1
|
Ibáñez C, Acuña T, Quintanilla ME, Pérez-Reytor D, Morales P, Karahanian E. Fenofibrate Decreases Ethanol-Induced Neuroinflammation and Oxidative Stress and Reduces Alcohol Relapse in Rats by a PPAR-α-Dependent Mechanism. Antioxidants (Basel) 2023; 12:1758. [PMID: 37760061 PMCID: PMC10525752 DOI: 10.3390/antiox12091758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
High ethanol consumption triggers neuroinflammation, implicated in sustaining chronic alcohol use. This inflammation boosts glutamate, prompting dopamine release in reward centers, driving prolonged drinking and relapse. Fibrate drugs, activating peroxisome proliferator-activated receptor alpha (PPAR-α), counteract neuroinflammation in other contexts, prompting investigation into their impact on ethanol-induced inflammation. Here, we studied, in UChB drinker rats, whether the administration of fenofibrate in the withdrawal stage after chronic ethanol consumption reduces voluntary intake when alcohol is offered again to the animals (relapse-type drinking). Furthermore, we determined if fenofibrate was able to decrease ethanol-induced neuroinflammation and oxidative stress in the brain. Animals treated with fenofibrate decreased alcohol consumption by 80% during post-abstinence relapse. Furthermore, fenofibrate decreased the expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukins IL-1β and IL-6, and of an oxidative stress-induced gene (heme oxygenase-1), in the hippocampus, nucleus accumbens, and prefrontal cortex. Animals treated with fenofibrate showed an increase M2-type microglia (with anti-inflammatory proprieties) and a decrease in phagocytic microglia in the hippocampus. A PPAR-α antagonist (GW6471) abrogated the effects of fenofibrate, indicating that they are dependent on PPAR-α activation. These findings highlight the potential of fenofibrate, an FDA-approved dyslipidemia medication, as a supplementary approach to alleviating relapse severity in individuals with alcohol use disorder (AUD) during withdrawal.
Collapse
Affiliation(s)
- Cristina Ibáñez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
| | - Tirso Acuña
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - María Elena Quintanilla
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
| | - Paola Morales
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
| |
Collapse
|
2
|
Pérez-Reytor D, Karahanian E. Alcohol use disorder, neuroinflammation, and intake of dietary fibers: a new approach for treatment. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022:1-7. [DOI: 10.1080/00952990.2022.2114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
3
|
Kolik LG, Nadorova AV, Kon’kov VG, Narkevich VB, Kudrin VS. Heptapeptide Analogue of Tuftsin Prevents the Increase in the Content of Inhibitory Amino Acids in the Brain When Modeling Alcohol Withdrawal in Rats. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Villavicencio-Tejo F, Flores-Bastías O, Marambio-Ruiz L, Pérez-Reytor D, Karahanian E. Fenofibrate (a PPAR-α Agonist) Administered During Ethanol Withdrawal Reverts Ethanol-Induced Astrogliosis and Restores the Levels of Glutamate Transporter in Ethanol-Administered Adolescent Rats. Front Pharmacol 2021; 12:653175. [PMID: 33959021 PMCID: PMC8093785 DOI: 10.3389/fphar.2021.653175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
High-ethanol intake induces a neuroinflammatory response, which has been proposed as responsible for the maintenance of chronic ethanol consumption. Neuroinflammation decreases glutamate transporter (GLT-1) expression, increasing levels of glutamate that trigger dopamine release at the corticolimbic reward areas, driving long-term drinking behavior. The activation of peroxisome proliferator-activated receptor alpha (PPARα) by fibrates inhibits neuroinflammation, in models other than ethanol consumption. However, the effect of fibrates on ethanol-induced neuroinflammation has not yet been studied. We previously reported that the administration of fenofibrate to ethanol-drinking rats decreased ethanol consumption. Here, we studied whether fenofibrate effects are related to a decrease in ethanol-induced neuroinflammation and to the normalization of the levels of GLT-1. Rats were administered ethanol on alternate days for 4 weeks (2 g/kg/day). After ethanol withdrawal, fenofibrate was administered for 14 days (50 mg/kg/day) and the levels of glial fibrillary acidic protein (GFAP), phosphorylated NF-κB-inhibitory protein (pIκBα) and GLT-1, were quantified in the prefrontal cortex, hippocampus, and hypothalamus. Ethanol treatment increased the levels of GFAP in the hippocampus and hypothalamus, indicating a clear astrocytic activation. Similarly, ethanol increased the levels of pIκBα in the three areas. The administration of fenofibrate decreased the expression of GFAP and pIκBα in the three areas. These results indicate that fenofibrate reverts both astrogliosis and NF-κB activation. Finally, ethanol decreased GLT-1 expression in the prefrontal cortex and hippocampus. Fenofibrate normalized the levels of GLT-1 in both areas, suggesting that its effect in reducing ethanol consumption could be due to the normalization of glutamatergic tone.
Collapse
Affiliation(s)
| | - Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Lucas Marambio-Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
5
|
Crummy EA, O'Neal TJ, Baskin BM, Ferguson SM. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front Neurosci 2020; 14:569. [PMID: 32612502 PMCID: PMC7309369 DOI: 10.3389/fnins.2020.00569] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Substance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted pathology that includes (but is not limited to) sensitivity to drug-associated cues, negative affect, and motivation to maintain drug consumption. SUDs are highly prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction are highly studied, most investigations of SUDs examine drug use in isolation, rather than in the more prevalent context of comorbid substance histories. Indeed, 11.3% of individuals diagnosed with a SUD have concurrent alcohol and illicit drug use disorders. Furthermore, having a SUD with one substance increases susceptibility to developing dependence on additional substances. For example, the increased risk of developing heroin dependence is twofold for alcohol misusers, threefold for cannabis users, 15-fold for cocaine users, and 40-fold for prescription misusers. Given the prevalence and risk associated with polysubstance use and current public health crises, examining these disorders through the lens of co-use is essential for translatability and improved treatment efficacy. The escalating economic and social costs and continued rise in drug use has spurred interest in developing preclinical models that effectively model this phenomenon. Here, we review the current state of the field in understanding the behavioral and neural circuitry in the context of co-use with common pairings of alcohol, nicotine, cannabis, and other addictive substances. Moreover, we outline key considerations when developing polysubstance models, including challenges to developing preclinical models to provide insights and improve treatment outcomes.
Collapse
Affiliation(s)
- Elizabeth A Crummy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Timothy J O'Neal
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Britahny M Baskin
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Alcohol and Drug Abuse Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Abstract
Cation and anion recognition have both played central roles in the development of supramolecular chemistry. Much of the associated research has focused on the development of receptors for individual cations or anions, as well as their applications in different areas. Rarely is complexation of the counterions considered. In contrast, ion pair recognition chemistry, emerging from cation and anion coordination chemistry, is a specific research field where co-complexation of both anions and cations, so-called ion pairs, is the center of focus. Systems used for the purpose, known as ion pair receptors, are typically di- or polytopic hosts that contain recognition sites for both cations and anions and which permit the concurrent binding of multiple ions. The field of ion pair recognition has blossomed during the past decades. Several smaller reviews on the topic were published roughly 5 years ago. They provided a summary of synthetic progress and detailed the various limiting ion recognition modes displayed by both acyclic and macrocyclic ion pair receptors known at the time. The present review is designed to provide a comprehensive and up-to-date overview of the chemistry of macrocycle-based ion pair receptors. We specifically focus on the relationship between structure and ion pair recognition, as well as applications of ion pair receptors in sensor development, cation and anion extraction, ion transport, and logic gate construction.
Collapse
Affiliation(s)
- Qing He
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Gabriela I Vargas-Zúñiga
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seung Hyun Kim
- Department of Chemistry and Research Institute of Natural Science , Gyeongsang National University , Jinju , 660-701 , Korea
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science , Gyeongsang National University , Jinju , 660-701 , Korea
| | - Jonathan L Sessler
- Institute for Supramolecular Chemistry and Catalysis , Shanghai University , Shanghai 200444 , P.R. China.,Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
7
|
Beayno A, El Hayek S, Noufi P, Tarabay Y, Shamseddeen W. The Role of Epigenetics in Addiction: Clinical Overview and Recent Updates. Methods Mol Biol 2019; 2011:609-631. [PMID: 31273724 DOI: 10.1007/978-1-4939-9554-7_35] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction is an international public health problem. It is a polygenic disorder best understood by accounting for the interplay between genetic and environmental factors. A recent way of perceiving this interaction is through epigenetics, which help grasp the neurobiological changes that occur in addiction and explain its relapsing-remitting nature. It is now known that every cell has a different way of expressing its phenotype, despite a universal DNA sequence. This is particularly true in the central nervous system where environmental factors influence this expression. Three major epigenetic processes have been found to participate in the perpetuation of addiction by changing the state of the chromatin and the degree of gene transcription: histone acetylation and methylation, DNA methylation, and noncoding RNAs. In the animal model literature, substantial evidence exists about the role of these epigenetic changes in the different phases of substance use disorders. This book chapter is a non-systematic literature review of the recent publications tackling the topic of epigenetics in addiction. Even though this evidence remains scarce and relatively poorly systematized, it is a promising foundation for future research of molecules that target specific brain regions and their functions to address core behavioral changes seen in addiction.
Collapse
Affiliation(s)
- Antoine Beayno
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samer El Hayek
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Paul Noufi
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Tarabay
- Faculty of Pedagogy, Lebanese University, New Rawda, Lebanon.,Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon
| | - Wael Shamseddeen
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon. .,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Söderpalm B, Lidö HH, Ericson M. The Glycine Receptor-A Functionally Important Primary Brain Target of Ethanol. Alcohol Clin Exp Res 2017; 41:1816-1830. [PMID: 28833225 DOI: 10.1111/acer.13483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022]
Abstract
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand-gated ion channels, that is, the nicotinic acetylcholine receptor, the γ-aminobutyric acid type A receptor, the 5-hydroxytryptamine3 , and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine-activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Helga H Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Garcia-Marchena N, Pavon FJ, Pastor A, Araos P, Pedraz M, Romero-Sanchiz P, Calado M, Suarez J, Castilla-Ortega E, Orio L, Boronat A, Torrens M, Rubio G, de la Torre R, Rodriguez de Fonseca F, Serrano A. Plasma concentrations of oleoylethanolamide and other acylethanolamides are altered in alcohol-dependent patients: effect of length of abstinence. Addict Biol 2017; 22:1366-1377. [PMID: 27212249 DOI: 10.1111/adb.12408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
Acylethanolamides are a family of endogenous lipid mediators that are involved in physiological and behavioral processes associated with addiction. Recently, oleoylethanolamide (OEA) has been reported to reduce alcohol intake and relapse in rodents but the contribution of OEA and other acylethanolamides in alcohol addiction in humans is unknown. The present study is aimed to characterize the plasma acylethanolamides in alcohol dependence. Seventy-nine abstinent alcohol-dependent subjects (27 women) recruited from outpatient treatment programs and age-/sex-/body mass-matched healthy volunteers (28 women) were clinically assessed with the diagnostic interview PRISM according to the DSM-IV-TR after blood extraction for quantification of acylethanolamide concentrations in the plasma. Our results indicate that all acylethanolamides were significantly increased in alcohol-dependent patients compared with control subjects (p < 0.001). A logistic model based on these acylethanolamides was developed to distinguish alcohol-dependent patients from controls and included OEA, arachidonoylethanolamide (AEA) and docosatetraenoylethanolamide (DEA), providing a high discriminatory power according to area under the curve [AUC = 0.92 (95%CI: 0.87-0.96), p < 0.001]. Additionally, we found a significant effect of the duration of alcohol abstinence on the concentrations of OEA, AEA and DEA using a regression model (p < 0.05, p < 0.01 and p < 0.001, respectively), which was confirmed by a negative correlation (rho = -0.31, -0.40 and -0.44, respectively). However, acylethanolamides were not influenced by the addiction alcohol severity, duration of problematic alcohol use or diagnosis of psychiatric comorbidity. Our results support the preclinical studies and suggest that OEA, AEA and DEA are altered in alcohol-dependence during abstinence and that might act as potential markers for predicting length of alcohol abstinence.
Collapse
Affiliation(s)
- Nuria Garcia-Marchena
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Francisco J. Pavon
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antoni Pastor
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- Department de Farmacologia, Toxicologia i Terapeutica, Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Maria Pedraz
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Pablo Romero-Sanchiz
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Montserrat Calado
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Juan Suarez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense; Spain
| | - Anna Boronat
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- Department de Farmacologia, Toxicologia i Terapeutica, Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
| | - Marta Torrens
- Institut de Neuropsiquiatria i Adiccions (INAD) del Parc de Salut MAR; Spain
- IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Department of Psychiatry; Univ Autonoma de Barcelona; Spain
| | - Gabriel Rubio
- Departamento de Psiquiatria, Facultad de Medicina; Universidad Complutense; Spain
- Instituto de Investigación Hospital 12 de Octubre; Spain
| | - Rafael de la Torre
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
- Facultat de Ciencies de la Salut i de la Vida; Universidat Pompeu Fabra (CEXS-UPF); Spain
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| |
Collapse
|
10
|
Seidemann T, Spies C, Morgenstern R, Wernecke KD, Netzhammer N. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study. PLoS One 2017; 12:e0169017. [PMID: 28045949 PMCID: PMC5207639 DOI: 10.1371/journal.pone.0169017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/09/2016] [Indexed: 01/29/2023] Open
Abstract
Background Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Methods Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Results Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Conclusions Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under desflurane anesthesia, both glutamate and aspartate showed a tendency to be lower in AWR than controls over the whole timecourse. The inhibitory amino acid arginine increased in AWR compared to controls, whereas GABA levels decreased. However, there were no significant differences in amino acid concentrations under or after sevoflurane anesthesia. Under isoflurane, aspartate release increased in AWR following induction, and from 40 min to 140 min arginine release in controls was elevated. The precise mechanisms through which each of the volatile anesthetics affected amino acid concentrations are still unclear and further experimental research is required to draw reliable conclusions.
Collapse
Affiliation(s)
- Thomas Seidemann
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Rudolf Morgenstern
- Institute of Pharmacology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Nicolai Netzhammer
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
The mGluR2 Positive Allosteric Modulator, AZD8529, and Cue-Induced Relapse to Alcohol Seeking in Rats. Neuropsychopharmacology 2016; 41:2932-2940. [PMID: 27339394 PMCID: PMC5061885 DOI: 10.1038/npp.2016.107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/08/2022]
Abstract
Group II metabotropic glutamate receptors (mGluR2 and mGluR3) may control relapse of alcohol seeking, but previously available Group II agonists were unable to discriminate between mGluR2 and mGluR3. Here we use AZD8529, a novel positive allosteric mGluR2 modulator, to determine the role of this receptor for alcohol-related behaviors in rats. We assessed the effects of AZD8529 (20 and 40 mg/kg s.c.) on male Wistar rats trained to self-administer 20% alcohol and determined the effects of AZD8529 on self-administration, as well as stress-induced and cue-induced reinstatement of alcohol seeking. The on-target nature of findings was evaluated in Indiana P-rats, a line recently shown to carry a mutation that disrupts the gene encoding mGluR2. The behavioral specificity of AZD8529 was assessed using self-administration of 0.2% saccharin and locomotor activity tests. AZD8529 marginally decreased alcohol self-administration at doses that neither affected 0.2% saccharin self-administration nor locomotor activity. More importantly, cue- but not stress-induced alcohol seeking was blocked by the mGluR2 positive allosteric modulator. This effect of AZD8529 was completely absent in P rats lacking functional mGluR2s, demonstrating the receptor specificity of this effect. Our findings provide evidence for a causal role of mGluR2 in cue-induced relapse to alcohol seeking. They contribute support for the notion that positive allosteric modulators of mGluR2 block relapse-like behavior across different drug categories.
Collapse
|
12
|
Althobaiti YS, Alshehri FS, Almalki AH, Sari Y. Effects of Ceftriaxone on Glial Glutamate Transporters in Wistar Rats Administered Sequential Ethanol and Methamphetamine. Front Neurosci 2016; 10:427. [PMID: 27713684 PMCID: PMC5031687 DOI: 10.3389/fnins.2016.00427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
Methamphetamine (METH) is one of the psychostimulants that is co-abused with ethanol. Repeated exposure to high dose of METH has been shown to cause increases in extracellular glutamate concentration. We have recently reported that ethanol exposure can also increase the extracellular glutamate concentration and downregulate the expression of glutamate transporter subtype 1 (GLT-1). GLT-1 is a glial transporter that regulates the majority of extracellular glutamate. A Wistar rat model of METH and ethanol co-abuse was used to examine the expression of GLT-1 as well as other glutamate transporters such as cystine/glutamate exchanger (xCT) and glutamate aspartate transporter (GLAST). We also examined the body temperature in rats administered METH, ethanol or both drugs. We further investigated the effects of ceftriaxone (CEF), a β-lactam antibiotic known to upregulate GLT-1, in this METH/ethanol co-abuse rat model. After 7 days of either ethanol (6 g/kg) or water oral gavage, Wistar rats received either saline or METH (10 mg/kg i.p. every 2 h × 4), followed by either saline or CEF (200 mg/kg) posttreatment. METH administered alone decreased GLT-1 expression in the nucleus accumbens (NAc) and prefrontal cortex (PFC) and increased body temperature, but did not reduce either xCT or GLAST expression in ethanol and water-pretreated rats. Interestingly, ethanol and METH were found to have an additive effect on the downregulation of GLT-1 expression in the NAc but not in the PFC. Moreover, ethanol alone caused GLT-1 downregulation in the NAc and elevated body temperature compared to control. Finally, CEF posttreatment significantly reversed METH-induced hyperthermia, restored GLT-1 expression, and increased xCT expression. These findings suggest the potential therapeutic role of CEF against METH- or ethanol/METH-induced hyperglutamatergic state and hyperthermia.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Fahad S Alshehri
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Atiah H Almalki
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, USA; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, USA
| |
Collapse
|
13
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
14
|
Burnett EJ, Chandler LJ, Trantham-Davidson H. Glutamatergic plasticity and alcohol dependence-induced alterations in reward, affect and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:309-20. [PMID: 26341050 PMCID: PMC4679411 DOI: 10.1016/j.pnpbp.2015.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/29/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Alcohol dependence is characterized by a reduction in reward threshold, development of a negative affective state, and significant cognitive impairments. Dependence-induced glutamatergic neuroadaptations in the neurocircuitry mediating reward, affect and cognitive function are thought to underlie the neural mechanism for these alterations. These changes serve to promote increased craving for alcohol and facilitate the development of maladaptive behaviors that promote relapse to alcohol drinking during periods of abstinence. OBJECTIVE To review the extant literature on the effects of chronic alcohol exposure on glutamatergic neurotransmission and its impact on reward, affect and cognition. RESULTS Evidence from a diverse set of studies demonstrates significant enhancement of glutamatergic activity following chronic alcohol exposure. In particular, up-regulation of GluN2B-containing NMDA receptor expression and function is a commonly observed phenomenon that likely reflects activity-dependent adaptive homeostatic plasticity. However, this observation as well as other glutamatergic neuroadaptations are often circuit and cell-type specific. DISCUSSION Dependence-induced alterations in glutamate signaling contribute to many of the symptoms experienced in addicted individuals and can persist well into abstinence. This suggests that they play an important role in the development of behaviors that increase the probability for relapse. As our understanding of the complexity of the neurocircuitry involved in the addictive process has advanced, it has become increasingly clear that investigations of cell-type and circuit-specific effects are required to gain a more comprehensive understanding of the glutamatergic adaptations and their functional consequences in alcohol addiction. CONCLUSION While pharmacological treatments for alcohol dependence and relapse targeting the glutamatergic system have shown great promise in preclinical models, more research is needed to uncover novel, possibly circuit-specific, therapeutic targets that exhibit improved efficacy and reduced side effects.
Collapse
Affiliation(s)
- Elizabeth J Burnett
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425.
| | | | | |
Collapse
|
15
|
Binge-like ingestion of a combination of an energy drink and alcohol leads to cognitive deficits and motivational changes. Pharmacol Biochem Behav 2015; 136:82-6. [PMID: 26187003 DOI: 10.1016/j.pbb.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/01/2015] [Accepted: 07/10/2015] [Indexed: 11/21/2022]
Abstract
The combination of alcohol with an energy drink (ED) is believed to contribute to risky alcohol-drinking behaviors, such as binge drinking. However, the long-term effects on cognition and reward function that are caused by the repeated binge-like ingestion of alcohol and EDs are still poorly known. The present study examined the effects of a history of repeated exposure to alcohol and/or an ED on short-term memory and alcohol-seeking behavior. Male Wistar rats were given daily intragastric administration of alcohol (3.4g/kg) combined or not with an ED (10.71ml/kg) for 6 consecutive days. The rats were tested for locomotion 15min after the first intragastric treatment. Short-term memory was assessed in the novel object recognition and social discrimination tests 2-3days after the last intragastric administration. The rewarding effect of alcohol was tested 1-3weeks following the last intragastric administration in a conditioned place preference paradigm. The acute binge-like ingestion of alcohol decreased locomotor activity, whereas the combination of alcohol and an ED increased locomotion in the first minutes of assessment. Alcohol exposure produced cognitive deficits in both the object recognition and social discrimination tests, and adding the ED to the alcohol solution did not modify these effects. The combination of alcohol and the ED increased alcohol-induced conditioned place preference. Thus, a history of binge-like alcohol exposure combined with the ED caused subsequent cognitive deficits and increased alcohol seeking behavior, and such behavioral effects might contribute to the progression to alcohol abuse disorders.
Collapse
|
16
|
Adenosine and glutamate in neuroglial interaction: implications for circadian disorders and alcoholism. ADVANCES IN NEUROBIOLOGY 2014; 11:103-19. [PMID: 25236726 DOI: 10.1007/978-3-319-08894-5_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. In fact, astrocytes are essential for neuronal activity in the brain and play an important role in the regulation of complex behavior. Astrocytes actively participate in synapse formation and brain information processing by releasing and uptaking glutamate, D-serine, adenosine 5'-triphosphate (ATP), and adenosine. In the central nervous system, adenosine-mediated neuronal activity modulates the actions of other neurotransmitter systems. Adenosinergic fine-tuning of the glutamate system in particular has been shown to regulate circadian rhythmicity and sleep, as well as alcohol-related behavior and drinking. Adenosine gates both photic (light-induced) glutamatergic and nonphotic (alerting) input to the circadian clock located in the suprachiasmatic nucleus of the hypothalamus. Astrocytic, SNARE-mediated ATP release provides the extracellular adenosine that drives homeostatic sleep. Acute ethanol increases extracellular adenosine, which mediates the ataxic and hypnotic/sedative effects of alcohol, while chronic ethanol leads to downregulated adenosine signaling that underlies insomnia, a major predictor of relapse. Studies using mice lacking the equilibrative nucleoside transporter 1 have illuminated how adenosine functions through neuroglial interactions involving glutamate uptake transporter GLT-1 [referred to as excitatory amino acid transporter 2 (EAAT2) in human] and possibly water channel aquaporin 4 to regulate ethanol sensitivity, reward-related motivational processes, and alcohol intake.
Collapse
|
17
|
Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacology 2013; 38:1401-8. [PMID: 23403696 PMCID: PMC3682141 DOI: 10.1038/npp.2013.45] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The upregulation of glutamatergic excitatory neurotransmission is thought to be partly responsible for the acute withdrawal symptoms and craving experienced by alcohol-dependent patients. Most physiological evidence supporting this hypothesis is based on data from animal studies. In addition, clinical data show that GABAergic and anti-glutamatergic drugs ameliorate withdrawal symptoms, offering indirect evidence indicative of glutamatergic hyperexcitability in alcohol-dependent subjects. We used proton magnetic resonance spectroscopy to quantify the glutamate (Glu) levels in healthy control subjects and in alcohol-dependent patients immediately after detoxification. The volumes of interest were located in the nucleus accumbens (NAcc) and the anterior cingulate cortex (ACC), which are two brain areas that have important functions in reward circuitry. In addition to Glu, we quantified the levels of combined Glu and glutamine (Gln), N-acetylaspartate, choline-containing compounds, and creatine. The Glu levels in the NAcc were significantly higher in patients than in controls. Craving, which was measured using the Obsessive Compulsive Drinking Scale, correlated positively with levels of combined Glu and Gln in the NAcc and in the ACC. The levels of all other metabolites were not significantly different between patients and controls. The increased Glu levels in the NAcc in alcohol-dependent patients shortly after detoxification confirm the animal data and suggest that striatal glutamatergic dysfunction is related to ethanol withdrawal. The positive correlation between craving and glutamatergic metabolism in both key reward circuitry areas support the hypothesis that the glutamatergic system has an important role in the later course of alcohol dependence with respect to abstinence and relapse.
Collapse
|
18
|
Fliegel S, Brand I, Spanagel R, Noori HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 2013; 1:7. [PMID: 25505652 PMCID: PMC4230485 DOI: 10.1186/2193-9616-1-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol. METHODS Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry. RESULTS For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified. CONCLUSIONS In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.
Collapse
Affiliation(s)
- Sarah Fliegel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Ines Brand
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
19
|
Ding ZM, Rodd ZA, Engleman EA, Bailey JA, Lahiri DK, McBride WJ. Alcohol drinking and deprivation alter basal extracellular glutamate concentrations and clearance in the mesolimbic system of alcohol-preferring (P) rats. Addict Biol 2013; 18:297-306. [PMID: 23240885 PMCID: PMC3584204 DOI: 10.1111/adb.12018] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study determined the effects of voluntary ethanol drinking and deprivation on basal extracellular glutamate concentrations and clearance in the mesolimbic system and tested the hypothesis that chronic ethanol drinking would persistently increase basal glutamate neurotransmission. Three groups of alcohol-preferring (P) rats were used: 'water group (WG),' 'ethanol maintenance group (MG; 24-hour free choice water versus 15% ethanol)' and 'ethanol deprivation group (DG; 2 weeks of deprivation).' Quantitative microdialysis and Western blots were conducted to measure basal extracellular glutamate concentrations, clearance and proteins associated with glutamate clearance. Chronic alcohol drinking produced a 70-100% increase of basal extracellular glutamate concentrations in the posterior ventral tegmental area (4.0 versus 7.0 μM) and nucleus accumbens shell (3.0 versus 6.0 μM). Glutamate clearances were reduced by 30-40% in both regions of MG rats compared with WG rats. In addition, Western blots revealed a 40-45% decrease of excitatory amino transporter 1 (EAAT1) protein, but no significant changes in the levels of EAAT2 or cystine-glutamate antiporter in these regions of MG versus WG rats. The enhanced glutamate concentrations returned to control levels, accompanied by a recovery of glutamate clearance following deprivation. These results indicated that chronic alcohol drinking enhanced extracellular glutamate concentrations in the mesolimbic system, as a result, in part, of reduced clearance, suggesting that enhanced glutamate neurotransmission may contribute to the maintenance of alcohol drinking. However, because the increased glutamate levels returned to normal after deprivation, elevated glutamate neurotransmission may not contribute to the initiation of relapse drinking.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Ding ZM, Engleman EA, Rodd ZA, McBride WJ. Ethanol increases glutamate neurotransmission in the posterior ventral tegmental area of female wistar rats. Alcohol Clin Exp Res 2011; 36:633-40. [PMID: 22017390 DOI: 10.1111/j.1530-0277.2011.01665.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The posterior ventral tegmental area (pVTA) mediates the reinforcing and stimulating effects of ethanol (EtOH). Electrophysiological studies indicated that exposure to EtOH increased glutamate synaptic function in the VTA. This study determined the neurochemical effects of both acute and repeated EtOH exposure on glutamate neurotransmission in the pVTA. METHODS Adult female Wistar rats were implanted with microdialysis probes in the pVTA. During microdialysis, rats received acute intraperitoneal (i.p.) injection of saline or EtOH (0.5, 1.0, or 2.0 g/kg), and extracellular glutamate levels were measured in the pVTA. The effects of repeated daily injections of EtOH (0.5, 1.0, or 2.0 g/kg) on basal extracellular glutamate concentrations in the pVTA and on glutamate response to a subsequent EtOH challenge were also examined. RESULTS The injection of 0.5 g/kg EtOH significantly increased (120 to 125% of baseline), whereas injection of 2.0 g/kg EtOH significantly decreased (80% of baseline) extracellular glutamate levels in the pVTA. The dose of 1.0 g/kg EtOH did not alter extracellular glutamate levels. Seven repeated daily injections of each dose of EtOH increased basal extracellular glutamate concentrations (from 4.1 ± 0.5 to 9.2 ± 0.5 μM) and reduced glutamate clearance in the pVTA (from 30 ± 2 to 17 ± 2%), but failed to alter glutamate response to a 2.0 g/kg EtOH challenge. CONCLUSIONS The results suggest that the low dose of EtOH can stimulate the release of glutamate in the pVTA, and repeated EtOH administration increased basal glutamate transmission in the pVTA, as a result of reduced glutamate clearance.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | |
Collapse
|
21
|
Perraud O, Robert V, Martinez A, Dutasta JP. A Designed Cavity for Zwitterionic Species: Selective Recognition of Taurine in Aqueous Media. Chemistry 2011; 17:13405-8. [DOI: 10.1002/chem.201101522] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 11/10/2022]
|
22
|
Kelm MK, Criswell HE, Breese GR. Ethanol-enhanced GABA release: a focus on G protein-coupled receptors. BRAIN RESEARCH REVIEWS 2011; 65:113-23. [PMID: 20837058 PMCID: PMC3005894 DOI: 10.1016/j.brainresrev.2010.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022]
Abstract
While research on the actions of ethanol at the GABAergic synapse has focused on postsynaptic mechanisms, recent data have demonstrated that ethanol also facilitates GABA release from presynaptic terminals in many, but not all, brain regions. The ability of ethanol to increase GABA release can be regulated by different G protein-coupled receptors (GPCRs), such as the cannabinoid-1 receptor, corticotropin-releasing factor 1 receptor, GABA(B) receptor, and the 5-hydroxytryptamine 2C receptor. The intracellular messengers linked to these GPCRs, including the calcium that is released from internal stores, also play a role in ethanol-enhanced GABA release. Hypotheses are proposed to explain how ethanol interacts with the GPCR pathways to increase GABA release and how this interaction contributes to the brain region specificity of ethanol-enhanced GABA release. Defining the mechanism of ethanol-facilitated GABA release will further our understanding of the GABAergic profile of ethanol and increase our knowledge of how GABAergic neurotransmission may contribute to the intoxicating effects of alcohol and to alcohol dependence.
Collapse
Affiliation(s)
- M Katherine Kelm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
23
|
Lee MR, Hinton DJ, Wu J, Mishra PK, Port JD, Macura SI, Choi DS. Acamprosate reduces ethanol drinking behaviors and alters the metabolite profile in mice lacking ENT1. Neurosci Lett 2010; 490:90-5. [PMID: 21172405 DOI: 10.1016/j.neulet.2010.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/10/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
Acamprosate is clinically used to treat alcoholism. However, the precise molecular functionality of acamprosate in the central nervous system remains unclear, although it is known to antagonize glutamate action in the brain. Since elevated glutamate signaling, especially in the nucleus accumbens (NAc), is implicated in several aspects of alcoholism, we utilized mice lacking type 1 equilibrative nucleoside transporter (ENT1), which exhibit increased glutamate levels in the NAc as well as increased ethanol drinking behaviors. We found that acamprosate significantly reduced ethanol drinking of mice lacking ENT1 (ENT1(-/-)) while having no such effect in wild-type littermates. We then analyzed the basal and acamprosate-treated accumbal metabolite profiles of ENT1(-/-) and wild-type mice using in vivo 16.4T proton magnetic resonance spectroscopy (MRS). Our data show that basal glutamate+glutamine (Glx), glutamate, glutamine and N-acetylaspartatic acid (NAA) levels are increased in the nucleus accumbens (NAc) of ENT1(-/-) compared to wild-type mice. We then found that acamprosate treatment significantly reduced Glx and glutamine levels while increasing taurine levels in the NAc of only ENT1(-/-) compared to their saline-treated group while normalizing other metabolite compared to wild-type mice. This study will be useful in the understanding of the molecular basis of acamprosate in the brain.
Collapse
Affiliation(s)
- Moonnoh R Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Li Z, Zharikova A, Vaughan CH, Bastian J, Zandy S, Esperon L, Axman E, Rowland NE, Peris J. Intermittent high-dose ethanol exposures increase motivation for operant ethanol self-administration: possible neurochemical mechanism. Brain Res 2009; 1310:142-53. [PMID: 19944084 DOI: 10.1016/j.brainres.2009.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/07/2009] [Accepted: 11/11/2009] [Indexed: 11/24/2022]
Abstract
We investigated the neurochemical mechanism of how high-dose ethanol exposure may increase motivation for ethanol consumption. First, we developed an animal model of increased motivation for ethanol using a progressive ratio (PR) schedule. Sprague-Dawley rats were trained to administer 10% ethanol-containing gelatin or plain gelatin (on alternate weeks) in daily 30-min sessions under different fixed ratio (FR) and PR schedules. During FR schedules, rats self-administered about 1 g/kg ethanol, which was decreased to 0.4+/-0.03 g/kg under PR10. Rats then received four pairs of either 3 g/kg ethanol or saline injections during the weeks when the reinforcer was plain gelatin. During subsequent ethanol gel sessions, breakpoints and ethanol consumption rose 40% in the high-dose ethanol group by the fourth set of injections with no change in plain gel responding. Alterations in amino acids in the ventral striatum (VS) during PR10 responding for 10% ethanol gelatin and plain gelatin were measured using microdialysis sampling coupled with capillary electrophoresis and laser-induced fluorescence detection. There was greater release of taurine, glycine and glutamate in the NAC of the high-dose ethanol rats during 10% ethanol-containing gelatin responding, compared to the control rats or during plain gel responding. An increase in the release of glycine in this same brain region has recently been shown to be involved with anticipation of a reward. Thus, it appears that intermittent high-dose ethanol exposure not only increases motivation for ethanol responding but may also change neurotransmitter release that mediates anticipation of reinforcement, which may play a key role in the development of alcoholism.
Collapse
Affiliation(s)
- Zhimin Li
- Department of Pharmacodynamics, Box 100487, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lelevich VV, Lelevich SV, Doroshenko EM. Neuromediator changes in different rat brain regions after acute morphine intoxication. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Targeting Homer genes using adeno-associated viral vector: lessons learned from behavioural and neurochemical studies. Behav Pharmacol 2008; 19:485-500. [PMID: 18690104 DOI: 10.1097/fbp.0b013e32830c369f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over a decade of in-vitro data support a critical role for members of the Homer family of postsynaptic scaffolding proteins in regulating the functional architecture of glutamate synapses. Earlier studies of Homer knockout mice indicated a necessary role for Homer gene products in normal mesocorticolimbic glutamate transmission and behaviours associated therewith. The advent of adeno-associated viral vectors carrying cDNA for, or short hairpin RNA against, specific Homer isoforms enabled the site-directed targeting of Homers to neurons in the brain. This approach has allowed our groups to address developmental issues associated with conventional knockout mice, to confirm active roles for distinct Homer isoforms in regulating glutamate transmission in vivo, as well as in mediating a variety of behavioural processes. This review summarizes the existing data derived from our studies using adeno-associated viral vector-mediated neuronal targeting of Homer in rodents, implicating this family of proteins in drug and alcohol addiction, learning/memory and emotional processing.
Collapse
|
27
|
Abstract
Drug addiction presents as a chronic relapsing disorder characterized by persistent drug-seeking and drug-taking behaviours. Given the significant detrimental effects of this disease both socially and economically, a considerable amount of research has been dedicated to understanding a number of issues in addiction, including behavioural and neuropharmacological factors that contribute to the development, loss of control and persistence of compulsive addictive behaviours. In this review, we will give a broad overview of various theories of addiction, animal models of addiction and relapse, drugs of abuse, and the neurobiology of drug dependence and relapse. Although drugs of abuse possess diverse neuropharmacological profiles, activation of the mesocorticolimbic system, particularly the ventral tegmental area, nucleus accumbens, amygdala and prefrontal cortex via dopaminergic and glutamatergic pathways, constitutes a common pathway by which various drugs of abuse mediate their acute reinforcing effects. However, long-term neuroadaptations in this circuitry likely underlie the transition to drug dependence and cycles of relapse. As further elucidated in more comprehensive reviews of various subtopics on addiction in later sections of this special issue, it is anticipated that continued basic neuroscience research will aid in the development of effective therapeutic interventions for the long-term treatment of drug-dependent individuals.
Collapse
Affiliation(s)
- M W Feltenstein
- Department of Neurosciences, Medical Universiy of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
28
|
Szumlinski KK, Ary AW, Lominac KD. Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 2008; 75:112-33. [PMID: 17765204 PMCID: PMC2204062 DOI: 10.1016/j.bcp.2007.07.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic, relapsing disorder, characterized by an uncontrollable motivation to seek and use drugs. Converging clinical and preclinical observations implicate pathologies within the corticolimbic glutamate system in the genetic predisposition to, and the development of, an addicted phenotype. Such observations pose cellular factors regulating glutamate transmission as likely molecular candidates in the etiology of addiction. Members of the Homer family of proteins regulate signal transduction through, and the trafficking of, glutamate receptors, as well as maintain and regulate extracellular glutamate levels in corticolimbic brain regions. This review summarizes the existing data implicating the Homer family of protein in acute behavioral and neurochemical sensitivity to drugs of abuse, the development of drug-induced neuroplasticity, as well as other behavioral and cognitive pathologies associated with an addicted state.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Behavioral and Neural Genetics Laboratory, Department of Psychology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA.
| | | | | |
Collapse
|
29
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
30
|
Ferrer B, Bermúdez-Silva F, Bilbao A, Alvarez-Jaimes L, Sanchez-Vera I, Giuffrida A, Serrano A, Baixeras E, Khaturia S, Navarro M, Parsons L, Piomelli D, Rodríguez de Fonseca F. Regulation of brain anandamide by acute administration of ethanol. Biochem J 2007; 404:97-104. [PMID: 17302558 PMCID: PMC1868843 DOI: 10.1042/bj20061898] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The endogenous cannabinoid acylethanolamide AEA (arachidonoylethanolamide; also known as anandamide) participates in the neuroadaptations associated with chronic ethanol exposure. However, no studies have described the acute actions of ethanol on AEA production and degradation. In the present study, we investigated the time course of the effects of the intraperitoneal administration of ethanol (4 g/kg of body mass) on the endogenous levels of AEA in central and peripheral tissues. Acute ethanol administration decreased AEA in the cerebellum, the hippocampus and the nucleus accumbens of the ventral striatum, as well as in plasma and adipose tissue. Parallel decreases of a second acylethanolamide, PEA (palmitoylethanolamide), were observed in the brain. Effects were observed 45-90 min after ethanol administration. In vivo studies revealed that AEA decreases were associated with a remarkable inhibition of the release of both anandamide and glutamate in the nucleus accumbens. There were no changes in the expression and enzymatic activity of the main enzyme that degrades AEA, the fatty acid amidohydrolase. Acute ethanol administration did not change either the activity of N-acyltransferase, the enzyme that catalyses the synthesis of the AEA precursor, or the expression of NAPE-PLD (N-acylphosphatidylethanolamine-hydrolysing phospholipase D), the enzyme that releases AEA from membrane phospholipid precursors. These results suggest that receptor-mediated release of acylethanolamide is inhibited by the acute administration of ethanol, and that this effect is not derived from increased fatty acid ethanolamide degradation.
Collapse
Affiliation(s)
- Belen Ferrer
- *Fundación IMABIS, Hospital Carlos Haya, Málaga 29010, Spain
- †Department of Pharmacology, University of California, Irvine, CA, 92697-4625, U.S.A
| | | | - Ainhoa Bilbao
- *Fundación IMABIS, Hospital Carlos Haya, Málaga 29010, Spain
- ‡Departamento de Psicobiología, Universidad Complutense, Madrid 28224, Spain
| | - Lily Alvarez-Jaimes
- §Molecular and Integrative Neuroscience Department, The Scripps Research Institution. La Jolla, CA 92037, U.S.A
| | | | - Andrea Giuffrida
- †Department of Pharmacology, University of California, Irvine, CA, 92697-4625, U.S.A
| | - Antonia Serrano
- *Fundación IMABIS, Hospital Carlos Haya, Málaga 29010, Spain
| | - Elena Baixeras
- *Fundación IMABIS, Hospital Carlos Haya, Málaga 29010, Spain
| | - Satishe Khaturia
- †Department of Pharmacology, University of California, Irvine, CA, 92697-4625, U.S.A
| | - Miguel Navarro
- ‡Departamento de Psicobiología, Universidad Complutense, Madrid 28224, Spain
| | - Loren H. Parsons
- §Molecular and Integrative Neuroscience Department, The Scripps Research Institution. La Jolla, CA 92037, U.S.A
| | - Daniele Piomelli
- †Department of Pharmacology, University of California, Irvine, CA, 92697-4625, U.S.A
- Correspondence may be addressed to either of these authors (email or )
| | - Fernando Rodríguez de Fonseca
- *Fundación IMABIS, Hospital Carlos Haya, Málaga 29010, Spain
- ‡Departamento de Psicobiología, Universidad Complutense, Madrid 28224, Spain
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
31
|
Lallemand F, Ward RJ, Dravolina O, De Witte P. Nicotine-induced changes of glutamate and arginine in naive and chronically alcoholized rats: An in vivo microdialysis study. Brain Res 2006; 1111:48-60. [PMID: 16884696 DOI: 10.1016/j.brainres.2006.06.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 06/21/2006] [Accepted: 06/27/2006] [Indexed: 12/23/2022]
Abstract
The effects of nicotine, when administered either acutely or chronically, at doses of 0.15, 0.3 or 0.6 mg/kg, on the release of glutamate and arginine in the rat nucleus accumbens have been studied in microdialysis experiments. Glutamate release significantly increased after acute nicotine injection, 0.3 mg/kg, which was accentuated if there was a priming regime of saline for the previous 27 days. This is possibly related to the rewarding effects of nicotine. Five hours after cessation of chronic oral nicotine administration, there were significant increases in glutamate content, which was possibly reflective of a withdrawal process. Significant decreases in nucleus accumbens arginine release were evident, between 1 and 2 h, after chronic nicotine administration. When nicotine was co-administered to rats during chronic ethanol intoxication, at either 0.15 mg/kg or 0.3 mg/kg doses, glutamate release did not increase during the first 12 h of withdrawal. However, a decrease in arginine microdialysate content was still observed with all nicotine doses. The nicotine-induced changes in glutamate and arginine release in nucleus accumbens highlights the complex neuropharmacological interactions evoked by this compound and also identified its possible modulating effect on glutamate release during the initial stages of chronic ethanol withdrawal.
Collapse
Affiliation(s)
- Frédéric Lallemand
- Laboratoire de Biologie du Comportement, Université catholique de Louvain, 1 Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
32
|
Liang J, Zhang N, Cagetti E, Houser CR, Olsen RW, Spigelman I. Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J Neurosci 2006; 26:1749-58. [PMID: 16467523 PMCID: PMC6793625 DOI: 10.1523/jneurosci.4702-05.2006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alcohol withdrawal syndrome (AWS) symptoms include hyperexcitability, anxiety, and sleep disorders. Chronic intermittent ethanol (CIE) treatment of rats with subsequent withdrawal of ethanol (EtOH) reproduced AWS symptoms in behavioral assays, which included tolerance to the sleep-inducing effect of acute EtOH and its maintained anxiolytic effect. Electrophysiological assays demonstrated a CIE-induced long-term loss of extrasynaptic GABAA receptor (GABAAR) responsiveness and a gain of synaptic GABAAR responsiveness of CA1 pyramidal and dentate granule neurons to EtOH that we were able to relate to behavioral effects. After CIE treatment, the alpha4 subunit-preferring GABAAR ligands 4,5,6,7 tetrahydroisoxazolo[5,4-c]pyridin-3-ol, La3+, and Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5alpha][1,4]benzodiazepine-3-carboxylate) exerted decreased effects on extrasynaptic currents but had increased effects on synaptic currents. Electron microscopy revealed an increase in central synaptic localization of alpha4 but not delta subunits within GABAergic synapses on the dentate granule cells of CIE rats. Recordings in dentate granule cells from delta subunit-deficient mice revealed that this subunit is not required for synaptic GABAAR sensitivity to low [EtOH]. The profound alterations in EtOH sensitivity and alpha4 subunit localization at hippocampal GABAARs of CIE rats suggest that such changes in these and other relevant brain circuits may contribute to the development of tolerance to the sleep-inducing effects and long-term dependence on alcohol.
Collapse
|
33
|
Li Y, Peris J, Zhong L, Derendorf H. Microdialysis as a tool in local pharmacodynamics. AAPS JOURNAL 2006; 8:E222-35. [PMID: 16796373 PMCID: PMC3231563 DOI: 10.1007/bf02854892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In many cases the clinical outcome of therapy needs to be determined by the drug concentration in the tissue compartment in which the pharmacological effect occurs rather than in the plasma. Microdialysis is an in vivo technique that allows direct measurement of unbound tissue concentrations and permits monitoring of the biochemical and physiological effects of drugs throughout the body. Microdialysis was first used in pharmacodynamic research to study neurotransmission, and this remains its most common application in the field. In this review, we give an overview of the principles, techniques, and applications of microdialysis in pharmacodynamic studies of local physiological events, including measurement of endogenous substances such as acetylcholine, catecholamines, serotonin, amino acids, peptides, glucose, lactate, glycerol, and hormones. Microdialysis coupled with systemic drug administration also permits the more intensive examination of the pharmacotherapeutic effect of drugs on extracellular levels of endogenous substances in peripheral compartments and blood. Selected examples of the physiological effects and mechanisms of action of drugs are also discussed, as are the advantages and limitations of this method. It is concluded that microdialysis is a reliable technique for the measurement of local events, which makes it an attractive tool for local pharmacodynamic research.
Collapse
Affiliation(s)
- Yanjun Li
- />Department of Pharmaceutics, University of Florida, PO Box 100494, College of Pharmacy, 32610 Gainesville, FL
| | - Joanna Peris
- />Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32610 Gainesville, FL
| | - Li Zhong
- />Department of Pediatrics, College of Medicine, University of Florida, 32610 Gainesville, FL
| | - Hartmut Derendorf
- />Department of Pharmaceutics, University of Florida, PO Box 100494, College of Pharmacy, 32610 Gainesville, FL
| |
Collapse
|
34
|
Dahchour A, Lallemand F, Ward RJ, De Witte P. Production of reactive oxygen species following acute ethanol or acetaldehyde and its reduction by acamprosate in chronically alcoholized rats. Eur J Pharmacol 2005; 520:51-8. [PMID: 16135364 DOI: 10.1016/j.ejphar.2005.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 07/13/2005] [Accepted: 07/19/2005] [Indexed: 11/23/2022]
Abstract
The salicylate trap method, combined with microdialysis, has been used to validate whether reactive oxygen species, particularly hydroxyl radicals, ((*)OH), are generated in the hippocampus of male Wistar rats after acute intraperitoneal administration of either ethanol, 2 and 3 g/kg, or acetaldehyde, 200 mg, or during the initial stages of ethanol withdrawal after chronic ethanol intoxication. Salicylate (5 mM) was infused into the hippocampus via the microdialysis probe and the products of its metabolism by hydroxyl radical, particularly 2,3-dihydroxybenzoic acid (2,3-DHBA) as well as 2,5-dihydroxybenzoic acid (2,5-DHBA) assayed by HPLC (High Pressure Liquid Chromatography). Acetaldehyde, 200 mg/kg, and the higher acute dose of ethanol, 3 g/kg, induced transitory increases in 2,3-DHBA and 2,5-DHBA microdialysate content. At the cessation of four weeks of chronic ethanol intoxication, (by the vapour inhalation method), the mean blood alcohol level was 1.90 g/l. Significant increases of microdialysate 2,3-DHBA and 2,5-DHBA levels were assayed 3 h after alcohol withdrawal which were sustained for a further 5 and 1 h 40 min respectively. Oral administration of Acamprosate, 400 mg/kg/day, during the chronic ethanol intoxication procedure prevented the increased formation of 2,3- and 2,5-DHBA by comparison to rats chronically ethanol intoxicated alone.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Biologie du Comportement, Université catholique de Louvain, 1 place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
35
|
Smith A, Watson CJ, Frantz KJ, Eppler B, Kennedy RT, Peris J. Differential increase in taurine levels by low-dose ethanol in the dorsal and ventral striatum revealed by microdialysis with on-line capillary electrophoresis. Alcohol Clin Exp Res 2005; 28:1028-38. [PMID: 15252289 DOI: 10.1097/01.alc.0000131979.78003.34] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ethanol increases taurine efflux in the nucleus accumbens or ventral striatum (VS), a dopaminergic terminal region involved in positive reinforcement. However, this has been found only at ethanol doses above 1 g/kg intraperitoneally, which is higher than what most rats will self-administer. We used a sensitive on-line assay of microdialysate content to test whether lower doses of ethanol selectively increase taurine efflux in VS as opposed to other dopaminergic regions not involved in reinforcement (e.g., dorsal striatum; DS). Adult male rats with microdialysis probes in VS or DS were injected with ethanol (0, 0.5, 1, and 2 g/kg intraperitoneally), and the amino acid content of the dialysate was measured every 11 sec using capillary electrophoresis and laser-induced fluorescence detection. In VS, 0.5 g/kg ethanol significantly increased taurine levels by 20% for 10 min. A similar increase was seen after 1 g/kg ethanol, which lasted for about 20 min after injection. A two-phased taurine efflux was observed with the 2.0 g/kg dose, where taurine was increased by 2-fold after 5 min but it remained elevated by 30% for at least 60 min. In contrast, DS exhibited much smaller dose-related increases in taurine. Glycine, glutamate, serine, and gamma-aminobutyric acid were not systematically affected by lower doses of ethanol; however, 2 g/kg slowly decreased these amino acids in both brain regions during the hour after injection. These data implicate a possible role of taurine in the mechanism of action of ethanol in the VS. The high sensitivity and time resolution afforded by capillary electrophoresis and laser-induced fluorescence detection will be useful for detecting subtle changes of neuronally active amino acids levels due to low doses of ethanol.
Collapse
Affiliation(s)
- A Smith
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
36
|
Shou M, Smith AD, Shackman JG, Peris J, Kennedy RT. In vivo monitoring of amino acids by microdialysis sampling with on-line derivatization by naphthalene-2,3-dicarboxyaldehyde and rapid micellar electrokinetic capillary chromatography. J Neurosci Methods 2004; 138:189-97. [PMID: 15325127 DOI: 10.1016/j.jneumeth.2004.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/16/2004] [Accepted: 04/01/2004] [Indexed: 12/21/2022]
Abstract
An analytical method was developed to monitor amino acids collected by in vivo microdialysis. Microdialysate was continuously derivatized on-line by mixing 6 mM naphthalene-2,3-dicarboxyaldehyde (NDA) and 10 mM potassium cyanide with the dialysate stream in a fused silica capillary to form fluorescent products. Reaction time, determined by the flow rate and volume of reaction capillary, was 3 min. Derivatized amino acids were continuously delivered into a flow-gated interface and periodically injected onto a capillary electrophoresis unit equipped with a laser-induced fluorescence detection based on a commercial microscope. Separation was performed in the micellar electrokinetic chromatography mode using 30 mM sodium dodecyl sulfate in 15 mM phosphate buffer at pH 8.0 as the separation media. An electric field of 1.3 kV/cm was applied across a 10 cm long, 10 microm internal diameter separation capillary. These conditions allowed 17 amino acid derivatives to be resolved in less than 30 s. On-line injections could be performed at 30 s intervals for in vivo samples. Detection limits were from 10 to 30 nM for the amino acids. The method was applied to monitor the acute ethanol-induced amino acid level changes in freely moving rats. The results demonstrate the utility of the method to reveal dynamics of amino acid concentration in vivo.
Collapse
Affiliation(s)
- Minshan Shou
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
37
|
Qureshi AI, Ali Z, Suri MFK, Shuaib A, Baker G, Todd K, Guterman LR, Hopkins LN. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit Care Med 2003; 31:1482-9. [PMID: 12771622 DOI: 10.1097/01.ccm.0000063047.63862.99] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether extracellular concentrations of glutamate and other amino acids are significantly elevated after intracerebral hemorrhage and, if so, the temporal characteristics of these changes. Although the role of excitotoxic amino acids, particularly that of glutamate, has been described in ischemic stroke and head trauma, no information exists regarding their possible contribution to the pathogenesis of neuronal injury in intracerebral hemorrhage. DESIGN Prospective, controlled, laboratory trial. SETTINGS Animal research laboratory. SUBJECTS Sixteen anesthetized New Zealand rabbits. INTERVENTION We introduced intracerebral hemorrhage in each of eight anesthetized New Zealand rabbits by injecting 0.4 mL of autologous blood under arterial pressure into the deep gray matter of the cerebrum. MEASUREMENTS AND MAIN RESULTS Extracellular fluid samples were collected from the perihematoma region and contralateral (right) hemisphere by in vivo microdialysis at 30-min intervals for 6 hrs. Corresponding samples were similarly collected from both hemispheres in each of eight control animals that underwent needle placement without introduction of a hematoma. Concentrations of amino acids (glutamate, aspartate, asparagine, glycine, taurine, and gamma-aminobutyric acid) in the samples were measured by use of high-pressure liquid chromatography with fluorescence detection. Glutamate concentrations (mean +/- sem) were significantly higher in the hemisphere ipsilateral to the hematoma than in the contralateral hemisphere (92 +/- 22 pg/microL vs. 22 +/- 6 pg/microL) at 30 mins after hematoma creation. A significant increase was observed at 30 mins posthematoma creation in the hemisphere ipsilateral to the hematoma compared with the baseline value. A nonsignificant increase in glutamate concentration persisted in the hemisphere ipsilateral to the hematoma, ranging from 134% to 187% of baseline value between 1 and 5 hrs after hematoma creation. In the hemisphere ipsilateral to the hematoma, a three-fold increase in the concentration of glycine was observed at 30 mins after hematoma creation compared with the baseline level (890 +/- 251 pg/microL vs. 291 +/- 73 pg/microL). There was a significant difference between the hemisphere ipsilateral to the hematoma compared with the ipsilateral (corresponding) hemisphere of the control group at 30 mins posthematoma (890 +/- 251 pg/microL vs. 248 +/- 66 pg/microL). A similar transient increase was observed in taurine and asparagine concentrations at 30 mins after hematoma creation, compared with baseline measurements. Taurine concentrations in the hemisphere ipsilateral to the hematoma were significantly higher than the ipsilateral hemisphere of the control group (622 +/- 180 pg/microL vs. 202 +/- 64 pg/microL) at 30 mins after hematoma creation. CONCLUSIONS The present study suggests that glutamate and other amino acids accumulate transiently in extracellular fluids in the perihematoma region during the early period of intracerebral hemorrhage. The exact role of these amino acids in the pathogenesis of neuronal injury observed in intracerebral hemorrhage needs to be defined.
Collapse
Affiliation(s)
- Adnan I Qureshi
- Department of Neurosurgery, Toshiba Stroke Research Center, University of Buffalo, State University of New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sakurai T, Miki T, Li HP, Miyatake A, Satriotomo I, Takeuchi Y. Colocalization of taurine and glial fibrillary acidic protein immunoreactivity in mouse hippocampus induced by short-term ethanol exposure. Brain Res 2003; 959:160-4. [PMID: 12480169 DOI: 10.1016/s0006-8993(02)03611-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Morphological changes of the hippocampus were investigated in mice exhibiting signs of intoxication following short-term exposure to 6% ethanol. These alterations were examined by a double immunofluorescent study using antibodies to taurine and anti-glial fibrillary acidic protein (GFAP) antibody. Antibody-labeled taurine was localized mainly in the astrocytes and endothelial cells of control mice. Ethanol administration resulted in a significant increase in the accumulation of taurine and GFAP immunoreactivity (IR) in the stratum lacunosum-moleculare (sl-m) of the hippocampus. Specifically, the cell bodies of taurine-positive astrocytes were hypertrophied, their processes were elongated in the pericapillary region, and some colocalized with GFAP-IR cells. Furthermore, quantitative analysis revealed that the merged area in ethanol-treated mice was twice that (71.6% vs. 35.8%) of control mice. Since taurine is involved in various neuroprotective functions, the present observations suggest that the expression of taurine IR in reactive astrocytes after ethanol exposure might play an important role in neuroprotective processes.
Collapse
Affiliation(s)
- Takanobu Sakurai
- Molecular Biology Laboratory, Medical Research Laboratories, Taisho Pharmaceutical Co., Ltd., 403 Yoshino-cho 1-chome, Saitama-shi, Saitama, 330-8530, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Piepponen TP, Kiianmaa K, Ahtee L. Effects of ethanol on the accumbal output of dopamine, GABA and glutamate in alcohol-tolerant and alcohol-nontolerant rats. Pharmacol Biochem Behav 2002; 74:21-30. [PMID: 12376149 DOI: 10.1016/s0091-3057(02)00937-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of ethanol on the accumbal extracellular concentrations of dopamine, as well as of the amino acid transmitters gamma-amino butyric acid (GABA), glutamate and taurine, were studied in the alcohol-insensitive (alcohol-tolerant, AT) and alcohol-sensitive (alcohol-nontolerant, ANT) rats selected for low and high sensitivity to ethanol-induced motor impairment. Ethanol (2 or 3 g/kg ip) enhanced the output of dopamine and its metabolites in freely moving rats of both lines as measured by in vivo microdialysis. The effect of ethanol on the metabolites of dopamine tended to be stronger in the ANT rats. The smaller dose of ethanol decreased the output of GABA only in the AT rats, whereas the larger dose of ethanol decreased the output of GABA in rats of both lines to a similar degree. Ethanol at the dose of 2 g/kg slightly, but statistically, significantly decreased the output of glutamate in rats of both lines, but the larger dose of ethanol decreased the output of glutamate only in the AT rats. Ethanol at the dose of 2 g/kg induced a small transient increase in the output of taurine within 2 h after its administration in rats of both lines, but the larger dose of ethanol was without significant effect. These results confirm the previous findings that ethanol suppresses the release of GABA more in the AT than ANT rats. Thus, among the neurotransmitter systems we studied, the effects of ethanol might be the most relevant on GABAergic transmission regarding the sensitivity towards ethanol. However, our findings suggest that glutamate is also involved in this respect.
Collapse
Affiliation(s)
- T Petteri Piepponen
- Department of Pharmacy, Division of Pharmacology and Toxicology, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland.
| | | | | |
Collapse
|
40
|
Allen JW, Mutkus LA, Aschner M. Chronic ethanol produces increased taurine transport and efflux in cultured astrocytes. Neurotoxicology 2002; 23:693-700. [PMID: 12520759 DOI: 10.1016/s0161-813x(02)00027-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to ethanol's low potency and low level of toxicity, high amounts of ethanol are consumed to achieve pharmacological effects. Blood levels of ethanol in chronic alcoholics may reach as high as 80-100 mM. We undertook a series of studies to determine if these high levels of ethanol stimulated osmoregulatory processes in cultured astrocytes. The uptake and efflux of taurine, the major osmoregulatory amino acid with potentially neuroprotective actions, was assessed. In addition, uptake and efflux of the excitatory amino acid aspartate was studied since astrocytes are vital in maintaining proper synaptic excitatory amino levels through uptake, metabolism, and efflux. Ethanol exposure for 96 h resulted in increased uptake of both 3H-taurine and 3H-D-asparate. There were no significant changes in transporter function at 24 h consistent with the delayed time course of transporter up-regulation seen during chronic hyperosmotic stress. Following EtOH withdrawal, efflux of preloaded 3H-taurine was significantly increased as compared to controls for up to 1 h. In contrast to the efflux profile seen during hypotonic induced swelling and regulatory volume decrease (RVD), no increased 3H-D-asparate efflux was demonstrated. Cell volume measurements suggest that inhibition of the normal RVD response be involved in the increased taurine release.
Collapse
Affiliation(s)
- Jeffrey W Allen
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
41
|
Jung ME, Yang SH, Brun-Zinkernagel AM, Simpkins JW. Estradiol protects against cerebellar damage and motor deficit in ethanol-withdrawn rats. Alcohol 2002; 26:83-93. [PMID: 12007583 DOI: 10.1016/s0741-8329(01)00199-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On the basis of findings obtained from this study, we hypothesize that the female sex steroid 17beta-estradiol (E(2)) protects against cerebellar neuronal damage and behavioral deficit in rats withdrawn from chronic ethanol exposure. Ovariectomized rats implanted with E(2) or an oil pellet received liquid ethanol (7.5% [wt./vol.]) or dextrin diet for 5 weeks, followed by 2 weeks of ethanol withdrawal. On termination of diet administration, rats were tested for both overt withdrawal signs and latency (seconds) to fall from an accelerating rotarod in six consecutive sessions (the longer the latency, the better the performance). The initial latency was measured separately to assess motoric capacity before learning occurred. Rats were then killed, and cerebella were prepared for accessing of Purkinje cell damage. The study revealed three specific findings. (1) In the absence of E(2), the ethanol withdrawal group showed higher total ethanol withdrawal sign scores than those for the dextrin group, whereas the score for the ethanol withdrawal group was lower in the presence of E(2). (2) In the absence of E(2), the ethanol withdrawal group showed shorter rotarod latency than that for the dextrin group, whereas the latency for the ethanol withdrawal group increased in the E(2)-treated group. In ethanol withdrawal groups, E(2) treatment also resulted in a longer latency than that observed with oil treatment in the initial session and in subsequent sessions. (3) Purkinje cell numbers in the ethanol withdrawal group without E(2) were lower than those in dextrin groups and in the ethanol withdrawal group with E(2) treatment. These findings support the suggestion that E(2) exerts protective effects against withdrawal signs, cerebellar neuronal damage, and motoric impairment in subjects exposed to, and withdrawn from, chronic ethanol exposure.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas HSC at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.
| | | | | | | |
Collapse
|
42
|
Aschner M, Allen JW, Mutkus LA, Cao C. Ethanol-induced swelling in neonatal rat primary astrocyte cultures. Brain Res 2001; 900:219-26. [PMID: 11334801 DOI: 10.1016/s0006-8993(01)02314-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We tested the hypothesis that astrocytes swell in response to ethanol (EtOH) exposure. The experimental approach consisted of an electrical impedance method designed to measure cell volume. In chronic experiments, EtOH (100 mM) was added to the culture media for 1, 3, or 7 days. The cells were subsequently exposed for 15 min to isotonic buffer (122 mM NaCl) also containing 100 mM EtOH. Subsequently, the cells were washed and exposed to hypotonic buffer (112 mM NaCl) containing 100 mM mannitol. Chronic exposure to EtOH led to a marked increase in cell volume compared with control cells. Specific anion cotransport blockers, such as SITS, DIDS, furosemide, or bumetanide, when simultaneously added with EtOH to hyponatremic buffer, failed to reverse the EtOH-induced effect on swelling. In acute experiments, confluent neonatal rat primary astrocyte cultures were exposed to isotonic media (122 mM NaCl) for 15 min, followed by 45-min exposure to hypotonic media (112 mM NaCl, mimicking in vivo hyponatremic conditions associated with EtOH withdrawal) in the presence of 0-100 mM EtOH. This exposure led to a concentration-dependent increase in cell volume. Combined, these studies suggest that astrocytes exposed to EtOH accumulate compensatory organic solutes to maintain cell volume, and that in response to hyponatremia and EtOH withdrawal their volume increases to a greater extent than in cells exposed to hyponatremia alone. Furthermore, the changes associated with EtOH are osmotic in nature, and they are not reversed by anion cotransport blockers.
Collapse
Affiliation(s)
- M Aschner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA.
| | | | | | | |
Collapse
|
43
|
Olive MF, Mehmert KK, Hodge CW. Modulation of extracellular neurotransmitter levels in the nucleus accumbens by a taurine uptake inhibitor. Eur J Pharmacol 2000; 409:291-4. [PMID: 11108823 DOI: 10.1016/s0014-2999(00)00859-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using in vivo microdialysis, we examined the effect of local perfusion of the taurine uptake inhibitor guanidinoethyl sulfonate on extracellular levels of various neurotransmitters in the rat nucleus accumbens. Guanidinoethyl sulfonate (500 microM-50 mM) produced a concentration-dependent increase in extracellular taurine levels. While 500 microM and 5 mM concentrations of guanidinoethyl sulfonate were largely without effect, 50 mM guanidinoethyl sulfonate produced a significant decrease in extracellular levels of aspartate, glutamate and glycine, with no effect on extracellular dopamine levels. These results indicate that guanidinoethyl sulfonate can modulate extracellular amino acid levels in the nucleus accumbens.
Collapse
Affiliation(s)
- M F Olive
- Ernest Gallo Clinic and Research Center, UCSF Department of Neurology, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
44
|
Dahchour A, De Witte P. Ethanol and amino acids in the central nervous system: assessment of the pharmacological actions of acamprosate. Prog Neurobiol 2000; 60:343-62. [PMID: 10670704 DOI: 10.1016/s0301-0082(99)00031-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ethanol induces alterations in the central nervous system by differentially interfering with a number of neurotransmitter systems, although the mechanisms by which such effects are executed are not well understood. The present review therefore, is designed to ascertain the effect of ethanol on both excitatory and inhibitory amino acid neurotransmitters, as well as the sulphonated amino acid taurine, assayed by the microdialysis technique within specific brain regions of rat during different types of alcohol intoxication, acute and chronic, as well as during the withdrawal period. Such an understanding of these pharmacological actions of ethanol on neurotransmitters is essential in order to provide the impetus for the development of appropriate therapeutic intervention to ameliorate the multitude of neurochemical disorders induced by ethanol. In addition the possible mode of action of a new therapeutic drug for the treatment of alcoholism, acamprosate will be discussed. The first part of this review will be limited to studies of the effect of ethanol on both amino acid neurotransmitters and the sulphonated amino acid taurine, a possible neuromodulator. While, the second part will seek to establish the possible mechanism of action of a new therapeutic drug, acamprosate, which is used to combat the effects of ethanol, particularly during the craving period, as well as maintaining abstinence in weaned alcoholics.
Collapse
Affiliation(s)
- A Dahchour
- Université catholique de Louvain, Laboratoire de Biologie du Comportement, Louvain-la-Neuve, Belgium
| | | |
Collapse
|