1
|
Naue J. Getting the chronological age out of DNA: using insights of age-dependent DNA methylation for forensic DNA applications. Genes Genomics 2023; 45:1239-1261. [PMID: 37253906 PMCID: PMC10504122 DOI: 10.1007/s13258-023-01392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND DNA analysis for forensic investigations has a long tradition with important developments and optimizations since its first application. Traditionally, short tandem repeats analysis has been the most powerful method for the identification of individuals. However, in addition, epigenetic changes, i.e., DNA methylation, came into focus of forensic DNA research. Chronological age prediction is one promising application to allow for narrowing the pool of possible individuals who caused a trace, as well as to support the identification of unknown bodies and for age verification of living individuals. OBJECTIVE This review aims to provide an overview of the current knowledge, possibilities, and (current) limitations about DNA methylation-based chronological age prediction with emphasis on forensic application. METHODS The development, implementation and application of age prediction tools requires a deep understanding about the biological background, the analysis methods, the age-dependent DNA methylation markers, as well as the mathematical models for age prediction and their evaluation. Furthermore, additional influences can have an impact. Therefore, the literature was evaluated in respect to these diverse topics. CONCLUSION The numerous research efforts in recent years have led to a rapid change in our understanding of the application of DNA methylation for chronological age prediction, which is now on the way to implementation and validation. Knowledge of the various aspects leads to a better understanding and allows a more informed interpretation of DNAm quantification results, as well as the obtained results by the age prediction tools.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Maeda Y. Roles of Sulfites in Reverse Osmosis (RO) Plants and Adverse Effects in RO Operation. MEMBRANES 2022; 12:170. [PMID: 35207091 PMCID: PMC8874662 DOI: 10.3390/membranes12020170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
More than 60 years have passed since UCLA first announced the development of an innovative asymmetric cellulose acetate reverse osmosis (RO) membrane in 1960. This innovation opened a gate to use RO for commercial use. RO is now ubiquitous in water treatment and has been used for various applications, including seawater desalination, municipal water treatment, wastewater reuse, ultra-pure water (UPW) production, and industrial process waters, etc. RO is a highly integrated system consisting of a series of unit processes: (1) intake system, (2) pretreatment, (3) RO system, (4) post-treatment, and (5) effluent treatment and discharge system. In each step, a variety of chemicals are used. Among those, sulfites (sodium bisulfite and sodium metabisulfite) have played significant roles in RO, such as dechlorination, preservatives, shock treatment, and sanitization, etc. Sulfites especially became necessary as dechlorinating agents because polyamide hollow-fiber and aromatic thin-film composite RO membranes developed in the late 1960s and 1970s were less tolerable with residual chlorine. In this review, key applications of sulfites are explained in detail. Furthermore, as it is reported that sulfites have some adverse effects on RO membranes and processes, such phenomena will be clarified. In particular, the following two are significant concerns using sulfites: RO membrane oxidation catalyzed by heavy metals and a trigger of biofouling. This review sheds light on the mechanism of membrane oxidation and triggering biofouling by sulfites. Some countermeasures are also introduced to alleviate such problems.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
3
|
Stewart JA, Schauer G, Bhagwat AS. Visualization of uracils created by APOBEC3A using UdgX shows colocalization with RPA at stalled replication forks. Nucleic Acids Res 2020; 48:e118. [PMID: 33074285 PMCID: PMC7672425 DOI: 10.1093/nar/gkaa845] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
The AID/APOBEC enzymes deaminate cytosines in single-stranded DNA (ssDNA) and play key roles in innate and adaptive immunity. The resulting uracils cause mutations and strand breaks that inactivate viruses and diversify antibody repertoire. Mutational evidence suggests that two members of this family, APOBEC3A (A3A) and APOBEC3B, deaminate cytosines in the lagging-strand template during replication. To obtain direct evidence for the presence of these uracils, we engineered a protein that covalently links to DNA at uracils, UdgX, for mammalian expression and immunohistochemistry. We show that UdgX strongly prefers uracils in ssDNA over those in U•G or U:A pairs, and localizes to nuclei in a dispersed form. When A3A is expressed in these cells, UdgX tends to form foci. The treatment of cells with cisplatin, which blocks replication, causes a significant increase in UdgX foci. Furthermore, this protein- and hence the uracils created by A3A- colocalize with replication protein A (RPA), but not with A3A. Using purified proteins, we confirm that RPA inhibits A3A by binding ssDNA, but despite its overexpression following cisplatin treatment, RPA is unable to fully protect ssDNA created by cisplatin adducts. This suggests that cisplatin treatment of cells expressing APOBEC3A should cause accumulation of APOBEC signature mutations.
Collapse
Affiliation(s)
- Jessica A Stewart
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Grant Schauer
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Stadler E, Fischer U. Sanitization of Oak Barrels for Wine-A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5283-5295. [PMID: 32323983 DOI: 10.1021/acs.jafc.0c00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oak barrels form an integral part of wine production, especially that of high-quality wines where they are implemented as fermentation and aging vessels. Insufficient cleaning and sanitization of barrels can result in microbial spoilage which may have a detrimental impact on wine quality. To date, no review has been published on the various sanitization methods for wine barrels. The objective of this review is to provide an overview of the sanitization methods used in wineries from conventional techniques like the use of sulfur dioxide and steam to alternative and new approaches using ozone and high-power ultrasound. The methods' efficacies are outlined in terms of their ability to eradicate spoilage microorganisms such as Brettanomyces and acetic or lactic acid bacteria. Furthermore, their advantages and drawbacks are described together with their influence on physicochemical properties of the wood. Finally, limitations in existing knowledge are discussed and areas that merit further research are identified.
Collapse
Affiliation(s)
- Engela Stadler
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- Technical University of Kaiserslautern, Faculty of Chemistry, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Ulrich Fischer
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- Technical University of Kaiserslautern, Faculty of Chemistry, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
The Role of Oxidative Stress and Bioenergetic Dysfunction in Sulfite Oxidase Deficiency: Insights from Animal Models. Neurotox Res 2018; 35:484-494. [DOI: 10.1007/s12640-018-9986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
|
6
|
Wang C, Liang C, Ma J, Manthari RK, Niu R, Wang J, Wang J, Zhang J. Co-exposure to fluoride and sulfur dioxide on histological alteration and DNA damage in rat brain. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/09/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Chong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu Shanxi 030801 People's Republic of China
- Medical Experiment Center; Shaanxi University of Chinese Medicine; Xianyang Shaanxi 712046 People's Republic of China
| | - Chen Liang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu Shanxi 030801 People's Republic of China
| | - Junjie Ma
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu Shanxi 030801 People's Republic of China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu Shanxi 030801 People's Republic of China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu Shanxi 030801 People's Republic of China
| | - Jinming Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu Shanxi 030801 People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu Shanxi 030801 People's Republic of China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu Shanxi 030801 People's Republic of China
| |
Collapse
|
7
|
Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:2176-81. [PMID: 26839411 DOI: 10.1073/pnas.1522325113] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The rate of cytosine deamination is much higher in single-stranded DNA (ssDNA) than in double-stranded DNA, and copying the resulting uracils causes C to T mutations. To study this phenomenon, the catalytic domain of APOBEC3G (A3G-CTD), an ssDNA-specific cytosine deaminase, was expressed in an Escherichia coli strain defective in uracil repair (ung mutant), and the mutations that accumulated over thousands of generations were determined by whole-genome sequencing. C:G to T:A transitions dominated, with significantly more cytosines mutated to thymine in the lagging-strand template (LGST) than in the leading-strand template (LDST). This strand bias was present in both repair-defective and repair-proficient cells and was strongest and highly significant in cells expressing A3G-CTD. These results show that the LGST is accessible to cellular cytosine deaminating agents, explains the well-known GC skew in microbial genomes, and suggests the APOBEC3 family of mutators may target the LGST in the human genome.
Collapse
|
8
|
Ji L, Neumann DA, Schmitz RJ. Crop Epigenomics: Identifying, Unlocking, and Harnessing Cryptic Variation in Crop Genomes. MOLECULAR PLANT 2015; 8:860-70. [PMID: 25638564 PMCID: PMC5121661 DOI: 10.1016/j.molp.2015.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 05/19/2023]
Abstract
DNA methylation is a key chromatin modification in plant genomes that is meiotically and mitotically heritable, and at times is associated with gene expression and morphological variation. Benefiting from the increased availability of high-quality reference genome assemblies and methods to profile single-base resolution DNA methylation states, DNA methylomes for many crop species are available. These efforts are making it possible to begin answering crucial questions, including understanding the role of DNA methylation in developmental processes, its role in crop species evolution, and whether DNA methylation is dynamically altered and heritable in response to changes in the environment. These genome-wide maps provide evidence for the existence of silent epialleles in plant genomes which, once identified, can be targeted for reactivation leading to phenotypic variation.
Collapse
Affiliation(s)
- Lexiang Ji
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Drexel A Neumann
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Abstract
Current high-throughput DNA sequencing technologies enable acquisition of billions of data points through which myriad biological processes can be interrogated, including genetic variation, chromatin structure, gene expression patterns, small RNAs and protein-DNA interactions. Here we describe the MethylC-sequencing (MethylC-seq) library preparation method, a 2-d protocol that enables the genome-wide identification of cytosine DNA methylation states at single-base resolution. The technique involves fragmentation of genomic DNA followed by adapter ligation, bisulfite conversion and limited amplification using adapter-specific PCR primers in preparation for sequencing. To date, this protocol has been successfully applied to genomic DNA isolated from primary cell culture, sorted cells and fresh tissue from over a thousand plant and animal samples.
Collapse
|
10
|
Integrated DNA methylation and chromatin structural analysis at single-molecule resolution. Methods Mol Biol 2015; 1288:123-41. [PMID: 25827879 DOI: 10.1007/978-1-4939-2474-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Chromatin limits the accessibility of DNA to trans-acting factors in transcription, replication, and repair. Although transcriptional variation between cells in a population may contribute to survival and disease, most assays of chromatin structure recover only population averages. We have developed DNA methyltransferases (MTases) as probing agents of DNA accessibility in chromatin, either expressed in vivo in budding yeast or as recombinant enzymatic probes of nuclei isolated from mammalian cells. In this chapter, we focus on the use of recombinant MTase (M) M.CviPI to probe chromatin accessibility in nuclei isolated from mammalian cell lines and animal tissue. This technique, named methylation accessibility protocol for individual templates (MAPit), reports protein-DNA interactions at single-molecule resolution. The single-molecule readout allows identification of chromatin subpopulations and rare epigenetic variants within a cell population. Furthermore, the use of M.CviPI in mammalian systems gives a comprehensive view of both chromatin structure and endogenous DNA methylation in a single assay.
Collapse
|
11
|
Sakurai E, Susuki M, Kanamitsu K, Kawano S, Ikeda S. Global Genome Nucleotide Excision Repair Proteins Rhp7p and Rhp41p Are Involved in Abasic Site Repair of <i>Schizosaccharomyces pombe</i>. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.64026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Ji L, Sasaki T, Sun X, Ma P, Lewis ZA, Schmitz RJ. Methylated DNA is over-represented in whole-genome bisulfite sequencing data. Front Genet 2014; 5:341. [PMID: 25374580 PMCID: PMC4204604 DOI: 10.3389/fgene.2014.00341] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022] Open
Abstract
The development of whole-genome bisulfite sequencing (WGBS) has resulted in a number of exciting discoveries about the role of DNA methylation leading to a plethora of novel testable hypotheses. Methods for constructing sodium bisulfite-converted and amplified libraries have recently advanced to the point that the bottleneck for experiments that use WGBS has shifted to data analysis and interpretation. Here we present empirical evidence for an over-representation of reads from methylated DNA in WGBS. This enrichment for methylated DNA is exacerbated by higher cycles of PCR and is influenced by the type of uracil-insensitive DNA polymerase used for amplifying the sequencing library. Future efforts to computationally correct for this enrichment bias will be essential to increasing the accuracy of determining methylation levels for individual cytosines. It is especially critical for studies that seek to accurately quantify DNA methylation levels in populations that may segregate for allelic DNA methylation states.
Collapse
Affiliation(s)
- Lexiang Ji
- Department of Genetics, University of Georgia, Athens, GA USA ; Institute of Bioinformatics, University of Georgia, Athens, GA USA
| | - Takahiko Sasaki
- Department of Microbiology, University of Georgia, Athens, GA USA
| | - Xiaoxiao Sun
- Department of Statistics, University of Georgia, Athens, GA USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA USA
| | | |
Collapse
|
13
|
Grings M, Moura AP, Parmeggiani B, Marcowich GF, Amaral AU, de Souza Wyse AT, Wajner M, Leipnitz G. Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: Potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene 2013; 531:191-8. [DOI: 10.1016/j.gene.2013.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 01/04/2023]
|
14
|
Chan K, Sterling JF, Roberts SA, Bhagwat AS, Resnick MA, Gordenin DA. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent. PLoS Genet 2012; 8:e1003149. [PMID: 23271983 PMCID: PMC3521656 DOI: 10.1371/journal.pgen.1003149] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/20/2012] [Indexed: 12/23/2022] Open
Abstract
Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA) is more prone to damage than double-strand DNA (dsDNA), due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions accurately.
Collapse
Affiliation(s)
- Kin Chan
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Joan F. Sterling
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Steven A. Roberts
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Ashok S. Bhagwat
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - Michael A. Resnick
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Schmitz RJ, Ecker JR. Epigenetic and epigenomic variation in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2012; 17:149-54. [PMID: 22342533 PMCID: PMC3645451 DOI: 10.1016/j.tplants.2012.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana (Arabidopsis) is ideally suited for studies of natural phenotypic variation. This species has also provided an unparalleled experimental system to explore the mechanistic link between genetic and epigenetic variation, especially with regard to cytosine methylation. Using high-throughput sequencing methods, genotype to epigenotype to phenotype observations can now be extended to plant populations. We review the evidence for induced and spontaneous epigenetic variants that have been identified in Arabidopsis in the laboratory and discuss how these experimental observations could explain existing variation in the wild.
Collapse
Affiliation(s)
- Robert J Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Pardo CE, Darst RP, Nabilsi NH, Delmas AL, Kladde MP. Simultaneous single-molecule mapping of protein-DNA interactions and DNA methylation by MAPit. ACTA ACUST UNITED AC 2011; Chapter 21:Unit 21.22. [PMID: 21732317 DOI: 10.1002/0471142727.mb2122s95] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sites of protein binding to DNA are inferred from footprints or spans of protection against a probing reagent. In most protocols, sites of accessibility to a probe are detected by mapping breaks in DNA strands. As discussed in this unit, such methods obscure molecular heterogeneity by averaging cuts at a given site over all DNA strands in a sample population. The DNA methyltransferase accessibility protocol for individual templates (MAPit), an alternative method described in this unit, localizes protein-DNA interactions by probing with cytosine-modifying DNA methyltransferases followed by bisulfite sequencing. Sequencing individual DNA products after amplification of bisulfite-converted sequences permits assignment of the methylation status of every enzyme target site along a single DNA strand. Use of the GC-methylating enzyme M.CviPI allows simultaneous mapping of chromatin accessibility and endogenous CpG methylation. MAPit is therefore the only footprinting method that can detect subpopulations of molecules with distinct patterns of protein binding or chromatin architecture and correlate them directly with the occurrence of endogenous methylation. Additional advantages of MAPit methylation footprinting as well as considerations for experimental design and potential sources of error are discussed.
Collapse
Affiliation(s)
- Carolina E Pardo
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
17
|
Nomura A, Sugizaki K, Yanagisawa H, Okamoto A. Discrimination between 5-hydroxymethylcytosine and 5-methylcytosine by a chemically designed peptide. Chem Commun (Camb) 2011; 47:8277-9. [PMID: 21695309 DOI: 10.1039/c1cc12131f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An artificial phosphopeptide recognized the difference between methylated and hydroxymethylated cytosines in DNA. The Sp1 zinc finger peptide substituted by phosphotyrosine effectively discriminated between 5-methylcytosine, 5-hydroxymethylcytosine ((hm)C) and unmethylated cytosine. The DNA recognition properties of the peptide differ from those of other chemicals that detect (hm)C.
Collapse
Affiliation(s)
- Akiko Nomura
- Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
18
|
Sugizaki K, Ikeda S, Yanagisawa H, Okamoto A. Facile synthesis of hydroxymethylcytosine-containing oligonucleotides and their reactivity upon osmium oxidation. Org Biomol Chem 2011; 9:4176-81. [PMID: 21499601 DOI: 10.1039/c1ob05247k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA strands containing a 5-hydroxymethylcytosine ((hm)C), which have recently been found in neuron cells and embryonic stem cells, were synthesized through a facile synthetic technique. The (hm)C-containing strands were efficiently oxidized at (hm)C using an osmium oxidation assay. The (hm)C was oxidized as easily as 5-methylcytosine, which can be distinguished from unmethylated cytosine.
Collapse
Affiliation(s)
- Kaori Sugizaki
- Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
19
|
Zangi R, Arrieta A, Cossío FP. Mechanism of DNA methylation: the double role of DNA as a substrate and as a cofactor. J Mol Biol 2010; 400:632-44. [PMID: 20471982 DOI: 10.1016/j.jmb.2010.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/29/2010] [Accepted: 05/09/2010] [Indexed: 11/24/2022]
Abstract
Methylation of cytosine residues in the DNA is one of the most important epigenetic marks central to the control of differential expression of genes. We perform quantum mechanical calculations to investigate the catalytic mechanism of the bacterial HhaI DNA methyltransferase. We find that the enzyme nucleophile, Cys81, can attack C6 of cytosine only after it is deprotonated by the DNA phosphate group, a reaction facilitated by a bridging water molecule. This finding, which indicates that the DNA acts as both the substrate and the cofactor, can explain the total loss of activity observed in an analogous enzyme, thymidylate synthase, when the phosphate group of the substrate was removed. Furthermore, our results displaying the inability of the phosphate group to deprotonate the side chain of serine is in agreement with the total, or the large extent of, inactivity observed for the C81S mutant. In contrast to results from previous calculations, we find that the active site conserved residues, Glu119, Arg163, and Arg165, are crucial for catalysis. In addition, the enzyme-DNA adduct formation and the methyl transfer from the cofactor S-adenosyl-L-methionine are not concerted but proceed via stepwise mechanism. In many of the different steps of this methylation reaction, the transfer of a proton is found to be necessary. To render these processes possible, we find that several water molecules, found in the crystal structure, play an important role, acting as a bridge between the donating and accepting proton groups.
Collapse
Affiliation(s)
- Ronen Zangi
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Spain.
| | | | | |
Collapse
|
20
|
Przybylski JL, Wetmore SD. Modeling the dissociative hydrolysis of the natural DNA nucleosides. J Phys Chem B 2010; 114:1104-13. [PMID: 20039632 DOI: 10.1021/jp9098717] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional PCM-B3LYP/6-31+G(d) potential energy surfaces for the hydrolysis of the four natural 2'-deoxyribonucleosides (2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, and thymidine) are characterized using a model that includes both implicit (bulk) solvent effects and (three or four) explicit water molecules in the optimization routine. For the first time, the experimentally predicted dissociative (S(N)1) mechanism is found to be favored over the synchronous (S(N)2) pathway for all nucleosides studied. Due to the success of our model in stabilizing the charge-separated intermediates along the S(N)1 pathway, it is proposed that the new model presented here is the smallest system capable of generating the experimentally predicted oxacarbenium cation intermediate. We therefore stress that dissociative mechanisms should be studied with methodologies that account for the (bulk) environment in the optimization routine, where these effects are often only included as a correction to the energy in the current literature. In addition to accounting for charge stabilization through implicit solvation, nucleophile activation and leaving group stabilization should also be explicitly introduced into the model to further stabilize the system. Our work also emphasizes the importance of studying the Gibbs surface, which in some cases provides a better description of chemically important regions of the reaction surface or changes the calculated trend in the magnitude of dissociative barriers. In addition, it is proposed that the methodology presented in this study can be used to calculate uncatalyzed deglycosylation barriers for a range of DNA nucleosides, which when compared to the corresponding enzyme-catalyzed reactions, will allow the prediction of the rate enhancement (barrier reduction) due to the enzyme.
Collapse
Affiliation(s)
- Jennifer L Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | | |
Collapse
|
21
|
Thompson RF, Fazzari MJ, Greally JM. Experimental approaches to the study of epigenomic dysregulation in ageing. Exp Gerontol 2010; 45:255-68. [PMID: 20060885 DOI: 10.1016/j.exger.2009.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 12/19/2009] [Accepted: 12/28/2009] [Indexed: 12/25/2022]
Abstract
In this review, we describe how normal ageing may involve the acquisition of epigenetic errors over time, akin to the accumulation of genetic mutations with ageing. We describe how such experiments are currently performed, their limitations technically and analytically and their application to ageing research.
Collapse
Affiliation(s)
- Reid F Thompson
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
22
|
Boyko A, Kovalchuk I. Analysis of locus-specific changes in methylation patterns using a COBRA (combined bisulfite restriction analysis) assay. Methods Mol Biol 2010; 631:23-31. [PMID: 20204865 DOI: 10.1007/978-1-60761-646-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA methylation is a major mechanism for the reversible control of gene expression, chromatin structure, and genome stability. Methylation analysis at a given locus allows one to evaluate levels of chromatin packaging, gene expression, and even homologous recombination. We have shown that the combined bisulfite restriction analysis (COBRA) assay makes it possible to analyze methylation levels at a defined locus. The major steps are: bisulfite conversion of nonmethylate cytosines to uracils, locus-specific PCR amplification of converted DNA, restriction digestion, and analysis of restriction patterns on the gel. Due to the availability of various restriction enzymes that have cytosines in the restriction recognition sequence, the assay allows analysis of various cytosines, including those potentially targeted for symmetrical and nonsymmetrical methylation.
Collapse
Affiliation(s)
- Alex Boyko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| | | |
Collapse
|
23
|
Nomura A, Tainaka K, Okamoto A. Osmium Complexation of Mismatched DNA: Effect of the Bases Adjacent to Mismatched 5-Methylcytosine. Bioconjug Chem 2009; 20:603-7. [DOI: 10.1021/bc800531z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akiko Nomura
- Advanced Science Institute, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-1098, Japan
| | - Kazuki Tainaka
- Advanced Science Institute, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-1098, Japan
| | - Akimitsu Okamoto
- Advanced Science Institute, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-1098, Japan
| |
Collapse
|
24
|
DNA methyltransferase probing of chromatin structure within populations and on single molecules. Methods Mol Biol 2009; 523:41-65. [PMID: 19381922 DOI: 10.1007/978-1-59745-190-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Non-invasive methods for mapping chromatin structure are necessary for creating an accurate view of genome function and dynamics in vivo. Ectopic induction of cytosine-5 DNA methyltransferases (C5 MTases) in Saccharomyces cerevisiae is a powerful technique for probing chromatin structure with minimal disruption to yeast physiology. Accessibility of MTases to their cognate sites is impaired based on the strength and span of the protein-DNA interaction to be probed. Methylated cytosines that resist chemical deamination are detected positively by the PCR-based technique of bisulfite genomic sequencing. PCR amplicons can be sequenced directly yielding an average m(5)C frequency or accessibility of each target site within the population, a technique termed methyltransferase accessibility protocol (MAP). More recently, the sequencing of cloned molecules in MAP for individual templates (MAPit) enables assignment of the methylation status of each target site along a continuous DNA strand from a single cell. The unique capability to score methylation at multiple sites in single molecules permits detection of inherent structural variability in chromatin. Here, MAPit analysis of the repressed and induced PHO5 promoter of budding yeast, using a C5 MTase with dinucleotide recognition specificity, reveals considerable cell-to-cell heterogeneity in chromatin structure. Substantial variation is observed in the extent to which the MTase gains entry to each of the nucleosomes positioned at PHO5, suggesting differences in their intrinsic thermodynamic stability in vivo. MAPit should be readily adaptable to the analysis of chromatin structure and non-histone protein-DNA interactions in a variety of model systems.
Collapse
|
25
|
Discovery of DNA methylation markers in cervical cancer using relaxation ranking. BMC Med Genomics 2008; 1:57. [PMID: 19025626 PMCID: PMC2605750 DOI: 10.1186/1755-8794-1-57] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 11/24/2008] [Indexed: 01/22/2023] Open
Abstract
Background To discover cancer specific DNA methylation markers, large-scale screening methods are widely used. The pharmacological unmasking expression microarray approach is an elegant method to enrich for genes that are silenced and re-expressed during functional reversal of DNA methylation upon treatment with demethylation agents. However, such experiments are performed in in vitro (cancer) cell lines, mostly with poor relevance when extrapolating to primary cancers. To overcome this problem, we incorporated data from primary cancer samples in the experimental design. A strategy to combine and rank data from these different data sources is essential to minimize the experimental work in the validation steps. Aim To apply a new relaxation ranking algorithm to enrich DNA methylation markers in cervical cancer. Results The application of a new sorting methodology allowed us to sort high-throughput microarray data from both cervical cancer cell lines and primary cervical cancer samples. The performance of the sorting was analyzed in silico. Pathway and gene ontology analysis was performed on the top-selection and gives a strong indication that the ranking methodology is able to enrich towards genes that might be methylated. Terms like regulation of progression through cell cycle, positive regulation of programmed cell death as well as organ development and embryonic development are overrepresented. Combined with the highly enriched number of imprinted and X-chromosome located genes, and increased prevalence of known methylation markers selected from cervical (the highest-ranking known gene is CCNA1) as well as from other cancer types, the use of the ranking algorithm seems to be powerful in enriching towards methylated genes. Verification of the DNA methylation state of the 10 highest-ranking genes revealed that 7/9 (78%) gene promoters showed DNA methylation in cervical carcinomas. Of these 7 genes, 3 (SST, HTRA3 and NPTX1) are not methylated in normal cervix tissue. Conclusion The application of this new relaxation ranking methodology allowed us to significantly enrich towards methylation genes in cancer. This enrichment is both shown in silico and by experimental validation, and revealed novel methylation markers as proof-of-concept that might be useful in early cancer detection in cervical scrapings.
Collapse
|
26
|
Abstract
The development of a reaction for the detection of the presence/absence of one methyl group in a very long DNA strand is a chemically and biologically challenging research subject. Several newly designed chemical assays for the typing of DNA methylation are reported and discussed in this paper. A new concept of sequence-specific short-term methylation analysis, supported by a chemical basis, is the starting point for a novel methylation-typing assay, which will supersede conventional methods.
Collapse
Affiliation(s)
- Akimitsu Okamoto
- Advanced Science Institute, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
27
|
Hayatsu H, Shiraishi M, Negishi K. Bisulfite modification for analysis of DNA methylation. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2008; Chapter 6:Unit 6.10. [PMID: 18551428 DOI: 10.1002/0471142700.nc0610s33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bisulfite is known to deaminate cytosine in nucleic acids, while 5-methylcytosine resists this bisulfite action. For this reason, bisulfite treatment has been used for detecting 5-methylcytosine in DNA, a minor component of eukaryotic DNA, presently recognized as playing an important role in the control of gene function. This procedure, called bisulfite genomic sequencing, is a principal method for the analysis of DNA methylation in various biological phenomena, including human diseases such as cancer. This unit describes an efficient procedure utilizing a newly developed high-concentration bisulfite solution. Protocols for this methodology are supplemented with discussions focused on chemical aspects of the bisulfite treatment.
Collapse
Affiliation(s)
- Hikoya Hayatsu
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| | | | | |
Collapse
|
28
|
Slatko BE, Albright LM, Tabor S, Ju J. DNA sequencing by the dideoxy method. ACTA ACUST UNITED AC 2008; Chapter 7:Unit7.4A. [PMID: 18265267 DOI: 10.1002/0471142727.mb0704as47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the basic dideoxy sequencing reaction, an oligonucleotide primer is annealed to a single-stranded DNA template and extended by DNA polymerase in the presence of four deoxyribonucleoside triphosphates (dNTPs), one of which is 35S-labeled. The reaction also contains one of four dideoxyribonucleoside triphosphates (ddNTPs), which terminate elongation when incorporated into the growing DNA chain. After completion of the sequencing reactions, the products are subjected to electrophoresis on a high-resolution denaturing polyacrylamide gel and then autoradiographed to visualize the DNA sequence. Three variations of the dideoxy sequencing procedure are currently in use and are presented in this unit. In the "labeling/termination" procedure, primer chains are initially extended and labeled in the absence of terminating ddNTPs, whereas in the traditional "Sanger" procedure, labeling and termination of primer chains occur in a single step. A recent variation of the dideoxy sequencing method is thermal cycle sequencing in which the reaction mixture, containing template DNA, primer, thermostable DNA polymerase, dNTPs, and ddNTPs, is subjected to repeated rounds of denaturation, annealing, and elongation steps. The resulting linear amplification of the sequencing products allows much less template DNA to be used and eliminates independent primer annealing and template denaturation steps, which are required for the labeling/termination or Sanger procedures. The use of automated fluorescent sequencers for four-color dideoxy DNA sequencing is also described in detail.
Collapse
Affiliation(s)
- B E Slatko
- New England Biolabs, Beverly, Massachusetts, USA
| | | | | | | |
Collapse
|
29
|
Hayatsu H. Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis--a personal account. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2008; 84:321-30. [PMID: 18941305 PMCID: PMC3722019 DOI: 10.2183/pjab.84.321] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 05/19/2008] [Indexed: 05/26/2023]
Abstract
Methylation at position 5 of cytosine in DNA is being intensively studied in many areas of biological sciences, as the methylation is intimately associated with the control of gene functions. The principal analytical method for determining the sites of 5-methylcytosine in genome at the sequence level involves bisulfite modification of DNA. The utility of this chemical treatment is based on the property of bisulfite to selectively deaminate cytosine residues. The bisulfite-mediated cytosine deamination was discovered in 1970 by us in the University of Tokyo. At the same time, Shapiro and his coworkers in New York University found the same reaction independently. We also reported that 5-methylcytosine was deaminated by bisulfite only very slowly. These findings were later utilized by a group of Australian scientists to devise a means to analyze 5-methylcytosine in DNA; thus, a method called 'bisulfite genomic sequencing' was invented by these researchers in 1992. This review describes the author's reflection of the discovery of bisulfite reactions with pyrimidine bases. The author's recent work that has resulted in an improvement of the procedure of analysis by use of a newly devised high concentration bisulfite solution is also described.
Collapse
Affiliation(s)
- Hikoya Hayatsu
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
30
|
Kilgore JA, Hoose SA, Gustafson TL, Porter W, Kladde MP. Single-molecule and population probing of chromatin structure using DNA methyltransferases. Methods 2007; 41:320-32. [PMID: 17309843 PMCID: PMC2923433 DOI: 10.1016/j.ymeth.2006.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 08/15/2006] [Indexed: 11/20/2022] Open
Abstract
Probing chromatin structure with DNA methyltransferases offers advantages over more commonly used nuclease-based and chromatin immunoprecipitation methods for detection of nucleosomes and non-histone protein-DNA interactions. Here, we describe two related methods in which the readout of MTase accessibility is obtained by assaying 5-methylcytosine in DNA through the PCR-based technique of bisulfite genomic sequencing. The methyltransferase accessibility protocol (MAP) determines the relative frequency at which the enzyme accesses each of its target sites over an entire population of PCR amplified product. While MAP yields much quantitative information about relative accessibility of a region of chromatin, a complementary single-molecule view of methyltransferase accessibility, termed MAP for individual templates (MAP-IT), is provided by analysis of cloned PCR products. Absolute rather than relative methylation frequencies in a region are obtained by summing the methylation status at each site over a cohort of clones. Moreover, as the integrity of individual molecules is maintained in MAP-IT, unique information about the distribution of multiple footprints along continuous regions is gleaned. In principle, the population MAP and single-molecule MAP-IT strategies can be used to analyze chromatin structure in a variety of model systems. Here, we describe the application of MAP in living Saccharomyces cerevisiae cells and MAP-IT in the analysis of a mammalian tumor suppressor gene in nuclei. This application of MAP-IT provides the first means to simultaneously determine CpG methylation of mammalian genes and their overlying chromatin structure in the same single DNA molecule.
Collapse
Affiliation(s)
- Jessica A. Kilgore
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Scott A. Hoose
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Tanya L. Gustafson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Weston Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Michael P. Kladde
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| |
Collapse
|
31
|
Ronai D, Iglesias-Ussel MD, Fan M, Li Z, Martin A, Scharff MD. Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. ACTA ACUST UNITED AC 2007; 204:181-90. [PMID: 17227912 PMCID: PMC2118410 DOI: 10.1084/jem.20062032] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After encounter with antigen, the antibody repertoire is shaped by somatic hypermutation (SHM), which leads to an increase in the affinity of antibodies for the antigen, and class-switch recombination (CSR), which results in a change in the effector function of antibodies. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID), which deaminates deoxycytidine to deoxyuridine in single-stranded DNA (ssDNA). The precise mechanism responsible for the formation of ssDNA in V regions undergoing SHM has yet to be experimentally established. In this study, we searched for ssDNA in mutating V regions in which DNA–protein complexes were preserved in the context of chromatin in human B cell lines and in primary mouse B cells. We found that V regions that undergo SHM were enriched in short patches of ssDNA, rather than R loops, on both the coding and noncoding strands. Detection of these patches depended on the presence of DNA-associated proteins and required active transcription. Consistent with this, we found that both DNA strands in the V region were transcribed. We conclude that regions of DNA that are targets of SHM assemble protein–DNA complexes in which ssDNA is exposed, making it accessible to AID.
Collapse
Affiliation(s)
- Diana Ronai
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
32
|
Takatori S, Matsuda A, Yamashita JI, Hayatsu H, Wataya Y. Rapid, Stepwise Substitution of Fluorines In 5-Trifluoromethyl-2′-Deoxyuridine by Bisulfite. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/15257779408013210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Abstract
R-loops are structures where an RNA strand is base paired with one DNA strand of a DNA duplex, leaving the displaced DNA strand single-stranded. Stable R-loops exist in vivo at prokaryotic origins of replication, the mitochondrial origin of replication, and mammalian immunoglobulin (Ig) class switch regions in activated B lymphocytes. All of these R-loops arise upon generation of a G-rich RNA strand by an RNA polymerase upon transcription of a C-rich DNA template strand. These R-loops are of significant length. For example, the R-loop at the col E1 origin of replication appears to be about 140 bp. Our own lab has focused on class switch regions, where the R-loops can extend well over a kilobase in length. Here, methods are described for detection and analysis of R-loops in vitro and in vivo.
Collapse
Affiliation(s)
- Kefei Yu
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, USA
| | | | | | | |
Collapse
|
34
|
Okamoto A, Tainaka K, Kamei T. Sequence-selective osmium oxidation of DNA: efficient distinction between 5-methylcytosine and cytosine. Org Biomol Chem 2006; 4:1638-40. [PMID: 16633552 DOI: 10.1039/b600401f] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Methylcytosine was distinguished from cytosine using the large difference of their osmium oxidation rates, and this reaction was applied to detection of the cytosine methylation status at a specific site of a long sequence using the formation of a bulge structure by hybridization with a guide DNA.
Collapse
Affiliation(s)
- Akimitsu Okamoto
- Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, Japan.
| | | | | |
Collapse
|
35
|
Hayatsu H. Bisulfite Modification of Cytosine and 5-Methylcytosine as used in Epigenetic Studies. Genes Environ 2006. [DOI: 10.3123/jemsge.28.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Raghavan SC, Tsai A, Hsieh CL, Lieber MR. Analysis of Non‐B DNA Structure at Chromosomal Sites in the Mammalian Genome. Methods Enzymol 2006; 409:301-16. [PMID: 16793408 DOI: 10.1016/s0076-6879(05)09017-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Changes at sites of genetic instability ultimately involve DNA repair pathways. Some sites of genetic instability in the mammalian genome appear to be unstable because they adopt a non-B DNA conformation. We describe two structural approaches for determination of whether a genomic region is configured in a non-B DNA conformation. Our studies indicate that at least some chromosomal fragile sites can be explained by such altered DNA conformations. One of the methods that we describe is called the bisulfite modification assay. This is a powerful assay because it provides information on individual DNA molecules. The second approach uses preexisting DNA structural reagents, but describes our specific application of them to analysis of DNA in vivo.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, USA
| | | | | | | |
Collapse
|
37
|
Yi H, Liu J, Zheng K. Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in barley. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2005; 62:421-6. [PMID: 16216637 DOI: 10.1016/j.ecoenv.2004.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2004] [Revised: 11/22/2004] [Accepted: 11/22/2004] [Indexed: 05/04/2023]
Abstract
The effects of sulfur dioxide (SO(2)) hydrates exposure on cell cycle, sister chromatid exchange (SCE), and micronuclei (MN) were investigated in barley (Hordeum vulgare) roots. A mixture of sodium bisulfite and sodium sulfite (1:3), at various concentrations from 1x10(-5) to 3x10(-2)M, was used for the treatments. The results showed that the mixture induced the formation of SCE and MN in barley root cells with different effective concentrations and with different trends as treatment concentrations increased. At high concentrations of 0.5-30.0mM, SO(2) hydrates inhibited the mitotic activity and the growth of barley roots by cell cycle delay and cell death, but at 0.1mM, the chemicals slightly stimulated mitotic activity and root growth. These remarkable effects in causing DNA damage and consequent chromosome damage suggest that SO(2) is genotoxic agent and its genotoxicity may influence the mitotic activity and plant growth under SO(2) stress.
Collapse
Affiliation(s)
- Huilan Yi
- School of Life Science and Technology, Shanxi University, No. 36 Wucheng Road, Taiyuan 030006, People's Republic of China.
| | | | | |
Collapse
|
38
|
Ehrlich M. The controversial denouement of vertebrate DNA methylation research. BIOCHEMISTRY (MOSCOW) 2005; 70:568-75. [PMID: 15948710 DOI: 10.1007/s10541-005-0150-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The study of the biological role of DNA methylation in vertebrates has involved considerable controversy. Research in this area has proceeded well despite the complexity of the subject and the difficulties in establishing biological roles, some of which are summarized in this review. Now there is justifiably much more interest in DNA methylation than previously, and many more laboratories are engaged in this research. The results of numerous studies indicate that some tissue-specific differences in vertebrate DNA methylation help maintain patterns of gene expression or are involved in fine-tuning or establishing expression patterns. Therefore, vertebrate DNA methylation cannot just be assigned a role in silencing transposable elements and foreign DNA sequences, as has been suggested. DNA methylation is clearly implicated in modulating X chromosome inactivation and in establishing genetic imprinting. Also, hypermethylation of CpG-rich promoters of tumor suppressor genes in cancer has a critical role in downregulating expression of these genes and thus participating in carcinogenesis. The complex nature of DNA methylation patterns extends to carcinogenesis because global DNA hypomethylation is found in the same cancers displaying hypermethylation elsewhere in the genome. A wide variety of cancers display both DNA hypomethylation and hypermethylation, and either of these types of changes can be significantly associated with tumor progression. These findings and the independence of cancer-linked DNA hypomethylation from cancer-linked hypermethylation strongly implicate DNA hypomethylation, as well as hypermethylation, in promoting carcinogenesis. Furthermore, various DNA demethylation methodologies have been shown to increase the formation of certain types of cancers in animals, and paradoxically, DNA hypermethylation can cause carcinogenesis in other model systems. Therefore, there is a need for caution in the current use of demethylating agents as anti-cancer drugs. Nonetheless, DNA demethylation therapy clearly may be very useful in cases where better alternatives do not exist.
Collapse
Affiliation(s)
- M Ehrlich
- Human Genetics Program SL31, Tulane Medical School, New Orleans, LA 70112, USA.
| |
Collapse
|
39
|
Moreno RGM, Alipázaga MV, Medeiros MHG, Coichev N. DNA damage induced by sulfite autoxidation catalyzed by copper(ii) tetraglycine complexes. Dalton Trans 2005:1101-7. [PMID: 15739013 DOI: 10.1039/b416299d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(II)/(III) tetraglycine complexes were investigated for their ability to catalyze the autoxidation of sulfite resulting in oxidative DNA damage. The focus of this work is on DNA damage by Cu(III) and oxysulfur radicals formed by the oxidation of S(IV) oxides by dissolved oxygen in the presence of Cu(II) tetraglycine complexes. The results suggest that sulfite is rapidly oxidized by oxygen in the presence of Cu(II) complexes producing Cu(III) tetraglycine, which can be monitored spectrophotometrically at 365 nm. A synergistic effect of Cu(II) with a second metal ion (Ni(II), Co(II) or Mn(II) traces) was observed.
Collapse
Affiliation(s)
- Ruben G M Moreno
- Instituto de Quimica, Universidade de Sao Paulo, CP 26077, CEP 05513-970, Sao Paulo, SP-Brazil
| | | | | | | |
Collapse
|
40
|
Alipázaga MV, Moreno RGM, Linares E, Medeiros MHG, Coichev N. Oxidative DNA damage induced by autoxidation of microquantities of S(iv) in the presence of Ni(ii)–Gly-Gly-His. Dalton Trans 2005:3738-44. [PMID: 16471054 DOI: 10.1039/b507216f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiIIGGH (GGH = glycylglycylhistidine) reacts rapidly with S(IV), in air-saturated solution, to produce NiIIIGGH. A mechanism is proposed where initial NiIII oxidizes SO3(2-) to SO3*-, which reacts with dissolved oxygen to produce SO5*-, initiating radical chain reactions. DNA strand breaks and 8-oxo-7,8-dihydro-2'-deoxyguanosine formation were observed in air-saturated solutions containing micromolar concentrations of Ni(II) and S(IV). The extent of DNA damage showed dependence on the ratio of the NiIIGGH : S(IV) concentrations and the ionic strength.
Collapse
|
41
|
Abstract
Genotoxicity of sulfur dioxide (SO(2)) and its hydrates (bisulfite and sulfite) in human lymphocytes and other mammalian cells have been found earlier in our laboratory. In the present studies, we used Allium stavium and Vicia faba cytogenetic tests, which are the highly sensitive and simple plant bioassays. A mixture of sodium bisulfite and sodium sulfite (1:3), at various concentrations from 1 x 10(-4) to 2 x 10(-3)M was used for the treatment. Genotoxicity was expressed in terms of anaphase aberration (AA) frequencies in the Vicia-AA test and in terms of micronuclei (MCN) frequencies in both Vicia-MCN test and Alllium-MCN test. On average, the results showed a 1.7-3.9-fold increase of AA frequencies and a 3.5-4.5-fold increase of MCN frequencies in Vicia root tips as compared with the negative control. Similarly, results of Allium-MCN test also showed a significant increase in MCN frequencies in the treated samples. In addition, pycnotic cells (PNC) appeared in Allium root tips of treated groups. The frequencies of MCN, AA and PNC increased dose-dependently and the cell cycle delayed at the same time in bisulfite treated samples. Results of the present study suggest that the Vicia and Allium cytogenetic bioassays are efficient, simple and reproducible in genotoxicity studies of bisulfite.
Collapse
Affiliation(s)
- Huilan Yi
- Institute of Environmental Medicine and Toxicology, School of Life Sciences and Technology, Shanxi University, 030006, Taiyuan, China
| | | |
Collapse
|
42
|
Cacciamani T, Virgili S, Centurelli M, Bertoli E, Eremenko T, Volpe P. Specific methylation of the CpG-rich domains in the promoter of the human tissue transglutaminase gene. Gene 2002; 297:103-12. [PMID: 12384291 DOI: 10.1016/s0378-1119(02)00874-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activity of tissue transglutaminase is present in many cells and tissues but almost absent in leucocytes and lymphocytes. The present work describes the distribution of 5-methylcytosine along the bisulphite-converted promoter of the human tissue transglutaminase gene as being in an essentially repressed state. In this promoter, the chain-specific sequencing revealed the location of three CpG-rich domains whose methylation responds to an 'all or nothing' signal. While the CpGs of domain 1, at the 5'-end, and 2, in the mid-promoter, were fully methylated, those of domain 3, at the 3'-end, were fully unmethylated. Before the 5'-UTR sequence, from site+1 to site+67, also unmethylated, there was thus a striking contrast in the post-synthetic modification between the sequence, from -1594 to -436, containing domains 1 and 2, and the sequence, from -435 to -1, containing domain 3 with the core promoter.
Collapse
|
43
|
Shiraishi M, Oates AJ, Sekiya T. An overview of the analysis of DNA methylation in mammalian genomes. Biol Chem 2002; 383:893-906. [PMID: 12222679 DOI: 10.1515/bc.2002.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
DNA methylation at position C5 of the pyrimidine ring of cytosine in mammalian genomes has received a great deal of research interest due to its importance in many biological phenomena. It is associated with events such as epigenetic gene silencing and the maintenance of genome integrity. Aberrant DNA methylation, particularly that of chromosomal regions called CpG islands, is an important step in carcinogenesis. In order to elucidate methylation profiling of complex genomes, various methods have been developed. Many of these methods are based on the differential reactivity of cytosine and 5-methylcytosine to various chemicals. The combined use of these chemical reactions and other preexisting methods has enabled the discrimination of cytosine and 5-methylcytosine in complex genomes. The use of proteins that preferentially bind to methylated DNA has also successfully been used to discriminate between methylated and unmethylated sites. The chemical and structural dissection of the in vivo processes of enzymatic methylation and the binding of methyl-CpG binding proteins provides evidence for the complex mechanisms that nature has acquired. In this review we summarize the methods available for the discrimination between cytosine and 5-methylcytosine in complex genomes.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
44
|
Nikonowicz EP. Preparation and use of 2H-labeled RNA oligonucleotides in nuclear magnetic resonance studies. Methods Enzymol 2002; 338:320-41. [PMID: 11460556 DOI: 10.1016/s0076-6879(02)38227-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- E P Nikonowicz
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA
| |
Collapse
|
45
|
Sanderson RJ, Bennett SE, Sung JS, Mosbaugh DW. Uracil-initiated base excision DNA repair synthesis fidelity in human colon adenocarcinoma LoVo and Escherichia coli cell extracts. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:165-88. [PMID: 11554295 DOI: 10.1016/s0079-6603(01)68098-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The error frequency of uracil-initiated base excision repair (BER) DNA synthesis in human and Escherichia coli cell-free extracts was determined by an M13mp2 lacZ alpha DNA-based reversion assay. Heteroduplex M13mp2 DNA was constructed that contained a site-specific uracil target located opposite the first nucleotide position of opal codon 14 in the lacZ alpha gene. Human glioblastoma U251 and colon adenocarcinoma LoVo whole-cell extracts repaired the uracil residue to produce form I DNA that was resistant to subsequent in vitro cleavage by E. coli uracil-DNA glycosylase (Ung) and endonuclease IV, indicating that complete uracil-initiated BER repair had occurred. Characterization of the BER reactions revealed that (1) the majority of uracil-DNA repair was initiated by a uracil-DNA glycosylase-sensitive to Ugi (uracil-DNA glycosylase inhibitor protein), (2) the addition of aphidicolin did not significantly inhibit BER DNA synthesis, and (3) the BER patch size ranged from 1 to 8 nucleotides. The misincorporation frequency of BER DNA synthesis at the target site was 5.2 x 10(-4) in U251 extracts and 5.4 x 10(-4) in LoVo extracts. The most frequent base substitution errors in the U251 and LoVo mutational spectrum were T to G > T to A >> T to C. Uracil-initiated BER DNA synthesis in extracts of E. coli BH156 (ung) BH157 (dug), and BH158 (ung, dug) was also examined. Efficient BER occurred in extracts of the BH157 strain with a misincorporation frequency of 5.6 x 10(-4). A reduced, but detectable level of BER was observed in extracts of E. coli BH156 cells; however, the mutation frequency of BER DNA synthesis was elevated 6.4-fold.
Collapse
Affiliation(s)
- R J Sanderson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
46
|
Rokita SE. Chemical reagents for investigating the major groove of DNA. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2001; Chapter 6:Unit 6.6. [PMID: 18428867 DOI: 10.1002/0471142700.nc0606s05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemical modification provides an inexpensive and rapid method for characterizing the structure of DNA and its association with drugs and proteins. Numerous conformation-specific probes are available, but most investigations rely on only the most common and readily available of these. The major groove of DNA is typically characterized by reaction with dimethyl sulfate, diethyl pyrocarbonate, potassium permanganate, osmium tetroxide, and, quite recently, bromide with monoperoxysulfate. This commentary discusses the specificity of these reagents and their applications in protection, interference, and missing contact experiments.
Collapse
Affiliation(s)
- S E Rokita
- University of Maryland, College Park, Maryland, USA
| |
Collapse
|
47
|
Lough J, Jackson M, Morris R, Moyer R. Bisulfite-induced cytosine deamination rates in E. coli SSB:DNA complexes. Mutat Res 2001; 478:191-7. [PMID: 11406184 DOI: 10.1016/s0027-5107(01)00149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
E. coli single-stranded binding protein (SSB) has been examined for its ability to modulate bisulfite-induced cytosine deamination rates in single-stranded DNA (ssDNA). We used a lacZ alpha-complementation reversion assay to detect C-->U rates at a single codon in M13mp2 DNA, whether in free ssDNA or in an SSB:ssDNA complex. When incubated at 37 degrees C, the average bisulfite-induced reversion rate constant was four-fold less in SSB:ssDNA complexes than in ssDNA, at a single codon. Across a 250 base pair target and over 23 scorable C-->U sites, the forward rate constant was 4.9-fold less in SSB:ssDNA complexes than in ssDNA alone. After treatment with N-uracil glycosylase, ssDNA incubated with bisulfite had reversion frequencies at the background rate of ssDNA incubated without bisulfite, indicating that virtually all mutations scored were due to C-->U events. The decrease in cytosine deamination rates occurred both in a single codon and over a 250 bp target, indicating that interactions between SSB and ssDNA reduce bisulfite-catalyzed mutations. The structural role of SSB is well recognized in multiple cellular processes; SSB can also function to minimize bisulfite-induced ssDNA mutations.
Collapse
Affiliation(s)
- J Lough
- PRA International, 100 Carolyn Circle, Bristol, TN 37620, USA
| | | | | | | |
Collapse
|
48
|
Ermakova-Gerdes S, Yu Z, Vermaas W. Targeted random mutagenesis to identify functionally important residues in the D2 protein of photosystem II in Synechocystis sp. strain PCC 6803. J Bacteriol 2001; 183:145-54. [PMID: 11114911 PMCID: PMC94860 DOI: 10.1128/jb.183.1.145-154.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify important residues in the D2 protein of photosystem II (PSII) in the cyanobacterium Synechocystis sp. strain PCC 6803, we randomly mutagenized a region of psbDI (coding for a 96-residue-long C-terminal part of D2) with sodium bisulfite. Mutagenized plasmids were introduced into a Synechocystis sp. strain PCC 6803 mutant that lacks both psbD genes, and mutants with impaired PSII function were selected. Nine D2 residues were identified that are important for PSII stability and/or function, as their mutation led to impairment of photoautotrophic growth. Five of these residues are likely to be involved in the formation of the Q(A)-binding niche; these are Ala249, Ser254, Gly258, Ala260, and His268. Three others (Gly278, Ser283, and Gly288) are in transmembrane alpha-helix E, and their alteration leads to destabilization of PSII but not to major functional alterations of the remaining centers, indicating that they are unlikely to interact directly with cofactors. In the C-terminal lumenal tail of D2, only one residue (Arg294) was identified as functionally important for PSII. However, from the number of mutants generated it is likely that most or all of the 70 residues that are susceptible to bisulfite mutagenesis have been altered at least once. The fact that mutations in most of these residues have not been picked up by our screening method suggests that these mutations led to a normal photoautotrophic phenotype. A novel method of intragenic complementation in Synechocystis sp. strain PCC 6803 was developed to facilitate genetic analysis of psbDI mutants containing several amino acid changes in the targeted domain. Recombination between genome copies in the same cell appears to be much more prevalent in Synechocystis sp. strain PCC 6803 than was generally assumed.
Collapse
Affiliation(s)
- S Ermakova-Gerdes
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, USA
| | | | | |
Collapse
|
49
|
Stuart JN, Goerges AL, Zaleski JM. Characterization of the Ni(III) intermediate in the reaction of (1,4,8,11-tetraazacyclotetradecane)nickel(II) perchlorate with KHSO5: implications to the mechanism of oxidative DNA modification. Inorg Chem 2000; 39:5976-84. [PMID: 11151498 DOI: 10.1021/ic000572k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the detection and characterization of the Ni(III) intermediates generated by reaction of (1,4,8,11-tetraazacyclotetradecane)nickel(II) perchlorate with KHSO5. Four Ni(III) intermediates can be trapped or detected through variation in Cl- or KHSO5 concentrations. Upon oxidation of [Ni(cyclam)]2+ by 2.5 equiv of KHSO5, deprotonation of the cyclam ligand generates two red Ni(III) species with lambda max = 530 nm and g perpendicular = 2.20 and g parallel = 2.02 or g perpendicular = 2.16 and g parallel = 2.01 for the axial 4-coordinate or 6-coordinate dichloride species, respectively. These forms decay to Ni(II) products via complex ligand oxidation mechanisms. The Ni(III) dichloride species can be reprotonated and subsequently binds to DNA via an outer-sphere interaction as evidenced by the inverted sign of the CD signal near 400 nm. Cumulatively, the results indicate that the Ni(III) center is coordinately saturated under excess chloride conditions but is still able to interact with DNA substrates. This suggests alternative mechanistic pathways for DNA modification by reaction of [Ni(cyclam)]2+ with KHSO5 and possibly other Ni(II) complexes as well.
Collapse
Affiliation(s)
- J N Stuart
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
50
|
Földesi A, Trifonova A, Kundu MK, Chattopadhyaya J. The synthesis of deuterionucleosides. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1615-56. [PMID: 11200263 DOI: 10.1080/15257770008045450] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The synthesis of deuterionucleosides for site-specific incorporation into oligo-DNA or -RAA is herein reviewed for NMR or biological studies. The review covers the following aspects: (i) deuteration of the aglycone; (ii) single-site chemical deuteration of the sugar residues; (iii) multiple-site chemical deuteration of the sugar residues; (iv) enzymatic synthesis of deuterated nucleosides or nucleotides; and (v) synthesis of labelled nucleosides with multiple isotopes
Collapse
Affiliation(s)
- A Földesi
- Department of Bioorganic Chemistry, Biomedical Center, University of Uppsala, Sweden.
| | | | | | | |
Collapse
|