1
|
Xue Q, Yang B, Luo K, Luan S, Kong J, Fu Q, Cao J, Chen B, Dai P, Xing Q, Li X, Meng X. Characterization and Expression Analysis of the C-Type Lectin Ladderlectin in Litopenaeus vannamei Post-WSSV Infection. BIOLOGY 2024; 13:758. [PMID: 39452067 PMCID: PMC11505416 DOI: 10.3390/biology13100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
C-type lectins are known for agglutination activity and play crucial roles in regulating the prophenoloxidase (proPO) activation system, enhancing phagocytosis and encapsulation, synthesizing antimicrobial peptides, and mediating antiviral immune responses. This work cloned a C-type lectin, ladderlectin (LvLL), from Litopenaeus vannamei. LvLL comprised a 531 bp open reading frame (ORF) that encoded 176 amino acids. The predicted LvLL protein included a signal peptide and a CLECT domain. LvLL was predicted to feature a transmembrane region, suggesting it may be a transmembrane protein. LvLL was predominantly expressed in the shrimp's hepatopancreas. After WSSV infection, LvLL expression in the hepatopancreas increased significantly by 11.35-fold after 228 h, indicating a general upregulation. Knockdown of LvLL resulted in a significant decrease in WSSV viral load and a notable increase in shrimp survival rates. Additionally, knockdown of LvLL led to a significant downregulation of apoptosis-related genes Bcl-2 and caspase 8 and a significant upregulation of p53 and proPO in WSSV-infected shrimp. This study showed that LvLL played a vital role in the interaction between L. vannamei and WSSV.
Collapse
Affiliation(s)
- Qian Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
| | - Bingbing Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
| | - Sheng Luan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qiang Fu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiawang Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Baolong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ping Dai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qun Xing
- BLUP Aquabreed Co., Ltd., Weifang 261311, China;
| | - Xupeng Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xianhong Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Singh L, Singh S, Singh DD. A Machine Learning Approach to Identify C Type Lectin Domain (CTLD) Containing Proteins. Protein J 2024; 43:718-725. [PMID: 39068630 DOI: 10.1007/s10930-024-10224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Lectins are sugar interacting proteins which bind specific glycans reversibly and have ubiquitous presence in all forms of life. They have diverse biological functions such as cell signaling, molecular recognition, etc. C-type lectins (CTL) are a group of proteins from the lectin family which have been studied extensively in animals and are reported to be involved in immune functions, carcinogenesis, cell signaling, etc. The carbohydrate recognition domain (CRD) in CTL has a highly variable protein sequence and proteins carrying this domain are also referred to as C-type lectin domain containing proteins (CTLD). Because of this low sequence homology, identification of CTLD from hypothetical proteins in the sequenced genomes using homology based programs has limitations. Machine learning (ML) tools use characteristic features to identify homologous sequences and it has been used to develop a tool for identification of CTLD. Initially 500 sequences of well annotated CTLD and 500 sequences of non CTLD were used in developing the machine learning model. The classifier program Linear SVC from sci kit library of python was used and characteristic features in CTLD sequences like dipeptide and tripeptide composition were used as training attributes in various classifiers. A precision, recall and multiple correlation coefficient (MCC) value of 0.92, 0.91 and 0.82 respectively were obtained when tested on external test set. On fine tuning of the parameters like kernel, C value, gamma, degree and increasing number of non CTLD sequences there was improvement in precision, recall and MCC and the corresponding values were 0.99, 0.99 and 0.96. New CTLD have also been identified in the hypothetical segment of human genome using the trained model. The tool is available on our local server for interested users.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Sukhwinder Singh
- University Institute of Engineering & Technology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Desh Deepak Singh
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Huang M, Liu J, Yuan Z, Xu Y, Guo Y, Yang S, Fei H. DC-SIGN of Largemouth Bass ( Micropterus salmoides) Mediates Immune Functions against Aeromonas hydrophila through Collaboration with the TLR Signaling Pathway. Int J Mol Sci 2024; 25:5013. [PMID: 38732232 PMCID: PMC11084180 DOI: 10.3390/ijms25095013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.
Collapse
Affiliation(s)
- Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingwen Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Zhenzhen Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Youxing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Yang Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Xue Q, Yang B, Luo K, Luan S, Kong J, Li X, Meng X. Molecular Characterization and Expression Analysis of the C-Type Lectin Domain Family 4 Member F in Litopenaeus vannamei against White Spot Syndrome Virus. Animals (Basel) 2024; 14:1137. [PMID: 38672285 PMCID: PMC11047491 DOI: 10.3390/ani14081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
White spot disease (WSD) outbreaks pose a significant threat to the Pacific white shrimp (Litopenaeus vannamei) farming industry. The causative agent is the white spot syndrome virus (WSSV). There are no effective treatments for WSD so far. Therefore, understanding the resistance mechanisms of L. vannamei against the WSSV is crucial. C-type lectins (CTLs) are important pattern recognition receptors (PRRs) that promote agglutination, phagocytosis, encapsulation, bacteriostasis, and antiviral infections. This study cloned the C-type lectin domain family 4 member F (LvCLEC4F) from L. vannamei. LvCLEC4F contains a 492 bp open reading frame (ORF) encoding a protein of 163 amino acids, including a carbohydrate recognition domain (CRD). Following a challenge with the WSSV, the expression profile of LvCLEC4F was significantly altered. Using RNA interference (RNAi) technology, it was found that LvCLEC4F promotes WSSV replication and affects the expression levels of genes related to the regulation of apoptosis, signaling and cellular stress response, and immune defense. Meanwhile, the hemolymph agglutination phenomenon in vivo was weakened when LvCLEC4F was knocked down. These results indicated that LvCLEC4F may play an important role in the interaction between L. vannamei and WSSV.
Collapse
Affiliation(s)
- Qian Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Bingbing Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
| | - Sheng Luan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xupeng Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xianhong Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Ma TF, Huang JN, Wen B, Gao JZ, Chen ZZ. Genome-wide identification and expression analysis of C-type lectins in discus fish (Symphysodon aequifasciatus) during parental care. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109291. [PMID: 38104702 DOI: 10.1016/j.fsi.2023.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Discus fish (Symphysodon aequifasciatus) exhibit a unique parental care behavior: adult discus produces secretion through their skin, on which the larvae live after birth. The immune components in the skin mucus of parental discus would change during different parental care. C-type lectins (CTLs) could identify and eliminate pathogenic microorganisms and play important roles in innate immunity. Studies on CTLs of discus fish especially during parental care, however, are scarce. Here, we identified 186 CTL genes that distributed in 27 linkage groups based on discus genome. Phylogenetic analysis showed that S. aequifasciatus CTL (SaCTL) members were grouped into 14 subfamilies. A total of 80 gene replication events occurred, of which 15 pairs were subjected to segmental duplication and 65 pairs underwent tandem duplication. Ka/Ks ranged from 0.11 (SaCTL25/SaCTL158) to 0.68 (SaCTL36/SaCTL69), all undergoing purifying selection. RNA-seq analysis revealed that SaCTL members, including duplicated genes, in the skin of parental discus show distinct expression patterns in different care stages and between male and female parents. The SaCTL11 was differentially expressed in most care stages and reached the maximum after eggs spawned, but the expression of its paired SaCTL14 was low in each stage. The SaCTL39 increased first and then decreased, reaching a peak in eggs spawned, while paired SaCTL48 first decreased and then increased, reaching a peak in hatched eggs. The SaCTL50 was differentially expressed only in female fish during care, but not in male fish. These results provide new insights into the evolution and potential functional differentiation of CTLs in discus fish during parental care.
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun-Nan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Uzoechi SC, Rosa BA, Singh KS, Choi YJ, Bracken BK, Brindley PJ, Townsend RR, Sprung R, Zhan B, Bottazzi ME, Hawdon JM, Wong Y, Loukas A, Djuranovic S, Mitreva M. Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum. Pathogens 2023; 12:95. [PMID: 36678443 PMCID: PMC9865600 DOI: 10.3390/pathogens12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The dynamic host-parasite mechanisms underlying hookworm infection establishment and maintenance in mammalian hosts remain poorly understood but are primarily mediated by hookworm's excretory/secretory products (ESPs), which have a wide spectrum of biological functions. We used ultra-high performance mass spectrometry to comprehensively profile and compare female and male ESPs from the zoonotic human hookworm Ancylostoma ceylanicum, which is a natural parasite of dogs, cats, and humans. We improved the genome annotation, decreasing the number of protein-coding genes by 49% while improving completeness from 92 to 96%. Compared to the previous genome annotation, we detected 11% and 10% more spectra in female and male ESPs, respectively, using this improved version, identifying a total of 795 ESPs (70% in both sexes, with the remaining sex-specific). Using functional databases (KEGG, GO and Interpro), common and sex-specific enriched functions were identified. Comparisons with the exclusively human-infective hookworm Necator americanus identified species-specific and conserved ESPs. This is the first study identifying ESPs from female and male A. ceylanicum. The findings provide a deeper understanding of hookworm protein functions that assure long-term host survival and facilitate future engineering of transgenic hookworms and analysis of regulatory elements mediating the high-level expression of ESPs. Furthermore, the findings expand the list of potential vaccine and diagnostic targets and identify biologics that can be explored for anti-inflammatory potential.
Collapse
Affiliation(s)
- Samuel C. Uzoechi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kumar Sachin Singh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Zhan
- Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria-Elena Bottazzi
- Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - John M. Hawdon
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Yide Wong
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci Rep 2022; 12:4706. [PMID: 35304541 PMCID: PMC8933474 DOI: 10.1038/s41598-022-08735-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Convulxin (CVX), a C-type lectin-like protein isolated from the venom of the snake species, Crotalus durissus terrificus, stimulates platelet aggregation by acting as a collagen receptor agonist for glycoprotein VI found in the platelets. The effect of CVX on platelets has been studied, but its effect on human peripheral blood mononuclear cells (PBMCs) remains unclear. Given the significance of PBMCs in inflammation, this study explored the effect of CVX on PBMCs, specifically regarding NLRP3 inflammasome activation by assessing cell viability, ability to induce cell proliferation, reactive oxygen species (ROS) and nitric oxide production, interleukin (IL)-2 and IL-10 secretion, NLRP3 complex activation, and the role of C-type lectin-like receptors (CTLRs) in these. CVX was not toxic to PBMCs at the investigated concentrations and did not increase PBMC growth or IL-2 release; however, CVX induced IL-10 release and ROS generation via monocyte activation. It also activated the NLRP3 complex, resulting in IL-1β induction. Furthermore, the interaction between CVX and Dectin-2, a CTLR, induced IL-10 production. CVX interaction with CTLR has been demonstrated by laminarin therapy. Because of the involvement of residues near the Dectin-2 carbohydrate-recognition site, the generation of ROS resulted in inflammasome activation and IL-1β secretion. Overall, this work helps elucidate the function of CVX in immune system cells.
Collapse
|
8
|
Dohnálek J, Skálová T. C-type lectin-(like) fold - Protein-protein interaction patterns and utilization. Biotechnol Adv 2022; 58:107944. [PMID: 35301089 DOI: 10.1016/j.biotechadv.2022.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022]
Abstract
The C-type lectin-like fold (CTL fold) is a building block of many proteins, including saccharide-binding lectins, natural killer cell receptors, macrophage mannose receptor, selectins, collectins, snake venoms and others. Some are important players in innate immunity and are involved in the first-line response to virally infected cells or cancer cells, some play a role in antimicrobial defense, and some are potential targets for fight against problems connected with allergies, obesity, and autoimmunity. The structure of a CTL domain typically contains two α-helices, two small β-sheets and a long surface loop, with two or three disulfide bridges stabilizing the structure. This small domain is often involved in interactions with a target molecule, however, utilizing varied parts of the domain surface, with or without structural modifications. More than 500 three-dimensional structures of CTL fold-containing proteins are available in the Protein Data Bank, including a significant number of complexes with their key interacting partners (protein:protein complexes). The amount of available structural data enables a detailed analysis of the rules of interaction patterns utilized in activation, inhibition, attachment and other pathways or functionalities. Interpretation of known CTL receptor structures and all other CTL-containing proteins and complexes with described three-dimensional structures, complemented with sequence/structure/interaction correlation analysis offers a comprehensive view of the rules of interaction patterns of the CTL fold. The results are of value for prediction of interaction behavior of so far not understood CTL-containing proteins and development of new protein binders based on this fold, with applications in biomedicine or biotechnologies. It follows from the available structural data that almost the whole surface of the CTL fold is utilized in protein:protein interactions, with the heaviest frequency of utilization in the canonical interaction region. The individual categories of interactions differ in the interface buildup strategy. The strongest CTL binders rely on interfaces with large interaction area, presence of hydrophobic core, or high surface complementarity. The typical interaction surfaces of the fold are not conserved in amino acid sequence and can be utilized in design of new binders for biotechnological applications.
Collapse
Affiliation(s)
- Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Průmyslová 595, 25250 Vestec, Czech Republic.
| | - Tereza Skálová
- Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Průmyslová 595, 25250 Vestec, Czech Republic
| |
Collapse
|
9
|
First Insights into the Repertoire of Secretory Lectins in Rotifers. Mar Drugs 2022; 20:md20020130. [PMID: 35200659 PMCID: PMC8878817 DOI: 10.3390/md20020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several other biological processes, are particularly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has been restricted to the most widespread phyla, which are the usual targets of comparative immunology studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high molecular diversity and belong to nine different structural classes, their total number is significantly lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion events. Considering the high evolutionary divergence between rotifers and the other major sister phyla, their widespread distribution in aquatic environments and the ease of their collection and rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar biological properties.
Collapse
|
10
|
Huang YH, Kumar R, Liu CH, Lin SS, Wang HC. A novel C-type lectin LvCTL 4.2 has antibacterial activity but facilitates WSSV infection in shrimp (L. vannamei). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104239. [PMID: 34425174 DOI: 10.1016/j.dci.2021.104239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Glycan-binding protein C-type lectin (CTL), one of the pattern recognition receptors (PRRs), binds to carbohydrates on the surface of pathogens and elicits antimicrobial responses in shrimp innate immunity. The objective was to identify and characterize a novel C-type lectin LvCTL 4.2 in Litopenaeus vannamei. The LvCTL 4.2 protein consisted of a signal peptide at the N terminal and a carbohydrate-recognition domain (CRD) with a mutated mannose-binding (Glu-Pro-Ala; EPA) motif at the C terminal, and thereby has a putative secreted mannose-binding C-type lectin architecture. LvCTL 4.2 was highly expressed in nervous tissue and stomach. Infection with white spot syndrome virus (WSSV) induced expression of LvCTL 4.2 in shrimp stomach at 12 h post infection. Conversely, there was no obvious upregulation in expression of LvCTL 4.2 in stomach or hepatopancreas of shrimp with AHPND (acute hepatopancreas necrosis disease). Pathogen binding assays confirmed recombinant LvCTL 4.2 protein (rLvCTL 4.2) had significant binding ability with the WSSV virion, Gram-negative, and Gram-positive bacteria. Moreover, rLvCTL 4.2 had strong growth inhibition of Vibrio parahaemolyticus. Silencing LvCTL 4.2 suppressed WSSV replication, whereas pretreatment of WSSV with rLvCTL 4.2 facilitated viral replication in vivo. In conclusion, LvCTL 4.2 acted as a PRR that inhibited AHPND-causing bacteria, but facilitated WSSV pathogenesis.
Collapse
Affiliation(s)
- Yu-Hsun Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Šmak P, Chandrabose S, Tvaroška I, Koča J. Pan-selectin inhibitors as potential therapeutics for COVID-19 treatment: in silico screening study. Glycobiology 2021; 31:975-987. [PMID: 33822042 PMCID: PMC8083503 DOI: 10.1093/glycob/cwab021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the globe. The spectrum of disease is broad but among hospitalized patients with COVID-19, respiratory failure from acute respiratory distress syndrome is the leading cause of mortality. There is an urgent need for an effective treatment. The current focus has been developing novel therapeutics, including antivirals, protease inhibitors, vaccines and targeting the overactive cytokine response with anti-cytokine therapy. The overproduction of early response proinflammatory cytokines results in what has been described as a "cytokine storm" is leading eventually to death when the cells fail to terminate the inflammatory response. Accumulating evidence shows that inflammatory cytokines induce selectin ligands that play a crucial role in the pathogenesis of inflammatory diseases by mediating leukocyte migration from the blood into the tissue. Thus, the selectins and selectin ligands represent a promising therapeutic target for the treatment of COVID-19. In this paper, potential pan-selectin inhibitors were identified employing a virtual screening using a docking procedure. For this purpose, the Asinex and ZINC databases of ligands, including approved drugs, biogenic compounds and glycomimetics, altogether 923,602 compounds, were screened against the P-, L- and E-selectin. At first, the experimentally confirmed inhibitors were docked into all three selectins' carbohydrate recognition domains to assess the suitability of the screening procedure. Finally, based on the evaluation of ligands binding, we propose 10 purchasable pan-selectin inhibitors to develop COVID-19 therapeutics.
Collapse
Affiliation(s)
- Pavel Šmak
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Selvaraj Chandrabose
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Igor Tvaroška
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovak Republic
| | - Jaroslav Koča
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
12
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
13
|
Raposo CD, Canelas AB, Barros MT. Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Biomolecules 2021; 11:188. [PMID: 33572889 PMCID: PMC7911577 DOI: 10.3390/biom11020188] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Lectins are a class of proteins responsible for several biological roles such as cell-cell interactions, signaling pathways, and several innate immune responses against pathogens. Since lectins are able to bind to carbohydrates, they can be a viable target for targeted drug delivery systems. In fact, several lectins were approved by Food and Drug Administration for that purpose. Information about specific carbohydrate recognition by lectin receptors was gathered herein, plus the specific organs where those lectins can be found within the human body.
Collapse
Affiliation(s)
- Cláudia D. Raposo
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - André B. Canelas
- Glanbia-AgriChemWhey, Lisheen Mine, Killoran, Moyne, E41 R622 Tipperary, Ireland;
| | - M. Teresa Barros
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
14
|
Sivakamavalli J, Park K, Kwak IS, Vaseeharan B. Purification and partial characterization of carbohydrate-recognition protein C-type lectin from Hemifusus pugilinus. Carbohydr Res 2020; 499:108224. [PMID: 33450477 DOI: 10.1016/j.carres.2020.108224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
A mannose binding lectin (C-type lectin) was detected in a molluscan snail Hemifusus pugilinus, this lectin molecule was isolated and purified from the plasma using mannose-fixed sepharose CL-4B column affinity chromatography. The purified protein corresponds to the molecular weight of 118 kDa on an SDS-PAGE gel. The divalent cation-dependent nature of the H. pugilinus lectin (Hp-Lec) evidenced through pH and thermal stability analysis using Circular Dichroism (CD) and Surface Plasmon Resonance (SPR) respectively. Functional investigations of the Hp-Lec reveal a broad spectrum of bacterial agglutination activity against wide range of Gram-positive and Gram-negative bacterial strains. Furthermore, Hp-Lec displayed the haemo agglutination activity against vertebrate red blood cells (RBCs) and its titers were recorded. Excitingly, microbial virulent pathogens such as fungal strains tested against the purified Hp-Lec (25 and 50 μg/ml), which exhibits the effective antifungal activity against tested fungal pathogens such as Aspergillus niger and A. flavus.
Collapse
Affiliation(s)
- Jeyachandran Sivakamavalli
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India; Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India.
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India; Faculty of Marine Technology, Chonnam National University, Yeosu, 59626, South Korea.
| | - Baskaralingam Vaseeharan
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
15
|
Dai X, Wang K, Zhang R, Zhang C, Cao X, Huang X, Zhang Y, Ren Q. Identification of two carcinin isoforms (MnCarc1 and MnCarc2) and their function in the antimicrobial immunity of Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 106:205-217. [PMID: 32750545 DOI: 10.1016/j.fsi.2020.07.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Carcinin, a member of the crustin family, plays important roles in crustacean innate immunity. In this study, we identified two carcinin isoforms (MnCarc1 and MnCarc2) produced by alternative splicing from Macrobrachium nipponense. The full length of MnCarc1 and MnCarc2 cDNA are 1554 and 1495 bp with 687 and 609 bp open reading frame-encoding proteins that contain 228 and 202 amino acids, respectively. The genome of carcinin has nine exons and eight introns. MnCarc1 transcript contains all nine exons, whereas MnCarc2 only contains eight exons and lacks exon 4. MnCarc1 and MnCarc2 proteins contain a signal peptide, cysteine-rich regions, and a whey acidic protein domain. The phylogenetic tree shows that MnCarc1 and MnCarc2 are not grouped with other crustins and carcinins. MnCarc1 and MnCarc2 form a subgroup. MnCarc1 and MnCarc2 are widely distributed in various tissues. The expression of MnCarc1 and MnCarc2 were evidently upregulated at multiple time points in hemocytes and the intestine of M. nipponense after white spot syndrome virus, Vibrio parahaemolyticus, and Staphylococcus aureus challenges. Further studies showed that knockdown of MnDorsal or MnStat transcription factor could remarkably inhibit the upregulated expression of MnCarc1 and MnCarc2 caused by viral or bacterial challenges. In addition, recombinant MnCarc1 and MnCarc2 proteins could bind to various bacteria and polysaccharides and inhibit the growth of S. aureus and V. parahaemolyticus in vitro. This study indicated that carcinins from M. nipponense were involved in prawns innate immunity.
Collapse
Affiliation(s)
- Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yufei Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
16
|
Liang W, Wu R, Yang T, Shen H, Hu Z. Effect of pathogenic bacteria on a novel C-type lectin, hemocyte and superoxide dismutase/ alkaline phosphatase activity in Onchidium reevesii. FISH & SHELLFISH IMMUNOLOGY 2020; 102:185-194. [PMID: 32289514 DOI: 10.1016/j.fsi.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Bacterial infection in the marine environment is a serious problem to maintain the stability of marine ecosystems. Nevertheless, there is little report so far for the biological effects of pathogenic bacteria in coastal ecosystems. Hence, we investigated the responses of shell-less Onchidium reevesii to resist against pathogenic bacterial infection. Analysis of data here could be used as fundamental information for assessment of innate immune response of O. reevesii. The full-length OrCTL cDNA was cloned and consists of 1849 base pair (bp) encoding protein of 192 amino acids. Constructing multiple alignments suggested that OrCTL has conserved carbohydrate recognition domain (CRD) of CTLs, containing an EPS (Glu-Pro-Ser) motif that may imply the function of recognition of carbohydrates like others invertebrate. OrCTL mRNAs were mainly detected in ganglion and hepatopancreas, and expression was highly up-regulated from 2 h after Vibrio harveyi challenge, rapidly decreased at 4 h, and significantly increased at 12 h. In addition, after challenge with Vibrio parahaemolytics, OrCTL gene expression was slightly up-regulated from 2 h, peaked at 12 h. Enzyme activity (in the hepatopancreas) and cell immune (in the hemolymph) were investigated along with Superoxide dismutase (SOD) activity, alkaline phosphatase (ALP) activity and cell cycle. SOD activities were significantly higher after V. harveyi and V. parahaemolytics challenge than that in the control group, respectively. By contrast, ALP activities were significantly inhibited after challenged with bacteria than that in the control group, respectively. Enzyme activities in the hepatopancreas obviously fluctuated, and ALP activity was more sensitive to bacteria. Cell responses illustrated that there were a significant higher percentage of cells in the S and G2/M phase in hemolymph after challenged with bacteria. Our results suggested that the immune response of O. reevesii could be activated by pathogenic bacteria, and the data will provide referent for the disease prevention of systematic investigation in aquatic animal.
Collapse
Affiliation(s)
- Wei Liang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Rongyu Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Tiezhu Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Heding Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China.
| | - Zhongjun Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
17
|
Qin N, Sun H, Lu M, Wang J, Tang T, Liu F. A single von Willebrand factor C-domain protein acts as an extracellular pattern-recognition receptor in the river prawn Macrobrachium nipponense. J Biol Chem 2020; 295:10468-10477. [PMID: 32532819 DOI: 10.1074/jbc.ra120.013270] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
The single von Willebrand factor C-domain proteins (SVWCs) are mainly found in arthropods. Their expression may be regulated by several environmental stresses, including nutritional status and bacterial and viral infections. However, the underlying regulatory mechanism is unclear. In the present study, we identified a member of the SVWC family from the river prawn Macrobrachium nipponense as a soluble and bacteria-inducible pattern-recognition receptor (designated MnSVWC). In vitro, recombinant MnSVWC exhibited pronounced binding and Ca2+-dependent agglutinating abilities against diverse microbes, including Gram-negative bacteria (i.e. Escherichia coli and Aeromonas victoria), Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), and yeast (Pichia pastoris). ELISA assays revealed that recombinant MnSVWC recognizes a broad range of various pathogen-associated molecular patterns (PAMPs) and has high affinity to lipopolysaccharide and lysine-type and diaminopimelic acid-type peptidylglycan and d-galactose and low affinity to d-mannan and β-1,3-glucan. Mutant MnSVWCP57A with an impaired Glu-Pro-Asn (EPN) motif displayed reduced affinity to all these PAMPs to varying extent. Moreover, MnSVWC bound to the surface of hemocytes and promoted their phagocytic activity and clearance of invasive bacteria. RNAi-mediated MnSVWC knockdown in prawn reduced the ability to clear invading bacteria, but did not block the activities of the Toll pathway or the arthropod immune deficiency (IMD) pathway, or the expression of antimicrobial peptide genes. These results indicate that MnSVWC functions as an extracellular pattern-recognition receptor in M. nipponense that mediates cellular immune responses by recognizing PAMPs, agglutinating invasive microbes, and promoting phagocytosis in hemocytes.
Collapse
Affiliation(s)
- Nan Qin
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Hehe Sun
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Meike Lu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China .,Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China .,Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
18
|
Su Y, Liu Y, Gao F, Cui Z. A novel C-type lectin with a YPD motif from Portunus trituberculatus (PtCLec1) mediating pathogen recognition and opsonization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103609. [PMID: 31923433 DOI: 10.1016/j.dci.2020.103609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
C-type lectins are a superfamily of Ca2+-dependent carbohydrate-recognition proteins that function as pattern recognition receptors (PRRs) in innate immune system. In this study, a new C-type lectin was identified from the swimming crab Portunus trituberculatus (PtCLec1). The full-length cDNA of PtCLec1 was 873 bp encoding 176 amino acids. The predicted PtCLec1 protein contained a signal peptide and a single carbohydrate-recognition domain with a special YPD motif. The PtCLec1 transcripts were mainly detected in hepatopancreas and its relative expression levels were significantly up-regulated after the challenges of Vibrio alginolyticus, Micrococcus luteus and Pichia pastoris. The recombinant PtCLec1 (rPtCLec1) could bind all the tested pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS), peptidoglycan (PGN) and glucan (GLU), and microorganisms, including V. alginolyticus, V. parahaemolyticus, Pseudomonas aeruginosa, Staphylococcus aureus, M. luteus and P. pastoris. It also exhibited strong activity to agglutinate bacteria and yeast in a Ca2+-dependent manner, and such agglutinating activity could be inhibited by d-galactose and LPS. Moreover, rPtCLec1 revealed antimicrobial activity against the tested Gram-negative (V. alginolyticus, V. parahaemolyticus and P. aeruginosa) and Gram-positive bacteria (S. aureus and M. luteus), and promoted the clearance of V. alginolyticus in vivo and hemocyte phagocytosis in vitro. Knockdown of PtCLec1 could down-regulate the expression of phagocytosis-related genes, but enhance the expression levels of prophenoloxidase (proPO) system-related genes, mannose-binding lectin (MBL), antimicrobial peptides (AMPs), MyD88 and Relish. All these results indicate that PtCLec1 might act as a PRR in immune recognition and an opsonin in pathogen elimination.
Collapse
Affiliation(s)
- Yue Su
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Fengtao Gao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
19
|
Li D, Nie H, Jahan K, Yan X. Expression analyses of C-type lectins (CTLs) in Manila clam under cold stress provide insights for its potential function in cold resistance of Ruditapes philippinarum. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108708. [PMID: 31945500 DOI: 10.1016/j.cbpc.2020.108708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/03/2020] [Accepted: 01/11/2020] [Indexed: 02/04/2023]
Abstract
Manila clam Ruditapes philippinarum is an economically and scientifically important marine bivalve species. C-type lectin acts as a pattern-recognition receptor (PPR), plays a crucial role in the innate immunity of invertebrates, and involves in pathogen recognition, and cell-cell interaction. In this study, six different types of C-type lectin genes, CTL-1, CTL-2, CTL-3, CTL-4, CTL-5, and CTL-6, were identified from the R. philippinarum. CTL amino acid sequence was highly conserved compare to other invertebrate CTL sequences. Also, the temporal expressions of CTLs mRNA were detected in R. philippinarum with higher expression level in hepatopancreas and gill, and with lower expression levels in other tissues. The expression pattern of CTL genes in hepatopancreas were investigated under low-temperature stress using real-time quantitative fluorescence PCR (RT-qPCR) and the results showed that the transcription of CTL mRNAs were induced after low-temperature challenge. Overall, the sequence analysis and the expression patterns of CTLs provide clues for understanding the response of the Manila clam to low-temperature stress.
Collapse
Affiliation(s)
- Dongdong Li
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Kifat Jahan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
20
|
Huang Y, Shi Y, Hu S, Wu T, Zhao Z. Characterization and Functional Analysis of Two Transmembrane C-Type Lectins in Obscure Puffer ( Takifugu obscurus). Front Immunol 2020; 11:436. [PMID: 32226431 PMCID: PMC7080814 DOI: 10.3389/fimmu.2020.00436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
C-type lectins (CTLs) have received widespread attention in animal immune responses. In the present study, two CTLs (ToCTL1 and ToCTL2) were identified from obscure puffer Takifugu obscurus. The open reading frames of ToCTL1 and ToCTL2 were 687 and 1,380 bp, respectively. The predicted ToCTL1 and ToCTL2 proteins contained a single transmembrane region and one typical carbohydrate recognition domain (CRD). Quantitative real-time polymerase chain reaction detected ToCTL1 and ToCTL2 transcripts in all examined tissues, with high levels in the intestine and kidney, and their expression levels were remarkably altered upon Vibrio harveyi and Aeromonas hydrophila infection. The recombinant proteins ToCTL1-CRD and ToCTL2-CRD agglutinated the Gram-negative and Gram-positive bacteria in a Ca2+-dependent manner. rToCTL1-CRD and rToCTL2-CRD exhibited evident binding activities against seven kinds of bacteria and polysaccharides (lipopolysaccharide and peptidoglycan) in a Ca2+-independent manner. Moreover, rToCTL1-CRD and rToCTL2-CRD could inhibit the growth of four types of bacteria in vitro. These findings collectively demonstrated that ToCTL1 and ToCTL2 could be involved in host defense against bacterial infection in T. obscurus.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, Nanjing, China.,Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, Yangzhou, China
| | - Yan Shi
- College of Oceanography, Hohai University, Nanjing, China
| | - Sufei Hu
- College of Oceanography, Hohai University, Nanjing, China
| | - Ting Wu
- Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, Yangzhou, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing, China.,Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
| |
Collapse
|
21
|
Drouin M, Saenz J, Chiffoleau E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front Immunol 2020; 11:251. [PMID: 32133013 PMCID: PMC7040094 DOI: 10.3389/fimmu.2020.00251] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
C-type lectin-like receptors (CLRs) represent a family of transmembrane pattern recognition receptors, expressed primarily by myeloid cells. They recognize not only pathogen moieties for host defense, but also modified self-antigens such as damage-associated molecular patterns released from dead cells. Upon ligation, CLR signaling leads to the production of inflammatory mediators to shape amplitude, duration and outcome of the immune response. Thus, following excessive injury, dysregulation of these receptors leads to the development of inflammatory diseases. Herein, we will focus on four CLRs of the "Dectin family," shown to decode the immunogenicity of cell death. CLEC9A on dendritic cells links F-actin exposed by dying cells to favor cross-presentation of dead-cell associated antigens to CD8+ T cells. Nevertheless, CLEC9A exerts also feedback mechanisms to temper neutrophil recruitment and prevent additional tissue damage. MINCLE expressed by macrophages binds nuclear SAP130 released by necrotic cells to potentiate pro-inflammatory responses. However, the consequent inflammation can exacerbate pathogenesis of inflammatory diseases. Moreover, in a tumor microenvironment, MINCLE induces macrophage-induced immune suppression and cancer progression. Similarly, triggering of LOX-1 by oxidized LDL, amplifies pro-inflammatory response but promotes tumor immune escape and metastasis. Finally, CLEC12A that recognizes monosodium urate crystals formed during cell death, inhibits activating signals to prevent detrimental inflammation. Interestingly, CLEC12A also sustains type-I IFN response to finely tune immune responses in case of viral-induced collateral damage. Therefore, CLRs acting in concert as sensors of injury, could be used in a targeted way to treat numerous diseases such as allergies, obesity, tumors, and autoimmunity.
Collapse
Affiliation(s)
- Marion Drouin
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,OSE Immunotherapeutics, Nantes, France
| | - Javier Saenz
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
22
|
Jones J, Allam B, Espinosa EP. Particle Selection in Suspension-Feeding Bivalves: Does One Model Fit All? THE BIOLOGICAL BULLETIN 2020; 238:41-53. [PMID: 32163725 DOI: 10.1086/707718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Suspension-feeding bivalves are known to discriminate among a complex mixture of particles present in their environments. The exact mechanism that allows bivalves to ingest some particles and reject others as pseudofeces has yet to be fully elucidated. Recent studies have shown that interactions between lectins found in the mucus covering oyster and mussel feeding organs and carbohydrates found on the microalga cell surface play a central role in this selection process. In this study, we evaluated whether these interactions are also involved in food selection in bivalves with other gill architectures, namely, the clam Mercenaria mercenaria and the scallop Argopecten irradians. Statistical methods were used to predict whether given microalgae would be rejected or ingested depending on their cell surface carbohydrate profiles. Eight different microalgae with previously established surface carbohydrate profiles were grown and harvested during their exponential growth phase to be used in feeding experiments. Microalgae were then used in 17 feeding experiments where different pairs of microalgae were presented to clams and scallops to evaluate selection. Decision trees that model selection were then developed for each bivalve. Results showed that microalgae rich in mannose residues were likely to be ingested in both bivalves. N-acetylglucosamine and fucose residues also seem to play a role in food particle choice in scallops and clams, respectively. Overall, this study demonstrates the role of carbohydrate-lectin interactions in particle selection in suspension-feeding bivalves displaying different gill architectures, and it highlights the importance of mannose residues as a cue for the selection of ingested particles.
Collapse
|
23
|
Zhu Y, Yu X, Cheng G. Insect C-Type Lectins in Microbial Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:129-140. [PMID: 32152945 DOI: 10.1007/978-981-15-1580-4_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
C-type lectins (CTLs) are a family of carbohydrate-recognition domain (CRD)-containing proteins that bind to ligands in a calcium-dependent manner. CTLs act as important components of insect innate immune responses, such as pattern recognition, agglutination, encapsulation, melanization, phagocytosis and prophenoloxidase activation, as well as gut microbiome homeostasis maintenance, to defend against pathogens. Besides, some insect CTLs can facilitate pathogen infection and colonization. In this review, we describe the properties of insect CTLs and focus on explaining their role in viral, bacterial, parasitic and fungal infections.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
24
|
Preetham E, Rubeena AS, Vaseeharan B, Chaurasia MK, Arockiaraj J, Olsen RE. Anti-biofilm properties and immunological response of an immune molecule lectin isolated from shrimp Metapenaeus monoceros. FISH & SHELLFISH IMMUNOLOGY 2019; 94:896-906. [PMID: 31533083 DOI: 10.1016/j.fsi.2019.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
The study is carried out to understand the antimicrobial and immunological response of a potential immune molecule lectin, MmLec isolated from haemolymph of Speckled shrimp, Metapenaeus monoceros. MmLec was purified using mannose coupled Sepharose CL-4B affinity chromatography, which was further subjected on SDS-PAGE to ascertain the distribution of their molecular weight. Sugar binding specificity assay was conducted at various pH and temperatures to investigate the binding affinity of MmLec towards the specific carbohydrate molecule. Functional analysis of immune molecule MmLec included haemagglutination assays performed using human erythrocytes and yeast agglutination activity against Saccharomyces cerevisiae which, were analyzed using light microscopy. In order to study the antimicrobial activity, two Gram-negative (Vibrio parahaemolyticus and Aeromonas hydrophila) and two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria were treated with purified MmLec. Moreover, these bacterial species were also treated at different concentration of the MmLec to speculate the antibiofilm properties of MmLec which was analyzed under Light Microscopy and Confocal Laser Scanning Microscopy. In addition, other functional characterization of MmLec showed the uniqueness of MmLec in agglutination of human erythrocyte as well as the cells of yeast Saccharomyces cerevisiae. Also, the phenoloxidase activity and encapsulation assay was evaluated. MTT assay displayed that MmLec are potent in anticancer activity. The study will help to understand the immunological interference and antimicrobial nature of MmLec which would be supportive in establishing a potential therapeutic tool and to develop better and novel disease control strategies in shrimp and farmed aquaculture industries as well as in health management.
Collapse
Affiliation(s)
- Elumalai Preetham
- Department of Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India; School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India.
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630 004, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Department of Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rolf Erik Olsen
- Norwegian University of Science and Technology, Department of Biology, 7491, Trondheim, Norway
| |
Collapse
|
25
|
Borah S, Vasudevan D, Swain RK. C-type lectin family XIV members and angiogenesis. Oncol Lett 2019; 18:3954-3962. [PMID: 31579078 DOI: 10.3892/ol.2019.10760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
The growth and metastasis of tumors is dependent on angiogenesis. C-type lectins are carbohydrate-binding proteins with a diverse range of functions. The C-type lectin family XIV members are transmembrane glycoproteins, and all four members of this family have been reported to regulate angiogenesis, although the detailed mechanism of action has yet to be completely elucidated. They interact with extracellular matrix proteins and mediate cell-cell adhesion by their lectin-like domain. The aim of the present study was to summarize the available information on the function and mechanism of C-type lectin family XIV in angiogenesis and discuss their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Supriya Borah
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Rajeeb K Swain
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
26
|
Zanotty Y, Álvarez M, Perdomo L, Sánchez EE, Giron ME, Jimenez JC, Suntravat M, Guerrero B, Ibarra C, Montero Y, Medina R, Navarrete LF, Rodríguez-Acosta A. Mutacytin-1, a New C-Type Lectin-Like Protein from the Venezuelan Cuaima ( Lachesis muta muta Linnaeus, 1766) (Serpentes: Viperidae) Snake Venom Inducing Cardiotoxicity in Developing Zebrafish ( Danio rerio) Embryos. Zebrafish 2019; 16:379-387. [PMID: 31145051 DOI: 10.1089/zeb.2019.1731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Envenomation by the Venezuelan bushmaster snake (Lachesis muta muta) (Serpentes: Viperidae) is characterized by local and cardiac alterations. This study investigates the in vivo cardiac dysfunction, tissue destruction, and cellular processes triggered by Lachesis muta muta snake crude venom and a C-type lectin (CTL)-like toxin named Mutacytin-1 (MC-1). The 28 kDa MC-1 was obtained by molecular exclusion, ion exchange, and C-18 (checking pureness) reverse-phase chromatographies. N-terminal sequencing of the first eight amino acids (NNCPQ LLM) revealed 100% identity with Mutina (CTL-like) isolated from Lachesis stenophrys, which is a Ca2+-dependent-type galactoside-binding lectin from Bothrops jararaca and CTL BpLec from Bothrops pauloensis. The cardiotoxicity in zebrafish of MC-1 was evaluated by means of specific phenotypic expressions and larvae behavior at 5, 15, 30, 40 and 60 min post-treatment. The L. muta muta venom and MC-1 also produced heart rate/rhythm alterations, circulation modifications, and the presence of thrombus and apoptotic phenomenon with pericardial damages. Acridine orange (100 μg/mL) was used to visualize apoptosis cellular process in control and treated whole embryos. The cardiotoxic alterations happened in more than 90% of all larvae under the action of L. muta muta venom and MC-1. The findings have demonstrated the potential cardiotoxicity by L. muta muta venom, suggesting the possibility of cardiovascular damages to patients after bushmaster envenoming.
Collapse
Affiliation(s)
- Yurisbeth Zanotty
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela.,2Sección de Microscopia Electrónica, Instituto Anatómico "José Izquierdo," Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Marco Álvarez
- 2Sección de Microscopia Electrónica, Instituto Anatómico "José Izquierdo," Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Lourdes Perdomo
- 2Sección de Microscopia Electrónica, Instituto Anatómico "José Izquierdo," Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Elda E Sánchez
- 3Department of Chemistry, National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, Texas
| | - María E Giron
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| | - Juan C Jimenez
- 4Instituto de Inmunología, Universidad Central de Venezuela, Caracas, Venezuela
| | - Montamas Suntravat
- 3Department of Chemistry, National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, Texas
| | - Belsy Guerrero
- 5Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Carlos Ibarra
- 5Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Yuyibeth Montero
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| | - Rafael Medina
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| | - Luis F Navarrete
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
27
|
Huang Y, Ren Q. HcCUB-Lec, a newly identified C-type lectin that contains a distinct CUB domain and participates in the immune defense of the triangle sail mussel Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:66-77. [PMID: 30590065 DOI: 10.1016/j.dci.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
As pattern recognition receptors (PRRs), C-type lectins (CTLs) play crucial roles in recognizing and eliminating pathogens in innate immunity. In this study, a novel CTL (HcCUB-Lec) was identified from the triangle sail mussel Hyriopsis cumingii. The full-length of HcCUB-Lec cDNA was 1558 bp with an open reading frame of 1281 bp that encodes a putative protein of 426 amino acid residues, including an N-terminal signal peptide, a complement Uegf Bmp1 (CUB) domain, a single carbohydrate recognition domain (CRD), and a transmembrane domain. Quantitative real-time PCR analysis revealed that HcCUB-Lec transcript was distributed in all examined tissues with the highest levels in hepatopancreas and was significantly upregulated in gills and hepatopancreas after immune challenge with Staphyloccocus aureus and Vibrio parahaemolyticus. When HcCUB-Lec was silenced by RNAi, the expression levels of three antimicrobial peptides, including whey acidic protein (HcWAP), defensin (HcDef), and lysozyme (HcLyso), were dramatically decreased in gills. The recombinant HcCUB-Lec and its individual CUB and CRD domains can bind with Gram-positive bacteria (S. aureus and Bacillus subtilis), Gram-negative bacteria (V. parahaemolyticus and Aeromonas hydrophila), and polysaccharides (lipopolysaccharide and peptidoglycan). Moreover, rHcCUB-Lec and its domains could also agglutinate S. aureus and V. parahaemolyticus in the presence of Ca2+ and can clear V. parahaemolyticus in H. cumingii. Results of this study suggest that HcCUB-Lec acts as an antimicrobial PRR that participates in the innate immune responses of H. cumingii.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China.
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
28
|
Li D, Nie H, Dong S, Huo Z, Yan X. Molecular cloning and expression analysis of C-type lectin (RpCTL) in Manila clam Ruditapes philippinarum after lipopolysaccharide challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 86:981-993. [PMID: 30578844 DOI: 10.1016/j.fsi.2018.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The Manila clam, Ruditapes philippinarum, is one of the most commercially important marine bivalves. C-type lectins (CTLs) are pattern recognition receptors (PRRs) that play important roles in the identification and elimination of pathogens by the innate immune system. In this study, a new CTL (RpCTL) was identified in the Manila clam, R. philippinarum. The full-length RpCTL cDNA is 802 bp, with an open reading frame of 591 bp, encoding 196 amino acids, including an N-terminal signal peptide and a carbohydrate recognition domain (CRD). RpCTL contains conserved CRD disulfide bonds involving four cysteine residues (Cys30-Cys104, Cys124, and Cys132), and the EPN (Glu94-Pro95-Asn96) and WND (Trp119-Asn120-Asp121) motifs. Quantitative reverse transcription (RT)-PCR detected RpCTL transcripts mainly in the gill, siphon, and hepatopancreas in three shell-color strains (zebra, white, and white-zebra strains) and two unselected populations of R. philippinarum, and the gene was highly expressed in the hepatopancreas after lipopolysaccharide treatment. Antimicrobial activity assays of recombinant RpCTL against both Gram-positive and Gram-negative bacteria showed that RpCTL inhibits microorganismal growth. In a survival test, RpCTL inhibited and killed Vibrio anguillarum in R. philippinarum. These results suggest that RpCTL participates in the pathogen identification process of R. philippinarum as a PRR and in its immune defense system.
Collapse
Affiliation(s)
- Dongdong Li
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Shasha Dong
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
29
|
Han K, Chen X, Wu L, Zhang Z, Ma F, Huang X, Zhang Y, Ren Q. Novel fibrinogen-related protein with single FReD contributes to the innate immunity of Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2018; 82:350-360. [PMID: 30138666 DOI: 10.1016/j.fsi.2018.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Fibrinogen-related proteins (FREPs) are widely found in vertebrates and invertebrates, and they play crucial roles in innate immunity. Here, a new FREP named as MrFREP was identified from giant freshwater prawn (Macrobrachium rosenbergii). The full-length cDNA of MrFREP measures 1649 bp in length and consists of a 1086 bp open reading frame encoding a polypeptide composed of 361 amino acids. The MrFREP sequence has a signal peptide with 20 amino acids and a fibrinogen-related domain (FReD) with 223 amino acids. Phylogenetic analysis showed that MrFREP was grouped with FREPs from Marsupenaeus japonicus and Litopenaeus vannamei. BLASTp results showed that it had 43% identity with a FREP from M. japonicus. The expression of MrFREP was higher in gills, intestine, and hepatopancreas than in hemocytes, heart, stomach, and muscles. The expression levels of MrFREP in gills and intestine were obviously upregulated after they were exposed to Vibrio parahaemolyticus or White spot syndrome virus infection. Recombinant MrFReD protein (rMrFReD) could bind to Gram-positive and Gram-negative bacteria and agglutinate the tested bacteria in the presence of calcium. rMrFReD demonstrated lipopolysaccharide and peptidoglycan binding activities. rMrFReD could accelerate the clearance of V. parahaemolyticus in vivo. These results suggested that MrFREP could function as a pattern recognition receptor contributing to the innate immunity of M. rosenbergii.
Collapse
Affiliation(s)
- Keke Han
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Xuefeng Chen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Lei Wu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Zhuoxing Zhang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Futong Ma
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China.
| | - Yufei Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
30
|
Expression and functional characterization of collection-K1 from Nile tilapia (Oreochromis niloticus) in host innate immune defense. Mol Immunol 2018; 103:21-34. [PMID: 30189385 DOI: 10.1016/j.molimm.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Collectin-K1 (CL-K1), a multifunctional Ca2+-dependent lectin, is able to bind carbohydrates on pathogens and inhibit infection by direct neutralization, agglutination, opsonization and killing, which plays an important role in innate immunity. In this study, a CL-K1 homolog (OnCL-K1) was identified from Nile tilapia (Oreochromis niloticus) and characterized at expression and agglutination functional levels. The open reading frame of OnCL-K1 is 720 bp of nucleotide sequence encoding a polypeptide of 239 amino acids. The deduced amino acid sequence has two characteristic structures, containing a collagen-like region and a carbohydrate recognition domain. Expression analysis revealed that the OnCL-K1 was highly expressed in the liver, and widely exhibited in other tissues including kidney, intestine and spleen. In addition, the OnCL-K1 expression was significantly up-regulated in spleen and anterior kidney following challenges with a Gram-positive bacterial pathogen (Streptococcus agalactiae) and a Gram-negative bacterial pathogen (Aeromonas hydrophila). The up-regulation of OnCL-K1 expression was also demonstrated in hepatocytes and monocytes/macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnCL-K1 protein was able to agglutinate both S. agalactiae and A. hydrophila in vitro, and participate in the regulation of inflammatory, migration reaction and promote the phagocytosis by monocytes/macrophages. Taken together, the results of this study indicated that OnCL-K1, possessing apparent agglutination, opsonization and killing ability to bacterial pathogens and participating in the regulation mechanisms of the non-specific cellular immune, might be involved in host defense of innate immunity against bacterial infection in Nile tilapia.
Collapse
|
31
|
Mu L, Yin X, Xiao Y, Bian X, Yang Y, Wu L, Ye J. A C-type lectin (CL11X1-like) from Nile tilapia (Oreochromis niloticus) is involved in host defense against bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:230-240. [PMID: 29481905 DOI: 10.1016/j.dci.2018.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Collectins, a subfamily of the C-type lectins, are able to bind non-self glycoconjugates on the surface of microorganisms and inhibit infection by direct neutralization, agglutination and/or opsonization, which play important roles in innate immunity. In this study, a CL11X1-like collectin (OnCL11X1) was identified from Nile tilapia (Oreochromis niloticus) and characterized at expression and agglutination functional levels. The open reading frame of OnCL11X1 is 840 bp of nucleotide sequence encoding polypeptides of 279 amino acids. The deduced amino acid sequence is highly homology to teleost and similar to mammalian CL11X1, containing a canonical collagen-like region, a carbohydrate recognition domain and a neck region. Expression analysis revealed that the OnCL11X1 was highly expressed in the liver, and widely exhibited in other tissues including kidney, intestines and spleen. In addition, the OnCL11X1 expression was significantly up-regulated in spleen and anterior kidney following challenges with a Gram-positive bacterial pathogen (Streptococcus agalactiae) and a Gram-negative bacterial pathogen (Aeromonas hydrophila). The up-regulation of OnCL11X1 expression was also demonstrated in hepatocytes and macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnCL11X1 protein was able to agglutinate both S. agalactiae and A. hydrophila in vitro and promote the phagocytosis by macrophages. Taken together, the results of this study indicated that OnCL11X1, possessing apparent agglutination and opsonization ability to bacterial pathogens, might be involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China.
| |
Collapse
|
32
|
Xia X, You M, Rao XJ, Yu XQ. Insect C-type lectins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:70-79. [PMID: 29198776 DOI: 10.1016/j.dci.2017.11.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
C-type lectins (CTLs) are a family of proteins that contain characteristic modules of carbohydrate-recognition domains (CRDs) and they possess the binding activity to ligands in a calcium-dependent manner. CTLs play important roles in animal immune responses, and in insects, they are involved in opsonization, nodule formation, agglutination, encapsulation, melanization, and prophenoloxidase activation, as well as in maintaining gut microbiome homeostasis. In this review, we will summarize insect CTLs, compare the properties of insect CTLs with vertebrate CTLs, and focus mainly on the domain organization and functions of insect CTLs in innate immunity.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO 64110-2499, USA.
| |
Collapse
|
33
|
Pales Espinosa E, Allam B. Reverse genetics demonstrate the role of mucosal C-type lectins in food particle selection in the oyster Crassostrea virginica. J Exp Biol 2018; 221:jeb.174094. [DOI: 10.1242/jeb.174094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
Prey selection governs species interactions and regulates physiological energetics of individuals and populations. Suspension-feeding bivalves represent key species in coastal and estuarine systems for their ecological and economic value. These animals are able to sort and selectively ingest nutritious microalgae from dilute and composite mixtures of particulate matter. This aptitude was suggested to be mediated by interactions between carbohydrates associated with the surface of microalgae and C-type lectins present in mucus covering the feeding organs although a direct, unequivocal, role of lectins in food sorting in bivalves remains elusive. This study was designed to identify and characterize mucosal C-type lectins from oysters and manipulate the expression of these proteins in order to obtain decisive information regarding their involvement in food choice. Thus, 2 mucosal C-type lectins (CvML3912 and CvML3914) were identified based on transcriptomic and proteomic information. Transcripts of these lectins were detected in the feeding organs and their expression was upregulated following starvation. Recombinant lectin (rCvML3912) competitively inhibited the binding of commercial mannose/glucose-specific lectins to microalgae. Short DsiRNA targeting these two lectins were designed and used to evaluate the effect of gene silencing on food particle sorting. As a result, the abundance of the two cognate transcripts significantly decreased and food sorting ability was significantly reduced among silenced oysters as compared to control animals. Overall, these findings propose a novel concept establishing the role of carbohydrate-protein interactions to provide an efficient food particle sorting, and establish a new dimension for the role of evolutionarily-conserved mannose/glucose-binding proteins in the metazoan.
Collapse
Affiliation(s)
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, State University of New York, Stony Brook, NY 11794, USA
| |
Collapse
|
34
|
Li T, Wu L, Jin M, Ma F, Huang X, Ren Q. Function of two ficolin-like proteins in innate immune defense of the oriental river prawn, Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2017; 68:488-499. [PMID: 28764985 DOI: 10.1016/j.fsi.2017.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Ficolins have crucial functions in recognizing and eliminating pathogens in innate immunity. In this study, we identified two ficolin-like genes from the oriental river prawn, Macrobrachium nipponense. These genes were designated as MnFico1 and MnFico2. MnFico1 cDNA has 1600 bp, whereas MnFico2 has 1486 bp. In addition to a coiled-coil region or a low complexity region, the two ficolins both contained a signal peptide and a fibrinogen-related domain. qRT-PCR results showed that the highest expression level of MnFico1 expression was in the gills, whereas that of MnFico2 was in the heart. The transcripts of MnFico1 and MnFico2 could both respond to bacteria challenge. The transcription of antilipopolysaccharide factors ALFs (MnALF1 and MnALF2) and crustin genes (MnCru4, MnCru5, MnCru6, and MnCru7) was inhibited in the gills of MnFico1 or MnFico2 knockdown prawns at 24 h Vibrio parahaemolyticus challenge. Recombinant proteins of rMnFico1 and rMnFico2 could bind toward diverse bacteria and agglutinate Gram-negative and Gram-positive bacteria with the presence of calcium (Ca2+). rMnFico1 and rMnFico2 proteins also have lipopolysaccharide and peptidoglycan binding activity. Both recombinant ficolin proteins could help the prawn to facilitate the clearance of V. parahaemolyticus in vivo. Our results suggested that MnFico1 and MnFico2 might serve as pattern recognition receptors in M. nipponense.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Lei Wu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Futong Ma
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China.
| |
Collapse
|
35
|
Huang X, Li T, Jin M, Yin S, Wang W, Ren Q. Identification of a Macrobrachium nipponense C-type lectin with a close evolutionary relationship to vertebrate lectins. Mol Immunol 2017; 87:141-151. [PMID: 28441623 DOI: 10.1016/j.molimm.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022]
Abstract
C-type lectins (CTLs) are involved in the innate immune defense of vertebrates and invertebrates against invading pathogens. This study cloned and characterized a novel C-type lectin (MnCTL) of the oriental river prawn, Macrobrachium nipponense. The cloned MnCTL cDNA encompasses an open reading frame of 774 nucleotides and encodes polypeptides of 257 residues. The deduced MnCTL protein contains a single carbohydrate recognition domain (CRD) with an EPN (Glu-Pro-Asn) motif in calcium-binding site 2. Phylogenetic analysis indicated that MnCTL has a closer evolutionary relationship with vertebrate lectins than with invertebrate lectins. Tissue expression analysis showed that high levels of MnCTL are ubiquitously distributed in the gills and stomach of M. nipponense. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that MnCTL expression was up-regulated by bacteria or white spot syndrome virus (WSSV) challenge. Knock-down of the MnCTL gene in WSSV-challenged prawns significantly decreased MnALF1 and MnALF2 transcript levels. The recombinant MnCRD (rMnCRD) agglutinated both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Vibrio parahaemolyticus) in the presence of calcium. Furthermore, rMnCRD could bind to all the tested bacteria with different activities. The sugar-binding assay showed that rMnCRD was able to bind lipopolysaccharide and peptidoglycan in a concentration-dependent manner. In addition, rMnCRD could accelerate bacterial clearance. On the contrary, MnCTL silencing by dsRNA interference could weaken the bacterial clearance ability. All these findings implicated MnCTL were involved in the antiviral and antibacterial innate immunity of M. nipponense.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Tingting Li
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China.
| |
Collapse
|
36
|
Shih CH, Chiang TB, Wang WJ. Convulxin, a C-type lectin-like protein, inhibits HCASMCs functions via WAD-motif/integrin-αv interaction and NF-κB-independent gene suppression of GRO and IL-8. Exp Cell Res 2017; 352:234-244. [PMID: 28192121 DOI: 10.1016/j.yexcr.2017.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 01/13/2023]
Abstract
Convulxin (CVX), a C-type lectin-like protein (CLPs), is a potent platelet aggregation inducer. To evaluate its potential applications in angiogenic diseases, the multimeric CVX were further explored on its mode of actions toward human coronary artery smooth muscle cells (HCASMCs). The N-terminus of β-chain of CVX (CVX-β) contains a putative disintegrin-like domain with a conserved motif upon the sequence comparison with other CLPs. Importantly, native CVX had no cytotoxic activity as examined by electrophoretic pattern. A Trp-Ala-Asp (WAD)-containing octapeptide, MTWADAEK, was thereafter synthesized and analyzed in functional assays. In the case of specific integrin antagonists as positive controls, the anti-angiogenic effects of CVX on HCASMCs were investigated by series of functional analyses. CVX showed to exhibit multiple inhibitory activities toward HCASMCs proliferation, adhesion and invasion with a dose- and integrin αvβ3-dependent fashion. However, the WAD-octapeptide exerting a minor potency could also work as an active peptidomimetic. In addition, flow cytometric analysis demonstrated both the intact CVX and synthetic peptide can specifically interact with integrin-αv on HCASMCs and CVX was shown to have a down-regulatory effect on the gene expression of CXC-chemokines, such as growth-related oncogene and interleukin-8. According to nuclear factor-κB (NF-κB) p65 translocation assay and Western blotting analysis, the NF-κB activation was not involved in the signaling events of CVX-induced gene expression. In conclusion, CVX may act as a disintegrin-like protein via the interactions of WAD-motif in CVX-β with integrin-αv on HCASMCs and it also is a gene suppressor with the ability to diminish the expression of two CXC-chemokines in a NF-κB-independent manner. Indeed, more extensive investigations are needed and might create a new avenue for the development of a novel angiostatic agent.
Collapse
Affiliation(s)
- Chun-Ho Shih
- Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City, Taiwan
| | - Tin-Bin Chiang
- Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City, Taiwan
| | - Wen-Jeng Wang
- Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City, Taiwan; Department of Neurological Surgery, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, Taiwan.
| |
Collapse
|
37
|
Gao L, Han Y, Deng H, Hu W, Zhen H, Li N, Qin N, Yan M, Wu W, Liu B, Zhao B, Pang Q. The role of a novel C-type lectin-like protein from planarian in innate immunity and regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:413-426. [PMID: 27565408 DOI: 10.1016/j.dci.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Planarian, a representative of platyhelminthes, has strong regeneration ability and less complicated innate immune system. However, planarian immune system remains poorly understood. In this paper, a novel C-type lectin-like protein, namely, DjCTL was identified and characterized in Dugesia japonica. DjCTL was mainly expressed in the pharyngeal and epidermis and up-regulated upon the induction of lipopolysaccharide (LPS), peptidoglycan (PGN), Gram-positive and Gram-negative bacteria indicating that DjCTL may be involved in the immune responses. Recombination DjCTL protein agglomerated rabbit red blood cells and interacted with LPS, PGN, mannose and galactose as well as both Gram-positive and Gram-negative bacteria, but it can only cause the agglutination of Gram-negative bacteria. Importantly, in the early periods of regeneration, DjCTL had a significantly high expression and was mainly expressed in early blastemas. RNA interference of DjCTL by dsRNA-DjCTL led to a slow wound healing during regeneration. These findings suggest that DjCTL participates in the innate immune response and plays an important role in early stages of regeneration.
Collapse
Affiliation(s)
- Lili Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Yu Han
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Wenjing Hu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Hui Zhen
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Na Li
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Nianci Qin
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Meihui Yan
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Weiwei Wu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Baohua Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Shenzhen University of Health Science Center, District Shenzhen, 518060, PR China.
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China.
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China.
| |
Collapse
|
38
|
Wongpanya R, Sengprasert P, Amparyup P, Tassanakajon A. A novel C-type lectin in the black tiger shrimp Penaeus monodon functions as a pattern recognition receptor by binding and causing bacterial agglutination. FISH & SHELLFISH IMMUNOLOGY 2017; 60:103-113. [PMID: 27876622 DOI: 10.1016/j.fsi.2016.11.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
C-type lectins are pattern recognition proteins that play important roles in innate immunity in invertebrates by mediating the recognition of pathogens. In this study, a novel C-type lectin gene, PmCLec, was cloned and characterized from the black tiger shrimp Penaeus monodon. The open reading frame of PmCLec is 657 bp in length. It encodes a predicted protein of 218 amino acids with a calculated molecular mass and an isoelectric point of 24086 Da and 4.67, respectively. Sequence analysis of PmCLec showed similarity to members of the C-type lectin gene superfamily. The deduced protein contains a single carbohydrate recognition domain (CRD) and four conserved cysteine residues (Cys58, Cys126, Cys141, Cys149) that are involved in the formation of disulfide bridges. PmCLec transcripts are expressed in various tiger shrimp tissues, with the highest expression in the lymphoid organ. RNAi-mediated silencing of PmCLec resulted in higher cumulative mortality of knockdown shrimp after Vibrio harveyi infection compared to the control groups. Recombinant PmCLec was successfully expressed in the E. coli system. In the presence of Ca2+, purified rPmCLec protein binds and agglutinates Gram-positive bacteria (Staphylococcus aureus, S. hemolyticus), but only slightly binds and agglutinates E. coli and could not bind to the Gram-negative bacteria Bacillus megaterium and Vibrio harveyi. These results suggest that PmCLec functions as a pattern recognition receptor that is implicated in shrimp innate immunity.
Collapse
MESH Headings
- Agglutination/genetics
- Agglutination/immunology
- Amino Acid Sequence
- Animals
- Anti-Bacterial Agents/pharmacology
- Arthropod Proteins/chemistry
- Arthropod Proteins/genetics
- Arthropod Proteins/metabolism
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Escherichia coli/genetics
- Gram-Negative Bacteria/drug effects
- Gram-Positive Bacteria/drug effects
- Immunity, Innate
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Penaeidae/genetics
- Penaeidae/immunology
- Penaeidae/microbiology
- Phylogeny
- Pichia/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Pattern Recognition/chemistry
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand.
| | - Panjana Sengprasert
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
| | - Piti Amparyup
- Aquatic Molecular Genetics and Biotechnology Laboratory, Agricultural Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
39
|
Feng J, Huang X, Jin M, Zhang Y, Li T, Hui K, Ren Q. A C-type lectin (MrLec) with high expression in intestine is involved in innate immune response of Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2016; 59:345-350. [PMID: 27818342 DOI: 10.1016/j.fsi.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
C-type lectins (CTLs) are pattern-recognition proteins that play an important role in innate immunity of vertebrates and invertebrates. In this study, a lectin cDNA named MrLec was cloned and characterized from giant freshwater prawns (Macrobrachiun rosenbergii). The full-length cDNA of MrLec was 1431 bp, which contained an open reading frame of 1041 bp that encoded a protein with 346 amino acids. MrLec was found to contain a typical signal peptide of 18 amino acids and a single carbohydrate-recognition domain with 121 amino acids. The phylogenetic analysis showed that MrLec was grouped with vertebrates and had 57% identity with C-type lectin 3 from Marsupenaeus japonicas. Tissue expression analysis showed that MrLec was ubiquitously distributed at a high level in the intestine, with lower expression levels in the hemocytes, heart, hepatopancreas, gill and stomach. Vibrio parahaemolyticus infection induced the upregulation of MrLec in the gills and intestine. For the white spot syndrome virus (WSSV) challenge, MrLec in gills was upregulated at 24, 36 and 48 h. In intestine, MrLec also went up at 36 and 48 h WSSV challenge. Recombinant MrLec can agglutinate (Ca2+-dependent) and bind both Gram-negative and Gram-positive bacteria. rMrLec could attach to lipopolysaccharide and peptidoglycan in a dose-dependent manner. These results indicated possible MrLec involvement in the immune response of giant freshwater prawns.
Collapse
MESH Headings
- Animals
- Arthropod Proteins/chemistry
- Arthropod Proteins/genetics
- Arthropod Proteins/immunology
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Immunity, Innate/genetics
- Intestines/immunology
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lipopolysaccharides/pharmacology
- Palaemonidae/genetics
- Palaemonidae/immunology
- Palaemonidae/microbiology
- Palaemonidae/virology
- Peptidoglycan/pharmacology
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Vibrio parahaemolyticus/physiology
- White spot syndrome virus 1/physiology
Collapse
Affiliation(s)
- Jinling Feng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Yi Zhang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Tingting Li
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Kaimin Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China.
| |
Collapse
|
40
|
Yang C, Jiang M, Wu F, Yu L, Tian J, Liu W, Lu X, Wen H. Identification of a C-type lectin from tilapia (Oreochromis niloticus) and its functional characterization under low-temperature stress. FISH & SHELLFISH IMMUNOLOGY 2016; 58:631-640. [PMID: 27717900 DOI: 10.1016/j.fsi.2016.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
C-type lectin, which plays an important role in fish innate immunity, was cloned from tilapia and its functional characterization under low-temperature stress is reported. Its ORF is 453 bp, encoding 150 amino acids, and has a 5'UTR of 83 bp, a 3'UTR of 559 bp, and a poly (A) tail. The tilapia C-type lectin genomic DNA was acquired with a length of 5714 bp, containing six exons and five introns. Its promoter sequence was cloned and has a length of 2251 bp. The highest promoter activity occurs in the regulatory region (-900 bp to -450 bp). A hemagglutination assay of recombinant tilapia C-type lectin protein showed positive hemagglutination of rabbit and tilapia erythrocytes. RT-qPCR and western blot assays showed that its expression in the liver, spleen, and intestine were clearly affected by low-temperature stress. Thus, tilapia C-type lectin appear to be affected by abiotic stress, as well as by biological stress.
Collapse
Affiliation(s)
- ChangGeng Yang
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wei Liu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
41
|
Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD. Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. INSECT SCIENCE 2016; 23:656-674. [PMID: 25846407 DOI: 10.1111/1744-7917.12225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The peritrophic matrix (PM) is essential for insect digestive system physiology as it protects the midgut epithelium from damage by food particles, pathogens, and toxins. The PM is also an attractive target for development of new pest control strategies due to its per os accessibility. To understand how the PM performs these functions, the molecular architecture of the PM was examined using genomic and proteomic approaches in Mamestra configurata (Lepidoptera: Noctuidae), a major pest of cruciferous oilseed crops in North America. Liquid chromatography-tandem mass spectrometry analyses of the PM identified 82 proteins classified as: (i) peritrophins, including a new class with a CBDIII domain; (ii) enzymes involved in chitin modification (chitin deacetylases), digestion (serine proteases, aminopeptidases, carboxypeptidases, lipases and α-amylase) or other reactions (β-1,3-glucanase, alkaline phosphatase, dsRNase, astacin, pantetheinase); (iii) a heterogenous group consisting of polycalin, REPATs, serpin, C-Type lectin and Lsti99/Lsti201 and 3 novel proteins without known orthologs. The genes encoding PM proteins were expressed predominantly in the midgut. cDNAs encoding chitin synthase-2 (McCHS-2), chitinase (McCHI), and β-N-acetylglucosaminidase (McNAG) enzymes, involved in PM chitin metabolism, were also identified. McCHS-2 expression was specific to the midgut indicating that it is responsible for chitin synthesis in the PM, the only chitinous material in the midgut. In contrast, the genes encoding the chitinolytic enzymes were expressed in multiple tissues. McCHS-2, McCHI, and McNAG were expressed in the midgut of feeding larvae, and NAG activity was present in the PM. This information was used to generate an updated model of the lepidopteran PM architecture.
Collapse
Affiliation(s)
- Umut Toprak
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - Martin Erlandson
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Doug Baldwin
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Steve Karcz
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lianglu Wan
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Cedric Gillott
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
42
|
Xiu Y, Wang Y, Bi J, Liu Y, Ning M, Liu H, Li S, Gu W, Wang W, Meng Q. A novel C-type lectin is involved in the innate immunity of Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2016; 50:117-126. [PMID: 26804648 DOI: 10.1016/j.fsi.2016.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
C-type lectins (CTLs) play important roles in invertebrate innate immunity by recognizing and eliminating pathogens. In the present study, a low-density lipoprotein receptor class A (LDLa) domain-containing CTL was identified from the oriental river prawn Macrobrachium nipponense, designated as MnCTLDcp1. The full-length cDNA of MnCTLDcp1 was composed of 1462 bp, with a 999-bp ORF encoding a 332-aa protein. An LDLa and a single C-type lectin-like domain (CTLD) were found. The mRNA transcripts of MnCTLDcp1 was expressed the highest in heart. After the prawns were challenged by Aeromonas hydrophila and Staphylococcus aureus, the expression level of MnCTLDcp1 in heart and hemocytes were all significantly up-regulated. Sugar binding assay revealed that the MnCTLDcp1 could bind to the glycoconjugates of bacteria surface, such as LPS, PGN and they can compete with bacterial as competitors. The recombinant MnCTLDcp1 agglutinates Gram-positive (S. aureus and Bacillus subtilis) and Gram-negative bacteria (A. hydrophila, Vibrio parahaemolyticus, Escherichia coli and Pseudomonas aeruginosa) in the presence of calcium and also could bind to these bacteria. These results clearly suggested that MnCTLDcp1 functions as a pattern-recognition receptor involved in the innate immunity of M. nipponense.
Collapse
Affiliation(s)
- Yunji Xiu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yinghui Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuhan Liu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Mingxiao Ning
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Hui Liu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Shuang Li
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
43
|
Abstract
C-type lectins, originally defined as proteins binding carbohydrates in a Ca2+-dependent manner, form a large family containing soluble and membrane-bound proteins. Among them, those expressed on phagocytes and working as pathogen pattern-recognition receptors were designated as C-type lectin receptors (CLRs), in accordance with Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I–like receptors (RLRs). Most of the genes for CLRs are clustered in human chromosome 12 close to the natural killer gene complex. Similar to the killer lectin-like receptors whose genes are clustered in this complex, most of the CLRs induce activating or regulatory signal cascades in response to distinct pathogen- or self-derived components, through the immunoreceptor tyrosine-based activating or inhibitory motif, respectively. In this chapter, some representative CLRs are picked up and their structural features leading to the functional consequences are discussed, especially on the signaling cascades and pathogen interactions, including some impacts on cutaneous pathophysiology. These CLRs should provide targets to develop effective vaccination and therapeutics for distinct infectious and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Kenji Kabashima
- Department of Dermatology, Kyoto University Grad Sch of Med., Sakyo-ku, Kyoto, Japan
| |
Collapse
|
44
|
Tsutsui S, Dotsuta Y, Ono A, Suzuki M, Tateno H, Hirabayashi J, Nakamura O. A C-type lectin isolated from the skin of Japanese bullhead shark (Heterodontus japonicus) binds a remarkably broad range of sugars and induces blood coagulation. ACTA ACUST UNITED AC 2014; 157:345-56. [DOI: 10.1093/jb/mvu080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/21/2014] [Indexed: 01/25/2023]
|
45
|
Jebali J, Fakhfekh E, Morgen M, Srairi-Abid N, Majdoub H, Gargouri A, El Ayeb M, Luis J, Marrakchi N, Sarray S. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231. Toxicon 2014; 86:16-27. [PMID: 24814013 DOI: 10.1016/j.toxicon.2014.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 01/20/2023]
Abstract
C-type lectins like proteins display various biological activities and are known to affect especially platelet aggregation. Few of them have been reported to have anti-tumor effects. In this study, we have identified and characterized a new C-type lectin like protein, named lebecin. Lebecin is a heterodimeric protein of 30 kDa. The N-terminal amino acid sequences of both subunits were determined by Edman degradation and the entire amino acid sequences were deduced from cDNAs. The precursors of both lebecin subunits contain a 23-amino acid residue signal peptide and the mature α and β subunits are composed of 129 and 131 amino acids, respectively. Lebecin is shown to be a potent inhibitor of MDA-MB231 human breast cancer cells proliferation. Furthermore, lebecin dose-dependently inhibited the integrin-mediated attachment of these cells to different adhesion substrata. This novel C-type lectin also completely blocked MDA-MB231 cells migration towards fibronectin and fibrinogen in haptotaxis assays.
Collapse
Affiliation(s)
- Jed Jebali
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia.
| | - Emna Fakhfekh
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - Maram Morgen
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - Najet Srairi-Abid
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - Hafedh Majdoub
- USCR séquenceur de protéines, Faculté des sciences de Sfax, Route de Soukra, km 3.5, BP 1171, 3000 Sfax, Tunisia
| | - Ali Gargouri
- Laboratoire de Valorisation de la Biomasse et Production de Protéines chez les Eucaryotes, Centre de la Biotechnologie de Sfax (CBS), Tunisia
| | - Mohamed El Ayeb
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - José Luis
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, UMR_S 911, Marseille, France
| | - Naziha Marrakchi
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia
| | - Sameh Sarray
- Laboratoire des venins et biomolécules thérapeutiques, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis Belvédère, Tunisia; Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
| |
Collapse
|
46
|
Ji H, Wei J, Wei S, Yan Y, Huang Y, Huang X, Zhou S, Zhou Y, Qin Q. Molecular cloning and expression of a C-type lectin-like protein from orange-spotted grouper Epinephelus coioides. JOURNAL OF FISH BIOLOGY 2014; 84:436-447. [PMID: 24490935 DOI: 10.1111/jfb.12296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 11/09/2013] [Indexed: 06/03/2023]
Abstract
A C-type lectin-like protein (Ec-CTLP) was cloned from the grouper Epinephelus coioides. The full-length cDNA of Ec-CTLP was composed of 905 bp with a 522 bp open reading frame that encodes a 174-residue protein. The putative amino acid sequence of Ec-CTLP contains a signal peptide of 19 residues at the N-terminus and a CLECT domain from Cys43 to Arg169 and a conserved imperfect WND (Trp-Asn-Asp) motif. The homologous identity of deduced amino acid sequences is from 32 to 42% with other fishes. The expression of Ec-CTLP was differently upregulated in E. coioides spleen (germline stem) cells after being challenged at 16 and 4° C. Intracellular localization revealed that Ec-CTLP was distributed only in the cytoplasm. Recombinant Ec-CTLP (rEc-CTLP) was expressed in Escherichia coli BL21 (DE3) and purified for mouse Mus musculus anti-Ec-CTLP serum preparation. The rEc-CTLP fusion protein does not possess haemagglutinating activity, but improves survival from frozen bacteria. The survival of bacteria (including gram-negative E. coli and gram-positive Staphylococcus aureus) was positively correlated with the concentration of the rEc-CTLP. These findings can provide clues to help understand the probable C-type lectin in marine fish innate immunity.
Collapse
Affiliation(s)
- H Ji
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou, 570228, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
JebaMercy G, Balamurugan K. Effects of sequential infections of Caenorhabditis elegans with Staphylococcus aureus and Proteus mirabilis. Microbiol Immunol 2013; 56:825-35. [PMID: 22957781 DOI: 10.1111/j.1348-0421.2012.00509.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caenorhabditis elegans can be used to study the dynamics of polymicrobial infections, specifically those between Gram-positive and Gram-negative bacteria. With C. elegans, Proteus mirabilis acts as an opportunistic pathogen and does not kill this host. Hence, in the present study, C. elegans was immunochallenged by pre-infecting it with the pathogen Staphylococcus aureus in order to study the subsequent effect of P. mirabilis on the host. It was found that 12 hrs of S. aureus and 80 hrs of subsequent P. mirabilis infection significantly reduced the life span of exposed C. elegans by 80%. However, preinfection with S. aureus for 8 and 4 hrs reduced the life span of C. elegans by only 60 and 30%, respectively. Further, there was greater production of reactive oxygen species in the sequentially infected samples than in the S. aureus and P. mirabilis controls. Real time PCR analysis indicated regulation of candidate immune regulatory genes, lysozyme (lys-7), CUB-like proteins (F08G5.6), neuropeptide-like factors (nlp-29), transcription factors of mitogen-activated protein kinase (ATF-7) and daf-2-daf-16 (daf-16), insulin-like signaling pathways and C-type lectin (clec-60 and clec-87) family members during S. aureus and subsequent P. mirabilis-mediated infections, indicating possible roles of, and contributions by, the above factors during host immune responses against these sequential infections. The present findings demonstrate that S. aureus infections increase the vulnerability of the C. elegans host by subverting its immune system, which then permits the opportunistic pathogen P. mirabilis to be pathogenic to this host.
Collapse
|
48
|
Chen DD, Meng XL, Xu JP, Yu JY, Meng MX, Wang J. PcLT, a novel C-type lectin from Procambarus clarkii, is involved in the innate defense against Vibrio alginolyticus and WSSV. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:255-264. [PMID: 23085401 DOI: 10.1016/j.dci.2012.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Lectins play important roles in the innate immunity. In this work, a C-type lectin, PcLT, was obtained from Procambarus clarkii which contained a carbohydrate recognition domain (CRD) with the ability to bind to Vibrio alginolyticus and white spot syndrome virus (WSSV). RT-PCR and qRT-PCR analyses demonstrated PcLT was specifically expressed in the hepatopancreas and the mRNA was markedly upregulated by V. alginolyticus and WSSV challenge, although a slight difference in timing was observed. The study also revealed upregulation of the mRNA expression and activity of immunological factors, peroxinectin, phenoloxidase, and superoxide dismutase in hemolymph in response to recombinant PcLT (rPcLT). Moreover, rPcLT also enhanced the phagocytosis, facilitated the subsequent clearance of V. alginolyticus and prolonged the survival of WSSV-infected shrimp. These results suggested that PcLT not only served as a pathogen recognition receptor (PRR), but also functioned as an immune modulator, participating in host defense against invaders.
Collapse
Affiliation(s)
- Dan-Dan Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Wu C, Charoensapsri W, Nakamura S, Tassanakajon A, Söderhäll I, Söderhäll K. An MBL-like protein may interfere with the activation of the proPO-system, an important innate immune reaction in invertebrates. Immunobiology 2013; 218:159-68. [DOI: 10.1016/j.imbio.2012.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 02/04/2023]
|
50
|
Jebali J, Jeanneau C, Morjen M, Mathieu S, Bazaa A, el Ayeb M, Luis J, Gargouri A, Marrakchi N, el Battari A. Expression of a functional recombinant C-type lectin-like protein lebecetin in the human embryonic kidney cells. Biotechnol Prog 2012; 28:1560-5. [DOI: 10.1002/btpr.1632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/14/2012] [Indexed: 11/08/2022]
|