1
|
Sagawa CHD, Thomson G, Mermaz B, Vernon C, Liu S, Jacob Y, Irish VF. An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus. PLANT METHODS 2024; 20:148. [PMID: 39342225 PMCID: PMC11438372 DOI: 10.1186/s13007-024-01274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
CRISPR/Cas9-mediated gene editing requires high efficiency to be routinely implemented, especially in species which are laborious and slow to transform. This requirement intensifies further when targeting multiple genes simultaneously, which is required for genetic screening or more complex genome engineering. Species in the Citrus genus fall into this category. Here we describe a series of experiments with the collective aim of improving multiplex gene editing in the Carrizo citrange cultivar using tRNA-based sgRNA arrays. We evaluate a range of promoters for their efficacy in such experiments and achieve significant improvements by optimizing the expression of both the Cas9 endonuclease and the sgRNA array. In the case of the former we find the UBQ10 or RPS5a promoters from Arabidopsis driving the zCas9i endonuclease variant useful for achieving high levels of editing. The choice of promoter expressing the sgRNA array also had a large impact on gene editing efficiency across multiple targets. In this respect Pol III promoters perform especially well, but we also demonstrate that the UBQ10 and ES8Z promoters from Arabidopsis are robust alternatives. Ultimately, this study provides a quantitative insight into CRISPR/Cas9 vector design that has practical application in the simultaneous editing of multiple genes in Citrus, and potentially other eudicot plant species.
Collapse
Affiliation(s)
- Cintia H D Sagawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Geoffrey Thomson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Benoit Mermaz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Corina Vernon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Environmental Sciences Initiative, Advanced Science Research Center, The City University of New York, New York, NY, USA
| | - Siqi Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
3
|
Babina AM, Kirsebom LA, Andersson DI. Suppression of the Escherichia coli rnpA49 conditionally lethal phenotype by different compensatory mutations. RNA (NEW YORK, N.Y.) 2024; 30:977-991. [PMID: 38688559 PMCID: PMC11251521 DOI: 10.1261/rna.079909.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
RNase P is an essential enzyme found across all domains of life that is responsible for the 5'-end maturation of precursor tRNAs. For decades, numerous studies have sought to elucidate the mechanisms and biochemistry governing RNase P function. However, much remains unknown about the regulation of RNase P expression, the turnover and degradation of the enzyme, and the mechanisms underlying the phenotypes and complementation of specific RNase P mutations, especially in the model bacterium, Escherichia coli In E. coli, the temperature-sensitive (ts) rnpA49 mutation in the protein subunit of RNase P has arguably been one of the most well-studied mutations for examining the enzyme's activity in vivo. Here, we report for the first time naturally occurring temperature-resistant suppressor mutations of E. coli strains carrying the rnpA49 allele. We find that rnpA49 strains can partially compensate the ts defect via gene amplifications of either RNase P subunit (rnpA49 or rnpB) or by the acquisition of loss-of-function mutations in Lon protease or RNase R. Our results agree with previous plasmid overexpression and gene deletion complementation studies, and importantly suggest the involvement of Lon protease in the degradation and/or regulatory pathway(s) of the mutant protein subunit of RNase P. This work offers novel insights into the behavior and complementation of the rnpA49 allele in vivo and provides direction for follow-up studies regarding RNase P regulation and turnover in E. coli.
Collapse
Affiliation(s)
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, 751 23 Uppsala, Sweden
| | | |
Collapse
|
4
|
Wicke D, Neumann P, Gößringer M, Chernev A, Davydov S, Poehlein A, Daniel R, Urlaub H, Hartmann R, Ficner R, Stülke J. The previously uncharacterized RnpM (YlxR) protein modulates the activity of ribonuclease P in Bacillus subtilis in vitro. Nucleic Acids Res 2024; 52:1404-1419. [PMID: 38050972 PMCID: PMC10853771 DOI: 10.1093/nar/gkad1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Gößringer
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Swetlana Davydov
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, GZMB, University Medical Centre Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August-University Göttingen, Germany
| | - Roland K Hartmann
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Chamberlain AR, Huynh L, Huang W, Taylor DJ, Harris ME. The specificity landscape of bacterial ribonuclease P. J Biol Chem 2024; 300:105498. [PMID: 38013087 PMCID: PMC10731613 DOI: 10.1016/j.jbc.2023.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Developing quantitative models of substrate specificity for RNA processing enzymes is a key step toward understanding their biology and guiding applications in biotechnology and biomedicine. Optimally, models to predict relative rate constants for alternative substrates should integrate an understanding of structures of the enzyme bound to "fast" and "slow" substrates, large datasets of rate constants for alternative substrates, and transcriptomic data identifying in vivo processing sites. Such data are either available or emerging for bacterial ribonucleoprotein RNase P a widespread and essential tRNA 5' processing endonuclease, thus making it a valuable model system for investigating principles of biological specificity. Indeed, the well-established structure and kinetics of bacterial RNase P enabled the development of high throughput measurements of rate constants for tRNA variants and provided the necessary framework for quantitative specificity modeling. Several studies document the importance of conformational changes in the precursor tRNA substrate as well as the RNA and protein subunits of bacterial RNase P during binding, although the functional roles and dynamics are still being resolved. Recently, results from cryo-EM studies of E. coli RNase P with alternative precursor tRNAs are revealing prospective mechanistic relationships between conformational changes and substrate specificity. Yet, extensive uncharted territory remains, including leveraging these advances for drug discovery, achieving a complete accounting of RNase P substrates, and understanding how the cellular context contributes to RNA processing specificity in vivo.
Collapse
Affiliation(s)
| | - Loc Huynh
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
6
|
Shavkunov KS, Markelova NY, Glazunova OA, Kolzhetsov NP, Panyukov VV, Ozoline ON. The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia coli. Int J Mol Sci 2023; 24:12960. [PMID: 37629141 PMCID: PMC10455298 DOI: 10.3390/ijms241612960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous observations have supported the idea that various types of noncoding RNAs, including tRNA fragments (tRFs), are involved in communications between the host and its microbial community. The possibility of using their signaling function has stimulated the study of secreted RNAs, potentially involved in the interspecies interaction of bacteria. This work aimed at identifying such RNAs and characterizing their maturation during transport. We applied an approach that allowed us to detect oligoribonucleotides secreted by Prevotella copri (Segatella copri) or Rhodospirillum rubrum inside Escherichia coli cells. Four tRFs imported by E. coli cells co-cultured with these bacteria were obtained via chemical synthesis, and all of them affected the growth of E. coli. Their successive modifications in the culture medium and recipient cells were studied by high-throughput cDNA sequencing. Instead of the expected accidental exonucleolysis, in the milieu, we observed nonrandom cleavage by endonucleases continued in recipient cells. We also found intramolecular rearrangements of synthetic oligonucleotides, which may be considered traces of intermediate RNA circular isomerization. Using custom software, we estimated the frequency of such events in transcriptomes and secretomes of E. coli and observed surprising reproducibility in positions of such rare events, assuming the functionality of ring isoforms or their permuted derivatives in bacteria.
Collapse
Affiliation(s)
- Konstantin S. Shavkunov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia Yu. Markelova
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga A. Glazunova
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nikolay P. Kolzhetsov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Valery V. Panyukov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
7
|
Du Q, Li J, Wang L, Chen H, Jiang M, Chen Z, Jiang C, Gao H, Wang B, Liu C. Complete chloroplast genomes of two medicinal Swertia species: the comparative evolutionary analysis of Swertia genus in the Gentianaceae family. PLANTA 2022; 256:73. [PMID: 36083348 DOI: 10.1007/s00425-022-03987-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The complete chloroplast genome of Swertia kouitchensis has been sequenced and assembled, compared with that of S. bimaculata to determine the evolutionary relationships among species of the Swertia in the Gentianaceae family. Swertia kouitchensis and S. bimaculata are from the Gentianaceae family. The complete chloroplast genome of S. kouitchensis was newly assembled, annotated, and analyzed by Illumina Hiseq 2500 platform. The chloroplast genomes of the two species encoded a total of 133, 134 genes, which included 88-89 protein-coding genes, 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA genes. One intron was contained in each of the eight protein-coding genes and eight tRNA-coding genes, whereas two introns were found in two genes (ycf3 and clpP). The most abundant codon of the two species was for isoleucine, and the least abundant codon was for cysteine. The number of microsatellite repeat sequences was twenty-eight and thirty-two identified in the chloroplast genomes of S. kouitchensis and S. bimaculata, respectively. A total of 1127 repeat sequences were identified in all the 23 Swertia chloroplast genomes, and they fell into four categories. Furthermore, five divergence hotspot regions can be applied to discriminate these 23 Swertia species through genomes comparison. One pair of genus-specific DNA barcodes primer has been accurately identified. Therefore, the diverse regions cloned by a specific primer may become an effective and powerful molecular marker for the identification of Swertia genus. Moreover, four genes (ccsA, ndhK, rpoC1, and rps12) were positive selective pressure. The phylogenetic tree showed that the 23 Swertia species were clustered into a large clade including four evident subbranches, whereas the two species of S. kouitchensis and S. bimaculata were separately clustered into the diverse but correlated species group.
Collapse
Affiliation(s)
- Qing Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China.
- College of Pharmacy, Key Laboratory of Medicinal Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Minzu University, No.3, Bayi Mid-road, Chengdong District, Xining City, Qinghai Province, 810007, People's Republic of China.
- Fresh Sky-Right (Beijing) International Science and Technology Co., Ltd, No.59, Banjing Road, Haidian District, Beijing, 100097, People's Republic of China.
| | - Jing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China
- Xiangnan University, No. 889, Chenzhou dadao, Chenzhou City, Hunan Province, 423000, People's Republic of China
| | - Liqiang Wang
- College of Pharmacy, Heze University, No.2269, University Road, Mudan District, Heze City, Shandong Province, 274015, People's Republic of China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, University Road, Changqing District, Jinan City, Shandong Province, 250399, People's Republic of China
| | - Zhuoer Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China
- Xiangnan University, No. 889, Chenzhou dadao, Chenzhou City, Hunan Province, 423000, People's Republic of China
| | - Chuanbei Jiang
- Genepioneer Biotechnologies Inc, No. 9, Weidi Road, Qixia District, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Haidong Gao
- Genepioneer Biotechnologies Inc, No. 9, Weidi Road, Qixia District, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Bin Wang
- Xiangnan University, No. 889, Chenzhou dadao, Chenzhou City, Hunan Province, 423000, People's Republic of China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Lagutkin D, Panova A, Vinokurov A, Gracheva A, Samoilova A, Vasilyeva I. Genome-Wide Study of Drug Resistant Mycobacterium tuberculosis and Its Intra-Host Evolution during Treatment. Microorganisms 2022; 10:1440. [PMID: 35889159 PMCID: PMC9318467 DOI: 10.3390/microorganisms10071440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of drug resistant Mycobacterium tuberculosis (MTB) strains has become a global public health problem, while, at the same time, there has been development of new antimicrobial agents. The main goals of this study were to determine new variants associated with drug resistance in MTB and to observe which polymorphisms emerge in MTB genomes after anti-tuberculosis treatment. We performed whole-genome sequencing of 152 MTB isolates including 70 isolates as 32 series of pre- and post-treatment MTB. Based on genotypes and phenotypic drug susceptibility, we conducted phylogenetic convergence-based genome-wide association study (GWAS) with streptomycin-, isoniazid-, rifampicin-, ethambutol-, fluoroquinolones-, and aminoglycosides-resistant MTB against susceptible ones. GWAS revealed statistically significant associations of SNPs within Rv2820c, cyp123 and indels in Rv1269c, Rv1907c, Rv1883c, Rv2407, Rv3785 genes with resistant MTB phenotypes. Comparisons of serial isolates showed that treatment induced different patterns of intra-host evolution. We found indels within Rv1435c and ppsA that were not lineage-specific. In addition, Beijing-specific polymorphisms within Rv0036c, Rv0678, Rv3433c, and dop genes were detected in post-treatment isolates. The appearance of Rv3785 frameshift insertion in 2 post-treatment strains compared to pre-treatment was also observed. We propose that the insertion within Rv3785, which was a GWAS hit, might affect cell wall biosynthesis and probably mediates a compensatory mechanism in response to treatment. These results may shed light on the mechanisms of MTB adaptation to chemotherapy and drug resistance formation.
Collapse
Affiliation(s)
- Denis Lagutkin
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, 127994 Moscow, Russia; (A.P.); (A.V.); (A.G.); (A.S.); (I.V.)
| | | | | | | | | | | |
Collapse
|
9
|
Ender A, Grafl N, Kolberg T, Findeiß S, Stadler PF, Mörl M. Synthetic riboswitches for the analysis of tRNA processing by eukaryotic RNase P enzymes. RNA (NEW YORK, N.Y.) 2022; 28:551-567. [PMID: 35022261 PMCID: PMC8925977 DOI: 10.1261/rna.078814.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Removal of the 5'-leader region is an essential step in the maturation of tRNA molecules in all domains of life. This reaction is catalyzed by various RNase P activities, ranging from ribonucleoproteins with ribozyme activity to protein-only forms. In Escherichia coli, the efficiency of RNase P-mediated cleavage can be controlled by computationally designed riboswitch elements in a ligand-dependent way, where the 5'-leader sequence of a tRNA precursor is either sequestered in a hairpin structure or presented as a single-stranded region accessible for maturation. In the presented work, the regulatory potential of such artificial constructs is tested on different forms of eukaryotic RNase P enzymes-two protein-only RNase P enzymes (PRORP1 and PRORP2) from Arabidopsis thaliana and the ribonucleoprotein of Homo sapiens The PRORP enzymes were analyzed in vitro as well as in vivo in a bacterial RNase P complementation system. We also tested in HEK293T cells whether the riboswitches remain functional with human nuclear RNase P. While the regulatory principle of the synthetic riboswitches applies for all tested RNase P enzymes, the results also show differences in the substrate requirements of the individual enzyme versions. Hence, such designed RNase P riboswitches represent a novel tool to investigate the impact of the structural composition of the 5'-leader on substrate recognition by different types of RNase P enzymes.
Collapse
Affiliation(s)
- Anna Ender
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Nadine Grafl
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Science, 04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Peng R, Yoshinari S, Kawano-Sugaya T, Jeelani G, Nozaki T. Identification and Functional Characterization of Divergent 3'-Phosphate tRNA Ligase From Entamoeba histolytica. Front Cell Infect Microbiol 2022; 11:746261. [PMID: 34976851 PMCID: PMC8718801 DOI: 10.3389/fcimb.2021.746261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
HSPC117/RtcB, 3'-phosphate tRNA ligase, is a critical enzyme involved in tRNA splicing and maturation. HSPC117/RtcB is also involved in mRNA splicing of some protein-coding genes including XBP-1. Entamoeba histolytica, a protozoan parasite responsible for human amebiasis, possesses two RtcB proteins (EhRtcB1 and 2), but their biological functions remain unknown. Both RtcBs show kinship with mammalian/archaeal type, and all amino acid residues present in the active sites are highly conserved, as suggested by protein alignment and phylogenetic analyses. EhRtcB1 was demonstrated to be localized to the nucleus, while EhRtcB2 was in the cytosol. EhRtcB1, but not EhRtcB2, was required for optimal growth of E. histolytica trophozoites. Both EhRtcB1 (in cooperation with EhArchease) and EhRtcB2 showed RNA ligation activity in vitro. The predominant role of EhRtcB1 in tRNAIle(UAU) processing in vivo was demonstrated in EhRtcB1- and 2-gene silenced strains. Taken together, we have demonstrated the conservation of tRNA splicing and functional diversification of RtcBs in this amoebozoan lineage.
Collapse
Affiliation(s)
- Ruofan Peng
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeo Yoshinari
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Kawano-Sugaya
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Marszalkowski M, Werner A, Feltens R, Helmecke D, Gößringer M, Westhof E, Hartmann RK. Comparative study on tertiary contacts and folding of RNase P RNAs from a psychrophilic, a mesophilic/radiation-resistant, and a thermophilic bacterium. RNA (NEW YORK, N.Y.) 2021; 27:1204-1219. [PMID: 34266994 PMCID: PMC8457005 DOI: 10.1261/rna.078735.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In most bacterial type A RNase P RNAs (P RNAs), two major loop-helix tertiary contacts (L8-P4 and L18-P8) help to orient the two independently folding S- and C-domains for concerted recognition of precursor tRNA substrates. Here, we analyze the effects of mutations in these tertiary contacts in P RNAs from three different species: (i) the psychrophilic bacterium Pseudoalteromonas translucida (Ptr), (ii) the mesophilic radiation-resistant bacterium Deinococcus radiodurans (Dra), and (iii) the thermophilic bacterium Thermus thermophilus (Tth). We show by UV melting experiments that simultaneous disruption of these two interdomain contacts has a stabilizing effect on all three P RNAs. This can be inferred from reduced RNA unfolding at lower temperatures and a more concerted unfolding at higher temperatures. Thus, when the two domains tightly interact via the tertiary contacts, one domain facilitates structural transitions in the other. P RNA mutants with disrupted interdomain contacts showed severe kinetic defects that were most pronounced upon simultaneous disruption of the L8-P4 and L18-P8 contacts. At 37°C, the mildest effects were observed for the thermostable Tth RNA. A third interdomain contact, L9-P1, makes only a minor contribution to P RNA tertiary folding. Furthermore, D. radiodurans RNase P RNA forms an additional pseudoknot structure between the P9 and P12 of its S-domain. This interaction was found to be particularly crucial for RNase P holoenzyme activity at near-physiological Mg2+ concentrations (2 mM). We further analyzed an exceptionally stable folding trap of the G,C-rich Tth P RNA.
Collapse
Affiliation(s)
- Michal Marszalkowski
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Andreas Werner
- Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Architecture et Réactivité de l'ARN, F-67084 Strasbourg, France
| | - Ralph Feltens
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Dominik Helmecke
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Markus Gößringer
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Eric Westhof
- Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Architecture et Réactivité de l'ARN, F-67084 Strasbourg, France
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
12
|
Migunova E, Theophilopoulos J, Mercadante M, Men J, Zhou C, Dubrovsky EB. ELAC2/RNaseZ-linked cardiac hypertrophy in Drosophila melanogaster. Dis Model Mech 2021; 14:271965. [PMID: 34338278 PMCID: PMC8419712 DOI: 10.1242/dmm.048931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A severe form of infantile cardiomyopathy (CM) has been linked to mutations in ELAC2, a highly conserved human gene. It encodes Zinc phosphodiesterase ELAC protein 2 (ELAC2), which plays an essential role in the production of mature tRNAs. To establish a causal connection between ELAC2 variants and CM, here we used the Drosophila melanogaster model organism, which carries the ELAC2 homolog RNaseZ. Even though RNaseZ and ELAC2 have diverged in some of their biological functions, our study demonstrates the use of the fly model to study the mechanism of ELAC2-related pathology. We established transgenic lines harboring RNaseZ with CM-linked mutations in the background of endogenous RNaseZ knockout. Importantly, we found that the phenotype of these flies is consistent with the pathological features in human patients. Specifically, expression of CM-linked variants in flies caused heart hypertrophy and led to reduction in cardiac contractility associated with a rare form of CM. This study provides first experimental evidence for the pathogenicity of CM-causing mutations in the ELAC2 protein, and the foundation to improve our understanding and diagnosis of this rare infantile disease. This article has an associated First Person interview with the first author of the paper. Summary: A newly established Drosophila model recapitulates key features of human heart pathology linked to mutations in ELAC2, thus providing experimental evidence of the pathogenicity of ELAC2 variants.
Collapse
Affiliation(s)
- Ekaterina Migunova
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | - Marisa Mercadante
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Jing Men
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63105, USA.,Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63105, USA
| | - Edward B Dubrovsky
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Center for Cancer, Genetic diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
13
|
RNase P Inhibitors Identified as Aggregators. Antimicrob Agents Chemother 2021; 65:e0030021. [PMID: 33972249 DOI: 10.1128/aac.00300-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNase P is an essential enzyme responsible for tRNA 5'-end maturation. In most bacteria, the enzyme is a ribonucleoprotein consisting of a catalytic RNA subunit and a small protein cofactor termed RnpA. Several studies have reported small-molecule inhibitors directed against bacterial RNase P that were identified by high-throughput screenings. Using the bacterial RNase P enzymes from Thermotoga maritima, Bacillus subtilis, and Staphylococcus aureus as model systems, we found that such compounds, including RNPA2000 (and its derivatives), iriginol hexaacetate, and purpurin, induce the formation of insoluble aggregates of RnpA rather than acting as specific inhibitors. In the case of RNPA2000, aggregation was induced by Mg2+ ions. These findings were deduced from solubility analyses by microscopy and high-performance liquid chromatography (HPLC), RnpA-inhibitor co-pulldown experiments, detergent addition, and RnpA titrations in enzyme activity assays. Finally, we used a B. subtilis RNase P depletion strain, whose lethal phenotype could be rescued by a protein-only RNase P of plant origin, for inhibition zone analyses on agar plates. These cell-based experiments argued against RNase P-specific inhibition of bacterial growth by RNPA2000. We were also unable to confirm the previously reported nonspecific RNase activity of S. aureus RnpA itself. Our results indicate that high-throughput screenings searching for bacterial RNase P inhibitors are prone to the identification of "false positives" that are also termed pan-assay interference compounds (PAINS).
Collapse
|
14
|
Ding Y, Zhuo G, Guo Q, Li M. Leber's Hereditary Optic Neuropathy: the roles of mitochondrial transfer RNA variants. PeerJ 2021; 9:e10651. [PMID: 33552719 PMCID: PMC7819119 DOI: 10.7717/peerj.10651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Leber’s Hereditary Optic Neuropathy (LHON) was a common maternally inherited disease causing severe and permanent visual loss which mostly affects males. Three primary mitochondrial DNA (mtDNA) mutations, ND1 3460G>A, ND4 11778G>A and ND6 14484T>C, which affect genes encoding respiratory chain complex I subunit, are responsible for >90% of LHON cases worldwide. Families with maternally transmitted LHON show incomplete penetrance with a male preponderance for visual loss, suggesting the involvement of secondary mtDNA variants and other modifying factors. In particular, variants in mitochondrial tRNA (mt-tRNA) are important risk factors for LHON. These variants decreased the tRNA stability, prevent tRNA aminoacylation, influence the post-transcriptionalmodification and affect tRNA maturation. Failure of mt-tRNA metabolism subsequently impairs protein synthesis and expression, folding, and function of oxidative phosphorylation (OXPHOS) enzymes, which aggravates mitochondrial dysfunction that is involved in the progression and pathogenesis of LHON. This review summarizes the recent advances in our understanding of mt-tRNA biology and function, as well as the reported LHON-related mt-tRNA second variants; it also discusses the molecular mechanism behind the involvement of these variants in LHON.
Collapse
Affiliation(s)
- Yu Ding
- Central laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Guangchao Zhuo
- Central laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Qinxian Guo
- Central laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Meiya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Kato Y, Takahashi M, Seki M, Nashimoto M, Shimizu-Ibuka A. RNA-hydrolyzing activity of metallo-β-lactamase IMP-1. PLoS One 2020; 15:e0241557. [PMID: 33126240 PMCID: PMC7599082 DOI: 10.1371/journal.pone.0241557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/18/2020] [Indexed: 11/23/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze a wide range of β-lactam antibiotics. While all MBLs share a common αβ/βα-fold, there are many other proteins with the same folding pattern that exhibit different enzymatic activities. These enzymes, together with MBLs, form the MBL superfamily. Thermotoga maritima tRNase Z, a tRNA 3′ processing endoribonuclease of MBL-superfamily, and IMP-1, a clinically isolated MBL, showed a striking similarity in tertiary structure, despite low sequence homology. IMP-1 hydrolyzed both total cellular RNA and synthetic small unstructured RNAs. IMP-1 also hydrolyzed pre-tRNA, but its cleavage site was different from those of T. maritima tRNase Z and human tRNase Z long form, indicating a key difference in substrate recognition. Single-turnover kinetic assays suggested that substrate-binding affinity of T. maritima tRNase Z is much higher than that of IMP-1.
Collapse
Affiliation(s)
- Yoshiki Kato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masayuki Takahashi
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Mineaki Seki
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masayuki Nashimoto
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Akiko Shimizu-Ibuka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
- * E-mail:
| |
Collapse
|
16
|
Stachler AE, Wörtz J, Alkhnbashi OS, Turgeman-Grott I, Smith R, Allers T, Backofen R, Gophna U, Marchfelder A. Adaptation induced by self-targeting in a type I-B CRISPR-Cas system. J Biol Chem 2020; 295:13502-13515. [PMID: 32723866 PMCID: PMC7521656 DOI: 10.1074/jbc.ra120.014030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/15/2020] [Indexed: 11/06/2022] Open
Abstract
Haloferax volcanii is, to our knowledge, the only prokaryote known to tolerate CRISPR-Cas-mediated damage to its genome in the WT background; the resulting cleavage of the genome is repaired by homologous recombination restoring the WT version. In mutant Haloferax strains with enhanced self-targeting, cell fitness decreases and microhomology-mediated end joining becomes active, generating deletions in the targeted gene. Here we use self-targeting to investigate adaptation in H. volcanii CRISPR-Cas type I-B. We show that self-targeting and genome breakage events that are induced by self-targeting, such as those catalyzed by active transposases, can generate DNA fragments that are used by the CRISPR-Cas adaptation machinery for integration into the CRISPR loci. Low cellular concentrations of self-targeting crRNAs resulted in acquisition of large numbers of spacers originating from the entire genomic DNA. In contrast, high concentrations of self-targeting crRNAs resulted in lower acquisition that was mostly centered on the targeting site. Furthermore, we observed naïve spacer acquisition at a low level in WT Haloferax cells and with higher efficiency upon overexpression of the Cas proteins Cas1, Cas2, and Cas4. Taken together, these findings indicate that naïve adaptation is a regulated process in H. volcanii that operates at low basal levels and is induced by DNA breaks.
Collapse
Affiliation(s)
| | | | - Omer S Alkhnbashi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Israela Turgeman-Grott
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Smith
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
17
|
Shikha S, Schneider A. The single CCA-adding enzyme of T. brucei has distinct functions in the cytosol and in mitochondria. J Biol Chem 2020; 295:6138-6150. [PMID: 32234763 DOI: 10.1074/jbc.ra119.011877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
tRNAs universally carry a CCA nucleotide triplet at their 3'-ends. In eukaryotes, the CCA is added post-transcriptionally by the CCA-adding enzyme (CAE). The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes and therefore imports all of its tRNAs from the cytosol. This has generated interest in the tRNA modifications and their distribution in this organism, including how CCA is added to tRNAs. Here, using a BLAST search for genes encoding putative CAE proteins in T. brucei, we identified a single ORF, Tb927.9.8780, as a potential candidate. Knockdown of this putative protein, termed TbCAE, resulted in the accumulation of truncated tRNAs, abolished translation, and inhibited both total and mitochondrial CCA-adding activities, indicating that TbCAE is located both in the cytosol and mitochondrion. However, mitochondrially localized tRNAs were much less affected by the TbCAE ablation than the other tRNAs. Complementation assays revealed that the N-terminal 10 amino acids of TbCAE are dispensable for its activity and mitochondrial localization and that deletion of 10 further amino acids abolishes both. A growth arrest caused by the TbCAE knockdown was rescued by the expression of the cytosolic isoform of yeast CAE, even though it was not imported into mitochondria. This finding indicated that the yeast enzyme complements the essential function of TbCAE by adding CCA to the primary tRNA transcripts. Of note, ablation of the mitochondrial TbCAE activity, which likely has a repair function, only marginally affected growth.
Collapse
Affiliation(s)
- Shikha Shikha
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland.
| |
Collapse
|
18
|
Phylogeny and Evolution of RNA 3'-Nucleotidyltransferases in Bacteria. J Mol Evol 2019; 87:254-270. [PMID: 31435688 DOI: 10.1007/s00239-019-09907-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
The tRNA nucleotidyltransferases and poly(A) polymerases belong to a superfamily of nucleotidyltransferases. The amino acid sequences of a number of bacterial tRNA nucleotidyltransferases and poly(A) polymerases have been used to construct a rooted, neighbor-joining phylogenetic tree. Using information gleaned from that analysis, along with data from the rRNA-based phylogenetic tree, structural data available on a number of members of the superfamily and other biochemical information on the superfamily, it is possible to suggest a scheme for the evolution of the bacterial tRNA nucleotidyltransferases and poly(A) polymerases from ancestral species. Elements of that scheme are discussed along with questions arising from the scheme which can be explored experimentally.
Collapse
|
19
|
Ariza-Mateos A, Briones C, Perales C, Domingo E, Gómez J. The archaeology of coding RNA. Ann N Y Acad Sci 2019; 1447:119-134. [PMID: 31237363 DOI: 10.1111/nyas.14173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/18/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Different theories concerning the origin of RNA (and, in particular, mRNA) point to the concatenation and expansion of proto-tRNA-like structures. Different biochemical and biophysical tools have been used to search for ancient-like RNA elements with a specific structure in genomic viral RNAs, including that of the hepatitis C virus, as well as in cellular mRNA populations, in particular those of human hepatocytes. We define this method as "archaeological," and it has been designed to discover evolutionary patterns through a nonphylogenetic and nonrepresentational strategy. tRNA-like elements were found in structurally or functionally relevant positions both in viral RNA and in one of the liver mRNAs examined, the antagonist interferon-alpha subtype 5 (IFNA5) mRNA. Additionally, tRNA-like elements are highly represented within the hepatic mRNA population, which suggests that they could have participated in the formation of coding RNAs in the distant past. Expanding on this finding, we have observed a recurring dsRNA-like motif next to the tRNA-like elements in both viral RNAs and IFNA5 mRNA. This suggested that the concatenation of these RNA motifs was an activity present in the RNA pools that might have been relevant in the RNA world. The extensive alteration of sequences that likely triggered the transition from the predecessors of coding RNAs to the first fully functional mRNAs (which was not the case in the stepwise construction of noncoding rRNAs) hinders the phylogeny-based identification of RNA elements (both sequences and structures) that might have been active before the advent of protein synthesis. Therefore, our RNA archaeological method is presented as a way to better understand the structural/functional versatility of a variety of RNA elements, which might represent "the losers" in the process of RNA evolution as they had to adapt to the selective pressures favoring the coding capacity of the progressively longer mRNAs.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain.,Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
A Temporal Order in 5'- and 3'- Processing of Eukaryotic tRNA His. Int J Mol Sci 2019; 20:ijms20061384. [PMID: 30893886 PMCID: PMC6470698 DOI: 10.3390/ijms20061384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023] Open
Abstract
For flawless translation of mRNA sequence into protein, tRNAs must undergo a series of essential maturation steps to be properly recognized and aminoacylated by aminoacyl-tRNA synthetase, and subsequently utilized by the ribosome. While all tRNAs carry a 3'-terminal CCA sequence that includes the site of aminoacylation, the additional 5'-G-1 position is a unique feature of most histidine tRNA species, serving as an identity element for the corresponding synthetase. In eukaryotes including yeast, both 3'-CCA and 5'-G-1 are added post-transcriptionally by tRNA nucleotidyltransferase and tRNAHis guanylyltransferase, respectively. Hence, it is possible that these two cytosolic enzymes compete for the same tRNA. Here, we investigate substrate preferences associated with CCA and G-1-addition to yeast cytosolic tRNAHis, which might result in a temporal order to these important processing events. We show that tRNA nucleotidyltransferase accepts tRNAHis transcripts independent of the presence of G-1; however, tRNAHis guanylyltransferase clearly prefers a substrate carrying a CCA terminus. Although many tRNA maturation steps can occur in a rather random order, our data demonstrate a likely pathway where CCA-addition precedes G-1 incorporation in S. cerevisiae. Evidently, the 3'-CCA triplet and a discriminator position A73 act as positive elements for G-1 incorporation, ensuring the fidelity of G-1 addition.
Collapse
|
21
|
Borland K, Diesend J, Ito-Kureha T, Heissmeyer V, Hammann C, Buck AH, Michalakis S, Kellner S. Production and Application of Stable Isotope-Labeled Internal Standards for RNA Modification Analysis. Genes (Basel) 2019; 10:E26. [PMID: 30621251 PMCID: PMC6356711 DOI: 10.3390/genes10010026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 12/04/2022] Open
Abstract
Post-transcriptional RNA modifications have been found to be present in a wide variety of organisms and in different types of RNA. Nucleoside modifications are interesting due to their already known roles in translation fidelity, enzyme recognition, disease progression, and RNA stability. In addition, the abundance of modified nucleosides fluctuates based on growth phase, external stress, or possibly other factors not yet explored. With modifications ever changing, a method to determine absolute quantities for multiple nucleoside modifications is required. Here, we report metabolic isotope labeling to produce isotopically labeled internal standards in bacteria and yeast. These can be used for the quantification of 26 different modified nucleosides. We explain in detail how these internal standards are produced and show their mass spectrometric characterization. We apply our internal standards and quantify the modification content of transfer RNA (tRNA) from bacteria and various eukaryotes. We can show that the origin of the internal standard has no impact on the quantification result. Furthermore, we use our internal standard for the quantification of modified nucleosides in mouse tissue messenger RNA (mRNA), where we find different modification profiles in liver and brain tissue.
Collapse
Affiliation(s)
- Kayla Borland
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Jan Diesend
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany.
| | - Taku Ito-Kureha
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Vigo Heissmeyer
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
- Helmholtz Zentrum München, Research Unit Molecular Immune Regulation, Marchioninistr. 25, 81377 Munich, Germany.
| | - Christian Hammann
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany.
| | - Amy H Buck
- Institute of Immunology & Infection and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
22
|
Hoffmann A, Fallmann J, Vilardo E, Mörl M, Stadler PF, Amman F. Accurate mapping of tRNA reads. Bioinformatics 2019; 34:1116-1124. [PMID: 29228294 DOI: 10.1093/bioinformatics/btx756] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Many repetitive DNA elements are transcribed at appreciable expression levels. Mapping the corresponding RNA sequencing reads back to a reference genome is notoriously difficult and error-prone task, however. This is in particular true if chemical modifications introduce systematic mismatches, while at the same time the genomic loci are only approximately identical, as in the case of tRNAs. Results We therefore developed a dedicated mapping strategy to handle RNA-seq reads that map to tRNAs relying on a modified target genome in which known tRNA loci are masked and instead intronless tRNA precursor sequences are appended as artificial 'chromosomes'. In a first pass, reads that overlap the boundaries of mature tRNAs are extracted. In the second pass, the remaining reads are mapped to a tRNA-masked target that is augmented by representative mature tRNA sequences. Using both simulated and real life data we show that our best-practice workflow removes most of the mapping artefacts introduced by simpler mapping schemes and makes it possible to reliably identify many of chemical tRNA modifications in generic small RNA-seq data. Using simulated data the FDR is only 2%. We find compelling evidence for tissue specific differences of tRNA modification patterns. Availability and implementation The workflow is available both as a bash script and as a Galaxy workflow from https://github.com/AnneHoffmann/tRNA-read-mapping. Contact fabian@tbi.univie.ac.at. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anne Hoffmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany
| | - Elisa Vilardo
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, D-04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, D-04103 Leipzig, Germany.,Center for RNA in Technology and Health, University of Copenhagen, Frederiksberg C, Denmark.,Santa Fe Institute, Santa Fe, NM 87501, USA.,Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria
| | - Fabian Amman
- Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria.,Department of Chromosome Biology of the University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
23
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
24
|
Sørensen MA, Fehler AO, Lo Svenningsen S. Transfer RNA instability as a stress response in Escherichia coli: Rapid dynamics of the tRNA pool as a function of demand. RNA Biol 2018; 15:586-593. [PMID: 29023189 PMCID: PMC6103710 DOI: 10.1080/15476286.2017.1391440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Production of the translation apparatus of E. coli is carefully matched to the demand for protein synthesis posed by a given growth condition. For example, the fraction of RNA polymerases that transcribe rRNA and tRNA drops from 80% during rapid growth to 24% within minutes of a sudden amino acid starvation. We recently reported in Nucleic Acids Research that the tRNA pool is more dynamically regulated than previously thought. In addition to the regulation at the level of synthesis, we found that tRNAs are subject to demand-based regulation at the level of their degradation. In this point-of-view article we address the question of why this phenomenon has not previously been described. We also present data that expands on the mechanism of tRNA degradation, and we discuss the possible implications of tRNA instability for the ability of E. coli to cope with stresses that affect the translation process.
Collapse
|
25
|
Zeng D, Brown BP, Voehler MW, Cai S, Reiter NJ. NMR resonance assignments of RNase P protein from Thermotoga maritima. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:183-187. [PMID: 29450823 PMCID: PMC5871579 DOI: 10.1007/s12104-018-9806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/30/2018] [Indexed: 05/04/2023]
Abstract
Ribonuclase P (RNase P) is an essential metallo-endonuclease that catalyzes 5' precursor-tRNA (ptRNA) processing and exists as an RNA-based enzyme in bacteria, archaea, and eukaryotes. In bacteria, a large catalytic RNA and a small protein component assemble to recognize and accurately cleave ptRNA and tRNA-like molecular scaffolds. Substrate recognition of ptRNA by bacterial RNase P requires RNA-RNA shape complementarity, intermolecular base pairing, and a dynamic protein-ptRNA binding interface. To gain insight into the binding specificity and dynamics of the bacterial protein-ptRNA interface, we report the backbone and side chain 1H, 13C, and 15N resonance assignments of the hyperthermophilic Thermatoga maritima RNase P protein in solution at 318 K. Our data confirm the formation of a stable RNA recognition motif (RRM) with intrinsic heterogeneity at both the N- and C-terminus of the protein, consistent with available structural information. Comprehensive resonance assignments of the bacterial RNase P protein serve as an important first step in understanding how coupled RNA binding and protein-RNA conformational changes give rise to ribonucleoprotein function.
Collapse
Affiliation(s)
- Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, WI, USA
| | - Benjamin P Brown
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Markus W Voehler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Sheng Cai
- Department of Chemistry, Marquette University, Milwaukee, WI, USA
| | | |
Collapse
|
26
|
Saoura M, Pinnock K, Pujantell-Graell M, Levinger L. Substitutions in conserved regions preceding and within the linker affect activity and flexibility of tRNase ZL, the long form of tRNase Z. PLoS One 2017; 12:e0186277. [PMID: 29045449 PMCID: PMC5646807 DOI: 10.1371/journal.pone.0186277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 11/19/2022] Open
Abstract
The enzyme tRNase Z, a member of the metallo-β-lactamase family, endonucleolytically removes 3' trailers from precursor tRNAs, preparing them for CCA addition and aminoacylation. The short form of tRNase Z, tRNase ZS, functions as a homodimer and is found in all prokaryotes and some eukaryotes. The long form, tRNase ZL, related to tRNase ZS through tandem duplication and found only in eukaryotes, possesses ~2,000-fold greater catalytic efficiency than tRNase ZS. tRNase ZL consists of related but diverged amino and carboxy domains connected by a flexible linker (also referred to as a flexible tether) and functions as a monomer. The amino domain retains the flexible arm responsible for substrate recognition and binding while the carboxy domain retains the active site. The linker region was explored by Ala-scanning through two conserved regions of D. melanogaster tRNase Z: NdomTprox, located at the carboxy end of the amino domain proximal to the linker, and Tflex, a flexible site in the linker. Periodic substitutions in a hydrophobic patch (F329 and L332) at the carboxy end of NdomTprox show 2,700 and 670-fold impairment relative to wild type, respectively, accompanied by reduced linker flexibility at N-T inside the Ndom- linker boundary. The Ala substitution for N378 in the Tflex region has 10-fold higher catalytic efficiency than wild type and locally decreased flexibility, while the Ala substitution at R382 reduces catalytic efficiency ~50-fold. These changes in pre-tRNA processing kinetics and protein flexibility are interpreted in light of a recent crystal structure for S. cerevisiae tRNase Z, suggesting transmission of local changes in hydrophobicity into the skeleton of the amino domain.
Collapse
Affiliation(s)
- Makenzie Saoura
- York College of The City University of New York, Jamaica, New York, United States of America
| | - Kyla Pinnock
- York College of The City University of New York, Jamaica, New York, United States of America
| | - Maria Pujantell-Graell
- York College of The City University of New York, Jamaica, New York, United States of America
| | - Louis Levinger
- York College of The City University of New York, Jamaica, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
The rph-1-Encoded Truncated RNase PH Protein Inhibits RNase P Maturation of Pre-tRNAs with Short Leader Sequences in the Absence of RppH. J Bacteriol 2017; 199:JB.00301-17. [PMID: 28808133 DOI: 10.1128/jb.00301-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/04/2017] [Indexed: 01/31/2023] Open
Abstract
RNase PH, encoded by the rph gene, is a 3'→5' exoribonuclease that in E. coli participates primarily in the 3' maturation of pre-tRNAs and the degradation of rRNA in stationary-phase cells. Interestingly, the routinely used laboratory strains of MG1655 and W3110 have naturally acquired the rph-1 allele, encoding a truncated catalytically inactive RNase PH protein which is widely assumed to be benign. Contrary to this assumption, we show that the rph-1-encoded Rph-1 protein inhibits RNase P-mediated 5'-end maturation of primary pre-tRNAs with leaders of <5 nucleotides in the absence of RppH, an RNA pyrophosphohydrolase. In contrast, RppH is not required for 5'-end maturation of endonucleolytically generated pre-tRNAs in the rph-1 strain and for any tRNAs in Δrph mutant or rph+ strains. We propose that the Rph-1 protein bound to the 3' end of the substrate creates a steric hindrance that in the presence of a triphosphate at the 5' end reduces the ability of RNase P to bind to the pre-tRNA.IMPORTANCE In this paper, we demonstrate that the rph-1 mutation found in commonly used E. coli strains leads to the synthesis of a truncated functionally inactive RNase PH protein that interferes with the 5'-end maturation of specific tRNAs with short 5' leaders by RNase P in the absence of RppH, an RNA pyrophosphohydrolase that converts primary 5' triphosphates into 5' monophosphates. The data presented indicate that the presence of the triphosphate interferes with RNase P binding to the pre-tRNA.
Collapse
|
28
|
Gößringer M, Lechner M, Brillante N, Weber C, Rossmanith W, Hartmann RK. Protein-only RNase P function in Escherichia coli: viability, processing defects and differences between PRORP isoenzymes. Nucleic Acids Res 2017; 45:7441-7454. [PMID: 28499021 PMCID: PMC5499578 DOI: 10.1093/nar/gkx405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022] Open
Abstract
The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.
Collapse
Affiliation(s)
- Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Marcus Lechner
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Christoph Weber
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|
29
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
30
|
Abstract
RNase P is an essential tRNA-processing enzyme in all domains of life. We identified an unknown type of protein-only RNase P in the hyperthermophilic bacterium Aquifex aeolicus: Without an RNA subunit and the smallest of its kind, the 23-kDa polypeptide comprises a metallonuclease domain only. The protein has RNase P activity in vitro and rescued the growth of Escherichia coli and Saccharomyces cerevisiae strains with inactivations of their more complex and larger endogenous ribonucleoprotein RNase P. Homologs of Aquifex RNase P (HARP) were identified in many Archaea and some Bacteria, of which all Archaea and most Bacteria also encode an RNA-based RNase P; activity of both RNase P forms from the same bacterium or archaeon could be verified in two selected cases. Bioinformatic analyses suggest that A. aeolicus and related Aquificaceae likely acquired HARP by horizontal gene transfer from an archaeon.
Collapse
|
31
|
Ma M, Li de la Sierra-Gallay I, Lazar N, Pellegrini O, Durand D, Marchfelder A, Condon C, van Tilbeurgh H. The crystal structure of Trz1, the long form RNase Z from yeast. Nucleic Acids Res 2017; 45:6209-6216. [PMID: 28379452 PMCID: PMC5449637 DOI: 10.1093/nar/gkx216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 01/25/2023] Open
Abstract
tRNAs are synthesized as precursor RNAs that have to undergo processing steps to become functional. Yeast Trz1 is a key endoribonuclease involved in the 3΄ maturation of tRNAs in all domains of life. It is a member of the β-lactamase family of RNases, characterized by an HxHxDH sequence motif involved in coordination of catalytic Zn-ions. The RNase Z family consists of two subfamilies: the short (250-400 residues) and the long forms (about double in size). Short form RNase Z enzymes act as homodimers: one subunit embraces tRNA with a protruding arm, while the other provides the catalytic site. The long form is thought to contain two fused β-lactamase domains within a single polypeptide. Only structures of short form RNase Z enzymes are known. Here we present the 3.1 Å crystal structure of the long-form Trz1 from Saccharomyces cerevisiae. Trz1 is organized into two β-lactamase domains connected by a long linker. The N-terminal domain has lost its catalytic residues, but retains the long flexible arm that is important for tRNA binding, while it is the other way around in the C-terminal domain. Trz1 likely evolved from a duplication and fusion of the gene encoding the monomeric short form RNase Z.
Collapse
Affiliation(s)
- Miao Ma
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, University of Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, University of Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Noureddine Lazar
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, University of Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Olivier Pellegrini
- UMR8261 (CNRS-University of Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, University of Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | | | - Ciarán Condon
- UMR8261 (CNRS-University of Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, University of Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
32
|
Leroy M, Piton J, Gilet L, Pellegrini O, Proux C, Coppée JY, Figaro S, Condon C. Rae1/YacP, a new endoribonuclease involved in ribosome-dependent mRNA decay in Bacillus subtilis. EMBO J 2017; 36:1167-1181. [PMID: 28363943 DOI: 10.15252/embj.201796540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
The PIN domain plays a central role in cellular RNA biology and is involved in processes as diverse as rRNA maturation, mRNA decay and telomerase function. Here, we solve the crystal structure of the Rae1 (YacP) protein of Bacillus subtilis, a founding member of the NYN (Nedd4-BP1/YacP nuclease) subfamily of PIN domain proteins, and identify potential substrates in vivo Unexpectedly, degradation of a characterised target mRNA was completely dependent on both its translation and reading frame. We provide evidence that Rae1 associates with the B. subtilis ribosome and cleaves between specific codons of this mRNA in vivo Critically, we also demonstrate translation-dependent Rae1 cleavage of this substrate in a purified translation assay in vitro Multiple lines of evidence converge to suggest that Rae1 is an A-site endoribonuclease. We present a docking model of Rae1 bound to the B. subtilis ribosomal A-site that is consistent with this hypothesis and show that Rae1 cleaves optimally immediately upstream of a lysine codon (AAA or AAG) in vivo.
Collapse
Affiliation(s)
- Magali Leroy
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Jérémie Piton
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Laetitia Gilet
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Olivier Pellegrini
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Caroline Proux
- Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research Institut Pasteur, Paris, France
| | - Sabine Figaro
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS - Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
33
|
Walczyk D, Willkomm DK, Hartmann RK. Bacterial type B RNase P: functional characterization of the L5.1-L15.1 tertiary contact and antisense inhibition. RNA (NEW YORK, N.Y.) 2016; 22:1699-1709. [PMID: 27604960 PMCID: PMC5066622 DOI: 10.1261/rna.057422.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Ribonuclease P is the ubiquitous endonuclease that generates the mature 5'-ends of precursor tRNAs. In bacteria, the enzyme is composed of a catalytic RNA (∼400 nucleotides) and a small essential protein subunit (∼13 kDa). Most bacterial RNase P RNAs (P RNAs) belong to the architectural type A; type B RNase P RNA is confined to the low-G+C Gram-positive bacteria. Here we demonstrate that the L5.1-L15.1 intradomain contact in the catalytic domain of the prototypic type B RNase P RNA of Bacillus subtilis is crucial for adopting a compact functional conformation: Disruption of the L5.1-L15.1 contact by antisense oligonucleotides or mutation reduced P RNA-alone and holoenzyme activity by one to two orders of magnitude in vitro, largely retarded gel mobility of the RNA and further affected the structure of regions P7/P8/P10.1, P15 and L15.2, and abolished the ability of B. subtilis P RNA to complement a P RNA-deficient Escherichia coli strain. We also provide mutational evidence that an L9-P1 tertiary contact, as found in some Mycoplasma type B RNAs, is not formed in canonical type B RNAs as represented by B. subtilis P RNA. We finally explored the P5.1 and P15 stem-loop structures as targets for LNA-modified antisense oligonucleotides. Oligonucleotides targeting P15, but not those directed against P5.1, were found to efficiently anneal to P RNA and to inhibit activity (IC50 of ∼2 nM) when incubated with preassembled B. subtilis RNase P holoenzymes.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Dagmar K Willkomm
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein Campus Lübeck, D-23538 Lübeck, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
34
|
Walczyk D, Gößringer M, Rossmanith W, Zatsepin TS, Oretskaya TS, Hartmann RK. Analysis of the Cleavage Mechanism by Protein-Only RNase P Using Precursor tRNA Substrates with Modifications at the Cleavage Site. J Mol Biol 2016; 428:4917-4928. [PMID: 27769719 DOI: 10.1016/j.jmb.2016.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Ribonuclease P (RNase P) is the enzyme that endonucleolytically removes 5'-precursor sequences from tRNA transcripts in all domains of life. RNase P activities are either ribonucleoprotein (RNP) or protein-only RNase P (PRORP) enzymes, raising the question about the mechanistic strategies utilized by these architecturally different enzyme classes to catalyze the same type of reaction. Here, we analyzed the kinetics and cleavage-site selection by PRORP3 from Arabidopsis thaliana (AtPRORP3) using precursor tRNAs (pre-tRNAs) with individual modifications at the canonical cleavage site, with either Rp- or Sp-phosphorothioate, or 2'-deoxy, 2'-fluoro, 2'-amino, or 2'-O-methyl substitutions. We observed a small but robust rescue effect of Sp-phosphorothioate-modified pre-tRNA in the presence of thiophilic Cd2+ ions, consistent with metal-ion coordination to the (pro-)Sp-oxygen during catalysis. Sp-phosphorothioate, 2'-deoxy, 2'-amino, and 2'-O-methyl modification redirected the cleavage mainly to the next unmodified phosphodiester in the 5'-direction. Our findings are in line with the 2'-OH substituent at nucleotide -1 being involved in an H-bonding acceptor function. In contrast to bacterial RNase P, AtPRORP3 was found to be able to utilize the canonical and upstream cleavage site with similar efficiency (corresponding to reduced cleavage fidelity), and the two cleavage pathways appear less interdependent than in the bacterial RNA-based system.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Timofei S Zatsepin
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; Skolkovo Institute of Science and Technology, 3 Nobel street, Innovation Center "Skolkovo", 143026 Skolkovo, Russia
| | - Tatiana S Oretskaya
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany.
| |
Collapse
|
35
|
Abstract
Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome.
Collapse
|
36
|
Abstract
The removal of transcriptional 5' and 3' extensions is an essential step in tRNA biogenesis. In some bacteria, tRNA 5'- and 3'-end maturation require no further steps, because all their genes encode the full tRNA sequence. Often however, the ends are incomplete, and additional maturation, repair or editing steps are needed. In all Eukarya, but also many Archaea and Bacteria, e.g., the universal 3'-terminal CCA is not encoded and has to be added by the CCA-adding enzyme. Apart from such widespread "repair/maturation" processes, tRNA genes in some cases apparently cannot give rise to intact, functional tRNA molecules without further, more specific end repair or editing. Interestingly, the responsible enzymes as far as identified appear to be polymerases usually involved in regular tRNA repair after damage. Alternatively, enzymes are recruited from other non-tRNA pathways; e.g., in animal mitochondria, poly(A) polymerase plays a crucial role in the 3'-end repair/editing of tRNAs. While these repair/editing pathways apparently allowed peculiar tRNA-gene overlaps or mismatching mutations in the acceptor stem to become genetically fixed in some present-day organisms, they may have also driven some global changes in tRNA maturation on a greater evolutionary scale.
Collapse
Affiliation(s)
- Christiane Rammelt
- a Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Walter Rossmanith
- b Center for Anatomy & Cell Biology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
37
|
Stachler AE, Marchfelder A. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System. J Biol Chem 2016; 291:15226-42. [PMID: 27226589 PMCID: PMC4946936 DOI: 10.1074/jbc.m116.724062] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 12/20/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon.
Collapse
Affiliation(s)
| | - Anita Marchfelder
- From the Department of Biology II, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
38
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
39
|
Sen A, Karasik A, Shanmuganathan A, Mirkovic E, Koutmos M, Cox RT. Loss of the mitochondrial protein-only ribonuclease P complex causes aberrant tRNA processing and lethality in Drosophila. Nucleic Acids Res 2016; 44:6409-22. [PMID: 27131785 PMCID: PMC5291253 DOI: 10.1093/nar/gkw338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/14/2016] [Indexed: 12/26/2022] Open
Abstract
Proteins encoded by mitochondrial DNA are translated using mitochondrially encoded tRNAs and rRNAs. As with nuclear encoded tRNAs, mitochondrial tRNAs must be processed to become fully functional. The mitochondrial form of ribonuclease P (mt:RNase P) is responsible for 5′-end maturation and is comprised of three proteins; mitochondrial RNase P protein (MRPP) 1 and 2 together with proteinaceous RNase P (PRORP). However, its mechanism and impact on development is not yet known. Using homology searches, we have identified the three proteins composing Drosophila mt:RNase P: Mulder (PRORP), Scully (MRPP2) and Roswell (MRPP1). Here, we show that each protein is essential and localizes with mitochondria. Furthermore, reducing levels of each causes mitochondrial deficits, which appear to be due at least in part to defective mitochondrial tRNA processing. Overexpressing two members of the complex, Mulder and Roswell, is also lethal, and in the case of Mulder, causes abnormal mitochondrial morphology. These data are the first evidence that defective mt:RNase P causes mitochondrial dysfunction, lethality and aberrant mitochondrial tRNA processing in vivo, underscoring its physiological importance. This in vivo mt:RNase P model will advance our understanding of how loss of mitochondrial tRNA processing causes tissue failure, an important aspect of human mitochondrial disease.
Collapse
Affiliation(s)
- Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | | | | | - Markos Koutmos
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Rachel T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| |
Collapse
|
40
|
Systematically frameshifting by deletion of every 4th or 4th and 5th nucleotides during mitochondrial transcription: RNA self-hybridization regulates delRNA expression. Biosystems 2016; 142-143:43-51. [PMID: 27018206 DOI: 10.1016/j.biosystems.2016.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 02/05/2023]
Abstract
In mitochondria, secondary structures punctuate post-transcriptional RNA processing. Recently described transcripts match the human mitogenome after systematic deletions of every 4th, respectively every 4th and 5th nucleotides, called delRNAs. Here I explore predicted stem-loop hairpin formation by delRNAs, and their associations with delRNA transcription and detected peptides matching their translation. Despite missing 25, respectively 40% of the nucleotides in the original sequence, del-transformed sequences form significantly more secondary structures than corresponding randomly shuffled sequences, indicating biological function, independently of, and in combination with, previously detected delRNA and thereof translated peptides. Self-hybridization decreases delRNA abundances, indicating downregulation. Systematic deletions of the human mitogenome reveal new, unsuspected coding and structural informations.
Collapse
|
41
|
Brillante N, Gößringer M, Lindenhofer D, Toth U, Rossmanith W, Hartmann RK. Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P. Nucleic Acids Res 2016; 44:2323-36. [PMID: 26896801 PMCID: PMC4797305 DOI: 10.1093/nar/gkw080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/01/2016] [Indexed: 01/22/2023] Open
Abstract
RNase P is the enzyme that removes 5′ extensions from tRNA precursors. With its diversity of enzyme forms—either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins—the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site selection by the nuclear single-subunit proteinaceous RNase P PRORP3 from Arabidopsis thaliana. Compared to bacterial RNase P, the best-characterized RNA-based enzyme form, PRORP3 requires a larger part of intact tRNA structure, but little to no determinants at the cleavage site or interactions with the 5′ or 3′ extensions of the tRNA. The cleavage site depends on the combined dimensions of acceptor stem and T domain, but also requires the leader to be single-stranded. Overall, the single-subunit PRORP appears mechanistically more similar to the complex nuclear ribonucleoprotein enzymes than to the simpler bacterial RNase P. Mechanistic similarity or dissimilarity among different forms of RNase P thus apparently do not necessarily reflect molecular composition or evolutionary relationship.
Collapse
Affiliation(s)
- Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Dominik Lindenhofer
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| |
Collapse
|
42
|
Ariza-Mateos A, Díaz-Toledano R, Block TM, Prieto-Vega S, Birk A, Gómez J. Geneticin Stabilizes the Open Conformation of the 5' Region of Hepatitis C Virus RNA and Inhibits Viral Replication. Antimicrob Agents Chemother 2016; 60:925-35. [PMID: 26621620 PMCID: PMC4750704 DOI: 10.1128/aac.02511-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023] Open
Abstract
The aminoglycoside Geneticin (G418) is known to inhibit cell culture proliferation, via virus-specific mechanisms, of two different virus genera from the family Flaviviridae. Here, we tried to determine whether Geneticin can selectively alter the switching of the nucleotide 1 to 570 RNA region of hepatitis C virus (HCV) and, if so, whether this inhibits viral growth. Two structure-dependent RNases known to specifically cleave HCV RNA were tested in the presence or absence of the drug. One was the Synechocystis sp. RNase P ribozyme, which cleaves the tRNA-like domain around the AUG start codon under high-salt buffer conditions; the second was Escherichia coli RNase III, which recognizes a double-helical RNA switch element that changes the internal ribosome entry site (IRES) from a closed (C) conformation to an open (O) one. While the drug did not affect RNase P activity, it did inhibit RNase III in the micromolar range. Kinetic studies indicated that the drug favors the switch from the C to the O conformation of the IRES by stabilizing the distal double-stranded element and inhibiting further processing of the O form. We demonstrate that, because the RNA in this region is highly conserved and essential for virus survival, Geneticin inhibits HCV Jc1 NS3 expression, the release of the viral genomic RNA, and the propagation of HCV in Huh 7.5 cells. Our study highlights the crucial role of riboswitches in HCV replication and suggests the therapeutic potential of viral-RNA-targeted antivirals.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | - Rosa Díaz-Toledano
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | | | - Samuel Prieto-Vega
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain
| | - Alex Birk
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | - Jordi Gómez
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| |
Collapse
|
43
|
Xie X, Dubrovsky EB. Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression. Nucleic Acids Res 2015; 43:10364-75. [PMID: 26553808 PMCID: PMC4666369 DOI: 10.1093/nar/gkv1149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/20/2015] [Indexed: 11/15/2022] Open
Abstract
RNase Z(L) is a highly conserved tRNA 3'-end processing endoribonuclease. Similar to its mammalian counterpart, Drosophila RNase Z(L) (dRNaseZ) has a mitochondria targeting signal (MTS) flanked by two methionines at the N-terminus. Alternative translation initiation yields two protein forms: the long one is mitochondrial, and the short one may localize in the nucleus or cytosol. Here, we have generated a mitochondria specific knockout of the dRNaseZ gene. In this in vivo model, cells deprived of dRNaseZ activity display impaired mitochondrial polycistronic transcript processing, increased reactive oxygen species (ROS) and a switch to aerobic glycolysis compensating for cellular ATP. Damaged mitochondria impose a cell cycle delay at the G2 phase disrupting cell proliferation without affecting cell viability. Antioxidants attenuate genotoxic stress and rescue cell proliferation, implying a critical role for ROS. We suggest that under a low-stress condition, ROS activate tumor suppressor p53, which modulates cell cycle progression and promotes cell survival. Transcriptional profiling of p53 targets confirms upregulation of antioxidant and cycB-Cdk1 inhibitor genes without induction of apoptotic genes. This study implicates Drosophila RNase Z(L) in a novel retrograde signaling pathway initiated by the damage in mitochondria and manifested in a cell cycle delay before the mitotic entry.
Collapse
Affiliation(s)
- Xie Xie
- Department of Biology, Fordham University, Bronx, NY 10458, USA
| | - Edward B Dubrovsky
- Department of Biology, Fordham University, Bronx, NY 10458, USA Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
44
|
Lechner M, Rossmanith W, Hartmann RK, Thölken C, Gutmann B, Giegé P, Gobert A. Distribution of Ribonucleoprotein and Protein-Only RNase P in Eukarya. Mol Biol Evol 2015; 32:3186-93. [PMID: 26341299 DOI: 10.1093/molbev/msv187] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNase P is the endonuclease that removes 5' leader sequences from tRNA precursors. In Eukarya, separate RNase P activities exist in the nucleus and mitochondria/plastids. Although all RNase P enzymes catalyze the same reaction, the different architectures found in Eukarya range from ribonucleoprotein (RNP) enzymes with a catalytic RNA and up to 10 protein subunits to single-subunit protein-only RNase P (PRORP) enzymes. Here, analysis of the phylogenetic distribution of RNP and PRORP enzymes in Eukarya revealed 1) a wealth of novel P RNAs in previously unexplored phylogenetic branches and 2) that PRORP enzymes are more widespread than previously appreciated, found in four of the five eukaryal supergroups, in the nuclei and/or organelles. Intriguingly, the occurrence of RNP RNase P and PRORP seems mutually exclusive in genetic compartments of modern Eukarya. Our comparative analysis provides a global picture of the evolution and diversification of RNase P throughout Eukarya.
Collapse
Affiliation(s)
- Marcus Lechner
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Walter Rossmanith
- Zentrum für Anatomie & Zellbiologie, Medizinische Universität Wien, Wien, Austria
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Clemens Thölken
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Bernard Gutmann
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| | - Anthony Gobert
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| |
Collapse
|
45
|
Betat H, Mörl M. The CCA-adding enzyme: A central scrutinizer in tRNA quality control. Bioessays 2015; 37:975-82. [DOI: 10.1002/bies.201500043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heike Betat
- Institute for Biochemistry; University of Leipzig; Leipzig Germany
| | - Mario Mörl
- Institute for Biochemistry; University of Leipzig; Leipzig Germany
| |
Collapse
|
46
|
Díaz-Toledano R, Gómez J. Messenger RNAs bearing tRNA-like features exemplified by interferon alfa 5 mRNA. Cell Mol Life Sci 2015; 72:3747-68. [PMID: 25900662 PMCID: PMC4565877 DOI: 10.1007/s00018-015-1908-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 12/24/2022]
Abstract
The purpose of this work was to ascertain whether liver mRNA species share common structural features with hepatitis C virus (HCV) mRNA that allow them to support the RNase-P (pre-tRNA/processing enzyme) cleavage reaction in vitro. The presence of RNase-P competitive elements in the liver mRNA population was determined by means of biochemical techniques, and a set of sensitive mRNA species were identified through microarray screening. Cleavage specificity and substrate length requirement of around 200 nts, were determined for three mRNA species. One of these cleavage sites was found in interferon-alpha 5 (IFNA5) mRNA between specific base positions and with the characteristic RNase-P chemistry of cleavage. It was mapped within a cloverleaf-like structure revealed by a comparative structural analysis based on several direct enzymes and chemical probing methods of three RNA fragments of increasing size, and subsequently contrasted against site-directed mutants. The core region was coincident with the reported signal for the cytoplasmic accumulation region (CAR) in IFNAs. Striking similarities with the tRNA-like element of the antagonist HCV mRNA were found. In general, this study provides a new way of looking at a variety of viral tRNA-like motifs as this type of structural mimicry might be related to specific host mRNA species rather than, or in addition to, tRNA itself.
Collapse
Affiliation(s)
- Rosa Díaz-Toledano
- Laboratorio de Arqueología del RNA, Departamento de Bioquímica y Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Armilla, Granada, Spain.,Centro de Investigación Biológica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (UAM-CSIC) Cantoblanco, Madrid, Spain
| | - Jordi Gómez
- Laboratorio de Arqueología del RNA, Departamento de Bioquímica y Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Armilla, Granada, Spain. .,Centro de Investigación Biológica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| |
Collapse
|
47
|
Maier LK, Stachler AE, Saunders SJ, Backofen R, Marchfelder A. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein. J Biol Chem 2014; 290:4192-201. [PMID: 25512373 PMCID: PMC4326828 DOI: 10.1074/jbc.m114.617506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3′ handle are still active in triggering an interference reaction. The complete 3′ handle could be removed without loss of activity. However, manipulations of the 5′ handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference.
Collapse
Affiliation(s)
| | | | - Sita J Saunders
- the Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, and
| | - Rolf Backofen
- the Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, and the BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, Albert-Ludwigs-University Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | | |
Collapse
|
48
|
Romero DA, Hasan AH, Lin YF, Kime L, Ruiz-Larrabeiti O, Urem M, Bucca G, Mamanova L, Laing EE, van Wezel GP, Smith CP, Kaberdin VR, McDowall KJ. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing. Mol Microbiol 2014; 94:963-987. [PMID: 25266672 PMCID: PMC4681348 DOI: 10.1111/mmi.12810] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2014] [Indexed: 12/12/2022]
Abstract
Streptomyces coelicolor is a model for studying bacteria renowned as the foremost source of natural products used clinically. Post-genomic studies have revealed complex patterns of gene expression and links to growth, morphological development and individual genes. However, the underlying regulation remains largely obscure, but undoubtedly involves steps after transcription initiation. Here we identify sites involved in RNA processing and degradation as well as transcription within a nucleotide-resolution map of the transcriptional landscape. This was achieved by combining RNA-sequencing approaches suited to the analysis of GC-rich organisms. Escherichia coli was analysed in parallel to validate the methodology and allow comparison. Previously, sites of RNA processing and degradation had not been mapped on a transcriptome-wide scale for E. coli. Through examples, we show the value of our approach and data sets. This includes the identification of new layers of transcriptional complexity associated with several key regulators of secondary metabolism and morphological development in S. coelicolor and the identification of host-encoded leaderless mRNA and rRNA processing associated with the generation of specialized ribosomes in E. coli. New regulatory small RNAs were identified for both organisms. Overall the results illustrate the diversity in mechanisms used by different bacterial groups to facilitate and regulate gene expression.
Collapse
Affiliation(s)
- David A Romero
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Ayad H Hasan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Yu-fei Lin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Olatz Ruiz-Larrabeiti
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHULeioa, Spain
| | - Mia Urem
- Institute of Biology, Sylvius Laboratories, Leiden UniversityLeiden, NL-2300 RA, The Netherlands
| | - Giselda Bucca
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Lira Mamanova
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, CB10 1SA, UK
| | - Emma E Laing
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Gilles P van Wezel
- Institute of Biology, Sylvius Laboratories, Leiden UniversityLeiden, NL-2300 RA, The Netherlands
| | - Colin P Smith
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHULeioa, Spain
- IKERBASQUE, Basque Foundation for Science48011, Bilbao, Spain
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| |
Collapse
|
49
|
Lin HC, Yandek LE, Gjermeni I, Harris ME. Determination of relative rate constants for in vitro RNA processing reactions by internal competition. Anal Biochem 2014; 467:54-61. [PMID: 25173512 DOI: 10.1016/j.ab.2014.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Studies of RNA recognition and catalysis typically involve measurement of rate constants for reactions of individual RNA sequence variants by fitting changes in substrate or product concentration to exponential or linear functions. A complementary approach is determination of relative rate constants by internal competition, which involves quantifying the time-dependent changes in substrate or product ratios in reactions containing multiple substrates. Here, we review approaches for determining relative rate constants by analysis of both substrate and product ratios and illustrate their application using the in vitro processing of precursor transfer RNA (tRNA) by ribonuclease P as a model system. The presence of inactive substrate populations is a common complicating factor in analysis of reactions involving RNA substrates, and approaches for quantitative correction of observed rate constants for these effects are illustrated. These results, together with recent applications in the literature, indicate that internal competition offers an alternate method for analyzing RNA processing kinetics using standard molecular biology methods that directly quantifies substrate specificity and may be extended to a range of applications.
Collapse
Affiliation(s)
- Hsuan-Chun Lin
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lindsay E Yandek
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ino Gjermeni
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
50
|
Kime L, Clarke JE, Romero A. D, Grasby JA, McDowall KJ. Adjacent single-stranded regions mediate processing of tRNA precursors by RNase E direct entry. Nucleic Acids Res 2014; 42:4577-89. [PMID: 24452799 PMCID: PMC3985628 DOI: 10.1093/nar/gkt1403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/09/2013] [Accepted: 12/22/2013] [Indexed: 01/06/2023] Open
Abstract
The RNase E family is renowned for being central to the processing and decay of all types of RNA in many species of bacteria, as well as providing the first examples of endonucleases that can recognize 5'-monophosphorylated ends thereby increasing the efficiency of cleavage. However, there is increasing evidence that some transcripts can be cleaved efficiently by Escherichia coli RNase E via direct entry, i.e. in the absence of the recognition of a 5'-monophosphorylated end. Here, we provide biochemical evidence that direct entry is central to the processing of transfer RNA (tRNA) in E. coli, one of the core functions of RNase E, and show that it is mediated by specific unpaired regions that are adjacent, but not contiguous to segments cleaved by RNase E. In addition, we find that direct entry at a site on the 5' side of a tRNA precursor triggers a series of 5'-monophosphate-dependent cleavages. Consistent with a major role for direct entry in tRNA processing, we provide additional evidence that a 5'-monophosphate is not required to activate the catalysis step in cleavage. Other examples of tRNA precursors processed via direct entry are also provided. Thus, it appears increasingly that direct entry by RNase E has a major role in bacterial RNA metabolism.
Collapse
Affiliation(s)
- Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Justin E. Clarke
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - David Romero A.
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Jane A. Grasby
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Kenneth J. McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|