1
|
Kotlyar AM, Pal L, Taylor HS. Eliminating Hormones With Orally Active Gonadotropin-releasing Hormone Antagonists. Clin Obstet Gynecol 2021; 64:837-849. [PMID: 34668887 DOI: 10.1097/grf.0000000000000664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) analogues have been used in clinical practice for nearly 3 decades. Beginning with GnRH agonists, these agents have been used to treat hormone-dependent disease and to suppress gonadotropin production in assisted reproductive technologies. With the development of GnRH antagonists and especially small-molecule antagonists, our ability to achieve gonadotropin and sex steroid suppression has become increasingly effective and convenient. In this review, we will briefly describe the development of GnRH analogues, review the evolution of orally active small-molecule GnRH antagonists and provide an overview of the expanding role of small-molecule GnRH antagonists in clinical practice.
Collapse
Affiliation(s)
- Alexander M Kotlyar
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut
| | | | | |
Collapse
|
2
|
Alim Z, Hartshorn C, Mai O, Stitt I, Clay C, Tobet S, Boehm U. Gonadotrope plasticity at cellular and population levels. Endocrinology 2012; 153:4729-39. [PMID: 22893721 PMCID: PMC3685717 DOI: 10.1210/en.2012-1360] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hormone-secreting cells within the anterior pituitary gland may form organized and interdigitated networks that adapt to changing endocrine conditions in different physiological contexts. For gonadotropes, this might reflect a strategy to cope with acute changes throughout different female reproductive stages. The current study examined gonadotropes in female mice at characteristically different hormonal stages: prepubertal, postpubertal, and lactating. Gonadotrope plasticity was examined at the level of the whole population and single cells at different stages by imaging both fixed and live pituitary slices. The use of a model animal providing for the identification of selectively fluorescent gonadotropes allowed the particular advantage of defining cellular plasticity specifically for gonadotropes. In vivo analyses of gonadotropes relative to vasculature showed significantly different gonadotrope distributions across physiological states. Video microscopy studies using live slices ex vivo demonstrated pituitary cell plasticity in the form of movements and protrusions in response to GnRH. As positive feedback from rising estradiol levels is important for priming the anterior pituitary gland for the LH surge, experiments provide evidence of estradiol effects on GnRH signaling in gonadotropes. The experiments presented herein provide new insight into potential plasticity of gonadotropes within the anterior pituitary glands of female mice.
Collapse
Affiliation(s)
- Zahara Alim
- Institute for Neural Signal Transduction, Center for Molecular Neurobiology, 20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Sundaram S, Roy SK, Kompella UB. Differential expression of LHRH-receptor in bovine nasal tissue and its role in deslorelin delivery. Peptides 2009; 30:351-8. [PMID: 18992782 DOI: 10.1016/j.peptides.2008.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 11/22/2022]
Abstract
Deslorelin, a luteinizing hormone releasing hormone (LHRH) agonist, is transported via the LHRH-receptor (LHRH-R) and exhibits regional variation as follows: inferior turbinate posterior (ITP)>medium turbinate posterior (MTP)>medium turbinate anterior (MTA) of the bovine nasal mucosa. Differential LHRH-R expression in various regions of the nose is a potential explanation for regional variation in deslorelin transport. Thus, the objective was to determine whether LHRH-R expression exhibits regional variation in bovine nasal mucosa. LHRH-R density (B(max)) and affinity constant (K(d)) were determined by saturation experiments using 0.5mg tissue in the presence of increasing amounts of I(125)-deslorelin (100-100,000 cpm) at 4 degrees C for 4h. The 50% inhibitory concentration (IC(50)) was determined by competition experiments using various amounts of unlabelled deslorelin (0.01-3000 ng) at 4 degrees C for 4h. LHRH-R mRNA and protein expressions were determined using real-time PCR and Western blot analysis, respectively. LHRH-R B(max) and K(d) varied between the regions of excised bovine nasal mucosa: ITP>MTP>MTA. The inhibition experiments yielded two IC(50) concentrations which exhibited trends similar to B(max) and K(d). Real-time PCR and Western blot analysis indicated that LHRH-R expression exhibits similar trends: ITP>MTP>MTA. We identified two deslorelin binding sites in the nasal tissues, with high affinity sites representing approximately 60-70% of the total sites available. In summary, regional differences in nasal deslorelin transport correlate with regional differences in LHRH-R expression, with LHRH-R expression, peptide binding, and transport being the highest in the inferior turbinate posterior region of the nose.
Collapse
Affiliation(s)
- Sneha Sundaram
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
4
|
Fridmans A, Chertin B, Koulikov D, Lindenberg T, Gelber H, Leiter C, Farkas A, Spitz IM. REVERSIBILITY OF ANDROGEN DEPRIVATION THERAPY IN PATIENTS WITH PROSTATE CANCER. J Urol 2005; 173:784-9. [PMID: 15711270 DOI: 10.1097/01.ju.0000152330.63175.a5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE We determined the duration of testosterone suppression and recovery in patients with prostate cancer treated with a hydrogel implant releasing the gonadotropin releasing hormone (GnRH) agonist histrelin or treated with a depot GnRH agonist. MATERIALS AND METHODS Luteinizing hormone (LH) and testosterone (T) responses were monitored in 3 groups. Group 1 comprised 7 patients treated with histrelin implant, which is inserted into the arm of the patient while under local anesthesia, and suppresses LH and testosterone. Following implant removal antiandrogens (flutamide or bicalutamide) were administered. Group 2 comprised 8 patients treated with long-term depot GnRH super agonists which were later withheld and patients were given bicalutamide. Group 3 consisted of 7 patients treated with bicalutamide. RESULTS In group 1 LH and T were in the castration range while implants were in place. LH increased 1 to 6 weeks after implant removal followed by an increase in T. In 7 of 8 patients in group 2, LH, T and prostate specific antigen remained suppressed for 9 months. In 6 of 7 group 3 patients LH and T increased with a decrease in prostate specific antigen. CONCLUSIONS Despite continuous prolonged T suppression for up to 3 years due to histrelin implant, LH and T increased rapidly following implant removal, indicating that suppression is reversible. In view of the 9-month suppression of LH and T after the last depot GnRH injection in 7 of 8 patients, it is possible to space GnRH agonist administration at longer intervals. However, T must be monitored to determine that suppression is maintained.
Collapse
Affiliation(s)
- Alon Fridmans
- Department of Urology, Shaare Zedek Medical Center, Jerusalem, affiliated with the Faculty of Health Sciences Ben-Gurion University of the Negev, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rose A, Froment P, Perrot V, Quon MJ, LeRoith D, Dupont J. The luteinizing hormone-releasing hormone inhibits the anti-apoptotic activity of insulin-like growth factor-1 in pituitary alphaT3 cells by protein kinase Calpha-mediated negative regulation of Akt. J Biol Chem 2004; 279:52500-16. [PMID: 15448167 DOI: 10.1074/jbc.m404571200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The luteinizing hormone-releasing hormone (LHRH) receptor is a G protein-coupled receptor involved in the synthesis and release of pituitary gonadotropins and in the proliferation and apoptosis of pituitary cells. Insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor that has a mitogenic effect on pituitary cells. In this study, we used the alphaT3 gonadotrope cell line as a model to characterize the IGF-1R signaling pathways and to investigate whether this receptor interacts with the LHRH cascade. We found that IGF-1 activated the IGF-1R, insulin receptor substrate (IRS)-1, phosphatidylinositol 3-kinase, and Akt in a time-dependent manner in alphaT3 cells. The MAPK (ERK1/2, p38, and JNK) pathways were only weakly activated by IGF-1. In contrast, LHRH strongly stimulated the MAPK pathways but had no effect on Akt activation. Cotreatment with IGF-1 and LHRH had various effects on these signaling pathways. 1) It strongly increased IGF-1-induced tyrosine phosphorylation of IRS-1 and IRS-1-associated phosphatidylinositol 3-kinase through activation of the epidermal growth factor receptor. 2) It had an additive effect on ERK1/2 activation without modifying the phosphorylation of p38 and JNK1/2. 3) It strongly reduced IGF-1 activation of Akt. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and cell cycle analysis revealed that, in addition to having an additive effect on ERK1/2 activation, cotreatment with IGF-1 and LHRH also had an additive effect on cell proliferation. The LHRH-induced inhibition of Akt stimulated by IGF-1 was completely blocked by Safingol, a protein kinase C (PKC) alpha-specific inhibitor, and by a dominant negative form of PKCalpha. Finally, we showed that the inhibitory effect of LHRH on IGF-1-induced PKCalpha-mediated Akt activation was associated with a marked reduction in Bad phosphorylation and a substantial decrease in the ability of IGF-1 to rescue alphaT3 cells from apoptosis induced by serum starvation. Our results demonstrate for the first time that several interactions take place between IGF-1 and LHRH receptors in gonadotrope cells.
Collapse
Affiliation(s)
- Annabel Rose
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
6
|
Kakar SS, Malik MT, Winters SJ, Mazhawidza W. Gonadotropin-releasing hormone receptors: structure, expression, and signaling transduction. VITAMINS AND HORMONES 2004; 69:151-207. [PMID: 15196882 DOI: 10.1016/s0083-6729(04)69006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sham S Kakar
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
7
|
Ulloa-Aguirre A, Timossi C. Biochemical and functional aspects of gonadotrophin-releasing hormone and gonadotrophins. Reprod Biomed Online 2003; 1:48-62. [PMID: 12804199 DOI: 10.1016/s1472-6483(10)61901-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reproductive function in mammals is governed by the hypothalamic-pituitary-gonadal axis, which conforms a functional unit. Sexual maturation and the subsequent development of reproductive competence depend on the precise and coordinated function of this axis. The components of the reproductive axis communicate each other through endocrine signals. The hypothalamus synthesizes gonadotrophin-releasing hormone or GnRH, which in turn stimulates synthesis and secretion of the pituitary gonadotrophins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The ovarian follicles and the interstitial and Sertoli cells of the testis are the targets for these pituitary signals. Under gonadotrophic stimulation, the gonads produce and secrete several steroid and non-steroid (polypeptide) factors, which in turn regulate in different ways the function of the hypothalamic-pituitary axis. An episodic and pulsatile mode of secretion of hormonal signals characterize (as in other endocrine systems) the function of the reproductive axis, particularly that of the hypothalamic-pituitary unit. The target cell response, and consequently the harmonic function of the corresponding gland, will depend on the adequate dynamics of this pulsatile secretion. The function of each component of the reproductive axis is strongly influenced by locally-produced signals acting either in a paracrine or autocrine manner; these particular signals represent fine-tuning regulation systems that eventually amplify or restrain the magnitude of response to a particular endocrine signal, providing additional mechanisms for tissue homeostasis and a better functional plasticity of the target gland. The design and rational use of novel therapeutic strategies for an optimal exogenously-controlled reproductive function largely depend on the detailed knowledge of the hypothalamic-pituitary-gonadal axis function and the structure and mechanism of action of those factors and signals involved in its regulation.
Collapse
Affiliation(s)
- A Ulloa-Aguirre
- Research unit in Reproductive Medicine, Gynecology and Obstetrics Hospital, Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, DF, Mexico.
| | | |
Collapse
|
8
|
DeVita RJ, Walsh TF, Young JR, Jiang J, Ujjainwalla F, Toupence RB, Parikh M, Huang SX, Fair JA, Goulet MT, Wyvratt MJ, Lo JL, Ren N, Yudkovitz JB, Yang YT, Cheng K, Cui J, Mount G, Rohrer SP, Schaeffer JM, Rhodes L, Drisko JE, McGowan E, MacIntyre DE, Vincent S, Carlin JR, Cameron J, Smith RG. A potent, nonpeptidyl 1H-quinolone antagonist for the gonadotropin-releasing hormone receptor. J Med Chem 2001; 44:917-22. [PMID: 11300873 DOI: 10.1021/jm000275p] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extensive development of the structure-activity relationships of a screening lead determined three important pharmacophores for gonadotropin-releasing hormone (GnRH) receptor antagonist activity. Incorporation of the 3,4,5-trimethylphenyl group at the 3-position, 2-(2(S)-azetidinyl)ethoxy group at the 4-position, and N-4-pyrimidinylcarboxamide at the 6-position of the quinolone core resulted in the identification of 4-(2-(azetidin-2(S)-yl)ethoxy)-7-chloro-2-oxo-3-(3,4,5-trimethylphenyl)-1,2-dihydroquinoline-6-carboxylic acid pyrimidin-4-ylamide (1) as a potent antagonist of the GnRH receptor. A 10(4)-fold increase in in vitro binding affinity is observed for the GnRH receptor as compared to the initial screening lead. Compound 1 exhibits nanomolar binding activity and functional antagonism at the human receptor and is 7-fold less active at the rhesus receptor. Intravenous administration of compound 1 to rhesus monkeys results in a significant decrease of the serum levels of downstream hormones, luteinizing hormone (79% decrease in area under the curve) and testosterone (92% decrease in area under the curve), at a dose of 3 mg/kg. Quinolone 1 is a potent nonpeptidyl antagonist for the human GnRH receptor that is efficacious for the suppression of luteinizing hormone and testosterone in primates.
Collapse
Affiliation(s)
- R J DeVita
- Departments of Medicinal Chemistry, Biochemistry & Physiology, Pharmacology, and Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Given the tight, temporal coupling between growth and reproductive development, the idea that a common signal may regulate both adolescent growth and the initiation of puberty has been the focus of much research. Since the rate-limiting step for the onset of puberty is the appropriate hypothalamic secretion of gonadotropin-releasing hormone (GnRH), any factor important for the initiation of puberty must affect GnRH pulsatility. This review examines the hypothesis that GH and/or IGF-I are growth-related signals that regulate the release of GnRH, initiating puberty. By extension, this review also addresses the hypothesis that the GH axis also impacts GnRH and gonadotropin secretion in post-pubertal individuals and, thus, affects the maintenance of fertility in adults. The review examines data from a range of animal models employing a number of different strategies which directly manipulate the activity of either GH or IGF-I. The success of these strategies for producing the desired effects on the GH-IGF-I axis is somewhat variable. Although IGF-I may only play a permissive role in the maintenance of adult fertility, acting at the level of the gonad to increase sensitivity to gonadotropin stimulation, the data indicate that IGF-I is essential for reproductive maturation. However, in addition to its well-documented effects on the gonad, the specific mode of action of IGF-I on the neuroendocrine hypothalamus and GnRH pulsatility remains to be determined. Available evidence suggests that such action by IGF-I may be mediated through neurotransmitter effects on GnRH neurons, changing the availability of metabolic substrates for neuronal activity, or remodeling of synaptic input into GnRH neurons.
Collapse
Affiliation(s)
- M E Wilson
- Yerkes Regional Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
10
|
Pincas H, Amoyel K, Counis R, Laverrière JN. Proximal cis-acting elements, including steroidogenic factor 1, mediate the efficiency of a distal enhancer in the promoter of the rat gonadotropin-releasing hormone receptor gene. Mol Endocrinol 2001; 15:319-37. [PMID: 11158337 DOI: 10.1210/mend.15.2.0593] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The gonadotrope-specific and regulated expression of the GnRH receptor (GnRH-R) gene is dependent on multiple transcription factors that interact with the noncanonical GnRH-R activating sequence (GRAS), the activator protein-1 (AP-1) element, and the steroidogenic factor-1 (SF-1) binding site. However, these three elements are not sufficient to mediate the complete cell-specific expression of the rat GnRH-R gene. In the present study, we demonstrate, by transient transfection in gonadotrope-derived alphaT3-1 and LssT2 cell lines, the existence of a distal enhancer [GnRH-R- specific enhancer (GnSE)] that is highly active in the context of the GnRH-R gene promoter. We show that the GnSE activity (-1,135/-753) is mediated through a functional interaction with a proximal region (-275/-226) that includes the SF-1 response element. Regions of similar length containing either the AP-1 or GRAS elements are less active or inactive. Transfection assays using an artificial promoter containing two SF-1 elements fused to a minimal PRL promoter indicate that SF-1 is crucial in this interaction. In addition, by altering the promoter with deletion and block- replacement mutations, we have identified the active elements of GnSE within two distinct sequences at positions -983/-962 and -871/-862. Sequence analysis and electrophoretic mobility shift experiments suggest that GnSE response elements interact, in these two regions, with GATA- and LIM-related factors, respectively. Altogether, these data establish the importance of the GnSE in the GnRH-R gene expression and reveal a novel role for SF-1 as a mediator of enhancer activity, a mechanism that might regulate other SF-1 target genes.
Collapse
Affiliation(s)
- H Pincas
- Endocrinologie Cellulaire et Moléculaire de la Reproduction, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, ESA 7080, Case 244, Paris cedex 05, France
| | | | | | | |
Collapse
|
11
|
Abstract
In addition to its hypophysiotropic action, gonadotropin-releasing hormone (GnRH) can modify activity in extrapituitary organs and peripheral tumors. GnRH analogs are the preferred treatment for advanced and even metastatic or recurring carcinomas in vivo and in vitro. Hormone-responsive tumors undergo apoptosis with the appropriate stimulus; GnRH-induced tumor growth arrest may result from stimulated apoptotic cell death. The sensitivity of tumors and normal tissue to GnRH is strongly associated with the possession of receptors for GnRH as well as other hormonal control. Despite the lack of a precise apoptotic signaling cascade through GnRH receptors, biochemical events observed within a plasma membrane appear to constitute the most convincing evidence that the membrane event is primarily stimulated during cell activation by GnRH. GnRH receptors in tumors differ from those in pituitary gonadotrophs in some aspects, in particular with regard to the transmembrane signaling cascade. The intramembranous phenomena that occur independently of the contribution of other organelles upon tumoral GnRH receptor engagement include (i) activation of phosphotyrosine phosphatase and loss of phosphotyrosine from the endogenous membrane protein and (ii) phosphoinositide and perhaps sphingomyelin cleavage producing lipid-originated second messengers. GnRH has also been demonstrated to increase Fas ligand expression within plasma membrane, which is known to promote apoptotic cell death through attack on Fas-positive cells within tumors. The Fas-Fas ligand complex might, at least in part, account for the antiproliferative action of the hormone. An understanding of the relationship between the extracellular (hormonal) stimuli that leads to cell death and the intracellular events regulating growth arrest on GnRH action may fundamentally help clarify the therapeutic approach to all hormone-dependent carcinomas that respond to stimuli that lead to apoptosis. In this chapter, we review the recent literature and the results of our studies on GnRH-induced membrane events and summarize what is currently known about this promising antiproliferative function.
Collapse
Affiliation(s)
- A Imai
- Department of Obstetrics and Gynecology, Gifu University School of Medicine, Japan
| | | |
Collapse
|
12
|
Pinter JH, Janovick JA, Conn PM. Gonadotropin-releasing hormone receptor concentration differentially regulates intracellular signaling pathways in GGH3 cells. Pituitary 1999; 2:181-90. [PMID: 11081152 DOI: 10.1023/a:1009946807430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pituitary cell lines (GGH3) expressing the GnRH receptor (GnRHR) were used to investigate the effect of GnRHR concentration on the ability of a GnRH agonist to activate second messenger systems. Four different strategies were utilized to generate cells expressing functionally different concentrations of receptors: (1) transient transfection with different concentrations of wild type GnRHR into GH3 cells, (2) utilization of two cell lines derived from a common stably transfected line expressing high (4,209 +/- 535 receptors/cell) or low (1,031 +/- 36 receptors/cell) concentrations of GnRHR, (3) co-incubation of GGH3-1' cells with a GnRH agonist (Buserelin) and a GnRH antagonist to compete for binding sites, and (4) photo-affinity binding to GnRHR with a GnRH antagonist to change effective receptor concentration. A range of receptor concentrations (1,000-8,000 receptors/cell) were generated by these techniques. Inositol phosphate (IP) and cAMP accumulation were quantified to assess the effect of receptor concentration on receptor-effector coupling. Under all four paradigms, the efficacy and potency of Buserelin stimulated IP production was dependent on receptor concentration. In contrast, Buserelin stimulated cAMP release was relatively unchanged at varying concentrations of GnRHR. This suggests that the cellular concentration of GnRHR affects the induction of cell signaling pathways. These results demonstrate that a single ligand-receptor-complex can differentially activate second messenger systems and present a mechanism by which multiple physiological endpoints can be differentially regulated by a single hormone/receptor interaction.
Collapse
Affiliation(s)
- J H Pinter
- Division of Neuroscience, Oregon Regional Primate Research Center, Beaverton 97006-3499, USA
| | | | | |
Collapse
|
13
|
Duan WR, Shin JL, Jameson JL. Estradiol suppresses phosphorylation of cyclic adenosine 3',5'-monophosphate response element binding protein (CREB) in the pituitary: evidence for indirect action via gonadotropin-releasing hormone. Mol Endocrinol 1999; 13:1338-52. [PMID: 10446907 DOI: 10.1210/mend.13.8.0322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estradiol acts on the hypothalamus and pituitary gland to modulate the synthesis and secretion of gonadotropins. We recently reported that GnRH-induced transcription of the human gonadotropin alpha-gene promoter is increased markedly in transfected pituitary cells derived from animals treated with estradiol. Because the cAMP response element binding (CREB) protein plays an important role in the transcriptional regulation of this promoter and is highly regulated by posttranslational phosphorylation, we hypothesized that it might serve as a target for estradiol-induced sensitivity to GnRH. In this study, we assessed the roles of estradiol and GnRH in the regulation of CREB phosphorylation in the rat pituitary. Using an antibody that specifically recognizes phosphorylated CREB (pCREB), we found that the pituitary content of pCREB was inversely related to the level of estradiol during the estrous cycle. Ovariectomy increased the level of pCREB, and treatment with estradiol for 10 days decreased the content of pCREB dramatically (93% inhibition). A similar reduction of pCREB was seen when ovariectomized rats were treated with a GnRH receptor antagonist for 10 days. This result indicates that the ovariectomy-induced increase in pCREB is GnRH-dependent. In alphaT3 gonadotrope cells, estradiol had no direct effect on CREB phosphorylation, whereas GnRH increased CREB phosphorylation 4- to 5-fold within 5 min. We conclude that estradiol inhibits CREB phosphorylation in the gonadotrope, probably by inhibiting GnRH production. The estradiol-induced decrease in CREB phosphorylation is proposed to lower basal alpha-promoter activity and increase its responsiveness to GnRH.
Collapse
Affiliation(s)
- W R Duan
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA
| | | | | |
Collapse
|
14
|
Trueta C, Díaz M, Vaca LA, Clapp C, Martinez de la Escalera G. Functional uncoupling between intracellular calcium dynamics and secretion in the alphaT3-1 gonadotropic cell line. J Cell Physiol 1999; 179:347-57. [PMID: 10228953 DOI: 10.1002/(sici)1097-4652(199906)179:3<347::aid-jcp12>3.0.co;2-j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gonadotropin releasing hormone (GnRH) stimulates both transcription and secretion of the alpha subunit of the gonadotropins in a Ca2+-dependent fashion. In this study, we examined the role of Ca2+ as the signal coupling agonist occupancy of GnRH receptors to hormone secretion using the gonadotropic cell line alphaT3-1. Treatment of alphaT3-1 cells for 60 min with GnRH (0.1-100 nM), veratridine (50 microM) or high K+ (56 mM) was completely ineffective in stimulating secretion. The lack of effect occurred in spite of a robust, specific, and dose-dependent biphasic [Ca2+]i response consisting of a rapid peak sensitive to thapsigargin (200 nM) followed by a smaller plateau sensitive to the extracellular application of EGTA (5 mM). On the other hand, treatment of alphaT3-1 cells with the Ca2+ ionophore ionomycin resulted in a significant dose-dependent stimulation of secretion and [Ca2+]i responses comparable to those elicited by GnRH. Binding assays revealed the presence of Ins(1,4,5)P3 receptors (Kd = 3.2 nM, Bmax = 50.5 fmol/mg protein) but not ryanodine receptors in alphaT3-1 cell membranes. Together, these results show a functional uncoupling between the [Ca2+]i response and secretion in this cell line, suggesting that the increase in [Ca2+]i triggered by GnRH and depolarization may be necessary but not sufficient to stimulate exocytosis.
Collapse
Affiliation(s)
- C Trueta
- Neurobiology Center, National University of Mexico, Querétaro
| | | | | | | | | |
Collapse
|
15
|
Abstract
There are several lines of evidence that point to peptides participating in the regulation of LH and/or FSH levels by action at the pituitary. This evidence includes altered secretion of gonadotropins from the anterior pituitary cells or tissue in vitro when exposed to the peptide. Additionally, modification of GnRH-stimulated LH/FSH secretion has been observed. Furthermore, there is potential for a separately modulated interaction with the primed response. Another potential of action is by interaction among non-GnRH peptides on gonadotropin-regulating processes, although there are no good data available on this aspect. Other observations, consistent with a pituitary role for the peptides in modulation of LH, include detection of the peptides in portal blood, detection of high-affinity receptors or receptor mRNA in the pituitary, and detection of intrapituitary peptide or peptide mRNA in the pituitary. The modulation by steroids of both concentrations and type of activities provides a further level of physiological refinement. There is, however, some confusion regarding the involvement of these peptides in gonadotropin control. The reasons can be seen by considering aspects of investigations. There are experimental variations such as 1) species studied, e.g., NPY has been reported to have an effect on LH secretion from rat cells (168) but not on sheep anterior pituitary tissue (64), and substance P inhibits GnRH-stimulated release from rat cells (182) but potentiates the response in prepubertal porcine cells (92); 2) the steroidal conditions under which the study is performed, e.g., NPY has opposite effects in certain endocrine environments, augmenting GnRH-stimulated LH release in proestrus-like conditions (168), and inhibiting in metestrus-like environment (66); 3) the type of cell preparation, e.g., responsiveness to substance P might depend on whether cells in overnight culture were in separated or clustered state (91); 4) the time course considered, e.g., oxytocin that might induce marked LH release from pituitary cells after a longer length of incubation than GnRH requires (68); 5) length of exposure to peptide, e.g., endothelin that augmented or inhibited GnRH-stimulated LH release (50); 6) In addition, it is possible that the traditional endpoint selected in such studies, namely, observation of gonadotropin secretion, is not necessarily the most important for these peptides (56, 81, 117). Unfortunately, at this stage a definitive answer to the question "What do the peptides actually do?" cannot be provided and we remain tantalized by the glimpses of potential roles. Perhaps in a few years an updated review will be able to include a more complete answer. It is necessary for the full understanding of LH control that not only the properties of the peptides in isolation be characterized but also their interactions.
Collapse
Affiliation(s)
- J J Evans
- University Department of Obstetrics and Gynaecology, Christchurch School of Medicine, New Zealand.
| |
Collapse
|
16
|
Murray‐Mcintosh RP. Role of Pulsatility in Hormonal Action. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Sealfon SC. Synthesis, Internalization, Recycling, and Regulation of Peptide Hormone Receptors. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Pincas H, Forraï Z, Chauvin S, Laverrière JN, Counis R. Multiple elements in the distal part of the 1.2 kb 5'-flanking region of the rat GnRH receptor gene regulate gonadotrope-specific expression conferred by proximal domain. Mol Cell Endocrinol 1998; 144:95-108. [PMID: 9863630 DOI: 10.1016/s0303-7207(98)00149-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several lines of evidence indicate that the number of GnRH receptors (GnRH-R) and therefore, gonadotrope responsiveness to GnRH, is highly dependent upon the level of GnRH-R mRNA. To explore this aspect of regulation, we have isolated a 3.3 kb fragment encompassing the promoter region of the rat GnRH-R gene. Primer extension and RNase protection assays allowed the identification of five major transcriptional start sites located within the 110 bp region upstream of the translation start codon. Transfection experiments using the CAT reporter gene demonstrated that the 1261 bp 5' flanking region is required to direct high efficient expression in the gonadotrope-derived alphaT3-1 cell line thus contrasting with mouse in which the only 500 bp proximal sequence appeared to be sufficient. Another difference between rat and mouse was apparent in the 183 bp region of the rat promoter which induced a 3-fold stimulation of thymidine kinase promoter activity in both alphaT3-1 and CHO cells. Subsequent deletion analysis of the region residing between -1261 and -519 revealed the presence of multiple regulatory domains that contributed to the cell-specific activity. However, despite this efficiency in the context of the wild-type promoter, they failed to induce the activity of the minimal thymidine kinase (TK) promoter in the absence of the proximal 600 bp promoter region. Accordingly, a composite TK promoter containing the entire 1.2 kb promoter induced a 10-fold increase in the activity of the TK promoter in alphaT3-1 cells. Taken together these data suggest that distal regulatory regions are critical and require cooperation with proximal specific-promoter elements for activating basal R-GnRH gene expression in gonadotrope cells.
Collapse
Affiliation(s)
- H Pincas
- Endocrinologie Cellulaire et Moléculaire de la Reproduction, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique-URA 1449, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Cornea A, Janovick JA, Stanislaus D, Conn PM. Redistribution of G(q/11)alpha in the pituitary gonadotrope in response to a gonadotropin-releasing hormone agonist. Endocrinology 1998; 139:397-402. [PMID: 9421439 DOI: 10.1210/endo.139.1.5687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study, we took advantage of high-resolution multilaser confocal microscopy to examine the distribution of the alpha-subunit of the guanyl nucleotide binding protein subfamily G(q/11) (G(q/11)alpha). Dispersed cultures of pituitary cells were prepared from female weanling rats, fixed, permeabilized, and then stained with monoclonal antiserum (mouse) to the gonadotrope-specific form of secretogranin (SIIp), which was then tagged with Texas Red. Accordingly, the subpopulation of gonadotropes (approximately 15% of total cells) could be identified against a background of other pituitary cell types. G(q/11)alpha was localized with antiserum made in rabbit, then tagged with fluorescein. Hoechst 33258 nuclear stain was also used in some experiments for topological reference. The data indicate localization of the G(q/11)alpha in a cellular region near the plasma membrane and external to the border of the layer occupied by secretory granules. In the absence of activation, there were an average of six clusters of G(q/11)alpha in a section 1 microm thick and through the center of the cell. This corresponds to an average of 60 clusters per cell, assuming a mean gonadotrope diameter of 10 microm. Following continuous treatment with 0.1 microg/ml Buserelin, a metabolically stable GnRH agonist, the average number of clusters increased to 200/cell after 40 min and remained approximately constant for 120 min. This increase was blocked by the protein synthesis inhibitor, cycloheximide. In response to Buserelin, there was an additional increase in the number of clusters inside the cell in the area occupied by the secretory granules and in the perinuclear area. Prolonged (24 h) treatment with Buserelin, sufficient to provoke the onset of desensitization, did not significantly change total numbers of G(q/11)alpha clusters, although more were located in the peripheral compartment, an increase that occurred at the expense of the cytoplasmic compartment. Redistribution of the G(q/11)alpha family may be functionally significant, because this moiety may be rate limiting at the site of regulation of signal transduction.
Collapse
Affiliation(s)
- A Cornea
- Oregon Regional Primate Research Center, Beaverton 97006, USA
| | | | | | | |
Collapse
|
20
|
Steiner J, Kirsteins L, LaPaglia N, Lawrence A, Williams D, Emanuele N, Emanuele M. The effect of acute ethanol (EtOH) exposure on protein kinase C (PKC) activity in anterior pituitary. Alcohol 1997; 14:209-11. [PMID: 9160797 DOI: 10.1016/s0741-8329(96)00113-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alterations in the protein kinase C (PKC) pathway may interrupt anterior pituitary luteinizing hormone (LH) synthesis and/or secretion, which may impair normal reproductive function. Work by our laboratory and others has shown that EtOH has profound deleterious effects on the regulation of the hypothalamic-pituitary-gonadal (HPG) axis. The present study focuses on PKC translocation from the cytosol to the membrane of anterior pituitary after acute EtOH exposure. Serum levels of LH were measured at three time points (15, 30, and 90 min) after an IP injection of either saline or 3 g/kg EtOH in adult castrated male rats. LH levels dropped significantly (p < 0.03) in EtOH-injected compared to saline-injected control animals. In the same animals, EtOH significantly suppressed PKC localization at its active site at the pituitary cell membrane (p < 0.05). These findings suggest that the mechanism of EtOH's suppression of LH is mediated, at least in part, through a decrease in PKC translocation to the anterior pituitary cell membrane.
Collapse
Affiliation(s)
- J Steiner
- Department of Medicine, Loyola University of Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Evans JJ, Forrest-Owen W, McArdle CA. Oxytocin receptor-mediated activation of phosphoinositidase C and elevation of cytosolic calcium in the gonadotrope-derived alphaT3-1 cell line. Endocrinology 1997; 138:2049-55. [PMID: 9112404 DOI: 10.1210/endo.138.5.5138] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gonadotropes synthesize and secrete LH and FSH under the control of GnRH, which acts via phosphoinositidase C (PIC)-linked G protein coupled receptors. Additionally, gonadotropin released from the pituitary is influenced by oxytocin, a peptide that has been shown to play a role in generation of the preovulatory LH surge. Although oxytocin receptors are present in the pituitary, studies have identified their presence on lactotropes but not on gonadotropes, raising the question of which cells act as the direct target of oxytocin in gonadotrope regulation. In this study, we examined effects of oxytocin on alphaT3-1 cells, a gonadotrope-derived cell line. Oxytocin, vasopressin, and vasotocin each stimulated accumulation of [3H]inositol phosphates in cells prelabeled with [3H]inositol, indicating activation of PIC. The rank order of potency (oxytocin > vasotocin > vasopressin) and sensitivity to inhibition by oxytocin and vasopressin receptor antagonists, revealed the effect to be mediated by oxytocin-selective receptors. Like other PIC activators, these nonapeptides caused biphasic (spike-plateau) increases in the cytosolic Ca2+. The spike response to oxytocin and GnRH were both retained in Ca2+-free medium, reflecting mobilization of intracellular Ca2+, and were comparably reduced by thapsigargin, implying mobilization of Ca2+ from a shared thapsigargin-sensitive intracellular pool. Brief stimulation with oxytocin, vasopressin, or vasotocin prevented subsequent Ca2+ responses to oxytocin, but not to GnRH, suggesting that the oxytocin receptor undergoes rapid homologous desensitization and reinforcing the interpretation that the nonapeptides act via the same receptor type. Oxytocin did not increase Ca2+ in cells stimulated with GnRH, whereas GnRH caused a spike Ca2+ increase even in the presence of oxytocin, implying that different mechanisms of desensitization (Ca2+ pool depletion and receptor uncoupling) are operating for two distinct PIC-coupled receptors in these cells. The demonstration that oxytocin acts directly via PIC-linked, oxytocin-selective receptors to increase cytosolic Ca2+ in a gonadotrope-derived cell line is consistent with the possibility that oxytocin has a comparable effect on nonimmortalized gonadotropes.
Collapse
Affiliation(s)
- J J Evans
- Department of Obstetrics and Gynaecology, Christchurch School of Medicine, New Zealand.
| | | | | |
Collapse
|
22
|
Sealfon SC, Weinstein H, Millar RP. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr Rev 1997; 18:180-205. [PMID: 9101136 DOI: 10.1210/edrv.18.2.0295] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S C Sealfon
- Fishberg Research Center in Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|