1
|
Vetreno RP, Campbell J, Crews FT. A multicomponent ethanol response battery across a cumulative dose ethanol challenge reveals diminished adolescent rat ethanol responsivity relative to adults. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11888. [PMID: 38389807 PMCID: PMC10880770 DOI: 10.3389/adar.2023.11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 02/24/2024]
Abstract
Adolescence is a conserved developmental period associated with low alcohol responsivity, which can contribute to heavy drinking and development of an alcohol use disorder (AUD) later in life. To investigate ethanol responsivity between adolescent and adult rats, we developed an ethanol response battery (ERB) to assess acute ethanol responses across cumulative doses of ethanol during the rising phase of the blood ethanol curve. We tested the hypothesis that adolescent male and female rats would exhibit lower ethanol responsivity to a cumulative ethanol challenge relative to adults. Male and female adolescent (postnatal day [P]40) and adult (P85) Wistar rats underwent ERB assessment following consecutive doses of ethanol (i.e., 1.0, 1.0, and 1.0 g/kg) to produce cumulative ethanol doses of 0.0, 1.0, 2.0, and 3.0 g/kg. The ERB consisted of (1) the 6-point behavioral intoxication rating scale, (2) body temperature assessment, (3) tail blood collection, (4) accelerating rotarod assessment, (5) tilting plane assessment, and (6) loss of righting reflex (LORR) assessment. Across cumulative ethanol doses, adolescent and adult rats evidenced progressive changes in ERB measures. On the ERB, adolescent rats of both sexes evidenced (1) lower intoxication rating, (2) blunted hypothermic responses, particularly in females, (3) longer latencies to fall from the accelerating rotarod, and (4) less tilting plane impairment relative to adults despite comparable BECs. All adult rats, regardless of sex, displayed a LORR at the 3.0 g/kg cumulative ethanol dose while among the adolescent rats, only one male rat and no females showed the LORR. These data reveal decreased adolescent ethanol responsivity across body temperature, intoxication, balance, and coordination responses to a cumulative ethanol challenge as assessed using the novel ERB relative to adults. The results of this study suggest that adolescent-specific low ethanol responsivity may contribute to adolescent binge drinking and increased risk for development of an AUD.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeffrey Campbell
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Sirchi MM, Motaghi S, Hosseininasab NS, Abbasnejad M, Esmaili-Mahani S, Sepehri G. Age-related changes in glutamic acid decarboxylase 1 gene expression in the medial prefrontal cortex and ventral hippocampus of fear-potentiated rats subjected to isolation stress. Behav Brain Res 2023; 453:114630. [PMID: 37586565 DOI: 10.1016/j.bbr.2023.114630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Gamma-aminobutyric acid (GABA) plays a crucial role as a neurotransmitter in anxiety circuits, prominently in the hippocampus, amygdala, and prefrontal cortex. The synthesis of GABA in the central nervous system is primarily governed by glutamic acid decarboxylase 67 (GAD67). Aging is associated with emotional alterations, and isolation stress has been linked to increased anxiety. This study aimed to investigate the impact of aging on the gene expression of GAD67 (Gad1) in the medial prefrontal cortex (m PC) and ventral hippocampus (v Hip) of fear-potentiated rats subjected to isolation stress. To conduct the study, Wistar rats of different age groups 21-day-old (immature), 42-day-old (peri-adolescent), and 365-day-old (mature adult) were utilized. Each age level was categorized into four groups: 1) Control group - no pre-stressor, no maze, no drug, 2) Innate fear group (M) - no pre-stressor, maze, no drug, 3) Fear-potentiated group (IM) - isolation pre-stressor for 120 min, maze, no drug, and 4) Diazepam-treated group (IMD) - isolation pre-stressor for 120 min, maze, and diazepam administration. Following the tests, the (m PC) and (v Hip) regions were dissected, and Gad1 gene expression changes were assessed using Real-time PCR technique. The results revealed that, across all age groups, Gad1 expression in both the (m PC) and (v Hip) was significantly higher in the fear-potentiated groups (IM) compared to the control and innate fear (M) groups. Notably, in aged 365-day-old rats from the innate fear group (M), the expression of Gad1 in (v Hip) was also higher than that in the control group. Additionally, aged fear-potentiated rats exhibited elevated Gad1 gene expression in both structures compared to other age groups. These findings suggest that isolation stress before exposure to the elevated plus maze (EPM) can elevate Gad1 gene expression in both the (v Hip) and (m PC), and age may play a role in modulating its expression.
Collapse
Affiliation(s)
- Mahya Moradi Sirchi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sahel Motaghi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Narges Sadat Hosseininasab
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Keady J, Fisher M, Anderson E, LeMalenfant R, Turner J. Age-specific impacts of nicotine and withdrawal on hippocampal neuregulin signalling. Eur J Neurosci 2022; 56:4705-4719. [PMID: 35899607 PMCID: PMC9710301 DOI: 10.1111/ejn.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Smoking remains the leading cause of preventable death in the United States, with 87% of smokers starting before the age of 18. Age of initiation is a major predictive factor for smoking frequency and successful smoking cessation. People who initiate smoking during adolescences are 2.33 times more likely to become heavy smokers and half as likely to quit compared with smokers who started during adulthood. Additionally, schizophrenia, a disease state linked to altered neurodevelopment during adolescence, is a major predictive factor for smoking status. Smoking rates among people suffering from schizophrenia are between 60% and 90%. Interestingly, the Neuregulin Signalling Pathway (NSP), which plays an important role in neurodevelopment, is implicated in both schizophrenia and nicotine use disorder. Specifically, SNPS in neuregulin 3 (Nrg3) and Erb-B2 Receptor Tyrosine Kinase 4 (ErbB4) have been associated with smoking cessation outcomes and schizophrenia. Here, we examine the effects of chronic nicotine (18 mg/kg/day) and 24-h withdrawal on NSP gene expression in the hippocampus of adult (20-week-old) and adolescent (4-week-old) mice. We show that withdrawal from chronic nicotine decreased the expression of Erbb4 mRNA in the hippocampus of the adult mice but increased the expression of cytosolic Erbb4 protein in adolescent mice. Nrg3 mRNA and protein expression was not altered by chronic nicotine or withdrawal in the adult or adolescent cohorts, but Nrg3 mRNA and synaptosomal protein expression was lower in the adult withdrawal group when compared with their adolescent counterparts. These results highlight the age-specific effects of nicotine withdrawal on the NSP and may contribute to the lower quit rate and higher cigarette consumption of smokers who initiation during adolescences.
Collapse
Affiliation(s)
- Jack Keady
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| | - Miranda Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| | - Erin Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Rachel LeMalenfant
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Jill Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| |
Collapse
|
4
|
Seemiller LR, Logue SF, Gould TJ. Inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes from adolescence to adulthood. Pharmacol Biochem Behav 2022; 218:173429. [PMID: 35820468 PMCID: PMC11524176 DOI: 10.1016/j.pbb.2022.173429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Understanding the genetic basis of a predisposition for nicotine and alcohol use across the lifespan is important for public health efforts because genetic contributions may change with age. However, parsing apart subtle genetic contributions to complex human behaviors is a challenge. Animal models provide the opportunity to study the effects of genetic background and age on drug-related phenotypes, while controlling important experimental variables such as amount and timing of drug exposure. Addiction research in inbred, or isogenic, mouse lines has demonstrated genetic contributions to nicotine and alcohol abuse- and addiction-related behaviors. This review summarizes inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes including voluntary consumption/self-administration, initial sensitivity to the drug as measured by sedative, hypothermic, and ataxic effects, locomotor effects, conditioned place preference or place aversion, drug metabolism, and severity of withdrawal symptoms. This review also discusses how these alcohol and nicotine addiction-related phenotypes change from adolescence to adulthood.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Sheree F Logue
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
5
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
6
|
Patel R, Agrawal S, Jain NS. Stimulation of dorsal hippocampal histaminergic transmission mitigates the expression of ethanol withdrawal-induced despair in mice. Alcohol 2021; 96:1-14. [PMID: 34228989 DOI: 10.1016/j.alcohol.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Garnered literature points toward the role of the dorsal hippocampus (CA1) in ethanol withdrawal-induced responses, wherein a strong presence of the histaminergic system is also reported. Therefore, the present study investigated the effect of an enhanced CA1 histaminergic transmission on the expression of chronic ethanol withdrawal-induced despair in mice on the tail suspension test (TST). The results revealed that mice who were on an ethanol-fed diet (5.96%, v/v) for 8 days exhibited maximum immobility time on the TST, and decreased locomotion at 24 h post-ethanol withdrawal (10th day), indicating ethanol withdrawal-induced despair. Enhancement of CA1 histaminergic activity achieved by the treatment of intra-CA1 microinjection of histaminergic agents such as histamine (0.1, 10 μg/mouse, bilateral), the histamine precursor l-histidine (1, 10 μg/mouse, bilateral), the histamine neuronal releaser/H3 receptor antagonist thioperamide (2, 10 μg/mouse, bilateral), the histamine H1 receptor agonist FMPH (2, 6.5 μg/mouse, bilateral), or the H2 receptor agonist amthamine (0.1, 0.5 μg/mouse, bilateral) to ethanol-withdrawn mice, 10 min before the 24-h post-ethanol withdrawal time point, significantly alleviated the expression of ethanol withdrawal-induced despair in mice on the TST. On the other hand, only the pre-treatment of the histamine H1 receptor agonist FMPH (2, 6.5 μg/mouse, intra-CA1 bilateral) reversed the reduction in locomotor activity induced in ethanol-withdrawn mice, whereas other employed histaminergic agents were devoid of any effect on this behavior. Therefore, our findings indicate that an enhanced CA1 histaminergic transmission, probably via stimulation of CA1 postsynaptic histamine H1 or H2 receptor, could preclude the behavioral despair, while H1 stimulation affects motor deficit expressed after ethanol withdrawal.
Collapse
|
7
|
Wooden JI, Thompson KR, Guerin SP, Nawarawong NN, Nixon K. Consequences of adolescent alcohol use on adult hippocampal neurogenesis and hippocampal integrity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:281-304. [PMID: 34696876 DOI: 10.1016/bs.irn.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol is the most commonly used drug among adolescents. Their decreased sensitivity to self-regulating cues to stop drinking coincides with an enhanced vulnerability to negative outcomes of excessive drinking. In adolescents, the hippocampus is one brain region that is particularly susceptible to alcohol-induced neurodegeneration. While cell death is causal, alcohol effects on adult neurogenesis also impact hippocampal structure and function. This review describes what little is known about adolescent-specific effects of alcohol on adult neurogenesis and its relationship to hippocampal integrity. For example, alcohol intoxication inhibits neurogenesis persistently in adolescents but produces aberrant neurogenesis after alcohol dependence. Little is known, however, about the role of adolescent-born neurons in hippocampal integrity or the mechanisms of these effects. Understanding the role of neurogenesis in adolescent alcohol use and misuse is critical to our understanding of adolescent susceptibility to alcohol pathology and increased likelihood of developing alcohol problems in adulthood.
Collapse
Affiliation(s)
- J I Wooden
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - K R Thompson
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - S P Guerin
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - N N Nawarawong
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - K Nixon
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
8
|
Marsland P, Parrella A, Vore AS, Barney TM, Varlinskaya EI, Deak T. Male, but not female, Sprague Dawley rats display enhanced fear learning following acute ethanol withdrawal (hangover). Pharmacol Biochem Behav 2021; 208:173229. [PMID: 34246729 PMCID: PMC9204503 DOI: 10.1016/j.pbb.2021.173229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
The present studies investigated the effects of withdrawal from a single binge-like dose of ethanol (hangover) on fear conditioning in male and female Sprague Dawley rats. In Experiment 1, males and females were given 0 or 3.5 g/kg ethanol intraperitoneally (i.p.) and then conditioned to contextual fear 24 h post injection. Withdrawal from acute ethanol enhanced expression of the conditioned freezing response in males, but not in females. Experiment 2 demonstrated that in males, withdrawal from acute ethanol administered 24 h prior to conditioning enhanced contextual fear conditioning, but not auditory-cued fear conditioning. In Experiment 3, male and female rats were given 3.5 g/kg ethanol, and blood ethanol concentrations (BECs) were assessed at various time points for determination of ethanol clearance. Female rats cleared ethanol at a higher rate than males, with 10 h required for females and 14 for males to eliminate ethanol from their systems. Because females cleared ethanol faster than males, in Experiment 4, females were conditioned 18 h after ethanol administration to keep the interval between ethanol clearance and fear conditioning similar to that of males. Withdrawal from acute ethanol given 18 h prior to conditioning did not affect both contextual and auditory-cued fear conditioning in females. In summary, these results highlight sex differences in the impact of withdrawal from acute ethanol (hangover) on fear learning; suggesting that males are more sensitive to hangover-associated enhancement of negative affect than females.
Collapse
Affiliation(s)
- Paige Marsland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Allissa Parrella
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Thaddeus M Barney
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
9
|
Vore AS, Barney TM, Gano A, Varlinskaya EI, Deak T. Adolescent intermittent ethanol (AIE) produces sex specific alterations in adult neuroimmune gene expression and ethanol sensitivity that are independent of ethanol metabolism. Neuropharmacology 2021; 195:108635. [PMID: 34097948 DOI: 10.1016/j.neuropharm.2021.108635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023]
Abstract
The goal of the present studies was to determine long-lasting effects of adolescent intermittent ethanol (AIE), a rodent model of binge patterns of ethanol consumption, on (i) behavioral sensitivity to ethanol challenge in adulthood using the Loss of Righting Reflex (LORR) test; (ii) ethanol pharmacokinetics and ethanol-metabolizing enzyme expression when re-challenged with ethanol as adults; and (iii) induction of neuroimmune gene expression during an adult binge-like ethanol challenge. To evaluate the impact of AIE on ethanol sensitivity in adulthood, adult rats received a sedative ethanol dose of 3.5 g/kg and were tested for the LORR. Sexually dimorphic effects were observed, with AIE males showing more rapid recovery than vehicle exposed controls, an effect that was completely absent in females. Rats exposed to the same AIE procedure were challenged with 0.75, 1.5, or 3.0 g/kg i.p. ethanol in adulthood. Female rats with a history of AIE displayed a small increase in ethanol clearance rate when challenged with 0.75 g/kg, however no other significant differences in ethanol pharmacokinetics were noted. To assess persistent AIE-associated changes in neuroimmune gene expression, rats were challenged with 0 or 2.5 g/kg ethanol. Both male and female adult rats with a history of AIE displayed sensitized hippocampal IL-6 and IκBα gene expression in response to ethanol challenge. Changes in cytokine gene expression as well as ethanol sensitivity assessed by LORR were not shown to be the result of changes in ethanol pharmacokinetics and point to AIE altering other mechanisms capable of significantly altering the neuroimmune and behavioral response to ethanol.
Collapse
Affiliation(s)
- Andrew S Vore
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA.
| | - Thaddeus M Barney
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA
| | - Anny Gano
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
10
|
Glover EJ, Khan F, Clayton-Stiglbauer K, Chandler LJ. Impact of sex, strain, and age on blood ethanol concentration and behavioral signs of intoxication during ethanol vapor exposure. Neuropharmacology 2020; 184:108393. [PMID: 33221480 DOI: 10.1016/j.neuropharm.2020.108393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
Animal models of alcohol drinking and dependence are a critical resource for understanding the neurobiological mechanisms and development of more effective treatments for alcohol use disorder (AUD). Because most rat strains do not voluntarily consume large enough quantities of alcohol to adequately model heavy drinking, dependence, and withdrawal-related symptoms, researchers frequently turn to experimenter administered methods to investigate how prolonged and repeated exposure to large quantities of alcohol impacts brain and behavior. Vaporized ethanol is a common method used for chronically subjecting rodents to alcohol and has been widely used to model both binge and dependence-inducing heavy drinking patterns observed in humans. Rodent strain, sex, and age during exposure are all well-known to influence outcomes in experiments utilizing intraperitoneal or intragastric methods of repeated ethanol exposure. Yet, despite its frequent use, the impact of these variables on outcomes associated with ethanol vapor exposure has not been widely investigated. The present study analyzed data generated from over 700 rats across an eight-year period to provide a population-level assessment of variables influencing level of intoxication using vapor exposure. Our findings reveal important differences with respect to strain, sex, and age during ethanol exposure in the relationship between blood ethanol concentration and behavioral signs of intoxication. These data provide valuable scientific and practical insight for laboratories utilizing ethanol vapor exposure paradigms to model AUD in rats.
Collapse
Affiliation(s)
- Elizabeth J Glover
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA.
| | - Fauzan Khan
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| | - Kacey Clayton-Stiglbauer
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| | - L Judson Chandler
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| |
Collapse
|
11
|
Sgobbi RF, Nobre MJ. Differential effects of early exposure to alcohol on alcohol preference and blood alcohol levels in low- and high-anxious rats. Exp Brain Res 2020; 238:2753-2768. [DOI: 10.1007/s00221-020-05932-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/20/2020] [Indexed: 02/01/2023]
|
12
|
Treadmill Exercise Buffers Behavioral Alterations Related to Ethanol Binge-Drinking in Adolescent Mice. Brain Sci 2020; 10:brainsci10090576. [PMID: 32825478 PMCID: PMC7563508 DOI: 10.3390/brainsci10090576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
The binge-drinking pattern of EtOH consumption, which is frequently observed in adolescents, is known to induce several neurobehavioral alterations, but protection strategies against these impairments remain scarcely explored. We aimed to study the protective role of treadmill physical exercise on the deficits caused after repeated cycles of binge-like EtOH exposure in the cognition, motivation, exploration, and emotion of C57BL/6J mice from adolescence to adulthood. Animals were divided into four groups: control group, exercised group, EtOH group, and exercised + EtOH group (20% in tap water). The exercise was performed for 20 min, 5 days/week at 20 cm/s. Then, animals were submitted to several behavioral tasks. Compared to binge-drinking mice, the exercised + EtOH group exhibited diminished anxiolytic-related behaviors in the elevated plus-maze, enhanced exploratory activity in the open field, reduced preference for alcohol odor when another rewarding stimulus was present (social stimulus) and lower latency to start self-cleaning behaviors in the sucrose splash test. In contrast, other measurements such as habituation learning and working memory were not improved by exercise. Besides, exercise was not able to reduce alcohol consumption across the weeks. In conclusion, physical activity during adolescence and early adulthood could buffer certain neurobehavioral alterations associated with binge-drinking, despite not reducing the quantity of consumed alcohol.
Collapse
|
13
|
Guerin AA, Zbukvic IC, Luikinga SJ, Drummond KD, Lawrence AJ, Madsen HB, Kim JH. Extinction and drug-induced reinstatement of cocaine seeking following self-administration or conditioned place preference in adolescent and adult rats. Dev Psychobiol 2020; 63:125-137. [PMID: 32666555 DOI: 10.1002/dev.22017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Adolescence marks a particularly vulnerable period to developing substance use disorders, and people who start using drugs in adolescence are more likely to relapse. A limited number of studies have investigated age difference in relapse following re-exposure to the drug after a period of abstinence. Using a cocaine self-administration paradigm, we showed no age difference in acquisition or extinction of self-administration. Interestingly, adolescent rats displayed impaired cocaine-primed reinstatement of cocaine seeking. Using the same dose as that self-administered in the first experiment, we then investigated age differences in acquisition and extinction of conditioned place preference, as well as locomotor sensitization. While there were no differences in locomotor activity or acquisition of preference, adolescents failed to extinguish their preference, even when the number of extinction sessions was doubled from what adults received. Taken together, these results suggest that while cocaine has similar rewarding and reinforcing effects regardless of age, adolescents may attribute stronger salience to the drug-associated context. In addition, re-exposure to cocaine itself may not be a strong relapse trigger in adolescence. Overall, these findings suggest that we should focus more on alleviating drug-context salience compared to re-exposure to substance in order to reduce relapse of drug seeking in adolescents.
Collapse
Affiliation(s)
- Alexandre A Guerin
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Isabel C Zbukvic
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Sophia J Luikinga
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Katherine D Drummond
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Heather B Madsen
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
15
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Matthews DB, Schneider A, Kastner A, Scaletty S, Szenay R. I can't drink what I used to: The interaction between ethanol and the aging brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:79-99. [PMID: 31733668 DOI: 10.1016/bs.irn.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The population of most countries is increasing and the United Nations predicts that by the year 2050 those over the age of 60 years old will increase from 900 million individuals to approximately 2.1 billion individuals (United Nations, 2015). The increase in the number of older individuals will place a strain on many national health care systems making it important to investigate behaviors in the aged that may negatively impact general health in this demographic. Recent work has shown that older adults consume alcohol, often at levels that exceed the legal limit of intoxication. Unfortunately, consumption of high levels of ethanol in the older population is associated with many health consequences and may negatively impact the brain. Given ethical constraints found in many biomedical studies, animal models are needed to investigate the possible negative impact of high ethanol use in aged populations. However, few studies have investigated the effect of ethanol exposure in aged animals compared to ethanol exposure in younger animals and consequently the impact of ethanol in the aged population is not well understood. The current review summarizes initial work establishing the impact of ethanol in aged animals. The reviewed research studies support the working hypothesis that ethanol exposure produces significantly greater effects in aged animals compared to younger animals on many, if not all, behavioral tasks. In addition, the review proposes several initial, promising avenues of research to explore the neurobiological mechanisms that underly greater effects on ethanol-induced ataxia, cognition and sleep time. It is hoped that this effort will not only lead to a better understanding of behaviors impacted by ethanol in aged animals, but also improve the understanding brain mechanisms of the reported increased sensitivity to ethanol in the aged population.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States.
| | - Amelia Schneider
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Abigail Kastner
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Samantha Scaletty
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Rachel Szenay
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| |
Collapse
|
17
|
Towner TT, Fager M, Spear LP. Adolescent but not adult Sprague-Dawley rats display goal-directed responding after reward devaluation. Dev Psychobiol 2019; 62:368-379. [PMID: 31493315 DOI: 10.1002/dev.21912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 11/07/2022]
Abstract
Alcohol drinking is typically initiated in adolescence, with use sometimes escalating to problematic levels. Escalation of drinking is often associated with a shift in drinking motives, with goal-directed initial use later transitioning to more habitual behavior. This study assessed whether adolescents are more sensitive than adults to habit formation when indexed via insensitivity to reward devaluation in an operant task for food reward. Adolescent and adult Sprague-Dawley rats were trained on either a random ratio (RR) or random interval (RI) schedule before undergoing devaluation. Adolescent animals on both schedules increased the number of lever presses across all training days. In contrast, adults in the RR group increased the number of lever presses across days whereas RI adults remained relatively stable. In response to pellet devaluation, only adolescents exhibited reduced responding, suggestive of goal-directed behavior, whereas no age differences were evident following control (home cage chow) devaluation. Contrary to our hypothesis, adolescents (but not adults) displayed goal-directed responding indexed via sensitivity to reward devaluation. These findings suggest that adolescents are not necessarily more likely to develop habits than adults, and hence other factors may contribute to the greater propensity of adolescents to engage in and escalate alcohol use.
Collapse
|
18
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
19
|
Hosová D, Spear LP. Voluntary elevated ethanol consumption in adolescent Sprague-Dawley rats: Procedural contributors and age-specificity. Alcohol 2019; 78:1-12. [PMID: 30797832 DOI: 10.1016/j.alcohol.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 12/31/2022]
Abstract
Alcohol consumption is typically initiated during adolescence, with the incidence of binge drinking (production of blood ethanol concentrations [BECs] > 80 mg/dL) peaking during this stage of development. Studies in outbred rats investigating the consequences of adolescent ethanol exposure have typically employed intragastric, vapor, or intraperitoneal administration to attain BECs in this range. While these procedures have yielded valuable data regarding the consequences of adolescent exposure, they are varyingly stressful, administer the full dose at once, and/or bypass digestion. Consequently, we have worked to develop a model of voluntary elevated ethanol consumption in outbred adolescent Sprague-Dawley males and females, building on our previous work (see Hosová & Spear, 2017). This model utilizes daily 30-min access to 10% ethanol (v/v) in chocolate Boost® from postnatal day (P)28-41. Experiment 1 compared intake levels between (1a) animals given either ball-bearing or open-ended sipper tube tips for solution access, (1b) animals separated from their cage mate by wire mesh or isolated to a separate cage during solution access, (1c) animals given solution access with or without simultaneous access to banana-flavored sugar pellets, and (1d) animals that were either moderately food-restricted or fed ad libitum. Experiment 2 compared intake levels between animals given daily solution access and animals given access only on a "Monday-Wednesday-Friday" intermittent schedule. Experiment 3 compared adolescent and adult (P70-83) consumption using the finalized procedure as based on the results of Experiments 1 and 2. As in our previous work, consumptions well within the binge range were produced on some days, with high-consumption days typically followed by several days of lower consumption before increasing again. Sipper tube type (1a) and simultaneous pellet access (1c) did not affect consumption, while intake was significantly higher in non-isolated (1b), food-restricted (1d), daily-access (2), and adolescent (3) animals. However, although ethanol intake was higher in food-restricted animals, the resulting BECs were equivalent or higher in non-restricted animals, likely due to a hepatoprotective effect of moderate food restriction. Post-consumption intoxication ratings correlated with BECs and were notably higher in adults than adolescents, despite the lower voluntary consumption levels of adults, confirming prior reports of the attenuated sensitivity of adolescents to ethanol intoxication relative to adults. The final model utilized ball-bearing sipper tube tips to provide daily access to 10% ethanol in chocolate Boost® to free-feeding adolescent animals separated from their cage mate by wire mesh, with no food provided during solution access. This easy-to-implement model is effective in producing elevated voluntary ethanol consumption in adolescent, but not adult, Sprague-Dawley rats.
Collapse
Affiliation(s)
- Dominika Hosová
- Binghamton University, Binghamton, NY, 13902, United States.
| | | |
Collapse
|
20
|
Restraint stress exacerbates cell degeneration induced by acute binge ethanol in the adolescent, but not in the adult or middle-aged, brain. Behav Brain Res 2019; 364:317-327. [PMID: 30797854 DOI: 10.1016/j.bbr.2019.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022]
Abstract
Restraint stress (RS) induces neurotoxicity in the hippocampus, yet most of the studies have employed protracted RS (i.e., ≈ 21 days). Binge ethanol can induce brain toxicity, an effect affected by age. It could be postulated that RS may facilitate ethanol-induced neurotoxicity, perhaps to a greater extent in adolescent vs. older subjects. We analyzed whether adolescent, adult or middle-aged male rats exposed to five episodes of RS followed, 72h later, by binge ethanol (i.e., two administrations of 2.5 g/kg ethanol) exhibited hippocampal neurotoxicity. Adolescents, but not adult or middle-aged rats, exhibited sensitivity to the neurotoxic effects of ethanol at dorsal CA2, ventral CA3 and ventral DG, and a neurotoxic effect of stress at dorsal CA1. Moreover, the combination of ethanol and stress exerted a synergistic effect upon cell degeneration at ventral CA1 and CA2, which was restricted to adolescents. Ethanol also increased cell degeneration, irrespective of age or stress, in dorsal CA3 and in dorsal DG; and ethanol and stress had, across all ages, a synergistic effect upon cell degeneration at the dorsal CA1. The greater neurotoxic response of adolescents to ethanol, stress, or ethanol+stress can put them at risk for the development of alcohol problems.
Collapse
|
21
|
Lucia D, Burgess D, Cullen CL, Dorey ES, Rawashdeh O, Moritz KM. Periconceptional maternal alcohol consumption leads to behavioural changes in adult and aged offspring and alters the expression of hippocampal genes associated with learning and memory and regulators of the epigenome. Behav Brain Res 2019; 362:249-257. [PMID: 30633938 DOI: 10.1016/j.bbr.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Maternal alcohol consumption throughout pregnancy can result in long term behavioural deficits in offspring. However, less is known about the impact of alcohol during the periconceptional period (PC). The aim of this study was to examine the effect of PC ethanol (PC:EtOH) exposure on long term cognitive function; including memory and anxiety. Rats were exposed to a liquid diet containing ethanol (EtOH) (12.5% vol;vol) or a control diet from 4 days prior to mating until day 4 of pregnancy. Separate cohorts of animals were tested at 6 months (adult) or 15-18 months of age (aged). Offspring underwent a series of behavioural tests to assess anxiety, spatial and recognition memory. The hippocampus was collected, and mRNA expression of epigenetic modifiers and genes implicated in learning and memory were examined. PC:EtOH exposure resulted in a subtle anxiety like behaviour in adult female offspring with a significant reduction in directed exploring/head dipping behaviour during holeboard testing. In aged male offspring, PC:EtOH exposure resulted in a tendency for increased directed exploring/head dipping behaviour during holeboard testing. No differences between treatments were observed in the elevated plus maze. Aged female offspring exposed to PC:EtOH demonstrated short term spatial memory impairment (P < 0.05). PC:EtOH resulted in an upregulation of hippocampal mRNA expression of bdnf, grin2a and grin2b at 18 months of age along with increased expression of epigenetic modifiers (dnmt1, dnmt3a and hdac2). In conclusion, PC:EtOH can lead to sex specific anxiety-like behaviour and impairments in spatial memory and altered hippocampal gene expression.
Collapse
Affiliation(s)
- D Lucia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - D Burgess
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - C L Cullen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - E S Dorey
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - O Rawashdeh
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - K M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Child Health Research Centre, The University of Queensland, 4072, Australia.
| |
Collapse
|
22
|
Lee KM, Coelho MA, Class MA, Sern KR, Bocz MD, Szumlinski KK. mGlu5 Receptor Blockade Within the Nucleus Accumbens Shell Reduces Behavioral Indices of Alcohol Withdrawal-Induced Anxiety in Mice. Front Pharmacol 2018; 9:1306. [PMID: 30483137 PMCID: PMC6243038 DOI: 10.3389/fphar.2018.01306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Withdrawal from binge-drinking increases negative affect, coinciding with increased expression of the metabotropic glutamate receptor 5 (mGlu5) within the shell of the nucleus accumbens (AcbSh). Supporting a causal-effect relationship, systemic treatment with the mGlu5 receptor antagonist MTEP [3-((2-Methyl-4-thiazolyl)ethynyl)pyridine] is anxiolytic in binge-drinking adult and adolescent mice. Here, we employed neuropharmacological approaches to examine the functional relevance of AcbSh mGlu5 for behavioral indices of alcohol withdrawal-induced hyper-anxiety. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice consumed alcohol under modified Drinking-in-the-Dark procedures (10, 20, and 40% alcohol v/v) for 14 days. At an alcohol withdrawal time-point when mice manifest robust behavioral signs of hyper-anxiety (1 and 28 days withdrawal for adults and adolescents, respectively), mice were infused intra-AcbSh with 0, 1 or 10 μg MTEP and then affect was assayed in the light-dark shuttle box, marble-burying and forced swim tests. Brain tissue was collected to evaluate changes in Egr1 (early growth response protein 1) induction to index AcbSh neuronal activity. As expected, alcohol-experienced mice exhibited behavioral signs of hyper-emotionality. The anxiolytic effects of intra-AchSh MTEP were modest, but dose-dependent, and varied with age of drinking-onset. In adult-onset mice, only the 1 μg MTEP dose reduced withdrawal-induced hyper-anxiety, whereas only the higher dose was effective in adolescent-onset animals. MTEP reduced Egr1 expression within the AcbSh, irrespective of alcohol drinking history or age of drinking-onset. However, only the high MTEP dose reduced Egr1 expression in adolescent-onset binging mice. These results implicate AcbSh mGlu5 in modulating alcohol withdrawal-induced negative affect and suggest age differences in the neurobiological effects of alcohol withdrawal and behavioral responsiveness to mGlu5 blockade within the AcbSh.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michal A. Coelho
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - MacKayla A. Class
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kimberly R. Sern
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mark D. Bocz
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
23
|
Capri KM, Maroni MJ, Deane HV, Pierre A, Adams AM, Goncalves FL, Meyer AS, Seggio JA. Effects of time of day and constant light on the behavioral responses and ethanol metabolism to acute alcohol administration in male Black Swiss mice. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1543640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kimberly M. Capri
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Marissa J. Maroni
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Hannah V. Deane
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Audeline Pierre
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Abigail M. Adams
- Department of Mathematics, Bridgewater State University, Bridgewater, MA, USA
| | - Fatiana L. Goncalves
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Andrew S. Meyer
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Joseph A. Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| |
Collapse
|
24
|
Nguyen-Louie TT, Simmons AN, Squeglia LM, Alejandra Infante M, Schacht JP, Tapert SF. Earlier alcohol use onset prospectively predicts changes in functional connectivity. Psychopharmacology (Berl) 2018; 235:1041-1054. [PMID: 29306963 PMCID: PMC5871543 DOI: 10.1007/s00213-017-4821-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/21/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Half of all new alcohol initiates are between 12 and 17 years old. This is a period of intense neurodevelopment, including changes in functional connectivity patterns among higher-order function areas. It is crucial to understand how alcohol-related neurotoxicity may be influenced by drinking onset age. DESIGN This study prospectively examined the effects of age of first drink on frontoparietal context-dependent functional connectivity (cdFC) during a visual working memory task. Youth 13.5 years of age (SD = 1.2) underwent a neuropsychological and neuroimaging session before drinking initiation and at follow-up 6 years later. Hierarchical linear regressions examined if youth with earlier ages of onset for first and weekly alcohol use showed higher follow-up cdFC between the dorsolateral prefrontal cortex and posterior parietal cortex regions of interest and whole-brain exploratory regions, controlling for pre-drinking cdFC. Higher follow-up cdFC was hypothesized to be correlated with poorer performances in neuropsychological performance. RESULTS Exploratory whole-brain analyses showed that, as hypothesized, earlier ages of weekly drinking onset were associated with higher cdFC between the bilateral posterior cingulate and cortical and subcortical areas implicated in attentional processes, which was in turn associated with poorer performance on neuropsychological tasks of attention, ps < .05. No relationship between age of onset and cdFC between the two ROIs were found. CONCLUSION Earlier ages of weekly alcohol use initiation may adversely affect neurodevelopment by reducing developmentally appropriate integration of attentional circuits during a cognitive challenge. Delaying the onset of weekly alcohol use patterns well after early adolescence may reduce the risk for harm of alcohol use on the brain.
Collapse
Affiliation(s)
- Tam T Nguyen-Louie
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Alan N Simmons
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive (0603), La Jolla, San Diego, CA, 92093, USA
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M Alejandra Infante
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive (0603), La Jolla, San Diego, CA, 92093, USA
| | - Joseph P Schacht
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Susan F Tapert
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA.
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive (0603), La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
25
|
Figueiro FD, Bispo ACC, Guarido KL, Marianno P, Costa GDA, Morimoto HK, Salles MJS. Effect of alcoholic beverages on progeny and reproduction of mice. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000417141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Lee KM, Coelho MA, Class MA, Szumlinski KK. mGlu5-dependent modulation of anxiety during early withdrawal from binge-drinking in adult and adolescent male mice. Drug Alcohol Depend 2018; 184:1-11. [PMID: 29324247 PMCID: PMC6371787 DOI: 10.1016/j.drugalcdep.2017.10.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
Abstract
Binge alcohol-drinking elicits symptoms of negative affect such as anxiety upon cessation, which is a source of negative reinforcement for perpetuating this pattern of alcohol abuse. Binge-induced anxiety during early (24 h) withdrawal is associated with increased expression of metabotropic glutamate receptor 5 (mGlu5) within the nucleus accumbens shell (AcbSh) of adult male mice, but was unchanged in anxiety-resilient adolescents. Herein, we determined the role of mGlu5 signaling in withdrawal-induced anxiety via pharmacological manipulation using the mGlu5 negative allosteric modulator MTEP and the positive allosteric modulator CDPPB. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice binge-drank for 14 days under 3-bottle-choice procedures for 2 h/day; control animals drank water only. Approximately 24 h following the final alcohol presentation, animals were treated with 30 mg/kg IP MTEP, CDPPB, or vehicle and then tested, thirty minutes later, for behavioral signs of anxiety. Vehicle-treated binge-drinking adults exhibited hyperanxiety in all paradigms, while vehicle-treated binge-drinking adolescents did not exhibit withdrawal-induced anxiety. In adults, 30 mg/kg MTEP decreased alcohol-induced anxiety across paradigms, while 3 mg/kg MTEP was anxiolytic in adult water controls. CDPPB was modestly anxiogenic in both alcohol- and water-drinking mice. Adolescent animals showed minimal response to either CDPPB or MTEP, suggesting that anxiety in adolescence may be mGlu5-independent. These results demonstrate a causal role for mGlu5 in withdrawal-induced anxiety in adults and suggest age-related differences in the behavioral pharmacology of the negative reinforcing properties of alcohol.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - MacKayla A. Class
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA,Corresponding author at: University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA. (K.K. Szumlinski)
| |
Collapse
|
27
|
Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci 2018; 19:197-214. [PMID: 29467469 DOI: 10.1038/nrn.2018.10] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Per occasion, alcohol consumption is higher in adolescents than in adults in both humans and laboratory animals, with changes in the adolescent brain probably contributing to this elevated drinking. This Review examines the contributors to and consequences of the use of alcohol in adolescents. Human adolescents with a history of alcohol use differ neurally and cognitively from other adolescents; some of these differences predate the commencement of alcohol consumption and serve as potential risk factors for later alcohol use, whereas others emerge from its use. The consequences of alcohol use in human adolescents include alterations in attention, verbal learning, visuospatial processing and memory, along with altered development of grey and white matter volumes and disrupted white matter integrity. The functional consequences of adolescent alcohol use emerging from studies of rodent models of adolescence include decreased cognitive flexibility, behavioural inefficiencies and elevations in anxiety, disinhibition, impulsivity and risk-taking. Rodent studies have also showed that adolescent alcohol use can impair neurogenesis, induce neuroinflammation and epigenetic alterations, and lead to the persistence of adolescent-like neurobehavioural phenotypes into adulthood. Although only a limited number of studies have examined comparable measures in humans and laboratory animals, the available data provide evidence for notable across-species similarities in the neural consequences of adolescent alcohol exposure, providing support for further translational efforts in this context.
Collapse
Affiliation(s)
- Linda P Spear
- Developmental Exposure Alcohol Research Center (DEARC) and Behavioural Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
28
|
Morales M, McGinnis MM, Robinson SL, Chappell AM, McCool BA. Chronic Intermittent Ethanol Exposure Modulation of Glutamatergic Neurotransmission in Rat Lateral/Basolateral Amygdala is Duration-, Input-, and Sex-Dependent. Neuroscience 2017; 371:277-287. [PMID: 29237566 DOI: 10.1016/j.neuroscience.2017.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/27/2023]
Abstract
The basolateral amygdala (BLA) controls numerous behaviors, like anxiety and reward seeking, via the activity of glutamatergic principal neurons. These BLA neurons receive excitatory inputs primarily via two major anatomical pathways - the external capsule (EC), which contains afferents from lateral cortical structures, and the stria terminalis (ST), containing synapses from more midline brain structures. Chronic intermittent ethanol (CIE) exposure/withdrawal produces distinct alterations in these pathways. Specifically, 10 days of CIE (via vapor inhalation) increases presynaptic function at ST synapses and postsynaptic function at EC synapses. Given that 10-day CIE/withdrawal also increases anxiety-like behavior, we sought to examine the development of these alterations at these inputs using an exposure time-course in both male and female rats. Specifically, using 3, 7, and 10 days CIE exposure, we found that all three durations increase anxiety-like behavior in the elevated plus maze. At BLA synapses, increased presynaptic function at ST inputs required shorter exposure durations relative to post-synaptic alterations at EC inputs in both sexes. But, synaptic alterations in females required longer ethanol exposures compared to males. These data suggest that presynaptic alteration at ST-BLA afferents is an early neuroadaptation during repeated ethanol exposures. And, the similar patterns of presynaptic-then-postsynaptic facilitation across the sexes suggest the former may be required for the latter. These cooperative interactions may contribute to the increased anxiety-like behavior that is observed following CIE-induced withdrawal and may provide novel therapeutic targets to reverse withdrawal-induced anxiety.
Collapse
Affiliation(s)
- Melissa Morales
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA.
| | - Molly M McGinnis
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Stacey L Robinson
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Ann M Chappell
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| |
Collapse
|
29
|
Marco EM, Peñasco S, Hernández MD, Gil A, Borcel E, Moya M, Giné E, López-Moreno JA, Guerri C, López-Gallardo M, Rodríguez de Fonseca F. Long-Term Effects of Intermittent Adolescent Alcohol Exposure in Male and Female Rats. Front Behav Neurosci 2017; 11:233. [PMID: 29234279 PMCID: PMC5712378 DOI: 10.3389/fnbeh.2017.00233] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a serious public health concern that has a differential impact on individuals depending upon age and sex. Patterns of alcohol consumption have recently changed: heavy episodic drinking—known as binge-drinking—has become most popular among the youth. Herein, we aimed to investigate the consequences of intermittent adolescent alcohol consumption in male and female animals. Thus, Wistar rats were given free access to ethanol (20% in drinking water) or tap water for 2-h sessions during 3 days, and for an additional 4-h session on the 4th day; every week during adolescence, from postnatal day (pnd) 28–52. During this period, animals consumed a moderate amount of alcohol despite blood ethanol concentration (BEC) did not achieve binge-drinking levels. No withdrawal signs were observed: no changes were observed regarding anxiety-like responses in the elevated plus-maze or plasma corticosterone levels (pnd 53–54). In the novel object recognition (NOR) test (pnd 63), a significant deficit in recognition memory was observed in both male and female rats. Western Blot analyses resulted in an increase in the expression of synaptophysin in the frontal cortex (FC) of male and female animals, together with a decrease in the expression of the CB2R in the same brain region. In addition, adolescent alcohol induced, exclusively among females, a decrease in several markers of dopaminergic and serotonergic neurotransmission, in which epigenetic mechanisms, i.e., histone acetylation, might be involved. Taken together, further research is still needed to specifically correlate sex-specific brain and behavioral consequences of adolescent alcohol exposure.
Collapse
Affiliation(s)
- Eva M Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain
| | - Sara Peñasco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain.,Departamento de Fisiología Humana, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - María-Donina Hernández
- Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain.,Departamento de Fisiología Humana, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Anabel Gil
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Erika Borcel
- Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain
| | - Marta Moya
- Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain.,Departamento de Fisiología Humana, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
30
|
Somkuwar SS, Vendruscolo LF, Fannon MJ, Schmeichel B, Nguyen TB, Guevara J, Sidhu H, Contet C, Zorrilla EP, Mandyam CD. Abstinence from prolonged ethanol exposure affects plasma corticosterone, glucocorticoid receptor signaling and stress-related behaviors. Psychoneuroendocrinology 2017; 84. [PMID: 28647675 PMCID: PMC5557646 DOI: 10.1016/j.psyneuen.2017.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alcohol dependence is linked to dysregulation of the hypothalamic-pituitary-adrenal axis. Here, we investigated effects of repeated ethanol intoxication-withdrawal cycles (using chronic intermittent ethanol vapor inhalation; CIE) and abstinence from CIE on peak and nadir plasma corticosterone (CORT) levels. Irritability- and anxiety-like behaviors as well as glucocorticoid receptors (GR) in the medial prefrontal cortex (mPFC) were assessed at various intervals (2h-28d) after cessation of CIE. Results show that peak CORT increased during CIE, transiently decreased during early abstinence (1-11d), and returned to pre-abstinence levels during protracted abstinence (17-27d). Acute withdrawal from CIE enhanced aggression- and anxiety-like behaviors. Early abstinence from CIE reduced anxiety-like behavior. mPFC-GR signaling (indexed by relative phosphorylation of GR at Ser211) was transiently decreased when measured at time points during early and protracted abstinence. Further, voluntary ethanol drinking in CIE (CIE-ED) and CIE-naïve (ED) rats, and effects of CIE-ED and ED on peak CORT levels and mPFC-GR were investigated during acute withdrawal (8h) and protracted abstinence (28d). CIE-ED and ED increased peak CORT during drinking. CIE-ED and ED decreased expression and signaling of mPFC-GR during acute withdrawal, an effect that was reversed by systemic mifepristone treatment. CIE-ED and ED demonstrate robust reinstatement of ethanol seeking during protracted abstinence and show increases in mPFC-GR expression. Collectively, the data demonstrate that acute withdrawal from CIE produces robust alterations in GR signaling, CORT and negative affect symptoms which could facilitate excessive drinking. The findings also show that CIE-ED and ED demonstrate enhanced relapse vulnerability triggered by ethanol cues and these changes are partially mediated by altered GR expression in the mPFC. Taken together, transition to alcohol dependence could be accompanied by alterations in mPFC stress-related pathways that may increase negative emotional symptoms and increase vulnerability to relapse.
Collapse
Affiliation(s)
| | | | | | - Brooke Schmeichel
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Tran Bao Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | | | - Harpreet Sidhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA,Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Anesthesiology, University of California San Diego, CA, USA
| |
Collapse
|
31
|
Lee KM, Coehlo MA, Solton NR, Szumlinski KK. Negative Affect and Excessive Alcohol Intake Incubate during Protracted Withdrawal from Binge-Drinking in Adolescent, But Not Adult, Mice. Front Psychol 2017; 8:1128. [PMID: 28729845 PMCID: PMC5499357 DOI: 10.3389/fpsyg.2017.01128] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Binge-drinking is common in underage alcohol users, yet we know little regarding the biopsychological impact of binge-drinking during early periods of development. Prior work indicated that adolescent male C57BL6/J mice with a 2-week history of binge-drinking (PND28-41) are resilient to the anxiogenic effects of early alcohol withdrawal. Herein, we employed a comparable Drinking-in-the-Dark model to determine how a prior history of binge-drinking during adolescence (EtOHadolescents) influences emotionality (assayed with the light-dark box, marble burying test, and the forced swim test) and the propensity to consume alcohol in later life, compared to animals without prior drinking experience. For additional comparison, adult mice (EtOHadults) with comparable drinking history (PND56-69) were subdivided into groups tested for anxiety/drinking either on PND70 (24 h withdrawal) or PND98 (28 days withdrawal). Tissue from the nucleus accumbens shell (AcbSh) and central nucleus of the amygdala (CeA) was examined by immunoblotting for changes in the expression of glutamate-related proteins. EtOHadults exhibited some signs of hyperanxiety during early withdrawal (PND70), but not during protracted withdrawal (PND98). In contrast, EtOHadolescents exhibited robust signs of anxiety-l and depressive-like behaviors when tested as adults on PND70. While all alcohol-experienced animals subsequently consumed more alcohol than mice drinking for the first time, alcohol intake was greatest in EtOHadolescents. Independent of drinking age, the manifestation of withdrawal-induced hyperanxiety was accompanied by reduced Homer2b expression within the CeA and increased Group1 mGlu receptor expression within the AcbSh. The present data provide novel evidence that binge-drinking during adolescence produces a state characterized by profound negative affect and excessive alcohol consumption that incubates with the passage of time in withdrawal. These data extend our prior studies on the effects of subchronic binge-drinking during adulthood by demonstrating that the increase in alcoholism-related behaviors and glutamate-related proteins observed in early withdrawal dissipate with the passage of time. Our results to date highlight a critical interaction between the age of binge-drinking onset and the duration of alcohol withdrawal in glutamate-related neuroplasticity within the extended amygdala of relevance to the etiology of psychopathology, including pathological drinking, in later life.
Collapse
Affiliation(s)
- Kaziya M Lee
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Michal A Coehlo
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Noah R Solton
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States.,Department of Molecular, Cellular and Developmental Biology and The Neuroscience Research Institute, University of California, Santa Barbara, Santa BarbaraCA, United States
| |
Collapse
|
32
|
Gelineau RR, Arruda NL, Hicks JA, Monteiro De Pina I, Hatzidis A, Seggio JA. The behavioral and physiological effects of high-fat diet and alcohol consumption: Sex differences in C57BL6/J mice. Brain Behav 2017; 7:e00708. [PMID: 28638713 PMCID: PMC5474711 DOI: 10.1002/brb3.708] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Animal studies can be a great tool to investigate sex differences in a variety of different ways, including behavioral and physiological responses to drug treatments and different "lifestyle variables" such as diets. Consumption of both high-fat diets and alcohol is known to affect anxiety behaviors and overall health. This project investigated how high-fat diet and alcohol access and its combination affected the behavior and physiology of male and female C57BL/6J mice. METHOD Mice were separated into three food groups: high-fat diet, 10% fat diet, and regular chow, and each group was paired with either water or 10% alcohol. Behavioral assays included diet and alcohol preference, light-dark box, open field, and feeding and drinking measurements. Physiological measures included glucose tolerance tests and measurement of brain-derived neurotrophic factor, insulin, and leptin levels. RESULTS Females and males differed in the open field, as male mice decreased activity, while females increased activity when consuming high-fat diet. While females consumed more ethanol than males, alcohol consumption was able to improve glucose tolerance and increase anxiety in both sexes. Lastly, females were more resistant to the physiological changes caused by high-fat diet than males, as females consuming high-fat diet exhibited decreased insulin secretion, less change to brain-derived neurotrophic factor levels, and better glucose tolerance than males consuming high-fat diet. CONCLUSION These results suggest that the response to high-fat diet and alcohol consumption is sex dependent and that males are more affected both behaviorally and physiologically by high-fat diet compared to females.
Collapse
Affiliation(s)
- Rachel R Gelineau
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Nicole L Arruda
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Jasmin A Hicks
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | | | - Aikaterini Hatzidis
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Joseph A Seggio
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| |
Collapse
|
33
|
Vore AS, Doremus-Fitzwater T, Gano A, Deak T. Adolescent Ethanol Exposure Leads to Stimulus-Specific Changes in Cytokine Reactivity and Hypothalamic-Pituitary-Adrenal Axis Sensitivity in Adulthood. Front Behav Neurosci 2017; 11:78. [PMID: 28522965 PMCID: PMC5415566 DOI: 10.3389/fnbeh.2017.00078] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Adolescent alcohol use comprises a significant public health concern and is often characterized by binge-like consumption patterns. While ethanol exposure in adulthood has been shown to alter the stress response, including the Hypothalamic–Pituitary–Adrenal (HPA) axis, few studies have examined whether binge-like ethanol exposure during adolescence results in enduring changes in HPA axis sensitivity in adulthood. In the present studies, adolescent Sprague-Dawley rats were given intragastric (i.g.) intubations of ethanol (4 g/kg) or vehicle once per day for three consecutive days, beginning on postnatal day (P) 30 (±1). This exposure was followed by a 2-day period of rest/withdrawal. Rats received a total of either two (Experiments 1, 2 and 3) or four (Experiment 4) cycles of ethanol exposure and were subsequently allowed to age normally until adulthood. In Experiment 1, adult, (P71–75), ethanol- or vehicle-exposed rats received a 60 min restraint stress challenge. In Experiment 2, rats received a 50 μg/kg injection of lipopolysaccharide (LPS). In Experiment 3, rats received a challenge of 2.5 g/kg ethanol (intraperitoneally; i.p.). In Experiment 4, male and female ethanol- or vehicle- exposed rats received a 50 μg/kg injection of LPS. In all experiments, blood samples were collected for later assessment of corticosterone (CORT), blood ethanol concentrations (BECs), and the cellular fraction of blood was analyzed for cytokine gene expression. As expected, all three challenges led to a time-dependent surge in CORT. Gene expression analyses of cytokines (Interleukin [IL]-6, IL-1β, and Tumor necrosis factor alpha [TNFα]) from the cellular fraction of blood revealed unique, time-dependent patterns of cytokine expression depending upon the nature of the adult challenge incurred (restraint, LPS, or EtOH). Importantly, adolescent ethanol exposure led to attenuated restraint and LPS-induced cytokine expression in males, whereas female rats displayed an absence of cytokine alterations, and a tendency toward heightened HPA axis reactivity. These findings suggest that adolescent ethanol exposure may cause lasting alterations in cytokine regulation and HPA axis sensitivity that (a) persist into adulthood; (b) may vary depending on the nature of the challenge incurred during adulthood; and that (c) are sex-specific.
Collapse
Affiliation(s)
- Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton UniversityBinghamton, NY, USA
| | | | - Anny Gano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton UniversityBinghamton, NY, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton UniversityBinghamton, NY, USA
| |
Collapse
|
34
|
Lárraga A, Belluzzi JD, Leslie FM. Nicotine Increases Alcohol Intake in Adolescent Male Rats. Front Behav Neurosci 2017; 11:25. [PMID: 28275339 PMCID: PMC5319966 DOI: 10.3389/fnbeh.2017.00025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Use of alcohol and tobacco, the two most concurrently abused drugs, typically first occurs during adolescence. Yet, there have been no systematic analyses of ethanol (EtOH) and nicotine (Nic) interactions during adolescence. Recent animal studies report that kappa-opioid (KOR) receptor activation mediates age differences in drug reinforcement. Our hypothesis is that concurrent self-administration of EtOH and Nic will be greater in adolescent rats because of age differences in KOR function. Furthermore, exposure to alcohol and nicotine during adolescence has been reported to increase EtOH intake in adulthood. We performed a longitudinal animal study and hypothesized adolescent rats allowed to self-administer nicotine would drink more alcohol as adults. Methods: Adolescent, postnatal day (P)32, and adult (P90) male and female Sprague-Dawley rats were allowed to self-administer EtOH, Nic, or a combination of both, EtOH+Nic, in an intravenous self-administration paradigm. The role of KOR was pharmacologically evaluated with the KOR antagonist, norbinaltorphamine (norBNI) and with the KOR agonist, U50,488H. Alcohol drinking was subsequently evaluated with male rats in a drinking in the dark (DID), 2-bottle choice test. Results: Concurrent Nic increased EtOH intake in adolescent males, but not in adults or females. Pharmacological blockade of KOR with norBNI robustly increased EtOH+Nic self-administration in adult male rats, but had no effect with female rats. Lastly, in our longitudinal study with male rats, we found prior self-administration of Nic or EtOH+Nic during adolescence increased subsequent oral EtOH intake, whereas prior self-administration of EtOH alone in adults increased subsequent EtOH drinking. Conclusions: There are major age- and sex-differences in the reinforcing effects of EtOH+Nic. Adolescent males are sensitive to the reinforcing interactions of the two drugs, whereas this effect is inhibited by KOR activation in male adults. Nicotine self-administration in adolescent males also increased subsequent oral EtOH intake. These findings suggest that brain mechanisms underlying the reinforcing effects of EtOH and nicotine are both age- and sex-dependent, and that tobacco or e-cigarette use may increase the vulnerability of teenage boys to alcohol abuse.
Collapse
Affiliation(s)
- Armando Lárraga
- Department of Pharmacology, University of California Irvine, CA, USA
| | - James D Belluzzi
- Department of Pharmacology, University of California Irvine, CA, USA
| | - Frances M Leslie
- Department of Pharmacology, University of CaliforniaIrvine, CA, USA; Department of Anatomy and Neurobiology, University of CaliforniaIrvine, CA, USA
| |
Collapse
|
35
|
Dir AL, Bell RL, Adams ZW, Hulvershorn LA. Gender Differences in Risk Factors for Adolescent Binge Drinking and Implications for Intervention and Prevention. Front Psychiatry 2017; 8:289. [PMID: 29312017 PMCID: PMC5743668 DOI: 10.3389/fpsyt.2017.00289] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022] Open
Abstract
Alcohol use, particularly binge drinking (BD), is a major public health concern among adolescents. Recent national data show that the gender gap in alcohol use is lessening, and BD among girls is rising. Considering the increase in BD among adolescent girls, as well as females' increased risk of experiencing more severe biopsychosocial negative effects and consequences from BD, the current review sought to examine gender differences in risk factors for BD. The review highlights gender differences in (1) developmental-related neurobiological vulnerability to BD, (2) psychiatric comorbidity and risk phenotypes for BD, and (3) social-related risk factors for BD among adolescents, as well as considerations for BD prevention and intervention. Most of the information gleaned thus far has come from preclinical research. However, it is expected that, with recent advances in clinical imaging technology, neurobiological effects observed in lower mammals will be confirmed in humans and vice versa. A synthesis of the literature highlights that males and females experience unique neurobiological paths of development, and although there is debate regarding the specific nature of these differences, literature suggests that these differences in turn influence gender differences in psychiatric comorbidity and risk for BD. For one, girls are more susceptible to stress, depression, and other internalizing behaviors and, in turn, these symptoms contribute to their risk for BD. On the other hand, males, given gender differences across the lifespan as well as gender differences in development, are driven by an externalizing phenotype for risk of BD, in part, due to unique paths of neurobiological development that occur across adolescence. With respect to social domains, although social and peer influences are important for both adolescent males and females, there are gender differences. For example, girls may be more sensitive to pressure from peers to fit in and impress others, while male gender role stereotypes regarding BD may be more of a risk factor for boys. Given these unique differences in male and female risk for BD, further research exploring risk factors, as well as tailoring intervention and prevention, is necessary. Although recent research has tailored substance use intervention to target males and females, more literature on gender considerations in treatment for prevention and intervention of BD in particular is warranted.
Collapse
Affiliation(s)
- Allyson L Dir
- Department of Pediatric Adolescent Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary W Adams
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Leslie A Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
36
|
Lee KM, Coelho MA, McGregor HA, Solton NR, Cohen M, Szumlinski KK. Adolescent Mice Are Resilient to Alcohol Withdrawal-Induced Anxiety and Changes in Indices of Glutamate Function within the Nucleus Accumbens. Front Cell Neurosci 2016; 10:265. [PMID: 27917110 PMCID: PMC5114265 DOI: 10.3389/fncel.2016.00265] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Binge-drinking is the most prevalent form of alcohol abuse and while an early life history of binge-drinking is a significant risk factor for subsequent alcoholism and co-morbid affective disorders, relatively little is known regarding the biobehavioral impact of binge-drinking during the sensitive neurodevelopmental period of adolescence. In adult mice, a month-long history of binge-drinking elicits a hyper-glutamatergic state within the nucleus accumbens (Acb), coinciding with hyper-anxiety. Herein, we employed a murine model of binge-drinking to determine whether or not: (1) withdrawal-induced changes in brain and behavior differ between adult and adolescent bingers; and (2) increased behavioral signs of negative affect and changes in Acb expression of glutamate-related proteins would be apparent in adult mice with less chronic binge-drinking experience (14 days, approximating the duration of mouse adolescence). Adult and adolescent male C57BL/6J mice were subjected to a 14-day binge-drinking protocol (5, 10, 20 and 40% alcohol (v/v) for 2 h/day), while age-matched controls received water. At 24 h withdrawal, half of the animals from each group were assayed for negative affect, while tissue was sampled from the shell (AcbSh) and core (AcbC) subregions of the remaining mice for immunoblotting analyses. Adult bingers exhibited hyper-anxiety when tested for defensive marble burying. Additionally, adult bingers showed increased mGlu1, mGlu5, and GluN2b expression in the AcbSh and PKCε and CAMKII in the AcbC. Compared to adults, adolescent mice exhibited higher alcohol intake and blood alcohol concentrations (BACs); however, adolescent bingers did not show increased anxiety in the marble-burying test. Furthermore, adolescent bingers also failed to exhibit the same alcohol-induced changes in mGlu and kinase protein expression seen in the adult bingers. Irrespective of age, bingers exhibited behavioral hyperactivity in the forced swim test (FST) compared to water drinkers, which was paralleled by an increase in AcbC levels of GluN2b. Thus, a 2-week period of binge-drinking is sufficient to produce a hyper-anxious state and related increases in protein indices of Acb glutamate function. In contrast, adolescents were resilient to many of the effects of early alcohol withdrawal and this attenuated sensitivity to the negative consequences of binge drinking may facilitate greater alcohol intake in adolescent drinkers.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Hadley A. McGregor
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Noah R. Solton
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Matan Cohen
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa BarbaraSanta Barbara, CA, USA
| |
Collapse
|
37
|
Doremus-Fitzwater TL, Spear LP. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 2016; 70:121-134. [PMID: 27524639 PMCID: PMC5612441 DOI: 10.1016/j.neubiorev.2016.08.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA.
| | - Linda P Spear
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| |
Collapse
|
38
|
Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior. Pharmacol Rev 2016; 68:1074-1109. [PMID: 27677720 PMCID: PMC5050442 DOI: 10.1124/pr.115.012138] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative-motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity to alcohol into adulthood. Together, these findings support the hypothesis that adolescent binge drinking leads to long-lasting changes in the adult brain that increase risks of adult psychopathology, particularly for alcohol dependence.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Margaret A Broadwater
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
39
|
Carroll ME, Lynch WJ. How to study sex differences in addiction using animal models. Addict Biol 2016; 21:1007-29. [PMID: 27345022 PMCID: PMC4970981 DOI: 10.1111/adb.12400] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/17/2016] [Accepted: 02/27/2016] [Indexed: 11/30/2022]
Abstract
The importance of studying sex as a biological variable in biomedical research is becoming increasingly apparent. There is a particular need in preclinical studies of addiction to include both sexes, as female animals are often excluded from studies, leaving large gaps in our knowledge of not only sex differences and potential prevention and treatment strategies but also with regard to the basic neurobiology of addiction. This review focuses on methodology that has been developed in preclinical studies to examine sex differences in the behavioral aspects and neurobiological mechanisms related to addiction across the full range of the addiction process, including initiation (acquisition), maintenance, escalation, withdrawal, relapse to drug seeking and treatment. This review also discusses strategic and technical issues that need to be considered when comparing females and males, including the role of ovarian hormones and how sex differences interact with other major vulnerability factors in addiction, such as impulsivity, compulsivity and age (adolescent versus adult). Novel treatments for addiction are also discussed, such as competing non-drug rewards, repurposed medications such as progesterone and treatment combinations. Practical aspects of conducting research comparing female and male animals are also considered. Making sex differences a point of examination requires additional effort and consideration; however, such studies are necessary given mounting evidence demonstrating that the addiction process occurs differently in males and females. These studies should lead to a better understanding of individual differences in the development of addiction and effective treatments for males and females.
Collapse
Affiliation(s)
- Marilyn E. Carroll
- Marilyn E. Carroll, Department of Psychiatry, University of Minnesota, MMC 392, Minneapolis, MN, USA
| | - Wendy J. Lynch
- Wendy J. Lynch, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, PO Box 801402, Charlottesville, VA
| |
Collapse
|
40
|
Effects of Repeated Stress on Age-Dependent GABAergic Regulation of the Lateral Nucleus of the Amygdala. Neuropsychopharmacology 2016; 41:2309-23. [PMID: 26924679 PMCID: PMC4946062 DOI: 10.1038/npp.2016.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
The adolescent age is associated with lability of mood and emotion. The onset of depression and anxiety disorders peaks during adolescence and there are differences in symptomology during adolescence. This points to differences in the adolescent neural circuitry that underlies mood and emotion, such as the amygdala. The human adolescent amygdala is more responsive to evocative stimuli, hinting to less local inhibitory regulation of the amygdala, but this has not been explored in adolescents. The amygdala, including the lateral nucleus (LAT) of the basolateral amygdala complex, is sensitive to stress. The amygdala undergoes maturational processes during adolescence, and therefore may be more vulnerable to harmful effects of stress during this time period. However, little is known about the effects of stress on the LAT during adolescence. GABAergic inhibition is a key regulator of LAT activity. Therefore, the purpose of this study was to test whether there are differences in the local GABAergic regulation of the rat adolescent LAT, and differences in its sensitivity to repeated stress. We found that LAT projection neurons are subjected to weaker GABAergic inhibition during adolescence. Repeated stress reduced in vivo endogenous and exogenous GABAergic inhibition of LAT projection neurons in adolescent rats. Furthermore, repeated stress decreased measures of presynaptic GABA function and interneuron activity in adolescent rats. In contrast, repeated stress enhanced glutamatergic drive of LAT projection neurons in adult rats. These results demonstrate age differences in GABAergic regulation of the LAT, and age differences in the mechanism for the effects of repeated stress on LAT neuron activity. These findings provide a substrate for increased mood lability in adolescents, and provide a substrate by which adolescent repeated stress can induce distinct behavioral outcomes and psychiatric symptoms.
Collapse
|
41
|
Effects of age, but not sex, on elevated startle during withdrawal from acute morphine in adolescent and adult rats. Behav Pharmacol 2016; 26:485-8. [PMID: 26154436 DOI: 10.1097/fbp.0000000000000151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Investigations into animal models of drug withdrawal have largely found that emotional signs of withdrawal (e.g. anxiety, anhedonia, and aversion) in adolescents are experienced earlier and less severely than in their adult counterparts. The majority of these reports have examined withdrawal from ethanol or nicotine. To expand our knowledge about the emotional withdrawal state in adolescent rats, we used potentiation of the acoustic startle reflex after an acute dose of morphine (10 mg/kg, subcutaneously) as a measure of opiate withdrawal. Startle was measured at four time points after morphine injection (2, 3, 4, and 5 h) in 28-day-old and 90-day-old male and female rats. The results of this experiment revealed that peak potentiation of the startle reflex occurred at 3 h in the adolescent rats and at 5 h in the adult rats, and that the magnitude of withdrawal was larger in the adults. No sex differences were observed. Overall, these results affirm that, similar to withdrawal from ethanol and nicotine, opiate withdrawal signs are less severe in adolescent than in adult rats.
Collapse
|
42
|
Carroll ME, Smethells JR. Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments. Front Psychiatry 2016; 6:175. [PMID: 26903885 PMCID: PMC4745113 DOI: 10.3389/fpsyt.2015.00175] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022] Open
Abstract
The purpose of this review is to discuss recent findings related to sex differences in behavioral dyscontrol that lead to drug addiction, and clinical implications for humans are discussed. This review includes research conducted in animals and humans that reveals fundamental aspects of behavioral dyscontrol. The importance of sex differences in aspects of behavioral dyscontrol, such as impulsivity and compulsivity, is discussed as major determinants of drug addiction. Behavioral dyscontrol during adolescence is also an important consideration, as this is the time of onset for drug addiction. These vulnerability factors additively increase drug-abuse vulnerability, and they are integral aspects of addiction that covary and interact with sex differences. Sex differences in treatments for drug addiction are also reviewed in terms of their ability to modify the behavioral dyscontrol that underlies addictive behavior. Customized treatments to reduce behavioral dyscontrol are discussed, such as (1) using natural consequences such as non-drug rewards (e.g., exercise) to maintain abstinence, or using punishment as a consequence for drug use, (2) targeting factors that underlie behavioral dyscontrol, such as impulsivity or anxiety, by repurposing medications to relieve these underlying conditions, and (3) combining two or more novel behavioral or pharmacological treatments to produce additive reductions in drug seeking. Recent published work has indicated that factors contributing to behavioral dyscontrol are an important target for advancing our knowledge on the etiology of drug abuse, intervening with the drug addiction process and developing novel treatments.
Collapse
Affiliation(s)
| | - John R. Smethells
- Program in PharmacoNeuroImmunology, Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
43
|
Huntley G, Treloar H, Blanchard A, Monti PM, Carey KB, Rohsenow DJ, Miranda R. An event-level investigation of hangovers' relationship to age and drinking. Exp Clin Psychopharmacol 2015; 23:314-323. [PMID: 26280593 PMCID: PMC4579002 DOI: 10.1037/pha0000037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animal and human data suggest that adolescents experience hangover effects that are distinct from adults. The present study used ecological momentary assessment (EMA) methods to examine the temporal relationships between drinking and hangovers, and how this varied by age and sex. We hypothesized that alcohol's dose-dependent effects on hangover severity are more pronounced among adolescents and young adults than older drinkers. We also explored whether greater hangover severity would lead to a lower likelihood and volume of alcohol use later the same day. Data were pooled from 4 studies of drinkers (N = 274; ages 15 to 66 years) who completed a 4- to 14-day (M = 7.46, SD = 1.13) EMA monitoring period. Each morning, participants recorded how much alcohol they consumed the day before and rated their hangover severity. Participants who consumed a greater quantity of alcohol the prior day reported more severe hangover symptoms; however, there was an interaction between drinking volume and age, such that hangover was more severe among younger drinkers, especially at higher drinking levels. More severe hangover symptoms did not predict the likelihood of drinking later that day; however, on drinking days, more severe hangover symptoms predicted lower quantities of alcohol use later that day. This event-level effect did not vary as a function of age. Study outcomes did not vary by sex. Our findings suggest that younger drinkers experience more severe hangovers, and that greater hangover results in lighter drinking later that same day regardless of age.
Collapse
Affiliation(s)
| | - Hayley Treloar
- Center for Alcohol and Addiction Studies, Brown University
| | | | - Peter M. Monti
- Center for Alcohol and Addiction Studies, Brown University
| | - Kate B. Carey
- Center for Alcohol and Addiction Studies, Brown University
| | - Damaris J. Rohsenow
- The Providence Veterans Affairs Medical Center and also at the Center for Alcohol and Addiction Studies, Brown University
| | - Robert Miranda
- Center for Alcohol and Addiction Studies, Brown University
| |
Collapse
|
44
|
Kim EU, Spear LP. Sex-dependent consequences of pre-pubertal gonadectomy: Social behavior, stress and ethanol responsivity. Behav Brain Res 2015; 296:260-269. [PMID: 26386303 DOI: 10.1016/j.bbr.2015.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
Alcohol consumption can be enhanced or moderated by sensitivity to its aversive and appetitive properties, including positive social outcomes. These differences emerge post-pubertally, suggesting a potential role of gonadal hormones. To determine the role of gonadal hormones in sensitivity to the social impairing and social context-related attenuations in the aversive effects of ethanol, prepubertal male and female rats were gonadectomized (GX) or sham (SH) operated on postnatal day (P) 25, or left non-manipulated (NM). In adulthood (P70), rats were restrained for 90 min prior to challenge with 0.0 or 1.0 g/kg ethanol and social interaction (SI) testing. At P77, groups of 4 same-sex littermates from the same surgical condition were given access to a supersaccharin (SS) solution (3% sucrose, 0.125% saccharin), followed by an intraperitoneal injection of ethanol (0.0, 0.50, 1.0, 1.5 g/kg). Intakes of SS were examined 24h later for expression of conditioned taste aversions. Acute stress prior to SI testing increased frequency of play fighting in both sexes, whereas there were no GX effects on this measure, social investigation nor contact. GX, however, decreased baseline social preference (a social anxiety-like effect) in males, while inducing anxiolytic-like increases in baseline social preference in females. The social drinking test revealed that females developed ethanol conditioned taste aversions at a lower dose relative to males, regardless of surgical condition. These findings suggest a potential role for gonadal hormones in moderating social-anxiety like behaviors but not sensitivity to the social impairing effects of ethanol or ethanol's aversive consequences in a social context.
Collapse
Affiliation(s)
- Esther U Kim
- Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, United States.
| | - Linda P Spear
- Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, United States
| |
Collapse
|
45
|
Sex differences in the long-lasting consequences of adolescent ethanol exposure for the rewarding effects of cocaine in mice. Psychopharmacology (Berl) 2015; 232:2995-3007. [PMID: 25943165 DOI: 10.1007/s00213-015-3937-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/07/2015] [Indexed: 01/01/2023]
Abstract
RATIONALE The practice of binge drinking is very common among adolescents of both sexes. It can have long-term consequences with respect to drug consumption during adulthood, but knowledge on these effects in females is limited. OBJECTIVES The long-lasting effects of intermittent exposure to ethanol (EtOH) during adolescence on different cocaine-elicited behaviours, including locomotor reactivity, conditioned place preference (CPP) and intravenous self-administration, were evaluated in male and female adult mice. It was hypothesized that an EtOH binge during adolescence would increase sensitivity to the effects of a sub-threshold dose of cocaine and has a differential impact on the drug's effects in males and females. METHODS Adolescent OF1 mice (postnatal day (PND) 26) underwent a 2-week pre-treatment schedule consisting of 16 doses of EtOH (2.5 g/kg) or saline (twice daily administrations separated by a 4-h interval i.p.) administered on two consecutive days separated by an interval of 2 days. Three weeks later (PND > 60), we assessed locomotor activity responses induced by an acute injection of different doses of cocaine in experiment 1 and the rewarding effects of cocaine on the CPP (1 mg/kg) and intravenous self-administration (1 mg/kg/infusion) paradigms in experiment 2. RESULTS Pre-exposure to EtOH during adolescence altered motor reactivity to cocaine in a dose- and sex-dependent manner, increased sensitivity to cocaine in CPP and enhanced self-administration in adult mice. CONCLUSIONS The effects of intermittent exposure to ethanol during adolescence are evident in adulthood, during which greater sensitivity and intake of cocaine is observed and differ in each sex.
Collapse
|
46
|
Gibula-Bruzda E, Marszalek-Grabska M, Witkowska E, Izdebski J, Kotlinska JH. Enkephalin analog, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), inhibits the ethanol withdrawal-induced anxiety-like behavior in rats. Alcohol 2015; 49:229-36. [PMID: 25716198 DOI: 10.1016/j.alcohol.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
An analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), is predominantly a functional agonist of μ-opioid receptors (MOPr) and, to a lesser extent, of δ-opioid receptors (DOPr) in vitro. The aim of the present study was to determine whether cUENK6 could affect ethanol withdrawal-induced anxiety-like behavior in the elevated plus maze (EPM) test in rats. An anxiety-like effect of withdrawal was predicted to occur in the EPM test 24 h after the last ethanol administration (2 g/kg, intraperitoneally [i.p.]; 15% w/v once daily for 9 days). Ethanol withdrawal decreased the percent of time spent by rats in the open arms and the percent of open-arms entries. cUENK6 (0.25 nmol), given by intracerebroventricular (i.c.v.) injection, significantly reversed these anxiety-like effects of ethanol withdrawal and elevated the percent of time spent by rats in the open arms and the percent of open-arms entries. These effects of cUENK6 were significantly inhibited by the DOPr antagonist naltrindole (NTI) (5 nmol, i.c.v.), but not by the MOPr antagonist β-funaltrexamine (β-FNA) (5 nmol, i.c.v.). The preferential DOPr agonist [Leu(5)]-enkephalin (LeuEnk) (2.7 and 5.4 nmol, i.c.v.) and the MOPr agonist morphine (6.5 and 13 nmol, i.c.v.) reduced the anxiety-like effects of ethanol withdrawal. cUENK6 at the dose of 0.25 nmol did not disturb locomotor activity in the EPM, in contrast to cUENK6 at the dose of 0.5 nmol, and morphine at 6.5 and 13 nmol. However, similarly to LeuEnk, cUENK6 induced the anxiolytic-like effects in naïve rats. Thus, our study suggests that cUENK6 reduced ethanol withdrawal-induced anxiety-like behavior by activation of δ-opioid receptors rather than μ-opioid receptors.
Collapse
|
47
|
Novier A, Diaz-Granados JL, Matthews DB. Alcohol use across the lifespan: An analysis of adolescent and aged rodents and humans. Pharmacol Biochem Behav 2015; 133:65-82. [PMID: 25842258 DOI: 10.1016/j.pbb.2015.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Adolescence and old age are unique periods of the lifespan characterized by differential sensitivity to the effects of alcohol. Adolescents and the elderly appear to be more vulnerable to many of alcohol's physiological and behavioral effects compared to adults. The current review explores the differential effects of acute alcohol, predominantly in terms of motor function and cognition, in adolescent and aged humans and rodents. Adolescents are less sensitive to the sedative-hypnotic, anxiolytic, and motor-impairing effects of acute alcohol, but research results are less consistent as it relates to alcohol's effects on cognition. Specifically, previous research has shown adolescents to be more, less, and similarly sensitive to alcohol-induced cognitive deficits compared to adults. These equivocal findings suggest that learning acquisition may be differentially affected by ethanol compared to memory, or that ethanol-induced cognitive deficits are task-dependent. Older rodents appear to be particularly vulnerable to the motor- and cognitive-impairing effects of acute alcohol relative to younger adults. Given that alcohol consumption and abuse is prevalent throughout the lifespan, it is important to recognize age-related differences in response to acute and long-term alcohol. Unfortunately, diagnostic measures and treatment options for alcohol dependence are rarely dedicated to adolescent and aging populations. As discussed, although much scientific advancement has been made regarding the differential effects of alcohol between adolescents and adults, research with the aged is underrepresented. Future researchers should be aware that adolescents and the aged are uniquely affected by alcohol and should continue to investigate alcohol's effects at different stages of maturation.
Collapse
Affiliation(s)
- Adelle Novier
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Jaime L Diaz-Granados
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Douglas B Matthews
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States; University of Wisconsin - Eau Claire, Department of Psychology, HHH 273, Eau Claire, WI 54702, United States.
| |
Collapse
|
48
|
Ornelas LC, Novier A, Van Skike CE, Diaz-Granados JL, Matthews DB. The effects of acute alcohol on motor impairments in adolescent, adult, and aged rats. Alcohol 2015; 49:121-6. [PMID: 25613215 DOI: 10.1016/j.alcohol.2014.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 01/12/2023]
Abstract
Acute alcohol exposure has been shown to produce differential motor impairments between aged and adult rats and between adolescent and adult rats. However, the effects of acute alcohol exposure among adolescent, adult, and aged rats have yet to be systematically investigated within the same project using a dose-dependent analysis. We sought to determine the age- and dose-dependent effects of acute alcohol exposure on gross and coordinated motor performance across the rodent lifespan. Adolescent (PD 30), adult (PD 70), and aged (approximately 18 months) male Sprague-Dawley rats were tested on 3 separate motor tasks: aerial righting reflex (ARR), accelerating rotarod (RR), and loss of righting reflex (LORR). In a separate group of animals, blood ethanol concentrations (BEC) were determined at multiple time points following a 3.0 g/kg ethanol injection. Behavioral tests were conducted with a Latin square repeated-measures design in which all animals received the following doses: 1.0 g/kg or 2.0 g/kg alcohol or saline over 3 separate sessions via intraperitoneal (i.p.) injection. During testing, motor impairments were assessed on the RR 10 min post-injection and on ARR 20 min post-injection. Aged animals spent significantly less time on the RR when administered 1.0 g/kg alcohol compared to adult rats. In addition, motor performance impairments significantly increased with age after 2.0 g/kg alcohol administration. On the ARR test, aged rats were more sensitive to the effects of 1.0 g/kg and 2.0 g/kg alcohol compared to adolescents and adults. Seven days after the last testing session, animals were given 3.0 g/kg alcohol and LORR was examined. During LORR, aged animals slept longer compared to adult and adolescent rats. This effect cannot be explained solely by BEC levels in aged rats. The present study suggests that acute alcohol exposure produces greater motor impairments in older rats when compared to adolescent and adult rats and begins to establish a procedure to determine motor effects by alcohol across the lifespan.
Collapse
Affiliation(s)
- Laura C Ornelas
- Baylor University, One Bear Place #97334, Waco, TX 76798, USA
| | - Adelle Novier
- Baylor University, One Bear Place #97334, Waco, TX 76798, USA
| | | | | | - Douglas B Matthews
- Baylor University, One Bear Place #97334, Waco, TX 76798, USA; University of Wisconsin-Eau Claire, HHH273, Eau Claire, WI 54702, USA.
| |
Collapse
|
49
|
Doremus-Fitzwater TL, Gano A, Paniccia JE, Deak T. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure. Physiol Behav 2015; 148:131-44. [PMID: 25708278 DOI: 10.1016/j.physbeh.2015.02.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31-33days of age) and adult (69-71days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250μg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3h later for measurement of blood ethanol concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. ethanol challenge, IL-6 and IκBα expression was significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults injected with LPS, no corresponding elevations were seen in adolescents after LPS; and (ii) neither adolescents nor adults demonstrated increases in plasma endotoxin concentrations following i.p. or i.g. ethanol administration. Analysis of BECs indicated that, for both routes of exposure, adolescents exhibited lower BECs than adults. Taken together, these data suggest that categorically different mechanisms are involved in the central cytokine response to antigen exposure versus ethanol administration. Furthermore, these findings confirm once again that acute ethanol intoxication is a potent activator of brain cytokines, and calls for future studies to identify the mechanisms underlying age-related differences in the cytokine response observed during ethanol intoxication.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Jacqueline E Paniccia
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| |
Collapse
|
50
|
Gonzaga NA, Mecawi AS, Antunes-Rodrigues J, De Martinis BS, Padovan CM, Tirapelli CR. Ethanol withdrawal increases oxidative stress and reduces nitric oxide bioavailability in the vasculature of rats. Alcohol 2015; 49:47-56. [PMID: 25557835 DOI: 10.1016/j.alcohol.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 01/17/2023]
Abstract
We analyzed the effects of ethanol withdrawal on the vascular and systemic renin-angiotensin system (RAS) and vascular oxidative stress. Male Wistar rats were treated with ethanol 3-9% (v/v) for a period of 21 days. Ethanol withdrawal was induced by abrupt discontinuation of the treatment. Experiments were performed 48 h after ethanol discontinuation. Rats from the ethanol withdrawal group showed decreased exploration of the open arms of the elevated-plus maze (EPM) and increased plasma corticosterone levels. Ethanol withdrawal significantly increased systolic blood pressure and plasma angiotensin II (ANG II) levels without an effect on plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, or plasma angiotensin I (ANG I) levels. No differences in vascular ANG I, ANG II levels, and ACE activity/expression and AT1 and AT2 receptor expression were detected among the experimental groups. Plasma osmolality, as well as plasma sodium, potassium, and glucose levels were not affected by ethanol withdrawal. Ethanol withdrawal induced systemic and vascular oxidative stress, as evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels and the vascular generation of superoxide anion. Ethanol withdrawal significantly decreased plasma and vascular nitrate/nitrite levels. Major new findings of the present study are that ethanol withdrawal induces vascular oxidative stress and reduces nitric oxide (NO) levels in the vasculature. Additionally, our study provides novel evidence that ethanol withdrawal does not affect the vascular ANG II generating system while stimulating systemic RAS. These responses could predispose individuals to the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Natalia A Gonzaga
- Programa de pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Escola de Enfermagem de Ribeirão Preto, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, USP, Ribeirão Preto, São Paulo, Brazil
| | - André S Mecawi
- Faculdade de Medicina de Ribeirão Preto, Departamento de Fisiologia, USP, Ribeirão Preto, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Faculdade de Medicina de Ribeirão Preto, Departamento de Fisiologia, USP, Ribeirão Preto, São Paulo, Brazil
| | - Bruno S De Martinis
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Claudia M Padovan
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Escola de Enfermagem de Ribeirão Preto, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, USP, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|