophage infiltration and differentiation in the tumor microenvironment. Our previous study highlights the crucial function of reactive oxygen species (ROS) in enhancing macrophage infiltration during the disruption of mammary tissue polarity. However, the regulation of ROS and ROS-associated macrophage infiltration in breast cancer has not been fully determined. Previous studies identified retinoid orphan nuclear receptor alpha (RORα) as a potential tumor suppressor in human breast cancer. In the present study, we showed that retinoid orphan nuclear receptor alpha (RORα) significantly decreased ROS levels and inhibited ROS-mediated cytokine expression in breast cancer cells. RORα expression in mammary epithelial cells inhibited macrophage infiltration by repressing ROS generation in the co-culture assay. Using gene co-expression and chromatin immunoprecipitation (ChIP) analyses, we identified complex I subunits NDUFS6 and NDUFA11 as RORα targets that mediated its function in suppressing superoxide generation in mitochondria. Notably, the expression of RORα in 4T1 cells significantly inhibited cancer metastasis, reduced macrophage accumulation, and enhanced M1-like macrophage differentiation in tumor tissue. In addition, reduced RORα expression in breast cancer tissue was associated with an increased incidence of cancer metastasis. These results provide additional insights into cancer-associated inflammation, and identify RORα as a potential target to suppress ROS-induced mammary tumor progression.
Collapse
Affiliation(s)
- Wei Mao
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha 410078, China;
| | - Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Yuanyuan Wu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Daret St. Clair
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jia-Da Li
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha 410078, China;
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-7889
| |
Collapse
|
16
|
Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021; 20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Circadian rhythm is a natural, endogenous process whose physiological functions are controlled by a set of clock genes. Disturbance of the clock genes have detrimental effects on both innate and adaptive immunity, which significantly enhance pro-inflammatory responses and susceptibility to autoimmune diseases via strictly controlling the individual cellular components of the immune system that initiate and perpetuate the inflammation pathways. Autoimmune diseases, especially rheumatoid arthritis (RA), often exhibit substantial circadian oscillations, and circadian rhythm is involved in the onset and progression of autoimmune diseases. Mounting evidence indicate that the synthetic ligands of circadian clock genes have the property of reducing the susceptibility and clinical severity of subjects. This review supplies an overview of the roles of circadian clock genes in the pathology of autoimmune diseases, including BMAL1, CLOCK, PER, CRY, REV-ERBα, and ROR. Furthermore, summarized some circadian clock genes as candidate genes for autoimmune diseases and current advancement on therapy of autoimmune diseases with synthetic ligands of circadian clock genes. The existing body of knowledge demonstrates that circadian clock genes are inextricably linked to autoimmune diseases. Future research should pay attention to improve the quality of life of patients with autoimmune diseases and reduce the effects of drug preparation on the normal circadian rhythms.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Brisbane, Australia
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Yu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
17
|
Oxidative Dysregulation in Early Life Stress and Posttraumatic Stress Disorder: A Comprehensive Review. Brain Sci 2021; 11:brainsci11060723. [PMID: 34072322 PMCID: PMC8228973 DOI: 10.3390/brainsci11060723] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic stress may chronically affect master homeostatic systems at the crossroads of peripheral and central susceptibility pathways and lead to the biological embedment of trauma-related allostatic trajectories through neurobiological alterations even decades later. Lately, there has been an exponential knowledge growth concerning the effect of traumatic stress on oxidative components and redox-state homeostasis. This extensive review encompasses a detailed description of the oxidative cascade components along with their physiological and pathophysiological functions and a systematic presentation of both preclinical and clinical, genetic and epigenetic human findings on trauma-related oxidative stress (OXS), followed by a substantial synthesis of the involved oxidative cascades into specific and functional, trauma-related pathways. The bulk of the evidence suggests an imbalance of pro-/anti-oxidative mechanisms under conditions of traumatic stress, respectively leading to a systemic oxidative dysregulation accompanied by toxic oxidation byproducts. Yet, there is substantial heterogeneity in findings probably relative to confounding, trauma-related parameters, as well as to the equivocal directionality of not only the involved oxidative mechanisms but other homeostatic ones. Accordingly, we also discuss the trauma-related OXS findings within the broader spectrum of systemic interactions with other major influencing systems, such as inflammation, the hypothalamic-pituitary-adrenal axis, and the circadian system. We intend to demonstrate the inherent complexity of all the systems involved, but also put forth associated caveats in the implementation and interpretation of OXS findings in trauma-related research and promote their comprehension within a broader context.
Collapse
|
18
|
Carazo A, Macáková K, Matoušová K, Krčmová LK, Protti M, Mladěnka P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021; 13:1703. [PMID: 34069881 PMCID: PMC8157347 DOI: 10.3390/nu13051703] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays a key role in the correct functioning of multiple physiological functions. The human organism can metabolize natural forms of vitamin A and provitamin A into biologically active forms (retinol, retinal, retinoic acid), which interact with multiple molecular targets, including nuclear receptors, opsin in the retina and, according to the latest research, also some enzymes. In this review, we aim to provide a complex view on the present knowledge about vitamin A ranging from its sources through its physiological functions to consequences of its deficiency and metabolic fate up to possible pharmacological administration and potential toxicity. Current analytical methods used for its detection in real samples are included as well.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michele Protti
- The Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| |
Collapse
|
19
|
Ladurner A, Schwarz PF, Dirsch VM. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat Prod Rep 2021; 38:757-781. [PMID: 33118578 DOI: 10.1039/d0np00047g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 1994 to 2020 Retinoic acid receptor-related orphan receptors (RORs) belong to a subfamily of the nuclear receptor superfamily and possess prominent roles in circadian rhythm, metabolism, inflammation, and cancer. They have been subject of research for over two decades and represent attractive but challenging drug targets. Natural products were among the first identified ligands of RORs and continue to be of interest to this day. This review focuses on ligands and indirect modulators of RORs from natural sources and explores their roles in a therapeutic context.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Patrik F Schwarz
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Yang Y, Hu H, Mao C, Jiang F, Lu X, Han X, Hao K, Lan X, Zhang Q, Pan C. Detection of the 23-bp nucleotide sequence mutation in retinoid acid receptor related orphan receptor alpha (RORA) gene and its effect on sheep litter size. Anim Biotechnol 2020; 33:70-78. [PMID: 32731793 DOI: 10.1080/10495398.2020.1770273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoid acid receptor related orphan receptor alpha (RORA) transcribes steroid-related genes to regulate estrogen synthesis. As an important reproductive trait, litter size relates to estrogen synthesis. Therefore, it is important to investigate the association between RORA gene and sheep litter size. In this study, one 23-bp nucleotide sequence mutation was identified in intron 1 of RORA gene in 532 female Australian White Sheep. Moreover, the polymorphic information content (PIC) values of this locus was 0.219. The litter size of ID genotype was significantly better than II genotype and DD genotype in the second born litter size (p < 0.05). This loci was related to third born litter size and the ID is the dominant genotype (p < 0.05). The association between combined genotypes and average litter size showed that sheep with heterozygote (ID) genotypes had larger lamb than homozygous (DD and II) genotypes. To sum, this study provided theoretical references for the comprehensively research of the function of RORA gene and the breeding of Australian White Sheep. The 23-bp indel variants could be considered as molecular markers for the second and third born litter size of sheep for MAS breeding.
Collapse
Affiliation(s)
- Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huina Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cui Mao
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Xiaofang Lu
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Xufei Han
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Kunjie Hao
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Structural change of retinoic-acid receptor-related orphan receptor induced by binding of inverse-agonist: Molecular dynamics and ab initio molecular orbital simulations. Comput Struct Biotechnol J 2020; 18:1676-1685. [PMID: 32670507 PMCID: PMC7338990 DOI: 10.1016/j.csbj.2020.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022] Open
Abstract
To elucidate structural changes in the retinoic acid receptor-related orphan receptor gamma (RORγt) induced by the binding of an agonist or an inverse agonist, we conducted molecular dynamics (MD) simulations in explicit water. In addition, ab initio fragment molecular orbital calculations were carried out for certain characteristic structures obtained from the MD simulations to reveal important interactions between the amino acid residues of RORγt, and to distinguish the different effects in the binding of an agonist and an inverse agonist on the structure of RORγt. The results elucidate that the hydrogen bond between His479 of helix11 (H11) and Tyr502 of helix12 (H12) is important to keep the H12 conformation in the agonist-bound RORγt. In contrast, in the inverse-agonist-bound RORγt, the side chain of His479 rotates, significantly weakening the interaction between His479 and Tyr502, leading to a conformational change in H12. Therefore, the present molecular simulations clearly indicate that the conformational change in the side chain of His479 in the inverse-agonist-bound RORγt is the main reason for the H12 destabilization induced by the binding of the inverse agonist. Such a conformational change does not occur on the binding of the agonist in RORγt, owing to the strong hydrogen bond between His479 and Tyr502.
Collapse
|
22
|
Chen Q, Wang F, Zhou B. Investigations of retinoic acid receptor-related orphan receptor-gamma t (RORγt) agonists: a combination of 3D-QSAR, molecular docking and molecular dynamics. J Biomol Struct Dyn 2020; 39:3501-3514. [PMID: 32375589 DOI: 10.1080/07391102.2020.1765873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Retinoic acid receptor-related orphan receptor-gamma t (RORγt) is an attractive target for Th17-driven autoimmune diseases. In the present work, a series of RORγt agonists were investigated by a molecular modeling study combining three-dimensional quantitative structure activity relationship (3D-QSAR), molecular docking, molecular dynamics (MD) simulations and binding free energies to get insight into the molecular features that would promote binding activity. The optimum comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models for 3D-QSAR studies possess satisfactory predictive ability, with R2cv=0.615, R2pred=0.8702 for CoMFA, and R2cv=0.670, R2pred=0.7683 for CoMSIA model, respectively. In addition, molecular docking studies, molecular dynamics simulations and binding free energies were used to find the actual conformations of compounds in the active site of RORγt, and key residues GLN-286, LEU-287, HIS-323 and ARG-367 for higher binding activity were pointed out. The predicted models will help us to understand the structural requirements of RORγt agonists for the designing of better active compounds. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Qinghua Chen
- School of Life Science, Linyi University, Linyi, China
| | - Fangfang Wang
- School of Life Science, Linyi University, Linyi, China
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Basic Medical, GuizhouMedical University, Guizhou, China
| |
Collapse
|
23
|
Matsuoka H, Tokunaga R, Katayama M, Hosoda Y, Miya K, Sumi K, Ohishi A, Kamishikiryo J, Shima A, Michihara A. Retinoic acid receptor-related orphan receptor α reduces lipid droplets by upregulating neutral cholesterol ester hydrolase 1 in macrophages. BMC Mol Cell Biol 2020; 21:32. [PMID: 32321446 PMCID: PMC7310410 DOI: 10.1186/s12860-020-00276-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Neutral cholesterol ester hydrolase 1 (NCEH1) catalyzes the hydrolysis of cholesterol ester (CE) in macrophages. Genetic ablation of NCEH1 promotes CE-laden macrophages and the development of atherosclerosis in mice. Dysregulation of NCEH1 levels is involved in the pathogenesis of multiple disorders including metabolic diseases and atherosclerosis; however, relatively little is known regarding the mechanisms regulating NCEH1. Retinoic acid receptor-related orphan receptor α (RORα)-deficient mice exhibit several phenotypes indicative of aberrant lipid metabolism, including dyslipidemia and increased susceptibility to atherosclerosis. Results In this study, inhibition of lipid droplet formation by RORα positively regulated NCEH1 expression in macrophages. In mammals, the NCEH1 promoter region was found to harbor putative RORα response elements (ROREs). Electrophoretic mobility shift, chromatin immunoprecipitation, and luciferase reporter assays showed that RORα binds and responds to ROREs in human NCEH1. Moreover, NCEH1 was upregulated through RORα via a phorbol myristate acetate-dependent mechanism during macrophage differentiation from THP1 cells. siRNA-mediated knockdown of RORα significantly downregulated NCEH1 expression and accumulated lipid droplets in human hepatoma cells. In contrast, NCEH1 expression and removal of lipid droplets were induced by RORα agonist treatments and RORα overexpression in macrophages. Conclusion These data strongly suggested that NCEH1 is a direct RORα target, defining potential new roles for RORα in the inhibition of lipid droplet formation through NCEH1.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Riki Tokunaga
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Miyu Katayama
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Yuichiro Hosoda
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Kaoruko Miya
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Kento Sumi
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Ami Ohishi
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Jun Kamishikiryo
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Akiho Shima
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Akihiro Michihara
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
24
|
Isoform-Specific Lysine Methylation of RORα2 by SETD7 Is Required for Association of the TIP60 Coactivator Complex in Prostate Cancer Progression. Int J Mol Sci 2020; 21:ijms21051622. [PMID: 32120841 PMCID: PMC7084544 DOI: 10.3390/ijms21051622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The retinoid acid-related orphan receptor α (RORα), a member of the orphan nuclear receptor superfamily, functions as an unknown ligand-dependent transcription factor. RORα was shown to regulate a broad array of physiological processes such as Purkinje cell development in the cerebellum, circadian rhythm, lipid and bone metabolism, inhibition of inflammation, and anti-apoptosis. The human RORα gene encodes at least four distinct isoforms (RORα1, -2, -3, -4), which differ only in their N-terminal domain (NTD). Two isoforms, RORα2 and 3, are not expressed in mice, whereas RORα1 and 4 are expressed both in mice and humans. In the present study, we identified the specific NTD of RORα2 that enhances prostate tumor progression and proliferation via lysine methylation-mediated recruitment of coactivator complex pontin/Tip60. Upregulation of the RORα2 isoform in prostate cancers putatively promotes tumor formation and progression. Furthermore, binding between coactivator complex and RORα2 is increased by lysine methylation of RORα2 because methylation permits subsequent interaction with binding partners. This methylation-dependent activation is performed by SET domain containing 7 (SETD7) methyltransferase, inducing the oncogenic potential of RORα2. Thus, post-translational lysine methylation of RORα2 modulates oncogenic function of RORα2 in prostate cancer. Exploration of the post-translational modifications of RORα2 provides new avenues for the development of tumor-suppressive therapeutic agents through modulating the human isoform-specific tumorigenic role of RORα2.
Collapse
|
25
|
Li Z, Zhao J, Liu H, Wang J, Lu W. Melatonin inhibits apoptosis in mouse Leydig cells via the retinoic acid-related orphan nuclear receptor α/p53 pathway. Life Sci 2020; 246:117431. [PMID: 32061868 DOI: 10.1016/j.lfs.2020.117431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Melatonin is an endogenous indoleamine hormone involved in various physiological processes. However, the mechanism of melatonin in mediating Leydig cells function has not been fully explained. In this study, we investigated the mechanism through which melatonin inhibits apoptosis in mouse Leydig cells by activating the retinoic acid-related orphan nuclear receptor (ROR) α/p53 signaling pathway. We confirmed the expression and localization of RORα in mouse Leydig cells using immunofluorescence. After treatment with 10 ng/mL melatonin for 36 h, RORα mRNA and protein levels were significantly increased (P < 0.01). TUNEL and flow cytometry showed that melatonin significantly decreased the TUNEL-positive cell ratio and apoptosis rate (P < 0.05). Moreover, melatonin decreased BAX expression and increased BCL-2 expression (P < 0.05). However, the RORα inhibitor SR1001 reversed the inhibitory effects of melatonin on apoptosis (P < 0.05). Additionally, analysis of p53 expression showed that melatonin inhibited p53 mRNA and protein expression (P < 0.05), whereas SR1001 reversed these effects. p53 reversed the anti-apoptotic process involving RORα-mediated melatonin in mouse Leydig cells. Collectively, our findings suggested that melatonin inhibited apoptosis via the RORα/p53 pathway.
Collapse
Affiliation(s)
- Zhiqiang Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
26
|
Discovery of novel N-sulfonamide-tetrahydroquinolines as potent retinoic acid receptor-related orphan receptor γt inverse agonists for the treatment of autoimmune diseases. Eur J Med Chem 2020; 187:111984. [DOI: 10.1016/j.ejmech.2019.111984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022]
|
27
|
Abstract
Background: Sleep disturbances are a common symptom of major depressive disorder (MDD). Sleep is highly regulated by circadian rhythms, controlled by circadian genes, that act through a series of feedback loops to regulate the sleep-wake cycle.Objectives: To the best of our knowledge, a systematic review regarding the core circadian genes and their role in MDD has not been published recently. Also, a review of these genes and their role in sleep disturbances in depressed individuals appears to have never been done. We decided to integrate both concepts into one comprehensive review.Method: The review was done using the appropriate search terms in the following search engines: OVID Medline, Embase, PsycINFO and Pubmed.Results: Based on the data reviewed, none of the circadian genes appear to be associated with MDD, but some are more promising than others. These genes are: CRY1, CRY2, PER2 and NPAS2. When investigating the role of circadian genes in sleep disturbances among individuals with MDD, the most promising candidate gene is TIMELESS. Although the results in this area are limited.Conclusion: Given the promising leads from this review, future studies should investigate circadian genes in sleep disturbances among the depressed population.
Collapse
Affiliation(s)
- Lindsay Melhuish Beaupre
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Centre for Addiction & Mental Health, Neurogenetics Section, Toronto, Canada
| | - Gregory M Brown
- Centre for Addiction & Mental Health, Neurogenetics Section, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Centre for Addiction & Mental Health, Neurogenetics Section, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Fashe M, Hashiguchi T, Negishi M, Sueyoshi T. Ser100-Phosphorylated ROR α Orchestrates CAR and HNF4 α to Form Active Chromatin Complex in Response to Phenobarbital to Regulate Induction of CYP2B6. Mol Pharmacol 2020; 97:191-201. [PMID: 31924695 DOI: 10.1124/mol.119.118273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
We have previously shown that the retinoid-related orphan receptor alpha (RORα) phosphorylation plays a pivotal role in sulfotransferase 1E1 gene regulation within mouse liver. Here, we found serine 100-phosphorylated RORα orchestrates constitutive androstane receptor (CAR) and hepatocyte nuclear factor 4 alpha (HNF4α) to induce CYP2B6 by phenobarbital (PB) in human primary hepatocytes (HPHs). RORα knockdown using small interfering RNAs suppressed CYP2B6 mRNAs in HPH, whereas transient expression of RORα in COS-1 cells activated CYP2B6 promoter activity in reporter assays. Through chromatin immunoprecipitation (IP) and gel shift assays, we found that RORα in the form of phosphorylated (p-) S100 directly bound to a newly identified RORα response element (RORα response element on CYP2B6 promoter, -660/-649) within the CYP2B6 promoter in untreated or treated HPH. In PB-treated HPH, p-Ser100 RORα was both enriched in the distal phenobarbital response element module (PBREM) and the proximal okadaic acid response element (OARE), a known HNF4α binding site. Chromatin conformation capture assay revealed direct contact between the PBREM and OARE only in PB-treated HPH. Moreover, CAR preferably interacted with phosphomimetically mutated RORα at Ser100 residue in co-IP assay. A gel shift assay with a radiolabeled OARE module and nuclear extracts prepared from PB-treated mouse liver confirmed that HNF4α formed a complex with Ser 100-phosphorylated RORα, as shown by supershifted complexes with anti-p-Ser100 RORα and anti-HNF4α antibodies. Altogether, the results established that p-Ser100 RORα bridging the PBREM and OARE orchestrates CAR and HNF4α to form active chromatin complex during PB-induced CYP2B6 expression in human primary hepatocytes. SIGNIFICANCE STATEMENT: CYP2B6 is a vital enzyme for the metabolic elimination of xenobiotics, and it is prone to induction by xenobiotics, including phenobarbital via constitutive androstane receptor (CAR) and hepatocyte nuclear factor 4 alpha (HNF4α). Here, we show that retinoid-related orphan receptor alpha (RORα), through phosphorylated S100 residue, orchestrated CAR-HNF4α interaction on the CYP2B6 promoter in human primary hepatocyte cultures. These results signify not only the role of RORα in the molecular process of CYP2B6 induction, but it also reveals the importance of conserved phosphorylation sites within the DNA-binding domain of the receptor.
Collapse
Affiliation(s)
- Muluneh Fashe
- Pharmacogenetics section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Takuyu Hashiguchi
- Pharmacogenetics section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Tatsuya Sueyoshi
- Pharmacogenetics section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
29
|
Retinoid-related orphan nuclear receptor alpha (RORα)-deficient mice display morphological testicular defects. J Transl Med 2019; 99:1835-1849. [PMID: 31409890 DOI: 10.1038/s41374-019-0299-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The role of retinoid-related orphan receptor, one of the transcription factors reported in testis, in testicular function is unclear, so this study was performed to evaluate the qualitative and quantitative changes in the testicular structure of RORα-deficient mice using light-, electron-microscopy, and immunohistochemistry. Among the most striking alterations observed in the testis of the mutant mice were hypospermatogenesis, marked reduction in volume proportions of interstitial tissues and number of Leydig cells, significant decrease in the diameter of seminiferous tubules and height of their epithelium, vacuolation in the epithelium of the seminiferous tubules with occurrence of mast cells, appearance of delay spermiation signs, and changes in sperm morphology. Moreover, the testis of mutant mice showed symplasts, in addition to appearance of multinucleated giant bromophenol-positive cells. ATPase activity was limited to spermatogonia and some primary spermatocytes, with higher alkaline phosphatase expression. Stronger vimentin reaction was immunolocalized to spermatogonia, spermatids, Leydig cells, and Sertoli cells. The expression of CD117 (C-kit, stem cell growth factor receptor) was limited to spermatogonia, primary spermatocytes, and Leydig cells. Seminiferous tubules showed overexpression of vascular endothelial growth factor (VEGF). Transmission electron microscopy examination of the mutant mice revealed abnormal Sertoli cells, hypertrophied spermatogonia, spermatocytes with degenerated mitochondria, and incompletely developed sperms. In conclusion, RORα is one of the essential proteins that regulate testicular structure.
Collapse
|
30
|
Yahia-Cherbal H, Rybczynska M, Lovecchio D, Stephen T, Lescale C, Placek K, Larghero J, Rogge L, Bianchi E. NFAT primes the human RORC locus for RORγt expression in CD4 + T cells. Nat Commun 2019; 10:4698. [PMID: 31619674 PMCID: PMC6795897 DOI: 10.1038/s41467-019-12680-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
T helper 17 (Th17) cells have crucial functions in mucosal immunity and the pathogenesis of several chronic inflammatory diseases. The lineage-specific transcription factor, RORγt, encoded by the RORC gene modulates Th17 polarization and function, as well as thymocyte development. Here we define several regulatory elements at the human RORC locus in thymocytes and peripheral CD4+ T lymphocytes, with CRISPR/Cas9-guided deletion of these genomic segments supporting their role in RORγt expression. Mechanistically, T cell receptor stimulation induces cyclosporine A-sensitive histone modifications and P300/CBP acetylase recruitment at these elements in activated CD4+ T cells. Meanwhile, NFAT proteins bind to these regulatory elements and activate RORγt transcription in cooperation with NF-kB. Our data thus demonstrate that NFAT specifically regulate RORγt expression by binding to the RORC locus and promoting its permissive conformation. The master transcription factor RORγt, encoded by the RORC gene, controls the polarization of CD4+ T cells expressing interleukin-17 (Th17). Here the authors describe several regulatory elements at the RORC locus that are recognized by NFAT and NFkB to induce a permissive epigenetic configuration of the RORC gene for RORγt expression and Th17 differentiation.
Collapse
Affiliation(s)
- Hanane Yahia-Cherbal
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Magda Rybczynska
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Laboratoire Colloides et Matériaux Divisés, École supérieure de Physique et de Chimie industrielles, Paris, France
| | - Domenica Lovecchio
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France
| | - Tharshana Stephen
- Institut Pasteur, Unité de Technologie et Service Cytométrie et Biomarqueurs (UTechS CB), Centre de recherche translationnelle (CRT), Paris, France
| | - Chloé Lescale
- Institut Pasteur, Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Paris, France
| | - Katarzyna Placek
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Immunology and Metabolism, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jérome Larghero
- Assistance Publique-Hopitaux de Paris, Hôpital Saint-Louis, Cell Therapy Unit and Cord Blood Bank; CIC de Biothérapies, CBT501, Paris, France
| | - Lars Rogge
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France
| | - Elisabetta Bianchi
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.
| |
Collapse
|
31
|
RORα suppresses interleukin-6-mediated hepatic acute phase response. Sci Rep 2019; 9:11798. [PMID: 31409825 PMCID: PMC6692401 DOI: 10.1038/s41598-019-48171-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Acute liver failure (ALF) is characterized by loss of liver function in response to sustained augmentation of the acute-phase response (APR) in the liver, which can progress even to death. Although the inflammatory interleukin-6 (IL-6)–axis is a crucial factor that drives the hepatic APR by releasing diverse acute-phase proteins (APPs), therapeutic strategies to block the IL-6–STAT3-mediated APR are not well developed. Here, we show that the nuclear receptor retinoic acid-related orphan receptor α (RORα) limits APR-mediated liver injury by inhibiting the hepatic IL-6–STAT3 signaling pathway. Administration of JC1-40, an RORα activator, diminished diethylnitrosamine-induced acute liver injury and repressed transcriptional expression of APPs such as CXCL1 and LCN2 in mice. IL-6-mediated activation of STAT3 was repressed after RORα activation by either adenoviral infusion of RORα or JC1-40 treatment in primary hepatocytes. Activation of RORα decreased transcriptional expression of IL-6 receptor α, an upstream activator of STAT3, both in vitro and in vivo. This may be one mechanism underlying the RORα-mediated inhibition of STAT3. Taken together, our results suggest that RORα is a regulator of the hepatic IL-6–STAT3 signaling pathway and may be a new therapeutic target for treating APR-associated inflammatory ALF.
Collapse
|
32
|
Yang Y, Liu L, Li M, Cheng X, Fang M, Zeng Q, Xu Y. The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:834-845. [PMID: 31154107 DOI: 10.1016/j.bbagrm.2019.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
Prostate cancer malignancies are intimately correlated with deregulated fatty acid metabolism. The underlying epigenetic mechanism is not fully understood. In the present study we investigated the mechanism whereby the chromatin remodeling protein BRG1 regulates the transcription of long-chain fatty acid elongase 3 (Elovl3) in prostate cancer cells. We report that in response to pro-metastatic cues (androgen and TGF-β) BRG1 expression was up-regulated along with Elvol3 in prostate cancer cells. BRG1 over-expression potentiated whereas BRG1 knockdown attenuated prostate cancer cell migration and invasion. Coincidently, Elovl3 was up-regulated following BRG1 over-expression and down-regulated after BRG1 knockdown in prostate cancer cells. Further analysis revealed that BRG1 interacted with and was recruited by retinoic acid receptor-related orphan receptor (RORγ) to the Elovl3 promoter to activate transcription. Chromatin immunoprecipitation (ChIP) profiling demonstrated that BRG1 interacted with histone acetyltransferase p300 to activate Elovl3 transcription. Depletion of p300 by siRNA or inhibition of p300 by curcumin attenuated Elovl3 trans-activation in prostate cancer cells. Together, our data identify a novel epigenetic pathway that links Elovl3 transcription to prostate cancer cell migration and invasion.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Center for Male Reproductive Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Xian Cheng
- Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Mingming Fang
- Center for Male Reproductive Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Qingqi Zeng
- Center for Male Reproductive Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China.
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
33
|
Wang B, Wen H, Smith W, Hao D, He B, Kong L. Regulation effects of melatonin on bone marrow mesenchymal stem cell differentiation. J Cell Physiol 2019; 234:1008-1015. [PMID: 30145787 DOI: 10.1002/jcp.27090] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022]
Abstract
Melatonin's therapeutic potential has been highly underestimated because its biological functional roles are diverse and relevant mechanisms are complicated. Among the numerous biological activities of melatonin, its regulatory effects on pluripotent mesenchymal stem cells (MSCs), which are found in bone marrow stem cells (BMSCs) and adipose tissue (AD-MSC), have been recently proposed, which has received increasingly more attention in recent studies. Moreover, receptor-dependent and receptor-independent responses to melatonin are identified to occur in these cells by regulating signaling pathways, which drive the commitment and differentiation of MSCs into osteogenic, chondrogenic, or adipogenic lineages. Therefore, the aim of our current review is to summarize the evidence related to the utility of melatonin as a regulatory agent by focusing on its relationship with the differentiation of MSCs. In particular, we aimed to review its roles in promoting osteogenic and chondrogenic differentiation and the relevant signaling cascades involved. Also, the roles that melatonin and, particularly, its receptors play in these processes are highlighted.
Collapse
Affiliation(s)
- Biao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Hao Wen
- Department of Orthopedic, Yan'an University Medical School, Yan'an, China
| | - Wanli Smith
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
34
|
Beak JY, Kang HS, Huang W, Myers PH, Bowles DE, Jetten AM, Jensen BC. The nuclear receptor RORα protects against angiotensin II-induced cardiac hypertrophy and heart failure. Am J Physiol Heart Circ Physiol 2019; 316:H186-H200. [PMID: 30387679 PMCID: PMC6383360 DOI: 10.1152/ajpheart.00531.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023]
Abstract
The nuclear receptor retinoic acid-related orphan receptor-α (RORα) regulates numerous critical biological processes, including central nervous system development, lymphocyte differentiation, and lipid metabolism. RORα has been recently identified in the heart, but very little is known about its role in cardiac physiology. We sought to determine whether RORα regulates myocardial hypertrophy and cardiomyocyte survival in the context of angiotensin II (ANG II) stimulation. For in vivo characterization of the function of RORα in the context of pathological cardiac hypertrophy and heart failure, we used the "staggerer" (RORαsg/sg) mouse, which harbors a germline mutation encoding a truncated and globally nonfunctional RORα. RORαsg/sg and wild-type littermate mice were infused with ANG II or vehicle for 14 days. For in vitro experiments, we overexpressed or silenced RORα in neonatal rat ventricular myocytes (NRVMs) and human cardiac fibroblasts exposed to ANG II. RORαsg/sg mice developed exaggerated myocardial hypertrophy and contractile dysfunction after ANG II treatment. In vitro gain- and loss-of-function experiments were consistent with the discovery that RORα inhibits ANG II-induced pathological hypertrophy and cardiomyocyte death in vivo. RORα directly repressed IL-6 transcription. Loss of RORα function led to enhanced IL-6 expression, proinflammatory STAT3 activation (phopho-STAT3 Tyr705), and decreased mitochondrial number and function, oxidative stress, hypertrophy, and death of cardiomyocytes upon ANG II exposure. RORα was less abundant in failing compared with nonfailing human heart tissue. In conclusion, RORα protects against ANG II-mediated pathological hypertrophy and heart failure by suppressing the IL-6-STAT3 pathway and enhancing mitochondrial function. NEW & NOTEWORTHY Mice lacking retinoic acid-related orphan receptor-α (RORα) develop exaggerated cardiac hypertrophy after angiotensin II infusion. Loss of RORα leads to enhanced IL-6 expression and NF-κB nuclear translocation. RORα maintains mitochondrial function and reduces oxidative stress after angiotensin II. The abundance of RORα is reduced in failing mouse and human hearts.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Cardiomegaly/etiology
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cells, Cultured
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/metabolism
- Humans
- Interleukin-6/metabolism
- Loss of Function Mutation
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Mitochondria, Heart/metabolism
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Rats
- Rats, Sprague-Dawley
- STAT3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Ju Youn Beak
- McAllister Heart Institute University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | - Hong Soon Kang
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Wei Huang
- McAllister Heart Institute University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | - Page H Myers
- Veterinary Medicine Section, Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Dawn E Bowles
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Brian C Jensen
- McAllister Heart Institute University of North Carolina School of Medicine , Chapel Hill, North Carolina
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
35
|
Sun N, Yuan C, Ma X, Wang Y, Gu X, Fu W. Molecular Mechanism of Action of RORγt Agonists and Inverse Agonists: Insights from Molecular Dynamics Simulation. Molecules 2018; 23:molecules23123181. [PMID: 30513894 PMCID: PMC6321388 DOI: 10.3390/molecules23123181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
As an attractive drug-target, retinoic acid receptor-related orphan receptor-gamma-t (RORγt) has been employed widely to develop clinically relevant small molecular modulators as potent therapy for autoimmune disease and cancer, but its molecular mechanism of action (MOA) remains unclear. In the present study, we designed and discovered two novel RORγt ligands that are similar in structure, but different in efficacy. Using fluorescence resonance energy transfer (FRET) assay, compound 1 was identified as an agonist with an EC50 of 3.7 μM (max. act.: 78%), while compound 2 as an inverse agonist with an IC50 value of 2.0 μM (max. inh.: 61%). We performed molecular dynamics (MD) simulations, and elucidated the MOA of RORγt agonist and inverse agonist. Through the analyses of our MD results, we found that, after RORγt is bound with the agonist 1, the side chain of Trp317 stays in the gauche- conformation, and thus helps to form the hydrogen bond, His479-Trp502, and a large hydrophobic network among H11, H11′, and H12. All these interactions stabilize the H12, and helps the receptor recruit the coactivator. When the RORγt is bound with the inverse agonist 2, the side chain of Trp317 is forced to adopt the trans conformation, and these presumed interactions are partially destroyed. Taken together, the critical role of residue Trp317 could be viewed as the driving force for the activation of RORγt.
Collapse
Affiliation(s)
- Nannan Sun
- Department of Medicinal Chemistry and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Congmin Yuan
- Department of Medicinal Chemistry and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xiaojun Ma
- Department of Medicinal Chemistry and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yonghui Wang
- Department of Medicinal Chemistry and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xianfeng Gu
- Department of Medicinal Chemistry and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Fu
- Department of Medicinal Chemistry and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
36
|
Weng X, Liu Y, Cui S, Cheng B. The role of RORα in salivary gland lesions in patients with primary Sjögren's syndrome. Arthritis Res Ther 2018; 20:205. [PMID: 30189901 PMCID: PMC6127992 DOI: 10.1186/s13075-018-1698-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Background The orphan nuclear receptors retinoic acid-related receptor α and γt (RORα and RORγt) are critical in the development of T helper 17 (Th17) cells, and ROR-specific synthetic ligands have proven efficacy in several mouse models of autoimmunity. However, the pathological significance of RORα in primary Sjögren’s syndrome (pSS) remains to be elucidated. The present study was designed to clarify the significance of RORα in the pathogenesis of pSS. Methods RORα expression in the labial salivary gland (LSG) was determined by immunohistochemical analysis using a quantitative scoring system in 34 patients with pSS. The correlation between RORα expression in LSGs and the focus score (FS) was determined, and Th17 and IL-17 receptor A (1L-17RA) levels in LSGs were determined. To investigate the effect of RORs and the therapeutic potential of targeting RORs in pSS, we administered SR1001, a selective RORα/γt inverse agonist, to non-obese diabetic (NOD) mice. Results The expression of RORα was significantly increased in LSGs of patients with pSS and intensified with disease stage/FS, showing a similar increasing trend with IL-17A and IL-17RA. SR1001 significantly improved salivary gland secretory function and relieved sialadenitis in treated mice. Conclusion Our data reveal the importance of RORα in controlling pathologic lymphocytic infiltration of the salivary glands and suggest that RORα may be a druggable target in treating pSS. Electronic supplementary material The online version of this article (10.1186/s13075-018-1698-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuhong Weng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Yi Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Jianhan District, Wuhan, 430022, Hubei Province, China
| | - Shun Cui
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Jianghan District, Wuhan, 430022, Hubei Province, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
37
|
Zuo Q, Wang J, Chen C, Zhang Y, Feng DX, Zhao R, Chen T. ASCL2 expression contributes to gastric tumor migration and invasion by downregulating miR223 and inducing EMT. Mol Med Rep 2018; 18:3751-3759. [PMID: 30106147 PMCID: PMC6131580 DOI: 10.3892/mmr.2018.9363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/23/2017] [Indexed: 01/18/2023] Open
Abstract
Achaete-scute homolog 2 (ASCL2), a basic helix-loop-helix transcription factor, serves an essential role in the maintenance of adult intestinal stem cells and the growth of gastric cancer (GC). However, the function of ASCL2 in the metastasis of GC is poorly understood. The present study aimed to evaluate the effect of ASCL2 expression on gastric tumor metastasis. ASCL2 protein expression was detected in 32 cases of gastric metastasis and its relevant primary tumors using western blotting and immunohistochemistry. The data suggested that the expression of ASCL2 was highest in metastatic tumors, among adjacent normal tissues, primary gastric tumors and gastric metastatic tumors. Furthermore, ASCL2-overexpressing GC cell lines MKN1-ASCL2 and SNU16-ASCL2 were established. An in vitro assay suggested that microRNA 223 (miR223) expression was downregulated following ASCL2 overexpression, and that the expression of the epithelium-associated protein E-cadherin was significantly decreased, while a series of mesenchyme-associated proteins, including zinc finger E-box-binding homeobox 1 (Zeb-1), twist-related protein 1, integrin, vimentin, 72 kDa type IV collagenase and matrix metalloproteinase-9 were upregulated in ASCL2-overexpressing cells. Overexpression of miR223 attenuated the epithelial-mesenchymal transition (EMT)-promoting effect induced by ASCL2 expression. In addition, the results of the chromatin immunoprecipitation and luciferase reporter gene assays indicated that ASCL2 was able to interact with the promoter of pre-miR223, and to inhibit the maturation of miR223, which may interact with the 3′ untranslated region of Zeb-1 and inhibit EMT in tumor cells. The results of the present study demonstrated that ASCL2 was able to downregulate the expression level of miR223, contribute to EMT and promote gastric tumor metastasis, which indicated that ASCL2 may serve as a therapeutic target in the treatment of GC.
Collapse
Affiliation(s)
- Qingsong Zuo
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jie Wang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Chao Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yong Zhang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Dian-Xu Feng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ronghua Zhao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Teng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
38
|
Lima LC, Queiroz GDA, Costa RDS, Alcantara-Neves NM, Marques CR, Costa GNDO, Barreto ML, Figueiredo CAV, Carneiro VL. Genetic variants in RORA are associated with asthma and allergy markers in an admixed population. Cytokine 2018; 113:177-184. [PMID: 30539779 DOI: 10.1016/j.cyto.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022]
Abstract
Asthma and allergy affect hundreds of millions of people from childhood to old age. In most of them, the inflammatory process of respiratory allergies involves the participation of type 2 cytokines, derived from T helper-2 (Th2)-cell, and Group 2 Innate Lymphoid (ILC2) Cells. An efficient memory Th2 cell response is dependent on IL-13 produced by ILC2s, causing allergic lung inflammation and elevated serum levels of immunoglobulin E. ILC2 cells are derived from common lymphoid progenitors and their growing depends on the transcription factor RORA. The aim of this work was to identify genetic variants in RORA associated with asthma phenotypes and allergy markers. Genomic DNA samples of 1246 individuals participating from Social Changes Asthma and Allergy in Latin America Program (SCAALA) have been genotyped using Illumina Human 2.5 Omni Beadchip. Logistics regressions have been performed to analyze the association among RORA variants and asthma, skin prick tests (SPT), specific IgE and type 2 cytokine production. Twelve single nucleotide variants (SNVs) were significantly associated with atopy (P < 0.01), in which four of them, rs10162630, rs17191519, rs17270243, and rs55796775 and their haplotypes were strongly and positively associated (P < 0.001). Furthermore, these variants increased the RORA gene expression in silico analysis. Other SNVs in RORA were associated with allergy markers, atopic and non-atopic asthma. Therefore, it is believed that variants in RORA gene may influence immunologic features of asthma and allergies and could be possible targets for future treatment of allergic diseases.
Collapse
Affiliation(s)
- Louise Correia Lima
- Departamento de Ciências da Vida, Universidade do Estado da Bahia, Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brożyna AA, Jóźwicki W, Skobowiat C, Jetten A, Slominski AT. RORα and RORγ expression inversely correlates with human melanoma progression. Oncotarget 2018; 7:63261-63282. [PMID: 27542227 PMCID: PMC5325362 DOI: 10.18632/oncotarget.11211] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
40
|
Sertoli cell specific knockdown of RAR-related orphan receptor (ROR) alpha at puberty reduces sperm count in rats. Gene 2018; 641:18-24. [DOI: 10.1016/j.gene.2017.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/28/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022]
|
41
|
Fujita K, Mao Y, Uchida S, Chen X, Shiwaku H, Tamura T, Ito H, Watase K, Homma H, Tagawa K, Sudol M, Okazawa H. Developmental YAPdeltaC determines adult pathology in a model of spinocerebellar ataxia type 1. Nat Commun 2017; 8:1864. [PMID: 29192206 PMCID: PMC5709507 DOI: 10.1038/s41467-017-01790-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
YAP and its neuronal isoform YAPdeltaC are implicated in various cellular functions. We found that expression of YAPdeltaC during development, but not adulthood, rescued neurodegeneration phenotypes of mutant ataxin-1 knock-in (Atxn1-KI) mice. YAP/YAPdeltaC interacted with RORα via the second WW domain and served as co-activators of its transcriptional activity. YAP/YAPdeltaC formed a transcriptional complex with RORα on cis-elements of target genes and regulated their expression. Both normal and mutant Atxn1 interacted with YAP/YAPdeltaC, but only mutant Atxn1 depleted YAP/YAPdeltaC from the RORα complex to suppress transcription on short timescales. Over longer periods, mutant Atxn1 also decreased RORα in vivo. Genetic supplementation of YAPdeltaC restored the RORα and YAP/YAPdeltaC levels, recovered YAP/YAPdeltaC in the RORα complex and normalized target gene transcription in Atxn1-KI mice in vivo. Collectively, our data suggest that functional impairment of YAP/YAPdeltaC by mutant Atxn1 during development determines the adult pathology of SCA1 by suppressing RORα-mediated transcription.
Collapse
Affiliation(s)
- Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ying Mao
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigenori Uchida
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Xigui Chen
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Shiwaku
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hikaru Ito
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Li School of Medicine, 2 Medical Drive, Singapore, 117597, Singapore.,Institute of Molecular and Cell Biology (IMCB) A*STAR, Biopolis, Singapore, 138673, Singapore
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. .,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
42
|
Chapman EC, O’Dell AR, Meligi NM, Parsons DR, Rotchell JM. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol Int 2017; 34:1300-1314. [DOI: 10.1080/07420528.2017.1363224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emma C. Chapman
- School of Environmental Sciences, University of Hull, Hull, UK
| | | | - Noha M. Meligi
- Zoology Department, Faculty of Science, Minia University, Minia, Egypt
| | | | | |
Collapse
|
43
|
He Z, Ma J, Wang R, Zhang J, Huang Z, Wang F, Sen S, Rothenberg EV, Sun Z. A two-amino-acid substitution in the transcription factor RORγt disrupts its function in T H17 differentiation but not in thymocyte development. Nat Immunol 2017; 18:1128-1138. [PMID: 28846085 PMCID: PMC5678981 DOI: 10.1038/ni.3832] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022]
Abstract
RORγt regulates TH17 differentiation, thymic T cell development and lymph node genesis. Although elimination of RORγt prevents TH17-mediated experimental autoimmune encephalomyelitis (EAE), it also disrupts thymocyte development, which could lead to lethal thymic lymphoma. Here we identified two amino acid mutations in RORγt (RORγtM) that preferentially disrupted TH17 differentiation but not thymocyte development. Mice expressing RORγtM were resistant to EAE associated with defective TH17 differentiation, but maintained normal thymocyte development and lymph node genesis, except for Peyer’s patches. RORγtM showed reduced ubiquitination at K69 that is selectively required for TH17 differentiation but not T cell development. This study will inform the development of treatments that selectively target TH17-mediated autoimmunity, but do not affect thymocyte development and induce lymphoma.
Collapse
Affiliation(s)
- Zhiheng He
- Division of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jian Ma
- Division of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ruiqing Wang
- Division of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA.,Irell &Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Jing Zhang
- Division of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA.,Irell &Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Zhaofeng Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Fei Wang
- Division of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Subha Sen
- Division of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ellen V Rothenberg
- Division of Biology &Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Zuoming Sun
- Division of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
44
|
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina. PLoS One 2017; 12:e0176905. [PMID: 28829770 PMCID: PMC5568747 DOI: 10.1371/journal.pone.0176905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.
Collapse
|
45
|
Sun Y, Liu CH, Wang Z, Meng SS, Burnim SB, SanGiovanni JP, Kamenecka TM, Solt LA, Chen J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis. FASEB J 2017. [PMID: 28646017 DOI: 10.1096/fj.201700172r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pathological proliferation of retinal blood vessels commonly causes vision impairment in proliferative retinopathies, including retinopathy of prematurity. Dysregulated crosstalk between the vasculature and retinal neurons is increasingly recognized as a major factor contributing to the pathogenesis of vascular diseases. Class 3 semaphorins (SEMA3s), a group of neuron-secreted axonal and vascular guidance factors, suppress pathological vascular growth in retinopathy. However, the upstream transcriptional regulators that mediate the function of SEMA3s in vascular growth are poorly understood. Here we showed that retinoic acid receptor-related orphan receptor α (RORα), a nuclear receptor and transcription factor, is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in a mouse model of oxygen-induced proliferative retinopathy. We found that genetic deficiency of RORα substantially induced Sema3e expression in retinopathy. Both RORα and SEMA3E were expressed in retinal ganglion cells. RORα directly bound to a specific ROR response element on the promoter of Sema3e and negatively regulated Sema3e promoter-driven luciferase expression. Suppression of Sema3e using adeno-associated virus 2 carrying short hairpin RNA targeting Sema3e promoted disoriented pathological neovascularization and partially abolished the inhibitory vascular effects of RORα deficiency in retinopathy. Our findings suggest that RORα is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in pathological retinal angiogenesis.-Sun, Y., Liu, C.-H., Wang, Z., Meng, S. S., Burnim, S. B., SanGiovanni, J. P., Kamenecka, T. M., Solt, L. A., Chen, J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zhongxiao Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Steven S Meng
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Samuel B Burnim
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - John Paul SanGiovanni
- Section of Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown School of Medicine, Washington, D.C., USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA;
| |
Collapse
|
46
|
Kim SM, Choi JE, Hur W, Kim JH, Hong SW, Lee EB, Lee JH, Li TZ, Sung PS, Yoon SK. RAR-Related Orphan Receptor Gamma (ROR-γ) Mediates Epithelial-Mesenchymal Transition Of Hepatocytes During Hepatic Fibrosis. J Cell Biochem 2017; 118:2026-2036. [PMID: 27791279 PMCID: PMC5488206 DOI: 10.1002/jcb.25776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2023]
Abstract
The epithelial‐mesenchymal transition (EMT) is involved in many different types of cellular behavior, including liver fibrosis. In this report, we studied a novel function of RAR‐related orphan receptor gamma (ROR‐γ) in hepatocyte EMT during liver fibrosis. To induce EMT in vitro, primary hepatocytes and FL83B cells were treated with TGF‐β1. Expression of ROR‐γ was analyzed by Western blot in the fibrotic mouse livers and human livers with cirrhosis. To verify the role of ROR‐γ in hepatocyte EMT, we silenced ROR‐γ in FL83B cells using a lentiviral short hairpin RNA (shRNA) vector. The therapeutic effect of ROR‐γ silencing was investigated in a mouse model of TAA‐induced fibrosis by hydrodynamic injection of plasmids. ROR‐γ expression was elevated in hepatocyte cells treated with TGF‐β1, and ROR‐γ protein levels were elevated in the fibrotic mouse livers and human livers with cirrhosis. Knockdown of ROR‐γ resulted in the attenuation of TGF‐β1‐induced EMT in hepatocytes. Strikingly, ROR‐γ bound to ROR‐specific DNA response elements (ROREs) in the promoter region of TGF‐β type I receptor (Tgfbr1) and Smad2, resulting in the downregulation of Tgfbr1 and Smad2 after silencing of ROR‐γ. Therapeutic delivery of shRNA against ROR‐γ attenuated hepatocyte EMT and ameliorated liver fibrosis in a mouse model of TAA‐induced liver fibrosis. Overall, our results suggest that ROR‐γ regulates TGF‐β‐induced EMT in hepatocytes during liver fibrosis. We suggest that ROR‐γ may become a potential therapeutic target in treating liver fibrosis. J. Cell. Biochem. 118: 2026–2036, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Sung Min Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Eun Choi
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sung Woo Hong
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Eun Byul Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Joon Ho Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Tian Zhu Li
- Molecular Medicine Research Center, School of Medical Science, Chifeng University, Chifeng, 024000, China
| | - Pil Soo Sung
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Internal Medicine, Seoul St. Mary's Hospital, #505 Banpo-Dong, Seocho-gu, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Internal Medicine, Seoul St. Mary's Hospital, #505 Banpo-Dong, Seocho-gu, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| |
Collapse
|
47
|
Bukiya AN, Dopico AM. Common structural features of cholesterol binding sites in crystallized soluble proteins. J Lipid Res 2017; 58:1044-1054. [PMID: 28420706 DOI: 10.1194/jlr.r073452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/12/2017] [Indexed: 01/24/2023] Open
Abstract
Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol's hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv) the steroid's C21 and C26 constitute the "hot spots" most often seen for steroid-protein hydrophobic interactions; v) common "cold spots" are C8-C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103
| | - Alejandro M Dopico
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
48
|
Endo Y, Yokote K, Nakayama T. The obesity-related pathology and Th17 cells. Cell Mol Life Sci 2017; 74:1231-1245. [PMID: 27757507 PMCID: PMC11107749 DOI: 10.1007/s00018-016-2399-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
Chronic inflammation associated with obesity plays a major role in the development of metabolic diseases, cancer, and autoimmune diseases. Among Th subsets, Th17 cells are involved in the pathogenesis of autoimmune disorders such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Accumulating data suggest that reciprocal interactions between the metabolic systems and immune system play pivotal roles in the pathogenesis of obesity-associated diseases. We herein outline the developing principles in the control of T cell differentiation and function via their cellular metabolism. Also discussed are recent findings that changes in the intracellular metabolism, including fatty acid metabolism, affect the Th17 cell function in obese individuals. Finally, we will also highlight the unique molecular mechanism involved in the activation of retinoid-related orphan receptor-gamma-t (RORγt) by intracellular metabolism and discuss a new therapeutic approach for treating autoimmune disorders through the inhibition of RORγt.
Collapse
Affiliation(s)
- Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
49
|
Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res 2017; 353:6-15. [PMID: 28238834 DOI: 10.1016/j.yexcr.2017.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.
Collapse
|
50
|
Wen Z, Pan T, Yang S, Liu J, Tao H, Zhao Y, Xu D, Shao W, Wu J, Liu X, Wang Y, Mao J, Zhu Y. Up-regulated NRIP2 in colorectal cancer initiating cells modulates the Wnt pathway by targeting RORβ. Mol Cancer 2017; 16:20. [PMID: 28137278 PMCID: PMC5282884 DOI: 10.1186/s12943-017-0590-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/17/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Colorectal cancer remains one of the most common malignant tumors worldwide. Colorectal cancer initiating cells (CCICs) are a small subpopulation responsible for malignant behaviors of colorectal cancer. Aberrant activation of the Wnt pathways regulates the self-renewal of CCIC. However, the underlying mechanism(s) remain poorly understood. METHODS Via retroviral library screening, we identified Nuclear Receptor-Interacting Protein 2 (NRIP2) as a novel interactor of the Wnt pathway from enriched colorectal cancer colosphere cells. The expression levels of NRIP2 and retinoic acid-related orphan receptor β (RORβ) were further examined by FISH, qRT-PCR, IHC and Western blot. NRIP2 overexpressed and knockdown colorectal cancer cells were produced to study the role of NRIP2 in Wnt pathway. We also verified the binding between NRIP2 and RORβ and investigated the effect of RORβ on CCICs both in vitro and in vivo. Genechip-scanning speculated downstream target HBP1. Western blot, ChIP and luciferase reporter were carried to investigate the interaction between NRIP2, RORβ, and HBP1. RESULTS NRIP2 was significantly up-regulated in CCICs from both cell lines and primary colorectal cancer tissues. Reinforced expression of NRIP2 increased Wnt activity, while silencing of NRIP2 attenuated Wnt activity. The transcription factor RORβ was a key target through which NRIP2 regulated Wnt pathway activity. RORβ was a transcriptional enhancer of inhibitor HBP1 of the Wnt pathway. NRIP2 prevented RORβ to bind with downstream HBP1 promoter regions and reduced the transcription of HBP1. This, in turn, attenuated the HBP1-dependent inhibition of TCF4-mediated transcription. CONCLUSIONS NRIP2 is a novel interactor of the Wnt pathway in colorectal cancer initiating cells. interactions between NRIP2, RORβ, and HBP1 mediate a new mechanism for CCIC self-renewal via the Wnt activity.
Collapse
Affiliation(s)
- Zhenzhen Wen
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China.,Present address: Department of Gastroenterology, Sir Run Run Shaw Hospital of Zhejiang, University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Tianhui Pan
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Saisai Yang
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Jingwen Liu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Haiying Tao
- People's Hospital of Huangyan district, Taizhou, Zhejiang, 318020, China
| | - Yiming Zhao
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Dingting Xu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Wei Shao
- People's Hospital of Putuo district, Zhoushan, Zhejiang, 316100, China
| | - Jia Wu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Xiyong Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA, 62232, USA
| | - Yongjiang Wang
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Jianshan Mao
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China. .,Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China. .,Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|