1
|
Ventura R, Cabib S, Babicola L, Andolina D, Di Segni M, Orsini C. Interactions Between Experience, Genotype and Sex in the Development of Individual Coping Strategies. Front Behav Neurosci 2022; 15:785739. [PMID: 34987364 PMCID: PMC8721137 DOI: 10.3389/fnbeh.2021.785739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Coping strategies, the first line of defense against adversities, develop through experience. There is consistent evidence that both genotype and sex contribute to the development of dysfunctional coping, leading to maladaptive outcomes of adverse experiences or to adaptive coping that fosters rapid recovery even from severe stress. However, how these factors interact to influence the development of individual coping strategies is just starting to be investigated. In the following review, we will consider evidence that experience, sex, and genotype influence the brain circuits and neurobiological processes involved in coping with adversities and discuss recent results pointing to the specific effects of the interaction between early experiences, genotype, and stress in the development of functional and dysfunctional coping styles.
Collapse
Affiliation(s)
- Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Lucy Babicola
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Di Segni
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristina Orsini
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Ilchibaeva TV, Tsybko AS, Kondaurova EM, Kovetskaya AI, Kozhemyakina RV, Naumenko VS. Expression Patterns of Serotonin Receptors 1А and 7 in the Brain of Rats with Genetically Determined Fear-Induced Aggressive Behavior or the Lack of Aggression. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Naumenko VS, Ponimaskin EG, Popova NK. 5-HT1A receptor: Role in the regulation of different types of behavior. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ilchibaeva TV, Tsybko AS, Kozhemyakina RV, Konoshenko MY, Popova NK, Naumenko VS. The relationship between different types of genetically defined aggressive behavior. J ETHOL 2016. [DOI: 10.1007/s10164-016-0493-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Kulikov AV, Bazhenova EY, Kulikova EA, Fursenko DV, Trapezova LI, Terenina EE, Mormede P, Popova NK, Trapezov OV. Interplay between aggression, brain monoamines and fur color mutation in the American mink. GENES BRAIN AND BEHAVIOR 2016; 15:733-740. [PMID: 27489198 DOI: 10.1111/gbb.12313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 12/01/2022]
Abstract
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (-2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild-type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (-1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (-2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5-hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.
Collapse
Affiliation(s)
- A V Kulikov
- Department of Genetic Models of Neuropathologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Y Bazhenova
- Department of Genetic Models of Neuropathologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Kulikova
- Department of Behavioral Neurogenomics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Fursenko
- Department of Genetic Models of Neuropathologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L I Trapezova
- Department of Genetics and Selection of Fur and Farm Animals, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E E Terenina
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - P Mormede
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - N K Popova
- Department of Behavioral Neurogenomics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Trapezov
- Department of Genetics and Selection of Fur and Farm Animals, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Reactivation of Tert in the medial prefrontal cortex and hippocampus rescues aggression and depression of Tert(-/-) mice. Transl Psychiatry 2016; 6:e836. [PMID: 27300262 PMCID: PMC4931604 DOI: 10.1038/tp.2016.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/25/2022] Open
Abstract
The role of telomerase reverse transcriptase (TERT) has been extensively investigated in the contexts of aging and cancer. Interestingly, Tert(-/-) mice exhibit additional but unexpected aggressive and depressive behaviors, implying the potential involvement of TERT function in mood control. Our conditional rescue experiments revealed that the depressive and aggressive behaviors of Tert(-/-) mice originate from Tert deficiency in two distinct brain structures. Reactivation of Tert in the hippocampus was sufficient to normalize the depressive but not the aggressive behaviors of Tert(-/-) mice. Conversely, re-expression of Tert in the medial prefrontal cortex (mPFC) reversed the aggressive but not the depressive behavior of Tert(-/-) mice. Mechanistically, decreased serotonergic signaling and increased nitric oxide (NO) transmission in the hippocampus transduced Tert deficiency into depression as evidenced by our observation that the infusion of a pharmacological agonist for serotonin receptor 1a (5-HTR1A) and a selective antagonist for neuronal NO synthase into the hippocampus successfully normalized the depressive behavior of Tert(-/-) mice. In addition, increased serotonergic transmission by the 5-HTR1A agonist in the mPFC was sufficient to rescue the aggressive behavior of Tert(-/-) mice. Thus, our studies revealed a novel function of TERT in the pathology of depression and aggression in a brain structure-specific manner, providing direct evidence for the contribution of TERT to emotional control.
Collapse
|
7
|
5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence. Behav Brain Res 2016; 310:20-5. [PMID: 27150226 DOI: 10.1016/j.bbr.2016.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested.
Collapse
|
8
|
Olivier B. Serotonin: a never-ending story. Eur J Pharmacol 2014; 753:2-18. [PMID: 25446560 DOI: 10.1016/j.ejphar.2014.10.031] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/12/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
The neurotransmitter serotonin is an evolutionary ancient molecule that has remarkable modulatory effects in almost all central nervous system integrative functions, such as mood, anxiety, stress, aggression, feeding, cognition and sexual behavior. After giving a short outline of the serotonergic system (anatomy, receptors, transporter) the author's contributions over the last 40 years in the role of serotonin in depression, aggression, anxiety, stress and sexual behavior is outlined. Each area delineates the work performed on animal model development, drug discovery and development. Most of the research work described has started from an industrial perspective, aimed at developing animals models for psychiatric diseases and leading to putative new innovative psychotropic drugs, like in the cases of the SSRI fluvoxamine, the serenic eltoprazine and the anxiolytic flesinoxan. Later this research work mainly focused on developing translational animal models for psychiatric diseases and implicating them in the search for mechanisms involved in normal and diseased brains and finding new concepts for appropriate drugs.
Collapse
Affiliation(s)
- Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences & Brain Center Rudolf Magnus, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
9
|
Serotonin 5-HT1A receptor in infancy-onset aggression: Comparison with genetically defined aggression in adult rats. Behav Brain Res 2013; 243:97-101. [DOI: 10.1016/j.bbr.2012.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 12/26/2022]
|
10
|
Aubert Y, Bohl MA, Lange JR, Diol NR, Allers KA, Sommer B, Datson NA, Abbott DH. Chronic systemic administration of serotonergic ligands flibanserin and 8-OH-DPAT enhance HPA axis responses to restraint in female marmosets. Psychoneuroendocrinology 2013; 38:145-54. [PMID: 22727480 DOI: 10.1016/j.psyneuen.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/20/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Flibanserin, a novel serotonin (5-HT)(1A) agonist and 5-HT(2A) antagonist, has been shown to increase sexual desire and reduce distress in women with Hypoactive Sexual Desire Disorder (HSDD). In marmoset monkeys, flibanserin has demonstrated pro-social effects on male-female pairmates, while the classic 5-HT(1A) agonist 8-OH-DPAT suppresses female sexual behavior and increases aggressive interactions between pairmates. Activation of 5-HT(1A) and 5-HT(2A) receptors is known to stimulate the hypothalamic-pituitary-adrenal (HPA) axis. This study aims to characterize the effects of repeated flibanserin and 8-OH-DPAT administration on the marmoset HPA axis and to elucidate endocrine correlates of altered marmoset pair behavior. METHODS Adrenocorticotropic hormone (ACTH) and cortisol were examined at baseline and during 5-HT(1A) agonist and restraint challenges in 8 female marmoset monkeys receiving daily flibanserin (15mg/kg) and an additional 8 female marmosets receiving 8-OH-DPAT (0.1mg/kg) for 15-16weeks. Corresponding vehicle treatments were administered in a counterbalanced, within-subject design. All females were housed in stable male-female pairs. Treatment-induced changes in ACTH and cortisol levels were correlated with previously assessed marmoset pair behavior. RESULTS While morning basal cortisol levels and HPA responses to a 5-HT(1A) agonist challenge were not altered by chronic flibanserin or 8-OH-DPAT, both treatments increased the responsiveness of the marmoset HPA axis to restraint. Enhanced ACTH responses to restraint correlated with reduced sexual receptivity and increased aggression in 8-OH-DPAT-, but not in flibanserin-treated female marmosets. CONCLUSIONS Unaltered HPA responses to a 5-HT(1A) agonist challenge after chronic flibanserin and 8-OH-DPAT treatments indicate little or no de-sensitization of the HPA axis to repeated 5-HT(1A) manipulation. Chronic 8-OH-DPAT, but not flibanserin, leads to aggravated ACTH responses to stress that may contribute to anti-sexual and anti-social behavior between 8-OH-DPAT-treated females and their male pairmates. Despite similar flibanserin and 8-OH-DPAT induced ACTH responses to restraint stress, flibanserin-treated females show unchanged cortisol profiles. This is possibly due to flibanserin's regional selectivity in 5-HT(1A) activation and concurrent 5-HT(2A) inhibition. The contrasting restraint-related cortisol responses emulate contrasting behavioral phenotypes of diminished pair-bond of 8-OH-DPAT-treated females compared to the more affiliative pair-bond of flibanserin-treated females.
Collapse
Affiliation(s)
- Yves Aubert
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology (Berl) 2011; 213:183-212. [PMID: 20938650 PMCID: PMC3684010 DOI: 10.1007/s00213-010-2000-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/09/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. OBJECTIVE We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. RESULTS New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT(1A), 5-HT(1B) and 5-HT(2A/2C) receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT(1A) and 5-HT(1B) receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT(1B), 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. CONCLUSIONS Feedback to autoreceptors of the 5-HT(1) family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT(2) family expression may cause escalated aggression, whereas the phasic increase of 5-HT(2) receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment.
Collapse
|
12
|
Takahashi A, Quadros IM, de Almeida RMM, Miczek KA. Behavioral and pharmacogenetics of aggressive behavior. Curr Top Behav Neurosci 2011; 12:73-138. [PMID: 22297576 DOI: 10.1007/7854_2011_191] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of aspecific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to "phasic" effects of pharmacological agents versus "trait"-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene-environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT (e.g., MAOA) determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsalraphe nucleus by GABA, glutamate and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides(arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly[e.g., BDNF, neuronal nitric oxide (nNOS), aCaMKII, Neuropeptide Y].The future agenda delineates specific receptor subpopulations for GABA, glutamate and neuropeptides as they modulate the canonical aminergic neurotransmitters in brainstem, limbic and cortical regions with the ultimate outcome of attenuating or escalating aggressive behavior.
Collapse
|
13
|
Popova NK, Naumenko VS, Tibeikina MA, Kulikov AV. Serotonin transporter, 5-HT1A receptor, and behavior in DBA/2J mice in comparison with four inbred mouse strains. J Neurosci Res 2010; 87:3649-57. [PMID: 19533737 DOI: 10.1002/jnr.22155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prepulse inhibition (PPI), the reduction in acoustic startle produced when it is preceded by a weak prepulse stimulus, is impaired in schizophrenic patients. The DBA/2J mouse strain displayed deficient PPI and is therefore suggested as an experimental animal model for the loss of sensorimotor gating in schizophrenia. Brain serotonin (5-HT) has been implicated in the pathophysiology of several psychiatric disorders, including major depressive disorder and schizophrenia. In the present study, behavior, 5-HT transporter (5-HTT) mRNA level, 5-HT(1A) receptor mRNA level, and 5-HT(1A) receptor density in the brain regions were studied in DBA/2J mice in comparison with four inbred mouse strains (CBA/Lac, C57BL/6, BALB/c, and ICR). A decrease in 5-HTT mRNA level in the midbrain and a reduced density of 5-HT(1A) receptors in the frontal cortex without significant changes in 5-HT(1A) receptor mRNA level in DBA/2J mice were found. It was shown that, along with decreased PPI, DBA/2J mice demonstrated considerably reduced immobility in the tail suspension test and in the forced swim test. No significant interstrain differences in intermale aggression, or in light-dark box and elevated plus-maze tests, were found. The results suggested the involvement of decreased 5-HTT gene expression and 5-HT(1A) receptor density in genetically defined PPI deficiency and showed a lack of any association between PPI deficiency and predisposition to aggressive, anxiety, and depressive-like behaviors.
Collapse
Affiliation(s)
- Nina K Popova
- Department of Behavioral Neurogenomics, Institute of Cytology and Genetics, Siberian Division of Russian Academy of Science, Novosibirsk, Russia
| | | | | | | |
Collapse
|
14
|
|
15
|
Kulikov AV, Naumenko VS, Bazovkina DV, Dee VY, Osipova DV, Popova NK. Effect of Mouse Chromosome 13 Terminal Fragment on Liability to Catalepsy and Expression of Tryptophane Hydroxylase-2, Serotonin Transporter, and 5-HT1A Receptor Genes in the Brain. Bull Exp Biol Med 2009; 147:621-4. [DOI: 10.1007/s10517-009-0567-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Idova G, Davydova S, Alperina E, Cheido M, Devoino L. Serotoninergic Mechanisms of Immunomodulation Under Different Psychoemotional States: I. A role of 5-HT1aReceptor Subtype. Int J Neurosci 2009; 118:1594-608. [DOI: 10.1080/00207450701768887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Plyusnina IZ, Oskina IN, Tibeikina MA, Popova NK. Cross-fostering Effects on Weight, Exploratory Activity, Acoustic Startle Reflex and Corticosterone Stress Response in Norway Gray Rats Selected for Elimination and for Enhancement of Aggressiveness Towards Human. Behav Genet 2008; 39:202-12. [DOI: 10.1007/s10519-008-9248-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
|
18
|
Popova NK, Naumenko VS, Plyusnina IZ. Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. ACTA ACUST UNITED AC 2007; 37:631-5. [PMID: 17657435 DOI: 10.1007/s11055-007-0062-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/27/2006] [Indexed: 11/26/2022]
Abstract
Experiments were performed on Norwegian rats selected over more than 59 generations for high and low levels of high-affective defensive aggressivity and on highly aggressive (offensive) Tg8 mice with irreversible monoamine oxidase A knockout. There were significant differences in the functional state and expression of 5-HT(1A) receptors between highly aggressive and non-aggressive animals. Functional activity assessed in terms of hypothermia evoked by a 5-HT(1A) agonist was significantly greater in non-aggressive rats and mice than in aggressive animals. The high level of functional activity in non-aggressive rats coincided with a greater level of expression of 5-HT(1A) receptors in the midbrain. The level of 5-HT(1A) receptor mRNA in aggressive mice was unchanged in the midbrain and hypothalamus and was increased in the frontal cortex and amygdaloid complex. These results led to the conclusion that 5-HT(1A) receptors play a significant role in the mechanisms of genetic predisposition to aggressive behavior.
Collapse
Affiliation(s)
- N K Popova
- Behavioral Neurogenetics Laboratory, Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, Novosibirsk.
| | | | | |
Collapse
|
19
|
Giannaccini G, Betti L, Pirone A, Palego L, Fabiani O, Fabbrini L, Mascia G, Giusti L, Macchia M, Giusiani M, Martini C, Lucacchini A. Short-term effects of 3,4-methylen-dioxy-metamphetamine (MDMA) on 5-HT(1A) receptors in the rat hippocampus. Neurochem Int 2007; 51:496-506. [PMID: 17602794 DOI: 10.1016/j.neuint.2007.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/11/2007] [Indexed: 11/30/2022]
Abstract
The first effects of 3,4-methylen-dioxy-metamphetamine (MDMA, "ecstasy"), on serotonin 1A (5-HT(1A)) receptors in rat hippocampus were determined by means of [(3)H]-8-hydroxy-dipropylamino-tetralin ([(3)H]-8-OH-DPAT) and 5'guanosine-(gamma-[(35)S]-thio)triphosphate ([(35)S]-GTPgammaS) binding as well as inhibition of forskolin (FK)-stimulated adenylyl cyclase (AC) activity. The study was completed by [(35)S]-GTPgammaS functional autoradiography experiments carried out in frontal sections of rat brain, including the hippocampal region. Results showed that MDMA was either able to displace [(3)H]-8-OH-DPAT binding (K(i) congruent with 500 nM) or to reduce the number of specific sites (B(max)) without affecting K(d). The drug also failed to change the [(35)S]-GTPgammaS binding or to inhibit AC velocity, underlying its behavior as a non-competitive 5-HT(1A) receptor antagonist. Further, MDMA (1 or 100 microM), partially antagonized either [(35)S]-GTPgammaS binding stimulation of the agonists 5CT and 8-OH-DPAT or the AC inhibition induced by 5CT and DP-5CT. However, in contrast to binding studies, in AC assays the amphetamine displayed an effect also on EC(50), always being less potent than the reference antagonist WAY100,635. In functional autoradiography, MDMA behaved either as a partial 5-HT(1A) antagonist in limbic areas or, added alone, as an agonist, increasing the coupling signal presumably through 5-HT release from synapses. Interestingly, the selective 5-HT re-uptake inhibitor (SSRI) fluoxetine had no effect on MDMA [(35)S]-GTPgammaS binding activation. This latter finding indicates that the amphetamine can release 5-HT via alternative mechanisms to 5-HT transporter binding, probably via membrane synaptic receptors or vesicular transporters. The release of other transmitters is not excluded. Therefore, our results encourage at extending the study of MDMA biochemical profiles, in the attempt to elucidate those amphetamine-induced pathways with a potential for neurotoxicity or psycho-stimulant activity.
Collapse
Affiliation(s)
- Gino Giannaccini
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Via Bonanno 6, Pisa 56126, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vishnivetskaya GB, Skrinskaya JA, Seif I, Popova NK. Effect of MAO A deficiency on different kinds of aggression and social investigation in mice. Aggress Behav 2007; 33:1-6. [PMID: 17441000 DOI: 10.1002/ab.20161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monoamine oxidase A (MAO A) degrades serotonin, dopamine and noradrenaline, factors critically involved in the regulation of aggression. Different kinds of aggression were investigated in Tg8, a transgenic mouse strain lacking a functional MAO A gene. MAO A-deficient mice differ from wild-type C3H/HeJ (C3H) in terms of showing higher territorial, predatory and isolation-induced aggression. Tg8 demonstrated shorter latencies to cricket killing and to the first attack after 6 weeks isolation than C3H mice. In the resident-intruder paradigm, MAO A-lacking mice were more aggressive than C3H when tested as intruders. In contrast to C3H, attack in Tg8 mice did not depend on different aggressiveness of intruders of BALB/c, A/Sn and C3H strains. Tg8 mice displayed no increase in aggression but demonstrated reduced social investigation towards anesthetized, as well as towards juvenile BALB/c males. Thus, MAO A deficiency in Tg8 mice is accompanied by increased expression of different kinds of aggression, as well as by disruption of normal pattern of social interaction.
Collapse
Affiliation(s)
- Galina B Vishnivetskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
21
|
Popova NK, Naumenko VS, Plyusnina IZ, Kulikov AV. Reduction in 5-HT1A receptor density, 5-HT1A mRNA expression, and functional correlates for 5-HT1A receptors in genetically defined aggressive rats. J Neurosci Res 2005; 80:286-92. [PMID: 15765530 DOI: 10.1002/jnr.20456] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present experiments tested the hypothesis that one of the critical mechanisms underlying genetically defined aggressiveness involves brain serotonin 5-HT1A receptors. 5-HT1A receptor density, the receptor mRNA expression in brain structures, and functional correlates for 5-HT1A receptors identified as 8-OH-DPAT-induced hypothermia and lower lip retraction (LLR) were studied in Norway rats bred for 59 generations for the lack of aggressiveness and for high affective aggressiveness with respect to man. Considerable differences between the highly aggressive and the nonaggressive rats were shown in all three traits. A significant decrease in B(max) of specific receptor binding of [3H]8-OH-DPAT in the frontal cortex, hypothalamus, and amygdala and a reduction in 5-HT1A receptor mRNA expression in the midbrain of aggressive rats were found. 5-HT1A receptor agonist 8-OH-DPAT (0.5 mg/kg, i.p.) produced a distinct hypothermic reaction in nonaggressive rats and did not affect significantly the body temperature in aggressive rats. Similar differences were revealed in 8-OH-DPAT-induced LLR: LLR was expressed much more in nonaggressive than in aggressive animals. Additionally, 8-OH-DPAT (0.5 mg/kg i.p.) treatment significantly attenuated the aggressive response to man. The results demonstrated an association of aggressiveness with reduced 5-HT1A receptor expression and function, thereby providing support for the view favoring the idea that brain HT1A receptor contributes to the genetically defined individual differences in aggressiveness.
Collapse
Affiliation(s)
- Nina K Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
22
|
Hassanain M, Bhatt S, Siegel A. Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors. Brain Res 2003; 981:201-9. [PMID: 12885442 DOI: 10.1016/s0006-8993(03)03036-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies have established that the expression of defensive rage behavior in the cat is mediated over reciprocal pathways that link the medial hypothalamus and the dorsolateral quadrant of the midbrain periaqueductal gray matter (PAG). The present study was designed to determine the roles played by 5-HT(1A) and 5-HT(2C) receptors in the medial hypothalamus on the expression of defensive rage behavior elicited from electrical stimulation of the PAG. Monopolar stimulating electrodes were placed in the midbrain PAG from which defensive rage behavior could be elicited by electrical stimulation. During the course of this study, defensive rage was determined by measuring the latency of the "hissing" component of this behavior. Cannula-electrodes were implanted into sites within the medial hypothalamus from which defensive rage behavior could also be elicited by electrical stimulation in order that serotonergic compounds could be microinjected into behaviorally identifiable regions of the hypothalamus at a later time. Microinjections of the 5-HT(1A) receptor agonist 8-OHDPAT (0.1, 1.0 and 3.0 nmol) into the medial hypothalamus suppressed PAG-elicited hissing in a dose-dependent manner. Administration of the 5-HT(1A) antagonist p-MPPI (3.0 nmol) blocked the suppressive effects of 8-OHDPAT upon hissing. The suppressive effects of 8-OHDPAT were specific to defensive rage behavior because this drug (3 nmol) facilitated quiet biting attack. Microinjections of the 5-HT(2C) receptor agonist (+/-)-DOI hydrochloride into the medial hypothalamus (0.5, 1.0, and 3.0 nmol) facilitated the occurrence of PAG-elicited hissing in a dose-dependent manner. In turn, these facilitating effects were blocked by pretreatment with the selective 5-HT(2) antagonist, LY-53,857, which was microinjected into the same medial hypothalamic site. The findings of this study provide evidence that activation of 5-HT(1A) and 5-HT(2) receptors within the medial hypothalamus exert differential modulatory effects upon defensive rage behavior elicited from the midbrain PAG of the cat.
Collapse
Affiliation(s)
- M Hassanain
- Department of Neuroscience, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Room H-512, Newark, NJ 07103, USA
| | | | | |
Collapse
|
23
|
Popova NK, Barykina NN, Plyusnina TA, Alekhina TA, Kolpakov VG. Expression of the startle reaction in rats genetically predisposed towards different types of defensive behavior. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2000; 30:321-5. [PMID: 10970026 DOI: 10.1007/bf02471785] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The magnitudes of startle reactions, consisting of shuddering in response to acoustic signals, were studied in rats selected for predisposition to different types of defensive behavior-rats with and without passive defensive freezing reactions (catalepsy), and Norway rats selected for a lack of defensive aggression to humans or for high levels of aggression; studies were performed in an SR-Pilot apparatus. These experiments showed that expression of the startle reaction to standard sound signal in rats with a genetic predisposition to catalepsy was double that in control Wistar rats. A similar but greater difference was seen between highly aggressive and non-aggressive rats: the amplitude of the startle reaction in rats with high levels of active defensive responses was three times that in rats showing no aggression towards humans. Extinction of the reflex reaction was significantly slower in highly aggressive rats than in non-aggressive rats. A similar tendency was seen in rats with genetic predisposition to the passive defensive freezing reaction as compared with Wistar rats. It was concluded that animals with an inherited tendency to defensive behavior have higher levels of the emotional fear state, regardless of the strategy of the defensive behavior.
Collapse
Affiliation(s)
- N K Popova
- Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, Novosibirsk
| | | | | | | | | |
Collapse
|
24
|
Shishkina GT, Dygalo NN. Role of the serotoninergic system in the acceleration of sexual maturation in wild Norway rats selected for reduced aggressiveness toward humans. Comp Biochem Physiol C Toxicol Pharmacol 2000; 125:45-51. [PMID: 11790329 DOI: 10.1016/s0742-8413(99)00092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the serotoninergic system in acceleration of the sexual development of domesticated rats (Rattus norvegicus) was assessed. The onset of age-related changes in hypothalamic serotonin during prepubertal period occurred earlier in domesticated than in aggressive male rats. Blockade of the serotoninergic system after p-chlorophenylalanine (PCPA) administration on days 40 and 44 delayed the development of the reproductive system in both aggressive and domesticated males. In 60-day-old rats treated with PCPA, levels of testosterone in plasma and the number of mature spermatozoa in epididymis were decreased compared to controls. At the same time, the administration of PCPA on days 30 and 34 did not modify basal testosterone secretion and other parameters in 60-day-old aggressive rats and produced a decrease similar to PCPA injections on days 40 and 44, although less pronounced, in the weights of testes in domesticated animals. Administration of 5-hydroxytryptophan (5-HTP), a precursor of serotonin synthesis, on days 30, 32, 34, 36 and 38 increased plasma testosterone levels and weights of the sex organs in 60-day-old domesticated males, but did not significantly affect the development of reproductive system in aggressive animals. These data indicate that serotonin stimulates sexual development of males during prepubertal period and this activating effect of serotonin occurs earlier in domesticated than in aggressive males. They also suggest that the acceleration in sexual maturation of domesticated rats could result from changes in the ontogenetic dynamic of hypothalamic serotonin induced by a selection for low aggressiveness towards man.
Collapse
Affiliation(s)
- G T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Academy of Science of Russia, 630090, Novosibirsk, Russia
| | | |
Collapse
|