1
|
Wan T, Zhuo L, Pan Z, Chen RY, Ma H, Cao Y, Wang J, Wang JJ, Hu WF, Lai YJ, Hayat M, Li YZ. Dosage constraint of the ribosome-associated molecular chaperone drives the evolution and fates of its duplicates in bacteria. mBio 2024; 15:e0199424. [PMID: 39373534 PMCID: PMC11559001 DOI: 10.1128/mbio.01994-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
Gene duplication events happen prevalently during evolution, and the mechanisms governing the loss or retention of duplicated genes are mostly elusive. Our genome scanning analysis revealed that trigger factor (TF), the one and only bacterial ribosome-associated molecular chaperone, is singly copied in virtually every bacterium except for a very few that possess two or more copies. However, even in these exceptions, only one complete TF copy exists, while other homologs lack the N-terminal domain that contains the conserved ribosome binding site (RBS) motif. Consistently, we demonstrated that the overproduction of the N-terminal complete TF proteins is detrimental to the cell, which can be rescued by removing the N-terminal domain. Our findings also indicated that TF overproduction leads to a decrease in protein productivity and profile changes in proteome due to its characteristic ribosome binding and holdase activities. Additionally, these N-terminal deficient TF homologs in bacteria with multiple TF homologs partition the function of TF via subfunctionalization. Our results revealed that TF is subjected to a dosage constraint that originates from its own intrinsic functions, which may drive the evolution and fates of duplicated TFs in bacteria. IMPORTANCE Gene duplication events presumably occur in tig, which encodes the ribosome-associated molecular chaperone trigger factor (TF). However, TF is singly copied in virtually every bacterium, and these exceptions with multiple TF homologs always retain only one complete copy while other homologs lack the N-terminal domain. Here, we reveal the manner and mechanism underlying the evolution and fates of TF duplicates in bacteria. We discovered that the mutation-to-loss or retention-to-sub/neofunctionalization of TF duplicates is associated with the dosage constraint of N-terminal complete TF. The dosage constraint of TF is attributed to its characteristic ribosome binding and substrate-holding activities, causing a decrease in protein productivity and profile changes in cellular proteome.
Collapse
Affiliation(s)
- Tianyu Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Rui-yun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Han Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wei-feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-jun Lai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Gvozdenov Z, Peng AYT, Biswas A, Barcutean Z, Gestaut D, Frydman J, Struhl K, Freeman BC. TRiC/CCT Chaperonin Governs RNA Polymerase II Activity in the Nucleus to Support RNA Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615188. [PMID: 39386699 PMCID: PMC11463447 DOI: 10.1101/2024.09.26.615188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The chaperonin TRiC/CCT is a large hetero-oligomeric ringed-structure that is essential in eukaryotes. While present in the nucleus, TRiC/CCT is typically considered to function in the cytosol where it mediates nascent polypeptide folding and the assembly/disassembly of protein complexes. Here, we investigated the nuclear role of TRiC/CCT. Inactivation of TRiC/CCT resulted in a significant increase in the production of nascent RNA leading to the accumulation of noncoding transcripts. The influence on transcription was not due to cytoplasmic TRiC/CCT-activities or other nuclear proteins as the effect was observed when TRiC/CCT was evicted from the nucleus and restricted to the cytoplasm. Rather, our data support a direct role of TRiC/CCT in regulating RNA polymerase II activity, as the chaperonin modulated nascent RNA production both in vivo and in vitro. Overall, our studies reveal a new avenue by which TRiC/CCT contributes to cell homeostasis by regulating the activity of nuclear RNA polymerase II.
Collapse
|
3
|
Wagner J, Carvajal AI, Bracher A, Beck F, Wan W, Bohn S, Körner R, Baumeister W, Fernandez-Busnadiego R, Hartl FU. Visualizing chaperonin function in situ by cryo-electron tomography. Nature 2024; 633:459-464. [PMID: 39169181 PMCID: PMC11390479 DOI: 10.1038/s41586-024-07843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Chaperonins are large barrel-shaped complexes that mediate ATP-dependent protein folding1-3. The bacterial chaperonin GroEL forms juxtaposed rings that bind unfolded protein and the lid-shaped cofactor GroES at their apertures. In vitro analyses of the chaperonin reaction have shown that substrate protein folds, unimpaired by aggregation, while transiently encapsulated in the GroEL central cavity by GroES4-6. To determine the functional stoichiometry of GroEL, GroES and client protein in situ, here we visualized chaperonin complexes in their natural cellular environment using cryo-electron tomography. We find that, under various growth conditions, around 55-70% of GroEL binds GroES asymmetrically on one ring, with the remainder populating symmetrical complexes. Bound substrate protein is detected on the free ring of the asymmetrical complex, defining the substrate acceptor state. In situ analysis of GroEL-GroES chambers, validated by high-resolution structures obtained in vitro, showed the presence of encapsulated substrate protein in a folded state before release into the cytosol. Based on a comprehensive quantification and conformational analysis of chaperonin complexes, we propose a GroEL-GroES reaction cycle that consists of linked asymmetrical and symmetrical subreactions mediating protein folding. Our findings illuminate the native conformational and functional chaperonin cycle directly within cells.
Collapse
Affiliation(s)
- Jonathan Wagner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Research Group Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Alonso I Carvajal
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Beck
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - William Wan
- Vanderbilt University Center for Structural Biology, Nashville, TN, USA
| | - Stefan Bohn
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Structural Biology, Helmholtz Center Munich, Oberschleissheim, Germany
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Research Group Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ruben Fernandez-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Faculty of Physics, University of Göttingen, Göttingen, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Dupuy E, Collet JF. Entering deeper into the mysteries of the GroEL-GroES nanomachine. Curr Opin Microbiol 2024; 79:102480. [PMID: 38714141 DOI: 10.1016/j.mib.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
In the densely populated intracellular milieu, polypeptides are at constant risk of nonspecific interactions and aggregation, posing a threat to essential cellular functions. Cells rely on a network of protein folding factors to deal with this challenge. The Hsp60 family of molecular chaperones, which depend on ATP for function, stands out in the proteostasis network by a characteristic structure comprising two multimeric rings arranged back to back. This review provides an updated overview of GroEL, the bacterial Hsp60, and its GroES (Hsp10) cofactor. Specifically, we highlight recent breakthroughs in understanding the intricate folding mechanisms of the GroEL-GroES nanomachine and explore the newly discovered interaction between GroEL and the chaperedoxin CnoX. Despite considerable research on the GroEL-GroES system, numerous questions remain to be explored.
Collapse
Affiliation(s)
- Emile Dupuy
- WELBIO department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Jean-François Collet
- WELBIO department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
5
|
Syed A, Zhai J, Guo B, Zhao Y, Wang JCY, Chen L. Cryo-EM structure and molecular dynamic simulations explain the enhanced stability and ATP activity of the pathological chaperonin mutant. Structure 2024; 32:575-584.e3. [PMID: 38412855 PMCID: PMC11069440 DOI: 10.1016/j.str.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Chaperonins Hsp60s are required for cellular vitality by assisting protein folding in an ATP-dependent mechanism. Although conserved, the human mitochondrial mHsp60 exhibits molecular characteristics distinct from the E. coli GroEL, with different conformational assembly and higher subunit association dynamics, suggesting a different mechanism. We previously found that the pathological mutant mHsp60V72I exhibits enhanced subunit association stability and ATPase activity. To provide structural explanations for the V72I mutational effects, here we determined a cryo-EM structure of mHsp60V72I. Our structural analysis combined with molecular dynamic simulations showed mHsp60V72I with increased inter-subunit interface, binding free energy, and dissociation force, all contributing to its enhanced subunit association stability. The gate to the nucleotide-binding (NB) site in mHsp60V72I mimicked the open conformation in the nucleotide-bound state with an additional open channel leading to the NB site, both promoting the mutant's ATPase activity. Our studies highlight the importance of mHsp60's characteristics in its biological function.
Collapse
Affiliation(s)
- Aiza Syed
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S. Hawthorne Dr., Bloomington, IN 47405, USA
| | - Jihang Zhai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China
| | - Baolin Guo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China.
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S. Hawthorne Dr., Bloomington, IN 47405, USA.
| |
Collapse
|
6
|
Dupuy É, Collet JF. [A molecular assistant for redox quality control of GroEL/ES substrates]. Med Sci (Paris) 2024; 40:229-231. [PMID: 38520093 DOI: 10.1051/medsci/2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Affiliation(s)
- Émile Dupuy
- Département WELBIO, WEL research institute, Wavre, Belgique - Institut de Duve, Université catholique de Louvain, Bruxelles, Belgique
| | - Jean-François Collet
- Département WELBIO, WEL research institute, Wavre, Belgique - Institut de Duve, Université catholique de Louvain, Bruxelles, Belgique
| |
Collapse
|
7
|
Ries F, Weil HL, Herkt C, Mühlhaus T, Sommer F, Schroda M, Willmund F. Competition co-immunoprecipitation reveals the interactors of the chloroplast CPN60 chaperonin machinery. PLANT, CELL & ENVIRONMENT 2023; 46:3371-3391. [PMID: 37606545 DOI: 10.1111/pce.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Plant Physiology/Synmikro, University of Marburg, Marburg, Germany
| |
Collapse
|
8
|
Jomrit J, Suhardi S, Summpunn P. Effects of Signal Peptide and Chaperone Co-Expression on Heterologous Protein Production in Escherichia coli. Molecules 2023; 28:5594. [PMID: 37513466 PMCID: PMC10384211 DOI: 10.3390/molecules28145594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Various host systems have been employed to increase the yield of recombinant proteins. However, some recombinant proteins were successfully produced at high yields but with no functional activities. To achieve both high protein yield and high activities, molecular biological strategies have been continuously developed. This work describes the effect of signal peptide (SP) and co-expression of molecular chaperones on the production of active recombinant protein in Escherichia coli. Extracellular enzymes from Bacillus subtilis, including β-1,4-xylanase, β-1,4-glucanase, and β-mannanase constructed with and without their signal peptides and intracellular enzymes from Pseudomonas stutzeri ST201, including benzoylformate decarboxylase (BFDC), benzaldehyde dehydrogenase (BADH), and d-phenylglycine aminotransferase (d-PhgAT) were cloned and overexpressed in E. coli BL21(DE3). Co-expression of molecular chaperones with all enzymes studied was also investigated. Yields of β-1,4-xylanase (Xyn), β-1,4-glucanase (Cel), and β-mannanase (Man), when constructed without their N-terminal signal peptides, increased 1112.61-, 1.75-, and 1.12-fold, respectively, compared to those of spXyn, spCel, and spMan, when constructed with their signal peptides. For the natural intracellular enzymes, the chaperones, GroEL-GroES complex, increased yields of active BFDC, BADH, and d-PhgAT, up to 1.31-, 4.94- and 37.93-fold, respectively, and also increased yields of Man and Xyn up to 1.53- and 3.46-fold, respectively, while other chaperones including DnaK-DnaJ-GrpE and Trigger factor (Tf) showed variable effects with these enzymes. This study successfully cloned and overexpressed extracellular and intracellular enzymes in E. coli BL21(DE3). When the signal peptide regions of the secretory enzymes were removed, yields of active enzymes were higher than those with intact signal peptides. In addition, a higher yield of active enzymes was obtained, in general, when these enzymes were co-expressed with appropriate chaperones. Therefore, E. coli can produce cytoplasmic and secretory enzymes effectively if only the enzyme coding sequence without its signal peptide is used and appropriate chaperones are co-expressed to assist in correct folding.
Collapse
Affiliation(s)
- Juntratip Jomrit
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Suhardi Suhardi
- Department of Animal Science, Faculty of Agriculture, Mulawarman University, Samarinda 75123, Indonesia
| | - Pijug Summpunn
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
9
|
Dupuy E, Van der Verren SE, Lin J, Wilson MA, Dachsbeck AV, Viela F, Latour E, Gennaris A, Vertommen D, Dufrêne YF, Iorga BI, Goemans CV, Remaut H, Collet JF. A molecular device for the redox quality control of GroEL/ES substrates. Cell 2023; 186:1039-1049.e17. [PMID: 36764293 PMCID: PMC10044410 DOI: 10.1016/j.cell.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function. Binding of GroES (Hsp10 cofactor) to GroEL induces CnoX release. Cryoelectron microscopy provided crucial structural information on the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site via a highly conserved C-terminal α-helix. Furthermore, we identified complexes in which CnoX, bound to GroEL, forms mixed disulfides with GroEL substrates, indicating that CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural features with CnoX exist in eukaryotes, suggesting that Hsp60 molecular plugins have been conserved through evolution.
Collapse
Affiliation(s)
- Emile Dupuy
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Sander Egbert Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium
| | - Jiusheng Lin
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Mark Alan Wilson
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Alix Vincent Dachsbeck
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-neuve, Belgium
| | - Emmanuelle Latour
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Alexandra Gennaris
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Yves Frédéric Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-neuve, Belgium
| | - Bogdan Iuliu Iorga
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France
| | - Camille Véronique Goemans
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium; European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium.
| | - Jean-François Collet
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
10
|
Dobosz R, Flis Ł, Bocianowski J, Malewski T. Effect of Vicia sativa L. on Motility, Mortality and Expression Levels of hsp Genes in J2 Stage of Meloidogyne hapla. J Nematol 2023; 55:20230009. [PMID: 37082220 PMCID: PMC10111211 DOI: 10.2478/jofnem-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 04/22/2023] Open
Abstract
Assuming that the seeds of Vicia sativa L. have a stressful effect on J2 stage Meloidogyne hapla, we undertook research on the effect of these seeds on the motility and mortality of J2 and determined the expression levels of selected hsp genes in J2. The assessment of the effect of V. sativa seeds on the motility of M. hapla specimens consisted of observing the movement of J2 immersed in a seed diffusate or in a tomato root filtrate at temperatures of 10, 17, and 21°C. In J2 treated with V. sativa (cv. Ina) seed diffusates, the expression level of hsp genes was determined by qPCR. J2 exposed to V. sativa diffusates were found to lose their motility, while their mortality did not exceed 30%. J2 in the seed diffusate were characterized by an increase in the expression levels of the Mh-hsp90, Mh-hsp1, and Mh-hsp43 genes. It is suggested that the hsp90 gene may be a potential bioindicator of the environmental impact on Meloidogyne nematodes. The impaired ability to move in J2 of M. hapla is attributable to the occurrence of V. sativa seeds in their habitat. These studies may contribute to developing methods of reducing crop damage caused by M. hapla.
Collapse
Affiliation(s)
- Renata Dobosz
- Institute of Plant Protection-National Research Institute, Department of Entomology and Animal Pests, Węgorka 20, 60-318Poznan, Poland
| | - Łukasz Flis
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679Warsaw, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637Poznan, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679Warsaw, Poland
| |
Collapse
|
11
|
Boshoff A. Chaperonin: Co-chaperonin Interactions. Subcell Biochem 2023; 101:213-246. [PMID: 36520309 DOI: 10.1007/978-3-031-14740-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
12
|
Stan G, Lorimer GH, Thirumalai D. Friends in need: How chaperonins recognize and remodel proteins that require folding assistance. Front Mol Biosci 2022; 9:1071168. [PMID: 36479385 PMCID: PMC9720267 DOI: 10.3389/fmolb.2022.1071168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 08/19/2023] Open
Abstract
Chaperonins are biological nanomachines that help newly translated proteins to fold by rescuing them from kinetically trapped misfolded states. Protein folding assistance by the chaperonin machinery is obligatory in vivo for a subset of proteins in the bacterial proteome. Chaperonins are large oligomeric complexes, with unusual seven fold symmetry (group I) or eight/nine fold symmetry (group II), that form double-ring constructs, enclosing a central cavity that serves as the folding chamber. Dramatic large-scale conformational changes, that take place during ATP-driven cycles, allow chaperonins to bind misfolded proteins, encapsulate them into the expanded cavity and release them back into the cellular environment, regardless of whether they are folded or not. The theory associated with the iterative annealing mechanism, which incorporated the conformational free energy landscape description of protein folding, quantitatively explains most, if not all, the available data. Misfolded conformations are associated with low energy minima in a rugged energy landscape. Random disruptions of these low energy conformations result in higher free energy, less folded, conformations that can stochastically partition into the native state. Two distinct mechanisms of annealing action have been described. Group I chaperonins (GroEL homologues in eubacteria and endosymbiotic organelles), recognize a large number of misfolded proteins non-specifically and operate through highly coordinated cooperative motions. By contrast, the less well understood group II chaperonins (CCT in Eukarya and thermosome/TF55 in Archaea), assist a selected set of substrate proteins. Sequential conformational changes within a CCT ring are observed, perhaps promoting domain-by-domain substrate folding. Chaperonins are implicated in bacterial infection, autoimmune disease, as well as protein aggregation and degradation diseases. Understanding the chaperonin mechanism and the specific proteins they rescue during the cell cycle is important not only for the fundamental aspect of protein folding in the cellular environment, but also for effective therapeutic strategies.
Collapse
Affiliation(s)
- George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - George H. Lorimer
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Austin, TX, United States
- Department of Physics, University of Texas, Austin, TX, United States
| |
Collapse
|
13
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
14
|
Gao L, Wu X, Li C, Xia X. Exploitation of Strong Constitutive and Stress-driven Promoters from Acetobacter pasteurianus for Improving Acetic acid Tolerance. J Biotechnol 2022; 350:24-30. [PMID: 35390361 DOI: 10.1016/j.jbiotec.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Acetobacter pasteurianus is an excellent cell factory for production of highly-strength acetic acid, and attracts an increasing attention in metabolic engineering. However, the available well-characterized constitutive and inducible promoters are rather limited to adjust metabolic fluxes in A. pasteurianus. In this study, we screened a panel of constitutive and acid stress-driven promoters based on time-series of RNA-seq data and characterized in A. pasteurianus and Escherichia coli. Nine constitutive promoters ranged in strength from 1.7-fold to 100-fold that of the well-known strong promoter Padh under non-acetic acid environment. Subsequently, an acetic acid-stable red fluorescent visual reporting system was established and applied to evaluate acid stress-driven promoter in A. pasteurianus during highly-acidic fermentation environment. PgroES was identified as acid stress-driven strong promoters, with expression outputs varied from 100% to 200% when acetic acid treatment. To assess their application potential, ultra-strong constitutive promoter Ptuf and acid stress-driven strong promoter PgroES were selected to overexpress acetyl-CoA synthase and greatly improved acetic acid tolerance. Notably, the acid stress-driven promoter displayed more favorable for regulating strain robustness against acid stress by overexpressing tolerance gene. In summary, this is the first well-characterized constitutive and acid stress-driven promoter library from A. pasteurianus, which could be used as a promising toolbox for metabolic engineering in acetic acid bacteria and other gram-negative bacteria.
Collapse
Affiliation(s)
- Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, PR China
| | - Xiaodan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Chenyu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China.
| |
Collapse
|
15
|
Novel cryo-EM structure of an ADP-bound GroEL-GroES complex. Sci Rep 2021; 11:18241. [PMID: 34521893 PMCID: PMC8440773 DOI: 10.1038/s41598-021-97657-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022] Open
Abstract
The GroEL–GroES chaperonin complex is a bacterial protein folding system, functioning in an ATP-dependent manner. Upon ATP binding and hydrolysis, it undergoes multiple stages linked to substrate protein binding, folding and release. Structural methods helped to reveal several conformational states and provide more information about the chaperonin functional cycle. Here, using cryo-EM we resolved two nucleotide-bound structures of the bullet-shaped GroEL–GroES1 complex at 3.4 Å resolution. The main difference between them is the relative orientation of their apical domains. Both structures contain nucleotides in cis and trans GroEL rings; in contrast to previously reported bullet-shaped complexes where nucleotides were only present in the cis ring. Our results suggest that the bound nucleotides correspond to ADP, and that such a state appears at low ATP:ADP ratios.
Collapse
|
16
|
Zhao L, Castanié-Cornet MP, Kumar S, Genevaux P, Hayer-Hartl M, Hartl FU. Bacterial RF3 senses chaperone function in co-translational folding. Mol Cell 2021; 81:2914-2928.e7. [PMID: 34107307 DOI: 10.1016/j.molcel.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/05/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Sneha Kumar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
17
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
18
|
Yano N, Emi T, Gregory DJ, Fedulov AV. Consideration on Efficient Recombinant Protein Production: Focus on Substrate Protein-Specific Compatibility Patterns of Molecular Chaperones. Protein J 2021; 40:756-764. [PMID: 34052952 DOI: 10.1007/s10930-021-09995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Expression of recombinant proteins requires at times the aid of molecular chaperones for efficient post-translational folding into functional structure. However, predicting the compatibility of a protein substrate with the right type of chaperone to produce functional proteins is a daunting issue. To study the difference in effects of chaperones on His-tagged recombinant proteins with different characteristics, we performed in vitro proteins expression using Escherichia coli overexpressed with several chaperone 'teams': Trigger Factor (TF), GroEL/GroES and DnaK/DnaJ/GrpE, alone or in combinations, with the aim to determine whether protein secondary structure can serve as predictor for chaperone success. Protein A, which has a helix dominant structure, showed the most efficient folding with GroES/EL or TF chaperones alone, whereas Protein B, which has less helix in the structure, showed a remarkable effect on the DnaK/J/GrpE system alone. This tendency was also seen with other recombinant proteins with particular properties. With the chaperons' assistance, both proteins were synthesized more efficiently in the culture at 22.5 °C for 20 h than at 37 °C for 3 h. These findings suggest a novel avenue to study compatibility of chaperones with substrate proteins and optimal culture conditions for producing functional proteins with a potential for predictive analysis of the success of chaperones based on the properties of the substrate protein.
Collapse
Affiliation(s)
- Naohiro Yano
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, NAB-210. 593 Eddy Street, Providence, RI, 02903, USA
| | - Tania Emi
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, NAB-210. 593 Eddy Street, Providence, RI, 02903, USA
| | - David J Gregory
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Alexey V Fedulov
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, NAB-210. 593 Eddy Street, Providence, RI, 02903, USA.
| |
Collapse
|
19
|
Koubek J, Schmitt J, Galmozzi CV, Kramer G. Mechanisms of Cotranslational Protein Maturation in Bacteria. Front Mol Biosci 2021; 8:689755. [PMID: 34113653 PMCID: PMC8185961 DOI: 10.3389/fmolb.2021.689755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Growing cells invest a significant part of their biosynthetic capacity into the production of proteins. To become functional, newly-synthesized proteins must be N-terminally processed, folded and often translocated to other cellular compartments. A general strategy is to integrate these protein maturation processes with translation, by cotranslationally engaging processing enzymes, chaperones and targeting factors with the nascent polypeptide. Precise coordination of all factors involved is critical for the efficiency and accuracy of protein synthesis and cellular homeostasis. This review provides an overview of the current knowledge on cotranslational protein maturation, with a focus on the production of cytosolic proteins in bacteria. We describe the role of the ribosome and the chaperone network in protein folding and how the dynamic interplay of all cotranslationally acting factors guides the sequence of cotranslational events. Finally, we discuss recent data demonstrating the coupling of protein synthesis with the assembly of protein complexes and end with a brief discussion of outstanding questions and emerging concepts in the field of cotranslational protein maturation.
Collapse
Affiliation(s)
- Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jaro Schmitt
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carla Veronica Galmozzi
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
20
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
21
|
He S, Chou HT, Matthies D, Wunder T, Meyer MT, Atkinson N, Martinez-Sanchez A, Jeffrey PD, Port SA, Patena W, He G, Chen VK, Hughson FM, McCormick AJ, Mueller-Cajar O, Engel BD, Yu Z, Jonikas MC. The structural basis of Rubisco phase separation in the pyrenoid. NATURE PLANTS 2020; 6:1480-1490. [PMID: 33230314 PMCID: PMC7736253 DOI: 10.1038/s41477-020-00811-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Approximately one-third of global CO2 fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hui-Ting Chou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Therapeutic Discovery, Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Doreen Matthies
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Antonio Martinez-Sanchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sarah A Port
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Guanhua He
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Vivian K Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
22
|
Miwa T, Chadani Y, Taguchi H. Escherichia coli small heat shock protein IbpA is an aggregation-sensor that self-regulates its own expression at posttranscriptional levels. Mol Microbiol 2020; 115:142-156. [PMID: 32959419 DOI: 10.1111/mmi.14606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Aggregation is an inherent characteristic of proteins. Risk management strategies to reduce aggregation are critical for cells to survive upon stresses that induce aggregation. Cells cope with protein aggregation by utilizing a variety of chaperones, as exemplified by heat-shock proteins (Hsps). The heat stress-induced expression of IbpA and IbpB, small Hsps in Escherichia coli, is regulated by the σ32 heat-shock transcriptional regulator and the temperature-dependent translational regulation via mRNA heat fluctuation. We found that, even without heat stress, either the expression of aggregation-prone proteins or the ibpA gene deletion profoundly increases the expression of IbpA. Combined with other evidence, we propose novel mechanisms for the regulation of the small Hsps expression. Oligomeric IbpA self-represses the ibpA/ibpB translation, and mediates its own mRNA degradation, but the self-repression is relieved by sequestration of IbpA into the protein aggregates. Thus, the function of IbpA as a chaperone to form co-aggregates is harnessed as an aggregation sensor to tightly regulate the IbpA level. Since the excessive preemptive supply of IbpA in advance of stress is harmful, the prodigious and rapid expression of IbpA/IbpB on demand is necessary for IbpA to function as a first line of defense against acute protein aggregation.
Collapse
Affiliation(s)
- Tsukumi Miwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
23
|
Balchin D, Hayer-Hartl M, Hartl FU. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett 2020; 594:2770-2781. [PMID: 32446288 DOI: 10.1002/1873-3468.13844] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Collapse
Affiliation(s)
- David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
24
|
Victor MP, Acharya D, Chakraborty S, Ghosh TC. Chaperone client proteins evolve slower than non-client proteins. Funct Integr Genomics 2020; 20:621-631. [PMID: 32377887 DOI: 10.1007/s10142-020-00740-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
Abstract
Chaperones are important molecular machinery that assists proteins to attain their native three-dimensional structure crucial for function. Earlier studies using experimental evolution showed that chaperones impose a relaxation of sequence constraints on their "client" proteins, which may lead to the fixation of slightly deleterious mutations on the latter. However, we hypothesized that such a phenomenon might be harmful to the organism in a natural physiological condition. In this study, we investigated the evolutionary rates of chaperone client and non-client proteins in five model organisms from both prokaryotic and eukaryotic lineages. Our study reveals a slower evolutionary rate of chaperone client proteins in all five organisms. Additionally, the slower folding rate and lower aggregation propensity of chaperone client proteins reveal that the chaperone may play an essential role in rescuing the slightly disadvantageous effects due to random mutations and subsequent protein misfolding. However, the fixation of such mutations is less likely to be selected in the natural population.
Collapse
Affiliation(s)
| | - Debarun Acharya
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Sandip Chakraborty
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India.
| | | |
Collapse
|
25
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
26
|
Wunder T, Cheng SLH, Lai SK, Li HY, Mueller-Cajar O. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nat Commun 2018; 9:5076. [PMID: 30498228 PMCID: PMC6265248 DOI: 10.1038/s41467-018-07624-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/09/2018] [Indexed: 11/10/2022] Open
Abstract
The slow and promiscuous properties of the CO2-fixing enzyme Rubisco constrain photosynthetic efficiency and have prompted the evolution of powerful CO2 concentrating mechanisms (CCMs). In eukaryotic microalgae a key strategy involves sequestration of the enzyme in the pyrenoid, a liquid non-membranous compartment of the chloroplast stroma. Here we show using pure components that two proteins, Rubisco and the linker protein Essential Pyrenoid Component 1 (EPYC1), are both necessary and sufficient to phase separate and form liquid droplets. The phase-separated Rubisco is functional. Droplet composition is dynamic and components rapidly exchange with the bulk solution. Heterologous and chimeric Rubiscos exhibit variability in their tendency to demix with EPYC1. The ability to dissect aspects of pyrenoid biochemistry in vitro will permit us to inform and guide synthetic biology ambitions aiming to engineer microalgal CCMs into crop plants.
Collapse
Affiliation(s)
- Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Steven Le Hung Cheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Soak-Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Hoi-Yeung Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
27
|
Elongation factor P is required to maintain proteome homeostasis at high growth rate. Proc Natl Acad Sci U S A 2018; 115:11072-11077. [PMID: 30297417 DOI: 10.1073/pnas.1812025115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elongation factor P (EF-P) is a universally conserved translation factor that alleviates ribosome pausing at polyproline (PPX) motifs by facilitating peptide bond formation. In the absence of EF-P, PPX peptide bond formation can limit translation rate, leading to pleotropic phenotypes including slowed growth, increased antibiotic sensitivity, and loss of virulence. In this study, we observe that many of these phenotypes are dependent on growth rate. Limiting growth rate suppresses a variety of detrimental phenotypes associated with ribosome pausing at PPX motifs in the absence of EF-P. Polysome levels are also similar to wild-type under slow growth conditions, consistent with global changes in ribosome queuing in cells without EF-P when growth rate is decreased. Inversely, under high protein synthesis demands, we observe that Escherichia coli lacking EF-P have reduced fitness. Our data demonstrate that EF-P-mediated relief of ribosome queuing is required to maintain proteome homeostasis under conditions of high translational demands.
Collapse
|
28
|
How Do Chaperones Protect a Cell's Proteins from Oxidative Damage? Cell Syst 2018; 6:743-751.e3. [DOI: 10.1016/j.cels.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022]
|
29
|
Johnston CL, Marzano NR, van Oijen AM, Ecroyd H. Using Single-Molecule Approaches to Understand the Molecular Mechanisms of Heat-Shock Protein Chaperone Function. J Mol Biol 2018; 430:4525-4546. [PMID: 29787765 DOI: 10.1016/j.jmb.2018.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 02/01/2023]
Abstract
The heat-shock proteins (Hsp) are a family of molecular chaperones, which collectively form a network that is critical for the maintenance of protein homeostasis. Traditional ensemble-based measurements have provided a wealth of knowledge on the function of individual Hsps and the Hsp network; however, such techniques are limited in their ability to resolve the heterogeneous, dynamic and transient interactions that molecular chaperones make with their client proteins. Single-molecule techniques have emerged as a powerful tool to study dynamic biological systems, as they enable rare and transient populations to be identified that would usually be masked in ensemble measurements. Thus, single-molecule techniques are particularly amenable for the study of Hsps and have begun to be used to reveal novel mechanistic details of their function. In this review, we discuss the current understanding of the chaperone action of Hsps and how gaps in the field can be addressed using single-molecule methods. Specifically, this review focuses on the ATP-independent small Hsps and the broader Hsp network and describes how these dynamic systems are amenable to single-molecule techniques.
Collapse
Affiliation(s)
- Caitlin L Johnston
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Nicholas R Marzano
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Heath Ecroyd
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
30
|
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.
Collapse
Affiliation(s)
- Robert H Wilson
- Department of Cellular Biochemistry , Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry , Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| |
Collapse
|
31
|
Abstract
Protein folding in the cell was originally assumed to be a spontaneous process, based on Anfinsen's discovery that purified proteins can fold on their own after removal from denaturant. Consequently cell biologists showed little interest in the protein folding process. This changed only in the mid and late 1980s, when the chaperone story began to unfold. As a result, we now know that in vivo, protein folding requires assistance by a complex machinery of molecular chaperones. To ensure efficient folding, members of different chaperone classes receive the nascent protein chain emerging from the ribosome and guide it along an ordered pathway toward the native state. I was fortunate to contribute to these developments early on. In this short essay, I will describe some of the critical steps leading to the current concept of protein folding as a highly organized cellular process.
Collapse
Affiliation(s)
- F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
32
|
GroEL Ring Separation and Exchange in the Chaperonin Reaction. Cell 2018; 172:605-617.e11. [PMID: 29336887 DOI: 10.1016/j.cell.2017.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/16/2017] [Accepted: 12/06/2017] [Indexed: 11/24/2022]
Abstract
The bacterial chaperonin GroEL and its cofactor, GroES, form a nano-cage for a single molecule of substrate protein (SP) to fold in isolation. GroEL and GroES undergo an ATP-regulated interaction cycle to close and open the folding cage. GroEL consists of two heptameric rings stacked back to back. Here, we show that GroEL undergoes transient ring separation, resulting in ring exchange between complexes. Ring separation occurs upon ATP-binding to the trans ring of the asymmetric GroEL:7ADP:GroES complex in the presence or absence of SP and is a consequence of inter-ring negative allostery. We find that a GroEL mutant unable to perform ring separation is folding active but populates symmetric GroEL:GroES2 complexes, where both GroEL rings function simultaneously rather than sequentially. As a consequence, SP binding and release from the folding chamber is inefficient, and E. coli growth is impaired. We suggest that transient ring separation is an integral part of the chaperonin mechanism.
Collapse
|
33
|
Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metab Eng 2017; 42:74-84. [DOI: 10.1016/j.ymben.2017.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 01/09/2023]
|
35
|
Bacterial proteostasis balances energy and chaperone utilization efficiently. Proc Natl Acad Sci U S A 2017; 114:E2654-E2661. [PMID: 28292901 DOI: 10.1073/pnas.1620646114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperones are protein complexes that help to fold and disaggregate a cell's proteins. It is not understood how four major chaperone systems of Escherichia coli work together in proteostasis: the recognition, sorting, folding, and disaggregating of the cell's many different proteins. Here, we model this machine. We combine extensive data on chaperoning, folding, and aggregation rates with expression levels of proteins and chaperones measured at different growth rates. We find that the proteostasis machine recognizes and sorts a client protein based on two biophysical properties of the client's misfolded state (M state): its stability and its kinetic accessibility from its unfolded state (U state). The machine is energy-efficient (the sickest proteins use the most ATP-expensive chaperones), comprehensive (it can handle any type of protein), and economical (the chaperone concentrations are just high enough to keep the whole proteome folded and disaggregated but no higher). The cell needs higher chaperone levels in two situations: fast growth (when protein production rates are high) and very slow growth (to mitigate the effects of protein degradation). This type of model complements experimental knowledge by showing how the various chaperones work together to achieve the broad folding and disaggregation needs of the cell.
Collapse
|
36
|
Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages. Med Microbiol Immunol 2017; 206:235-257. [PMID: 28283754 DOI: 10.1007/s00430-017-0500-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Protozoa of the genus Leishmania infect macrophages in their mammalian hosts causing a spectrum of diseases known as the leishmaniases. The search for leishmania effectors that support macrophage infection is a focus of significant interest. One such candidate is leishmania chaperonin 10 (CPN10) which is secreted in exosomes and may have immunosuppressive properties. Here, we report for the first time that leishmania CPN10 localizes to the cytosol of infected macrophages. Next, we generated two genetically modified strains of Leishmania donovani (Ld): one strain overexpressing CPN10 (CPN10+++) and the second, a CPN10 single allele knockdown (CPN10+/-), as the null mutant was lethal. When compared with the wild-type (WT) parental strain, CPN10+/- Ld showed higher infection rates and parasite loads in human macrophages after 24 h of infection. Conversely, CPN10+++ Ld was associated with lower initial infection rates. This unexpected apparent gain-of-function for the knockdown could have been explained either by enhanced parasite internalization or by enhanced intracellular survival. Paradoxically, we found that CPN10+/- leishmania were more readily internalized than WT Ld, but also displayed significantly impaired intracellular survival. This suggests that leishmania CPN10 negatively regulates the rate of parasite uptake by macrophages while being required for intracellular survival. Finally, quantitative proteomics identified an array of leishmania proteins whose expression was positively regulated by CPN10. In contrast, many macrophage proteins involved in innate immunity were negatively regulated by CPN10. Taken together, these findings identify leishmania CPN10 as a novel effector with broad based effects on macrophage cell regulation and parasite survival.
Collapse
|
37
|
Rowland SE, Robb FT. Structure, Function and Evolution of the Hsp60 Chaperonins. PROKARYOTIC CHAPERONINS 2017. [DOI: 10.1007/978-981-10-4651-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Blaschke L, Wagner W, Werkmeister C, Wild M, Gihring A, Rupp S, Zibek S. Development of a simplified purification method for a novel formaldehyde dismutase variant from Pseudomonas putida J3. J Biotechnol 2017; 241:69-75. [DOI: 10.1016/j.jbiotec.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022]
|
39
|
Characterization of the heterooligomeric red-type rubisco activase from red algae. Proc Natl Acad Sci U S A 2016; 113:14019-14024. [PMID: 27872295 DOI: 10.1073/pnas.1610758113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The photosynthetic CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) is inhibited by nonproductive binding of its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. Reactivation requires ATP-hydrolysis-powered remodeling of the inhibited complexes by diverse molecular chaperones known as rubisco activases (Rcas). Eukaryotic phytoplankton of the red plastid lineage contain so-called red-type rubiscos, some of which have been shown to possess superior kinetic properties to green-type rubiscos found in higher plants. These organisms are known to encode multiple homologs of CbbX, the α-proteobacterial red-type activase. Here we show that the gene products of two cbbX genes encoded by the nuclear and plastid genomes of the red algae Cyanidioschyzon merolae are nonfunctional in isolation, but together form a thermostable heterooligomeric Rca that can use both α-proteobacterial and red algal-inhibited rubisco complexes as a substrate. The mechanism of rubisco activation appears conserved between the bacterial and the algal systems and involves threading of the rubisco large subunit C terminus. Whereas binding of the allosteric regulator RuBP induces oligomeric transitions to the bacterial activase, it merely enhances the kinetics of ATP hydrolysis in the algal enzyme. Mutational analysis of nuclear and plastid isoforms demonstrates strong coordination between the subunits and implicates the nuclear-encoded subunit as being functionally dominant. The plastid-encoded subunit may be catalytically inert. Efforts to enhance crop photosynthesis by transplanting red algal rubiscos with enhanced kinetics will need to take into account the requirement for a compatible Rca.
Collapse
|
40
|
Bie AS, Fernandez-Guerra P, Birkler RID, Nisemblat S, Pelnena D, Lu X, Deignan JL, Lee H, Dorrani N, Corydon TJ, Palmfeldt J, Bivina L, Azem A, Herman K, Bross P. Effects of a Mutation in the HSPE1 Gene Encoding the Mitochondrial Co-chaperonin HSP10 and Its Potential Association with a Neurological and Developmental Disorder. Front Mol Biosci 2016; 3:65. [PMID: 27774450 PMCID: PMC5053987 DOI: 10.3389/fmolb.2016.00065] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
We here report molecular investigations of a missense mutation in the HSPE1 gene encoding the HSP10 subunit of the HSP60/ HSP10 chaperonin complex that assists protein folding in the mitochondrial matrix. The mutation was identified in an infant who came to clinical attention due to infantile spasms at 3 months of age. Clinical exome sequencing revealed heterozygosity for a HSPE1 NM_002157.2:c.217C>T de novo mutation causing replacement of leucine with phenylalanine at position 73 of the HSP10 protein. This variation has never been observed in public exome sequencing databases or the literature. To evaluate whether the mutation may be disease-associated we investigated its effects by in vitro and ex vivo studies. Our in vitro studies indicated that the purified mutant protein was functional, yet its thermal stability, spontaneous refolding propensity, and resistance to proteolytic treatment were profoundly impaired. Mass spectrometric analysis of patient fibroblasts revealed barely detectable levels of HSP10-p.Leu73Phe protein resulting in an almost 2-fold decrease of the ratio of HSP10 to HSP60 subunits. Amounts of the mitochondrial superoxide dismutase SOD2, a protein whose folding is known to strongly depend on the HSP60/HSP10 complex, were decreased to approximately 20% in patient fibroblasts in spite of unchanged SOD2 transcript levels. As a likely consequence, mitochondrial superoxide levels were increased about 2-fold. Although, we cannot exclude other causative or contributing factors, our experimental data support the notion that the HSP10-p.Leu73Phe mutation could be the cause or a strong contributing factor for the disorder in the described patient.
Collapse
Affiliation(s)
- Anne S Bie
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Rune I D Birkler
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Shahar Nisemblat
- Department of Biochemistry & Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Dita Pelnena
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Xinping Lu
- Department of Biochemistry & Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles Los Angeles, CA, USA
| | - Naghmeh Dorrani
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los AngelesLos Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine at University of California, Los AngelesLos Angeles, CA, USA
| | | | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Liga Bivina
- Division of Genomic Medicine, Department of Pediatrics, UC Davis Health System Sacramento, CA, USA
| | - Abdussalam Azem
- Department of Biochemistry & Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Kristin Herman
- Division of Genomic Medicine, Department of Pediatrics, UC Davis Health System Sacramento, CA, USA
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| |
Collapse
|
41
|
Yang F, Chen TY, Krzemiński Ł, Santiago AG, Jung W, Chen P. Single-molecule dynamics of the molecular chaperone trigger factor in living cells. Mol Microbiol 2016; 102:992-1003. [PMID: 27626893 DOI: 10.1111/mmi.13529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/10/2016] [Indexed: 01/20/2023]
Abstract
In bacteria, trigger factor (TF) is the molecular chaperone that interacts with the ribosome to assist the folding of nascent polypeptides. Studies in vitro have provided insights into the function and mechanism of TF. Much is to be elucidated, however, about how TF functions in vivo. Here, we use single-molecule tracking, in combination with genetic manipulations, to study the dynamics and function of TF in living E. coli cells. We find that TF, besides interacting with the 70S ribosome, may also bind to ribosomal subunits and form TF-polypeptide complexes that may include DnaK/DnaJ proteins. The TF-70S ribosome interactions are highly dynamic inside cells, with an average residence time of ∼0.2 s. Our results confirm that the signal recognition particle weakens TF's interaction with the 70S ribosome, and further identify that this weakening mainly results from a change in TF's binding to the 70S ribosome, rather than its unbinding. Moreover, using photoconvertible bimolecular fluorescence complementation, we selectively probe TF2 dimers in the cell and show that TF2 does not bind to the 70S ribosome but is involved in the post-translational interactions with polypeptides. These findings contribute to the fundamental understanding of molecular chaperones in assisting protein folding in living cells.
Collapse
Affiliation(s)
- Feng Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Tai-Yen Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Łukasz Krzemiński
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ace George Santiago
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Won Jung
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
42
|
Gupta A, Lloyd-Price J, Ribeiro AS. In silico analysis of division times of Escherichia coli populations as a function of the partitioning scheme of non-functional proteins. In Silico Biol 2016; 12:9-21. [PMID: 25318468 PMCID: PMC4923715 DOI: 10.3233/isb-140462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent evidence suggests that cells employ functionally asymmetric partitioning schemes in division to cope with aging. We explore various schemes in silico, with a stochastic model of Escherichia coli that includes gene expression, non-functional proteins generation, aggregation and polar retention, and molecule partitioning in division. The model is implemented in SGNS2, which allows stochastic, multi-delayed reactions within hierarchical, transient, interlinked compartments. After setting parameter values of non-functional proteins’ generation and effects that reproduce realistic intracellular and population dynamics, we investigate how the spatial organization of non-functional proteins affects mean division times of cell populations in lineages and, thus, mean cell numbers over time. We find that division times decrease for increasingly asymmetric partitioning. Also, increasing the clustering of non-functional proteins decreases division times. Increasing the bias in polar segregation further decreases division times, particularly if the bias favors the older pole and aggregates’ polar retention is robust. Finally, we show that the non-energy consuming retention of inherited non-functional proteins at the older pole via nucleoid occlusion is a source of functional asymmetries and, thus, is advantageous. Our results suggest that the mechanisms of intracellular organization of non-functional proteins, including clustering and polar retention, affect the vitality of E. coli populations.
Collapse
Affiliation(s)
| | | | - Andre S. Ribeiro
- Corresponding author: Andre S. Ribeiro, Department of Signal Processing, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland. Tel.: +358 408490736; Fax: +358 331154989;
| |
Collapse
|
43
|
Sharma A, Rustad T, Mahajan G, Kumar A, Rao KVS, Banerjee S, Sherman DR, Mande SC. Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2015; 97:137-46. [PMID: 26822628 DOI: 10.1016/j.tube.2015.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022]
Abstract
The 60 kDa heat shock proteins, also known as Cpn60s (GroELs) are components of the essential protein folding machinery of the cell, but are also dominant antigens in many infectious diseases. Although generally essential for cellular survival, in some organisms such as Mycobacterium tuberculosis, one or more paralogous Cpn60s are known to be dispensable. In M. tuberculosis, Cpn60.2 (GroEL2) is essential for cell survival, but the biological role of the non-essential Cpn60.1 (GroEL1) is still elusive. To understand the relevance of Cpn60.1 (GroEL1) in M. tuberculosis physiology, detailed transcriptomic analyses for the wild type H37Rv and cpn60.1 knockout (groEL1-KO) were performed under in vitro stress conditions: stationary phase, cold shock, low aeration, mild cold shock and low pH. Additionally, the survival of the groEL1-KO was assessed in macrophages at multiplicity of infection (MOI) of 1:1 and 1:5. We observed that survival under low aeration was significantly compromised in the groEL1-KO. Further, the gene expression analyses under low aeration showed change in expression of several key virulence factors like two component system PhoP/R and MprA/B, sigma factors SigM and C and adversely affected known hypoxia response regulators Rv0081, Rv0023 and DosR. Our work is therefore suggestive of an important role of Cpn60.1 (GroEL1) for survival under low aeration by affecting the expression of genes known for hypoxia response.
Collapse
Affiliation(s)
- Aditi Sharma
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500 001, India; Graduate Studies, Manipal University, Manipal 576104, India; National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Tige Rustad
- Center for Infectious Diseases Research (formerly known as Seattle Biomedical Research Institute), Seattle, WA, USA
| | - Gaurang Mahajan
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Arun Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kanury V S Rao
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - David R Sherman
- Center for Infectious Diseases Research (formerly known as Seattle Biomedical Research Institute), Seattle, WA, USA; University of Washington Department of Global Health, Seattle, WA, USA
| | - Shekhar C Mande
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500 001, India; National Centre for Cell Science, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
44
|
Patra M, Roy SS, Dasgupta R, Basu T. GroEL to DnaK chaperone network behind the stability modulation of σ32at physiological temperature inEscherichia coli. FEBS Lett 2015; 589:4047-52. [DOI: 10.1016/j.febslet.2015.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 01/29/2023]
|
45
|
Potnis AA, Rajaram H, Apte SK. GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity. J Biochem 2015; 159:295-304. [PMID: 26449235 DOI: 10.1093/jb/mvv100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/02/2015] [Indexed: 11/14/2022] Open
Abstract
The nitrogen-fixing cyanobacterium, Anabaena L-31 has two Hsp60 proteins, 59 kDa GroEL coded by the second gene of groESL operon and 61 kDa Cpn60 coded by cpn60 gene. Anabaena GroEL formed stable higher oligomer (>12-mer) in the presence of K(+) and prevented thermal aggregation of malate dehydrogenase (MDH). Using three protein substrates (MDH, All1541 and green fluorescent protein), it was found that the refolding activity of Anabaena GroEL was lower than that of Escherichia coli GroEL, but independent of both GroES and ATP. This correlated with in vivo data. GroEL exhibited ATPase activity which was enhanced in the presence of GroES and absence of a denatured protein, contrary to that observed for bacterial GroEL. However, a significant role for ATP could not be ascertained during in vitro folding assays. The monomeric Cpn60 exhibited much lower refolding activity than GroEL, unaffected by GroES and ATP. In vitro studies revealed inhibition of the refolding activity of Anabaena GroEL by Cpn60, which could be due to their different oligomeric status. The role of GroES and ATP may have been added during the course of evolution from the ancient cyanobacteria to modern day bacteria enhancing the refolding ability and ensuring wider scope of substrates for GroEL.
Collapse
Affiliation(s)
- Akhilesh A Potnis
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Shree K Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| |
Collapse
|
46
|
DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1519-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Sato H, Nakasone K, Yoshida T, Kato C, Maruyama T. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea. Extremophiles 2015; 19:751-62. [PMID: 25982740 DOI: 10.1007/s00792-015-0751-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022]
Abstract
When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).
Collapse
Affiliation(s)
- Hiroshi Sato
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midoriku, Yokohama, 226-8501, Japan
| | | | | | | | | |
Collapse
|
48
|
Pei X, Wang Q, Meng L, Li J, Yang Z, Yin X, Yang L, Chen S, Wu J. Chaperones-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. J Biotechnol 2015; 203:9-16. [PMID: 25796588 DOI: 10.1016/j.jbiotec.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 11/28/2022]
Abstract
Nitrile hydratase (NHase) is an important industrial enzyme that biosynthesizes high-value amides. However, most of NHases expressed in Escherichia coli easily aggregate to inactive inclusion bodies unless the induction temperature is reduced to approximately 20°C. The NHase from Aurantimonas manganoxydans has been functionally expressed in E. coli, and exhibits considerable potential for the production of nicotinamide in industrial application. In this study, the effects of chaperones including GroEL/ES, Dnak/J-GrpE and trigger factor on the expression of the recombinant Co-type NHase were investigated. The results indicate that three chaperones can significantly promote the active expression of the recombinant NHase at 30°C. The total NHase activities reached to 263 and 155U/ml in shake flasks when the NHase was co-expressed with GroEL/ES and DnaK/J-GrpE, which were 52- and 31-fold higher than the observed activities without chaperones, respectively. This increase is possibly due to the soluble expression of the recombinant NHase assisted by molecular chaperones. Furthermore, GroEL/ES and DnaK/J-GrpE were determined to promote the maturation of the Co-type NHase in E. coli under the absence of the parental activator gene. These knowledge regarding the chaperones effect on the NHase expression are useful for understanding the biosynthesis of Co-type NHase.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Qiuyan Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Lijun Meng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Jing Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Zhengfen Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Xiaopu Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Shaoyun Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China.
| |
Collapse
|
49
|
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependant protein folding in a variety of cellular compartments. GroEL and its co-chaperonin GroES are the only essential chaperones in Escherichia coli and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo structural rearrangements as part of the folding mechanism. GroES forms a lid over the chamber, and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances co-chaperonins display contrasting functions to those of chaperonins. Human Hsp60 continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10, in addition to its role as a co-chaperonin, on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biomedical Biotechnology Research Unit (BioBRU), Biotechnology Innovation Centre, Rhodes University, PO Box 94, 6140, Grahamstown, South Africa,
| |
Collapse
|
50
|
Bhandari V, Houry WA. Substrate Interaction Networks of the Escherichia coli Chaperones: Trigger Factor, DnaK and GroEL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:271-94. [PMID: 26621473 DOI: 10.1007/978-3-319-23603-2_15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the dense cellular environment, protein misfolding and inter-molecular protein aggregation compete with protein folding. Chaperones associate with proteins to prevent misfolding and to assist in folding to the native state. In Escherichia coli, the chaperones trigger factor, DnaK/DnaJ/GrpE, and GroEL/ES are the major chaperones responsible for insuring proper de novo protein folding. With multitudes of proteins produced by the bacterium, the chaperones have to be selective for their substrates. Yet, chaperone selectivity cannot be too specific. Recent biochemical and high-throughput studies have provided important insights highlighting the strategies used by chaperones in maintaining proteostasis in the cell. Here, we discuss the substrate networks and cooperation among these protein folding chaperones.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 5308, Toronto, ON, M5S 1A8, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 5308, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|