1
|
Porru S, López-Cruz L, Carratalá-Ros C, Salamone JD, Acquas E, Correa M. Impact of Caffeine on Ethanol-Induced Stimulation and Sensitization: Changes in ERK and DARPP-32 Phosphorylation in Nucleus Accumbens. Alcohol Clin Exp Res 2021; 45:608-619. [PMID: 33471948 DOI: 10.1111/acer.14553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Caffeine is frequently consumed with ethanol to reduce the impairing effects induced by ethanol, including psychomotor slowing or incoordination. Both drugs modulate dopamine (DA)-related markers in accumbens (Acb), and Acb DA is involved in voluntary locomotion and locomotor sensitization. The present study determined whether caffeine can affect locomotion induced by acute and repeated ethanol administration in adult male CD-1 mice. METHODS Acute administration of caffeine (7.5 to 30.0 mg/kg) was evaluated for its effects on acute ethanol-induced (1.5 to 3.5 g/kg) changes in open-field horizontal locomotion, supported rearing, and rearing not supported by the wall. DA receptor-dependent phosphorylation markers were assessed: extracellular signal-regulated kinase (pERK), and dopamine-and cAMP-regulated phosphoprotein Mr32kDa phosphorylated at threonine 75 site (pDARPP-32-Thr75) in Acb core and shell. Acutely administered caffeine was also evaluated in ethanol-sensitized (1.5 g/kg) mice. RESULTS Acute ethanol decreased both types of rearing. Caffeine increased supported rearing but did not block ethanol -induced decreases in rearing. Both substances increased horizontal locomotion in a biphasic manner, and caffeine potentiated ethanol-induced locomotion. Although ethanol administered repeatedly induced sensitization of locomotion and unsupported rearing, acute administration of caffeine to ethanol-sensitized mice in an ethanol-free state resulted in blunted stimulant effects compared with those seen in ethanol-naïve mice. Ethanol increased pERK immunoreactivity in both subregions of the Acb, but coadministration with caffeine blunted this increase. There were no effects on pDARPP-32(Thr75) immunoreactivity. CONCLUSIONS The present results demonstrated that, after the first administration, caffeine potentiated the stimulating actions of ethanol, but did not counteract its suppressant or ataxic effects. Moreover, our results show that caffeine has less activating effects in ethanol-sensitized animals.
Collapse
Affiliation(s)
- Simona Porru
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain.,Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| | - Carla Carratalá-Ros
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Department of Psychology, University of Connecticut, Storrs, Connecticut, USA
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
2
|
Ledesma JC, Escrig MA, Pastor R, Aragon CM. The MAO-A inhibitor clorgyline reduces ethanol-induced locomotion and its volitional intake in mice. Pharmacol Biochem Behav 2014; 116:30-8. [DOI: 10.1016/j.pbb.2013.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/26/2013] [Accepted: 11/08/2013] [Indexed: 01/31/2023]
|
3
|
Ledesma JC, Aragon CMG. Acquisition and reconditioning of ethanol-induced conditioned place preference in mice is blocked by the H₂O₂ scavenger alpha lipoic acid. Psychopharmacology (Berl) 2013; 226:673-85. [PMID: 22885873 DOI: 10.1007/s00213-012-2831-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/26/2012] [Indexed: 12/30/2022]
Abstract
RATIONALE Hydrogen peroxide (H2O2) is the co-substrate used by catalase to metabolize ethanol to acetaldehyde in the brain. This centrally formed acetaldehyde has been involved in several ethanol-related behaviors. OBJECTIVES The present research evaluated the effect of the H2O2 scavenger, alpha lipoic acid (LA), on the acquisition and reconditioning of ethanol-induced conditioned place preference (CPP). METHODS Mice received pairings of a distinctive floor stimulus (CS+) associated with intraperitoneal injections of ethanol (2.5 g/kg). On alternate days, animals received pairings of a different floor stimulus (CS-) associated with saline injections. A different group of animals received pairings with the (CS-) associated with saline injections, and on alternate days they received LA (100 mg/kg) injected 30 min prior to ethanol (2.5 g/kg) administration paired with the (CS+). A preference test assessed the effect of LA on the acquisition of ethanol-induced CPP. A similar procedure was followed to study the effect of LA on the acquisition of cocaine- and morphine-induced CPP. A separate experiment evaluated the effect of LA on the reconditioning of ethanol-induced CPP. In addition, we investigated the consequence of LA administration on central H2O2 levels. RESULTS LA selectively blocked the acquisition of ethanol-induced CPP. Moreover, this compound impaired the reconditioning of ethanol-induced CPP. Additionally, we found that LA diminished H2O2 levels in the brain. CONCLUSIONS These data suggest that a decline in H2O2 availability by LA might impede the formation of brain ethanol-derived acetaldehyde by catalase, which results in an impairment of the rewarding properties of ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Area de Psicobiologia, Universitat Jaume I, Avenida Sos Baynat s/n, 12071, Castellón, Spain
| | | |
Collapse
|
4
|
Holstein SE, Li N, Eshleman AJ, Phillips TJ. GABAB receptor activation attenuates the stimulant but not mesolimbic dopamine response to ethanol in FAST mice. Behav Brain Res 2012; 237:49-58. [PMID: 22982185 DOI: 10.1016/j.bbr.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/20/2022]
Abstract
Neural processes influenced by γ-aminobutyric acid B (GABA(B)) receptors appear to contribute to acute ethanol sensitivity, including the difference between lines of mice bred for extreme sensitivity (FAST) or insensitivity (SLOW) to the locomotor stimulant effect of ethanol. One goal of the current study was to determine whether selection of the FAST and SLOW lines resulted in changes in GABA(B) receptor function, since the lines differ in sensitivity to the GABA(B) receptor agonist baclofen and baclofen attenuates the stimulant response to ethanol in FAST mice. A second goal was to determine whether the baclofen-induced reduction in ethanol stimulation in FAST mice is associated with an attenuation of the mesolimbic dopamine response to ethanol. In Experiment 1, the FAST and SLOW lines were found to not differ in GABA(B) receptor function (measured by baclofen-stimulated [(35)S]GTPγS binding) in whole brain or in several regional preparations, except in the striatum in one of the two replicate sets of selected lines. In Experiment 2, baclofen-induced attenuation of the locomotor stimulant response to ethanol in FAST mice was not accompanied by a reduction in dopamine levels in the nucleus accumbens, as measured by microdialysis. These data suggest that, overall, GABA(B) receptor function does not play an integral role in the genetic difference in ethanol sensitivity between the FAST and SLOW lines. Further, although GABA(B) receptors do modulate the locomotor stimulant response to ethanol in FAST mice, this effect does not appear to be due to a reduction in tonic dopamine signaling in the nucleus accumbens.
Collapse
Affiliation(s)
- Sarah E Holstein
- Dept of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
5
|
de Wit H, Phillips TJ. Do initial responses to drugs predict future use or abuse? Neurosci Biobehav Rev 2012; 36:1565-76. [PMID: 22542906 PMCID: PMC3372699 DOI: 10.1016/j.neubiorev.2012.04.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/09/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Individuals vary in their initial reactions to drugs of abuse in ways that may contribute to the likelihood of subsequent drug use. In humans, most drugs of abuse produce positive subjective states such as euphoria and feelings of well-being, which may facilitate repeated use. In nonhumans, many drugs initially increase locomotor activity and produce discriminative stimulus effects, both of which have been considered to be models of human stimulant and subjective states. Both humans and nonhumans vary in their sensitivity to early acute drug effects in ways that may predict future use or self-administration, and some of these variations appear to be genetic in origin. However, it is not known exactly how the initial responses to drugs in either humans or nonhumans relate to subsequent use or abuse. In humans, positive effects of drugs facilitate continued use of a drug while negative effects discourage use, and in nonhumans, greater genetic risk for drug intake is predicted by reduced sensitivity to drug aversive effects; but whether these initial responses affect escalation of drug use, and the development of dependence is currently unknown. Although early use of a drug is a necessary step in the progression to abuse and dependence, other variables may be of greater importance in the transition from use to abuse. Alternatively, the same variables that predict initial acute drug effects and early use may significantly contribute to continued use, escalation and dependence. Here we review the existing evidence for relations between initial direct drug effects, early use, and continued use. Ultimately, these relations can only be determined from systematic longitudinal studies with comprehensive assessments from early drug responses to progression of problem drug use. In parallel, additional investigation of initial responses in animal models as predictors of drug use will shed light on the underlying mechanisms.
Collapse
Affiliation(s)
- Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, MC3077, Chicago, IL 60637, United States.
| | | |
Collapse
|
6
|
Ledesma JC, Font L, Aragon CMG. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice. Drug Alcohol Depend 2012; 124:42-9. [PMID: 22261181 DOI: 10.1016/j.drugalcdep.2011.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/28/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. METHODS Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). RESULTS Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. CONCLUSIONS Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Àrea de Psicobiologia, Universitat Jaume I, Avda Sos Baynat, 12071 Castellón, Spain
| | | | | |
Collapse
|
7
|
Ledesma JC, Aragon CMG. α-Lipoic acid, a scavenging agent for H₂O₂, reduces ethanol-stimulated locomotion in mice. Psychopharmacology (Berl) 2012; 219:171-80. [PMID: 21769567 DOI: 10.1007/s00213-011-2407-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/13/2011] [Indexed: 12/30/2022]
Abstract
RATIONALE The main system of central ethanol oxidation is mediated by the enzyme catalase. By reacting with H(2)O(2), brain catalase forms compound I (the catalase-H(2)O(2) system), which is able to oxidize ethanol to acetaldehyde in the brain. Previous studies have demonstrated that pharmacological manipulations of brain catalase activity modulate the stimulant effects of ethanol in mice. However, the role of H(2)O(2) in the behavioral effects of ethanol has not yet been clearly addressed. OBJECTIVES In the present study, we investigated the effects of alpha-lipoic acid (LA), a scavenging agent for H(2)O(2), on ethanol-induced locomotor stimulation. METHODS CD-1 mice were pretreated with LA [0-100 mg/kg, intraperitoneally (IP)] 0-60 min prior to administration of ethanol (0-3.75 g/kg, IP). In another experiment, animals were pretreated with LA (0, 25, or 50 mg/kg, IP) 30 min before cocaine (10 mg/kg, IP), amphetamine (2 mg/kg, IP), or caffeine (25 mg/kg, IP). After these treatments the animals were placed in an open-field chamber and their locomotor activity was measured for 20 min. RESULTS LA 25, 50, and 100 mg/kg IP prevented ethanol-induced locomotor stimulation. LA did not affect the locomotor-stimulating effects of cocaine, amphetamine, and caffeine. Additionally, we demonstrated that LA prevents the inactivation of brain catalase by 3-amino-1,2,4-triazole, thus indicating that H(2)O(2) levels are reduced by LA. CONCLUSIONS These data support the idea that a decrease in cerebral H(2)O(2) production by LA administration inhibits ethanol-stimulated locomotion. This study suggests that the brain catalase-H(2)O(2) system, and by implication centrally formed acetaldehyde, plays a key role in the psychopharmacological effects of ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Area de Psicobiologia, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | | |
Collapse
|
8
|
Kitazawa M, Vasilevko V, Cribbs DH, LaFerla FM. Immunization with amyloid-beta attenuates inclusion body myositis-like myopathology and motor impairment in a transgenic mouse model. J Neurosci 2009; 29:6132-41. [PMID: 19439591 PMCID: PMC3049190 DOI: 10.1523/jneurosci.1150-09.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/08/2009] [Indexed: 02/07/2023] Open
Abstract
Inclusion body myositis (IBM), the most common muscle disease to afflict the elderly, causes slow but progressive degeneration of skeletal muscle and ultimately paralysis. Hallmark pathological features include T-cell mediated inflammatory infiltrates and aberrant accumulations of proteins, including amyloid-beta (Abeta), tau, ubiquitinated-proteins, apolipoprotein E, and alpha-synuclein in skeletal muscle. A large body of work indicates that aberrant Abeta accumulation contributes to the myodegeneration. Here, we investigated whether active immunization to promote clearance of Abeta from affected skeletal muscle fibers mitigates the IBM-like myopathological features as well as motor impairment in a transgenic mouse model. We report that active immunization markedly reduces intracellular Abeta deposits and attenuates the motor impairment compared with untreated mice. Results from our current study indicate that Abeta oligomers contribute to the myopathy process as they were significantly reduced in the affected skeletal muscle from immunized mice. In addition, the anti-Abeta antibodies produced in the immunized mice blocked the toxicity of the Abeta oligomers in vitro, providing a possible key mechanism for the functional recovery. These findings provide support for the hypothesis that Abeta is one of the key pathogenic components in IBM pathology and subsequent skeletal muscle degeneration.
Collapse
MESH Headings
- Amyloid beta-Peptides/analysis
- Amyloid beta-Peptides/immunology
- Amyloid beta-Protein Precursor/genetics
- Animals
- Cells, Cultured
- Disease Models, Animal
- Female
- Humans
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/immunology
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/immunology
- Immunotherapy, Active
- Male
- Mice
- Mice, Inbred C3H
- Mice, Transgenic
- Motor Activity
- Movement Disorders/immunology
- Movement Disorders/therapy
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/immunology
- Myoblasts
- Myositis, Inclusion Body/pathology
- Myositis, Inclusion Body/physiopathology
- Myositis, Inclusion Body/therapy
- Peptide Fragments/immunology
- Protease Nexins
- Receptors, Cell Surface/genetics
Collapse
Affiliation(s)
- Masashi Kitazawa
- Departments of Neurobiology and Behavior and
- Institute for Brain Aging and Dementia, University of California, Irvine, Irvine, California 92697-4545
| | - Vitaly Vasilevko
- Institute for Brain Aging and Dementia, University of California, Irvine, Irvine, California 92697-4545
| | - David H. Cribbs
- Neurology, and
- Institute for Brain Aging and Dementia, University of California, Irvine, Irvine, California 92697-4545
| | - Frank M. LaFerla
- Departments of Neurobiology and Behavior and
- Institute for Brain Aging and Dementia, University of California, Irvine, Irvine, California 92697-4545
| |
Collapse
|
9
|
Scibelli AC, Phillips TJ. Combined scopolamine and ethanol treatment results in a locomotor stimulant response suggestive of synergism that is not blocked by dopamine receptor antagonists. Alcohol Clin Exp Res 2008; 33:435-47. [PMID: 19120057 DOI: 10.1111/j.1530-0277.2008.00854.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Muscarinic acetylcholine receptors (mAChRs) are well positioned to mediate ethanol's stimulant effects. To investigate this possibility, we examined the effects of scopolamine, a receptor subtype nonselective mAChR antagonist, on ethanol-induced stimulation in genotypes highly sensitive to this effect of ethanol. We also investigated whether the dopamine D1-like receptor antagonist, SCH-23390 or the dopamine D2-like receptor antagonist, haloperidol, could block the extreme stimulant response found following co-administration of scopolamine and ethanol. METHODS Scopolamine (0, 0.0625, 0.125, 0.25, or 0.5 mg/kg) was given 10 minutes prior to saline or ethanol (0.75 to 2 g/kg) to female FAST (Experiment I) or DBA/2J (Experiment II) mice that were then tested for locomotion for 30 minutes. In Experiments III and IV, respectively, SCH-23390 (0, 0.015, or 0.03 mg/kg) was given 10 minutes prior, and haloperidol (0, 0.08, or 0.16 mg/kg) was given 2 minutes prior, to scopolamine (0 or 0.5 mg/kg), followed 10 minutes later by saline or ethanol (1.5 g/kg) and female DBA/2J mice were tested for locomotion for 30 minutes. RESULTS FAST and DBA/2J mice displayed a robust enhancement of the locomotor effects of ethanol following pretreatment with scopolamine that was suggestive of synergism. SCH-23390 had no effect on the response to the scopolamine + ethanol drug combination, nor did it attenuate ethanol- or scopolamine-induced locomotor activity. Haloperidol, while attenuating the effects of ethanol, was not able to block the effects of scopolamine or the robust response to the scopolamine-ethanol drug combination. CONCLUSIONS These results suggest that while muscarinic receptor antagonism robustly enhances acute locomotor stimulation to ethanol, dopamine receptors are not involved in the super-additive interaction of scopolamine and ethanol treatment. They also suggest that in addition to cautions regarding the use of alcohol when scopolamine is clinically prescribed due to enhanced sedative effects, enhanced stimulation may also be a concern.
Collapse
Affiliation(s)
- Angela C Scibelli
- Portland Alcohol Research Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
10
|
Radcliffe RA, Bludeau P, Deng XS, Erwin VG, Deitrich RA. Short-term selection for acute ethanol tolerance and sensitization from an F2 population derived from the high and low alcohol-sensitive selectively bred rat lines. Alcohol 2007; 41:557-66. [PMID: 18047909 DOI: 10.1016/j.alcohol.2007.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/18/2007] [Accepted: 10/01/2007] [Indexed: 11/30/2022]
Abstract
Previous studies have identified quantitative trait loci (QTL) in the inbred high and low alcohol-sensitive rat (IHAS1 and ILAS1) strains. The original development of the strains involved selection for ethanol sensitivity based on duration of the loss of the righting reflex (LORR) after a standard dose of ethanol. This paper confirms some of these QTL using a short-term selection procedure based on the difference between the blood ethanol level at LORR and regain of the righting response. An F(2) population of rats was developed by a reciprocal cross of IHAS1 and ILAS1 rats. Selection for five generations was carried out using delta-blood ethanol concentration (dBEC) as the selection trait, where dBEC=BECLR (BEC at loss of righting reflex)-BECRR (BEC at regain of righting reflex). The lines were labeled tolerant (TOL) or sensitive (SENS). Approximately one-third of the offspring for each generation in each line were genotyped using DNA markers that had been previously found to be linked to QTL on chromosomes 1, 2, 5, 12, and 13. By the fifth generation of selection, the lines showed a very large difference in dBEC, BECRR, and duration of LORR; BECLR showed little segregation during the selection, and latency to lose the righting reflex showed none. IHAS allele frequency increased in the SENS line for markers on chromosomes 1, 5, 12, and 13 while ILAS allele frequency increased in the TOL line. These results were in good agreement with the two previous QTL studies. On chromosome 2, the selection resulted in an accumulation of ILAS alleles in both lines. This study provides independent confirmation of the location of QTL on chromosomes 1, 5, 12, and 13 for ethanol sensitivity. It also suggests that genetic differences in duration of LORR are mediated primarily by the dBEC phenotype.
Collapse
Affiliation(s)
- Richard A Radcliffe
- Department of Pharmaceutical Sciences, University of Colorado at Denver and Health Sciences Center, Campus Box C238, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
11
|
Palmer AA, Lessov-Schlaggar CN, Ponder CA, McKinnon CS, Phillips TJ. Sensitivity to the locomotor-stimulant effects of ethanol and allopregnanolone: a quantitative trait locus study of common genetic influence. GENES BRAIN AND BEHAVIOR 2006; 5:506-17. [PMID: 17010097 DOI: 10.1111/j.1601-183x.2005.00198.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have suggested that common genetic mechanisms influence sensitivity to the locomotor-stimulant effects of ethanol and allopregnanolone. We conducted two quantitative trait locus (QTL) studies to identify chromosomal regions that harbor genes that influence locomotor response to ethanol (2 g/kg) and allopregnanolone (17 mg/kg) using F2 crosses between C57BL/6J and DBA/2J mice. Because our previous data from the BXD recombinant inbred strains had indicated that chromosome 2 contained QTL for sensitivity to the locomotor-stimulant effects of both ethanol and allopregnanolone, we also tested reciprocal chromosome 2 congenic strains for sensitivity to the locomotor-stimulant effects of both drugs. The F2 analysis for ethanol sensitivity identified significant QTL on chromosomes 1 and 2 and suggestive QTL on chromosomes 5 and 9. The analysis of the allopregnanolone F2 study identified suggestive QTL on chromosomes 3, 5 and 12. Suggestive evidence for a female-specific QTL on chromosome 2 was also found. The studies of congenic mouse strains indicated that both the congenic strains captured one or more QTL for sensitivity to the locomotor-stimulant effects of both ethanol (2 g/kg) and allopregnanolone (17 mg/kg). When Fisher's method was used to combine the P values for the RI, F2 and congenic studies of the chromosome 2 QTL, cumulative probability scores of 9.6 x 10(-15) for ethanol and 7.7 x 10(-7) for allopregnanolone were obtained. These results confirm the presence of QTL for ethanol and allopregnanolone sensitivity in a common region of chromosome 2 and suggest possible pleiotropic genetic influence on sensitivity to these drugs.
Collapse
Affiliation(s)
- A A Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
12
|
Rustay NR, Boehm SL, Schafer GL, Browman KE, Erwin VG, Crabbe JC. Sensitivity and tolerance to ethanol-induced incoordination and hypothermia in HAFT and LAFT mice. Pharmacol Biochem Behav 2001; 70:167-74. [PMID: 11566154 DOI: 10.1016/s0091-3057(01)00595-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Acute functional tolerance (AFT) manifests as rapid adaptation during a single ethanol exposure, leading to a decrease in the behavioral response to ethanol. In order to investigate the genetic and environmental components of the development of AFT, mice were selectively bred in replicate from HS/Ibg mice. High (HAFT) and low (LAFT) acute functional tolerance selected lines were bred to differ in the rate of development and magnitude of AFT to ethanol's intoxicating effects using a static dowel-balancing task. In the present set of experiments, HAFT and LAFT mice were tested for development of AFT on a fixed-speed rotarod using a protocol similar to that for which they were selected. HAFT mice developed greater AFT to ethanol than did LAFT mice. In a separate experiment, other mice from these lines were tested for initial sensitivity and the development of chronic tolerance to ethanol-induced hypothermia, and ethanol-induced incoordination in the grid test. Previous research has detected possible common genetic control of these phenotypes. No differences between lines were found in initial sensitivity to ethanol or in the development or magnitude of chronic tolerance in either test. These experiments show that genetic factors influencing the development of acute tolerance to ethanol-induced intoxication are at least partially distinct from those influencing initial sensitivity and the development of chronic tolerance to ethanol-induced hypothermia and incoordination. Furthermore, these experiments show that AFT measured by the stationary dowel generalizes to AFT measured by the fixed-speed rotarod.
Collapse
Affiliation(s)
- N R Rustay
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97201, USA.
| | | | | | | | | | | |
Collapse
|