1
|
Wang Z, Chang J, Han J, Yin M, Wang X, Ren Z, Wang L. Genome-Wide Reidentification and Expression Analysis of MADS-Box Gene Family in Cucumber. Int J Mol Sci 2025; 26:3800. [PMID: 40332458 PMCID: PMC12027882 DOI: 10.3390/ijms26083800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
MADS-box transcription factors play a crucial role in plant growth and development. Although previous genome-wide analyses have investigated the MADS-box family in cucumber, this study provides the first comprehensive reannotation of the MADS-box gene family in Cucumis sativus using updated Cucurbitaceae genome data, offering novel insights into the gene family's evolution and functional diversity. The results show that a total of 48 CsMADS-box genes were identified in the V3 version of cucumber, while 3 of the 43 genes identified in the V1 version were duplicated. The V1 version actually has only 40 genes. Additionally, we analyzed the variability in protein sequences and found that the amino acid sequences of 14 genes showed no differences between the two versions of the database, while the amino acid sequences of 29 genes exhibited significant differences. The further analysis of conserved motifs revealed that although the amino acid lengths of 15 genes had changed, their conserved motifs remained unchanged; however, the conserved motifs of 12 genes had altered. Furthermore we found that motif1 and motif2 were present in most proteins, indicating that they are highly conserved. Gene structure analysis revealed that most type I (Mα, Mβ) MADS-box genes lack introns, whereas type II (MIKC) genes exhibit a similar structure with a higher number of introns. Chromosomal localization analysis indicated that CsMADS-box genes are unevenly distributed across the seven chromosomes of cucumber. Promoter region analysis showed that the promoter regions of CsMADS-box genes contain response elements related to plant growth and development, suggesting that CsMADS-box genes may be extensively involved in plant growth and development. Different CsMADS-box genes exhibit specific high expression in roots, stems, leaves, tendrils, male flowers, female flowers, and ovaries, suggesting that these genes play crucial roles in the growth, development, reproduction and morphogenesis of cucumber. Moreover, 26, 18, 8, and 10 CsMADS-box genes were differentially expressed under high temperature, NaCl and/or silicon, downy mildew, and powdery mildew treatments, respectively. Interestingly, CsMADS07 and CsMADS16 responded to all tested stress conditions. These findings provide a reference and basis for further investigation into the function and mechanisms of the MADS-box genes for resistance breeding in cucumber.
Collapse
Affiliation(s)
- Zimo Wang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Jingshu Chang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Jing Han
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China;
| | - Mengmeng Yin
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Xuehua Wang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Zhonghai Ren
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| | - Lina Wang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.W.); (J.C.); (M.Y.); (Z.R.)
| |
Collapse
|
2
|
Parajuli S, Adhikari B, Nepal MP. Insights into genetics of floral development in Amborella trichopoda Baill. through genome-wide survey and expression analysis of MADS-Box transcription factors. Sci Rep 2025; 15:5297. [PMID: 39939686 PMCID: PMC11822109 DOI: 10.1038/s41598-025-88880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
The ABCDE model is a well-known general model of floral development in angiosperms with perfect flowers, with some modifications in different plant taxa. The Fading Borders Model was proposed to better explain floral patterning in basal angiosperms that typically possess spirally arranged floral organs. The MADS-Box gene family is central to these models and has greatly expanded in higher plants which is associated with increasing complexity in floral structures. Amborella trichopoda is a basal angiosperm with simpler floral features, and the genetic and functional roles of MADS-Box genes in floral development remain poorly understood in the species. The major objectives of this study were to perform a genome-wide identification and characterization of MADS-Box genes in A. trichopoda, and to analyze their expression in floral buds and mature flowers. We identified 42 members of the MADS-Box gene family in A. trichopoda with a Hidden Markov Model (HMM)-based genome-wide survey. Among them, 27 were classified into Type II or MIKC group. Based on our classification and orthology analysis, a direct ortholog APETALA1 (AP1), an A-class floral MADS-Box gene was absent in A. trichopoda. Gene expression analysis indicated that MIKC-type genes were differentially expressed between male and female flowers with B-function orthologs: APETALA3 (AP3) and PISTILLATA (PI) in the species having differential expression between the two sexes, and E-function orthologs being upregulated in female flowers. Based on these findings, we propose a modification in the Fading Borders Model in A. trichopoda with a modified A-function, B- and E-function orthologs' expression being sex-specific, and C- and D-function genes having roles similar to that in the classical ABCDE model. These results provide new insights into the genetics underlying floral patterning in the basal angiosperm.
Collapse
Affiliation(s)
- Sanam Parajuli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Bibek Adhikari
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
3
|
Nobles A, Wendel JF, Yoo MJ. Comparative Analysis of Floral Transcriptomes in Gossypium hirsutum (Malvaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:502. [PMID: 40006762 PMCID: PMC11859044 DOI: 10.3390/plants14040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Organ-specific transcriptomes provide valuable insight into the genes involved in organ identity and developmental control. This study investigated transcriptomes of floral organs and subtending bracts in wild and domesticated Gossypium hirsutum, focusing on MADS-box genes critical for floral development. The expression profiles of A, B, C, D, and E class genes were analyzed, confirming their roles in floral organ differentiation. Hierarchical clustering revealed similar expression patterns between bracts and sepals, as well as between petals and stamens, while carpels clustered with developing cotton fibers, reflecting their shared characteristics. Beyond MADS-box genes, other transcription factors were analyzed to explore the genetic basis of floral development. While wild and domesticated cotton showed similar expression patterns for key genes, domesticated cotton exhibited significantly higher expression in carpels compared to wild cotton, which aligns with the increased number of ovules in the carpels of domesticated cotton. Functional enrichment analysis highlighted organ-specific roles: genes upregulated in bracts were enriched for photosynthesis-related GO terms, while diverse functions were enriched in floral organs, supporting their respective functions. Notably, A class genes were not significantly expressed in petals, deviating from the ABCDE model, which warrants further analysis. Lastly, the ABCDE class genes exhibited differential homoeolog expression bias toward each subgenome between two accessions, suggesting that the domestication process has influenced homoeolog utilization despite functional constraints in floral organogenesis.
Collapse
Affiliation(s)
- Alexander Nobles
- Chemistry & Biomolecular Science Department, Clarkson University, Potsdam, NY 13699, USA;
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA;
| | - Mi-Jeong Yoo
- Biology Department, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
4
|
Sharma B, Pandher MK, Alcaraz Echeveste AQ, Bravo M, Romo RK, Ramirez SC. Comparative case study of evolutionary insights and floral complexity in key early-diverging eudicot Ranunculales models. FRONTIERS IN PLANT SCIENCE 2024; 15:1486301. [PMID: 39539296 PMCID: PMC11557424 DOI: 10.3389/fpls.2024.1486301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Famously referred to as "Darwin's abominable mystery," the rapid diversification of angiosperms over the last ~140 million years presents a fascinating enigma. This diversification is underpinned by complex genetic pathways that evolve and rewire to produce diverse and sometimes novel floral forms. Morphological innovations in flowers are shaped not only by genetics but also by evolutionary constraints and ecological dynamics. The importance of model organisms in addressing the long-standing scientific questions related to diverse floral forms cannot be overstated. In plant biology, Arabidopsis thaliana, a core eudicot, has emerged as a premier model system, with its genome being the first plant genome to be fully sequenced. Similarly, model systems derived from crop plants such as Oryza sativa (rice) and Zea mays (maize) have been invaluable, particularly for crop improvement. However, despite their substantial utility, these model systems have limitations, especially when it comes to exploring the evolution of diverse and novel floral forms. The order Ranunculales is the earliest-diverging lineage of eudicots, situated phylogenetically between core eudicots and monocots. This group is characterized by its exceptional floral diversity, showcasing a wide range of floral morphologies and adaptations that offer valuable insights into the evolutionary processes of flowering plants. Over the past two decades, the development of at least five model systems including, Aquilegia, Thalictrum, Nigella, Delphinium and Eschscholzia within the Ranunculales order has significantly advanced our understanding of floral evolution. This review highlights the conservation and divergence of floral organ identity programs observed among these models and discusses their importance in advancing research within the field. The review also delves into elaborate petal morphology observed in Aquilegia, Nigella, and Delphinium genera, and further discusses the contributions, limitations, and future research directions for Ranunculales model systems. Integrating these diverse models from the early-diverging eudicot order has enhanced our understanding of the complex evolutionary pathways that shape floral diversity in angiosperms, bridging the knowledge gaps essential for a comprehensive understanding of floral evolution.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Biological Sciences, California State Polytechnic
University, Pomona, CA, United States
| | | | | | | | | | | |
Collapse
|
5
|
Zhao J, Xu Y, Zhang Z, Zhao M, Li K, Wang F, Sun K. Genome-wide analysis of the MADS-box gene family of sea buckthorn ( Hippophae rhamnoides ssp. sinensis) and their potential role in floral organ development. FRONTIERS IN PLANT SCIENCE 2024; 15:1387613. [PMID: 38938643 PMCID: PMC11208494 DOI: 10.3389/fpls.2024.1387613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Abstract
Sea buckthorn (Hippophae rhamnoides ssp. sinensis) is a deciduous shrub or small tree in the Elaeagnaceae family. It is dioecious, featuring distinct structures in female and male flowers. The MADS-box gene family plays a crucial role in flower development and differentiation of floral organs in plants. However, systematic information on the MADS-box family in sea buckthorn is currently lacking. This study presents a genome-wide survey and expression profile of the MADS-box family of sea buckthorn. We identified 92 MADS-box genes in the H. rhamnoides ssp. Sinensis genome. These genes are distributed across 12 chromosomes and classified into Type I (42 genes) and Type II (50 genes). Based on the FPKM values in the transcriptome data, the expression profiles of HrMADS genes in male and female flowers of sea buckthorn showed that most Type II genes had higher expression levels than Type I genes. This suggesting that Type II HrMADS may play a more significant role in sea buckthorn flower development. Using the phylogenetic relationship between sea buckthorn and Arabidopsis thaliana, the ABCDE model genes of sea buckthorn were identified and some ABCDE model-related genes were selected for qRT-PCR analysis in sea buckthorn flowers and floral organs. Four B-type genes may be involved in the identity determination of floral organs in male flowers, and D-type genes may be involved in pistil development. It is hypothesized that ABCDE model genes may play an important role in the identity of sea buckthorn floral organs. This study analyzed the role of MADS-box gene family in the development of flower organs in sea buckthorn, which provides an important theoretical basis for understanding the regulatory mechanism of sex differentiation in sea buckthorn.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kun Sun
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
6
|
Lu J, Wang W, Fan C, Sun J, Yuan G, Guo Y, Yu X, Chang Y, Liu J, Wang C. Telo boxes within the AGAMOUS second intron recruit histone 3 lysine 27 methylation to increase petal number in rose (Rosa chinensis) in response to low temperatures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1486-1499. [PMID: 38457289 DOI: 10.1111/tpj.16691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/10/2024]
Abstract
The petals of rose (Rosa sp.) flowers determine the ornamental and industrial worth of this species. The number of petals in roses was previously shown to be subject to fluctuations in ambient temperature. However, the mechanisms by which rose detects and responds to temperature changes are not entirely understood. In this study, we identified short interstitial telomere motifs (telo boxes) in the second intron of AGAMOUS (RcAG) from China rose (Rosa chinensis) that play an essential role in precise temperature perception. The second intron of RcAG harbors two telo boxes that recruit telomere repeat binding factors (RcTRBs), which interact with CURLY LEAF (RcCLF) to compose a repressor complex. We show that this complex suppresses RcAG expression when plants are subjected to low temperatures via depositing H3K27me3 marks (trimethylation of lysine 27 on histone H3) over the RcAG gene body. This regulatory mechanism explains the low-temperature-dependent decrease in RcAG transcript levels, leading to the production of more petals under these conditions. Our results underscore an interesting intron-mediated regulatory mechanism governing RcAG expression, enabling rose plants to perceive temperature cues and establish petal numbers.
Collapse
Affiliation(s)
- Jun Lu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weinan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Sun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhan Guo
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Yu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufei Chang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changquan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Zhang X, Peng W, Chen H, Xing H. BnAP2-12 overexpression delays ramie flowering: evidence from AP2/ERF gene expression. FRONTIERS IN PLANT SCIENCE 2024; 15:1367837. [PMID: 38590749 PMCID: PMC10999622 DOI: 10.3389/fpls.2024.1367837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Introduction The APETALA2/ethylene response factor (AP2/ERF) superfamily plays a significant role in regulating plant gene expression in response to growth and development. To date, there have been no studies into whether the ramie AP2/ERF genes are involved in the regulation of flower development. Methods Here, 84 BnAP2/ERF members were identified from the ramie genome database, and various bioinformatics data on the AP2/ERF gene family, structure, replication, promoters and regulatory networks were analysed. BnAP2-12 was transferred into Arabidopsis through the flower-dipping method. Results Phylogenetic analysis classified the 84 BnAP2/ERF members into four subfamilies: AP2 (18), RAV (3), ERF (42), and DREB (21). The functional domain analysis of genes revealed 10 conserved motifs. Genetic mapping localised the 84 members on 14 chromosomes, among which chromosomes 1, 3, 5, and 8 had more members. Collinearity analysis revealed that 43.37% possibly resulted from replication events during the evolution of the ramie genome. Promoter sequence analysis identified classified cis-acting elements associated with plant growth and development, and responses to stress, hormones, and light. Transcriptomic comparison identified 3,635 differentially expressed genes (DEGs) between male and female flowers (1,803 and 1,832 upregulated and downregulated genes, respectively). Kyoto Encyclopaedia of Genes and Genomes pathway analysis categorised DEGs involved in metabolic pathways and biosynthesis of secondary metabolites. Gene Ontology enrichment analysis further identified enriched genes associated with pollen and female gamete formations. Of the 84 BnAP2/ERFs genes, 22 and 8 upregulated and downregulated genes, respectively, were present in female flowers. Co-expression network analysis identified AP2/ERF members associated with flower development, including BnAP2-12. Subcellular localisation analysis showed that the BnAP2-12 protein is localised in the nucleus and cell membrane. Overexpression BnAP2-12 delayed the flowering time of Arabidopsis thaliana. Conclusion These findings provide insights into the mechanism of ramie flower development.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Agricultural College of Hunan Agricultural University, Changsha, China
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
| | - Wenxian Peng
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
- Changsha Tobacco Company, Ningxiang, China
| | - Hao Chen
- Agricultural College of Hunan Agricultural University, Changsha, China
| | - Hucheng Xing
- Agricultural College of Hunan Agricultural University, Changsha, China
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
- Hunan Key Laboratory of Germplasm Resources Innovation and Resource Utilization Crop Breeding Center, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Grass Crop Germplasm Innovation and Utilization, Changsha, China
| |
Collapse
|
8
|
Zhang J, Hu Z, Xie Q, Dong T, Li J, Chen G. Two SEPALLATA MADS-Box Genes, SlMBP21 and SlMADS1, Have Cooperative Functions Required for Sepal Development in Tomato. Int J Mol Sci 2024; 25:2489. [PMID: 38473738 PMCID: PMC10931843 DOI: 10.3390/ijms25052489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Tingting Dong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| |
Collapse
|
9
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Liu H, Li J, Gong P, He C. The origin and evolution of carpels and fruits from an evo-devo perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:283-298. [PMID: 36031801 DOI: 10.1111/jipb.13351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The flower is an evolutionary innovation in angiosperms that drives the evolution of biodiversity. The carpel is integral to a flower and develops into fruits after fertilization, while the perianth, consisting of the calyx and corolla, is decorative to facilitate pollination and protect the internal organs, including the carpels and stamens. Therefore, the nature of flower origin is carpel and stamen origin, which represents one of the greatest and fundamental unresolved issues in plant evolutionary biology. Here, we briefly summarize the main progress and key genes identified for understanding floral development, focusing on the origin and development of the carpels. Floral ABC models have played pioneering roles in elucidating flower development, but remain insufficient for resolving flower and carpel origin. The genetic basis for carpel origin and subsequent diversification leading to fruit diversity also remains elusive. Based on current research progress and technological advances, simplified floral models and integrative evolutionary-developmental (evo-devo) strategies are proposed for elucidating the genetics of carpel origin and fruit evolution. Stepwise birth of a few master regulatory genes and subsequent functional diversification might play a pivotal role in these evolutionary processes. Among the identified transcription factors, AGAMOUS (AG) and CRABS CLAW (CRC) may be the two core regulatory genes for carpel origin as they determine carpel organ identity, determinacy, and functionality. Therefore, a comparative identification of their protein-protein interactions and downstream target genes between flowering and non-flowering plants from an evo-devo perspective may be primary projects for elucidating carpel origin and development.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Pan X, Ouyang Y, Wei Y, Zhang B, Wang J, Zhang H. Genome-wide analysis of MADS-box families and their expressions in flower organs development of pineapple ( Ananas comosus (L.) Merr.). FRONTIERS IN PLANT SCIENCE 2022; 13:948587. [PMID: 36311063 PMCID: PMC9597317 DOI: 10.3389/fpls.2022.948587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
MADS-box genes play crucial roles in plant vegetative and reproductive growth, better development of inflorescences, flower, and fruit. Pineapple is a typical collective fruit, and a comprehensive analysis of the MADS-box gene family in the development of floral organs of pineapple is still lacking. In this study, the whole-genome survey and expression profiling of the MADS-box family in pineapple were introduced. Forty-four AcMADS genes were identified in pineapple, 39 of them were located on 18 chromosomes and five genes were distributed in five scaffolds. Twenty-two AcMADS genes were defined as 15 pairs of segmental duplication events. Most members of the type II subfamily of AcMADS genes had higher expression levels in floral organs compared with type I subfamily, thereby suggesting that AcMADS of type II may play more crucial roles in the development of floral organs of pineapple. Six AcMADS genes have significant tissue-specificity expression, thereby suggesting that they may participate in the formation of one or more floral organs. This study provides valuable insights into the role of MADS-box gene family in the floral organ development of pineapple.
Collapse
|
12
|
Zhang J, Ma H, Liu Y. Analysis on characteristics of female gametophyte and functional identification of genes related to inflorescences development of Kentucky bluegrass. PROTOPLASMA 2022; 259:1061-1079. [PMID: 34743240 DOI: 10.1007/s00709-021-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The inflorescence is composed of spikes, and the spike is the carrier of grass seed formation and development, so the development status of inflorescence implies grass seed yield and quality. So far, the systematic analysis of inflorescence development of Kentucky bluegrass has not been reported. The development process of the female gametophyte of wild germplasm materials of Kentucky bluegrass in Gannan, Gansu Province of China (KB-GN), was observed. Based on this, the key developmental stages of inflorescence in KB-GN were divided into premeiosis (GPreM), meiosis (GM), postmeiosis (GPostM), and anthesis (GA), and four stages of inflorescence were selected to analyze the transcriptome expression profile. We found that its sexual reproduction formed a polygonum-type embryo sac. Transcriptome analysis showed that 4256, 1125, 1699, and 3127 genes were highly expressed in GPreM, GM, GPostM, and GA, respectively. And a large number of transcription factors (TFs) such as MADS-box, MYB and NAC, AP2, C2H2, FAR1, B3, bHLH, WRKY, and TCP were highly expressed throughout the inflorescence development stages. KEGG enrichment and MapMan analysis showed that genes involved in plant hormone metabolism were also highly expressed at the entire stages of inflorescence development. However, a few TFs belong to stage-specific genes, such as TRAF proteins with unknown function in plants was screened firstly, which was specifically and highly expressed in the GPreM, indicating that TRAF may regulate the preparatory events of meiosis or be essential for the development of megaspore mother cell (MMC). The expression patterns of 15 MADS-box genes were analyzed by qRT-PCR, and the expression results were consistent with that of the transcriptome. The study on the inflorescence development of KB-GN will be great significant works and contribution to illustrate the basic mechanism of grass seeds formation and development.
Collapse
Affiliation(s)
- Jinqing Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| | - Yan Liu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| |
Collapse
|
13
|
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ. Fruit Development in Sweet Cherry. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121531. [PMID: 35736682 PMCID: PMC9227597 DOI: 10.3390/plants11121531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 05/19/2023]
Abstract
Fruits are an important source of vitamins, minerals and nutrients in the human diet. They also contain several compounds of nutraceutical importance that have significant antioxidant and anti-inflammatory roles, which can protect the consumer from diseases, such as cancer, and cardiovascular disease as well as having roles in reducing the build-up of LDL-cholesterol in blood plasma and generally reduce the risks of disease and age-related decline in health. Cherries contain high concentrations of bioactive compounds and minerals, including calcium, phosphorous, potassium and magnesium, and it is, therefore, unsurprising that cherry consumption has a positive impact on health. This review highlights the development of sweet cherry fruit, the health benefits of cherry consumption, and the options for increasing consumer acceptance and consumption.
Collapse
Affiliation(s)
- Edoardo Vignati
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Marzena Lipska
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Mario Caccamo
- NIAB, Cambridge Crop Research, Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Andrew J. Simkin
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence:
| |
Collapse
|
14
|
Márquez Gutiérrez R, Cherubino Ribeiro TH, de Oliveira RR, Benedito VA, Chalfun-Junior A. Genome-Wide Analyses of MADS-Box Genes in Humulus lupulus L. Reveal Potential Participation in Plant Development, Floral Architecture, and Lupulin Gland Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091237. [PMID: 35567239 PMCID: PMC9100628 DOI: 10.3390/plants11091237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
MADS-box transcription factors (TFs) are involved in multiple plant development processes and are most known during the reproductive transition and floral organ development. Very few genes have been characterized in the genome of Humulus lupulus L. (Cannabaceae), an important crop for the pharmaceutical and beverage industries. The MADS-box family has not been studied in this species yet. We identified 65 MADS-box genes in the hop genome, of which 29 encode type-II TFs (27 of subgroup MIKCC and 2 MIKC*) and 36 type-I proteins (26 α, 9 β, and 1 γ). Type-II MADS-box genes evolved more complex architectures than type-I genes. Interestingly, we did not find FLOWERING LOCUS C (FLC) homologs, a transcription factor that acts as a floral repressor and is negatively regulated by cold. This result provides a molecular explanation for a previous work showing that vernalization is not a requirement for hop flowering, which has implications for its cultivation in the tropics. Analysis of gene ontology and expression profiling revealed genes potentially involved in the development of male and female floral structures based on the differential expression of ABC homeotic genes in each whorl of the flower. We identified a gene exclusively expressed in lupulin glands, suggesting a role in specialized metabolism in these structures. In toto, this work contributes to understanding the evolutionary history of MADS-box genes in hop, and provides perspectives on functional genetic studies, biotechnology, and crop breeding.
Collapse
Affiliation(s)
- Robert Márquez Gutiérrez
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Vagner Augusto Benedito
- Laboratory of Plant Functional Genetics, Plant and Soil Sciences Division, 3425 Agricultural Sciences Building, West Virginia University, Morgantown, WV 26506-6108, USA
- Correspondence: (V.A.B.); (A.C.-J.)
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
- Correspondence: (V.A.B.); (A.C.-J.)
| |
Collapse
|
15
|
Gong P, Song C, Liu H, Li P, Zhang M, Zhang J, Zhang S, He C. Physalis floridana CRABS CLAW mediates neofunctionalization of GLOBOSA genes in carpel development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6882-6903. [PMID: 34181715 PMCID: PMC8547157 DOI: 10.1093/jxb/erab309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/23/2021] [Indexed: 05/20/2023]
Abstract
Floral B-function MADS-box genes, such as GLOBOSA (GLO), function in corolla and stamen organ identity specification. The functions of these genes outside these floral whorls are rarely reported. DOLL1 is a GLO gene controlling corolla and androecium organ identity. In this study we found that, in Physalis floridana double-layered-lantern 1 (doll1) mutant pollinated with wild-type pollen, fruit set was extremely low, indicating that doll1 females are dysfunctional. Stigma and style structure, stigma receptivity, pollen tube guidance, and embryo sac development were also impaired in doll1. P. floridana CRABS CLAW (PFCRC), predominantly expressed in carpels, was repressed in doll1 native carpels. Loss-of-function of PFCRC altered carpel meristem determinacy, carpel closure, and ovule number, and the resultant 'pistil' consisted of multiple spirally-arranged dorsiventral carpels occasionally with 1-2 naked ovules on the margin and trichomes at each mutated carpel tip, implying an alteration of carpel organ identity. Regulatory and genetic interactions between B-class MADS-box genes and PFCRC were revealed in a context-dependent manner in floral development. Our work reveals a new role for the B-function genes in carpel and ovule development via regulating PFCRC, providing a new understanding of genetic regulatory networks between MADS-domain and CRC transcription factors in mediating carpel organ specification, functionality, and origin.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, China
| | - Chunjing Song
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peigang Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingshu Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jisi Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaohua Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
16
|
Guan H, Wang H, Huang J, Liu M, Chen T, Shan X, Chen H, Shen J. Genome-Wide Identification and Expression Analysis of MADS-Box Family Genes in Litchi ( Litchi chinensis Sonn.) and Their Involvement in Floral Sex Determination. PLANTS 2021; 10:plants10102142. [PMID: 34685951 PMCID: PMC8540616 DOI: 10.3390/plants10102142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
Litchi possesses unique flower morphology and adaptive reproduction strategies. Although previous attention has been intensively devoted to the mechanisms underlying its floral induction, the molecular basis of flower sex determination remains largely unknown. MADS-box genes are promising candidates for this due to their significant roles in various aspects of inflorescence and flower organogenesis. Here, we present a detailed overview of phylogeny and expression profiles of 101 MADS-box genes that were identified in litchi. These LcMADSs are unevenly located across the 15 chromosomes and can be divided into type I and type II genes. Fifty type I MADS-box genes are subdivided into Mα, Mβ and Mγ subgroups, while fifty-one type II LcMADSs consist of 37 MIKCC -type and 14 MIKC *-type genes. Promoters of both types of LcMADS genes contain mainly ABA and MeJA response elements. Tissue-specific and development-related expression analysis reveal that LcMADS51 could be positively involved in litchi carpel formation, while six MADS-box genes, including LcMADS42/46/47/75/93/100, play a possible role in stamen development. GA is positively involved in the sex determination of litchi flowers by regulating the expression of LcMADS51 (LcSTK). However, JA down-regulates the expression of floral organ identity genes, suggesting a negative role in litchi flower development.
Collapse
Affiliation(s)
- Hongling Guan
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Han Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Huang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ting Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Shan
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Houbin Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- Correspondence: (H.C.); (J.S.); Tel.: +86-20-85280231 (H.C. & J.S.)
| | - Jiyuan Shen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- Correspondence: (H.C.); (J.S.); Tel.: +86-20-85280231 (H.C. & J.S.)
| |
Collapse
|
17
|
Comparative transcriptomic analysis of the tea plant (Camellia sinensis) reveals key genes involved in pistil deletion. Hereditas 2020; 157:39. [PMID: 32900387 PMCID: PMC7487804 DOI: 10.1186/s41065-020-00153-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 11/22/2022] Open
Abstract
Background The growth process of the tea plant (Camellia sinensis) includes vegetative growth and reproductive growth. The reproductive growth period is relatively long (approximately 1.5 years), during which a large number of nutrients are consumed, resulting in reduced tea yield and quality, accelerated aging, and shortened economic life of the tea plant. The formation of unisexual and sterile flowers can weaken the reproductive growth process of the tea plant. To further clarify the molecular mechanisms of pistil deletion in the tea plant, we investigated the transcriptome profiles in the pistil-deficient tea plant (CRQS), wild tea plant (WT), and cultivated tea plant (CT) by using RNA-Seq. Results A total of 3683 differentially expressed genes were observed between CRQS and WT flower buds, with 2064 upregulated and 1619 downregulated in the CRQS flower buds. These genes were mainly involved in the regulation of molecular function and biological processes. Ethylene synthesis–related ACC synthase genes were significantly upregulated and ACC oxidase genes were significantly downregulated. Further analysis revealed that one of the WIP transcription factors involved in ethylene synthesis was significantly upregulated. Moreover, AP1 and STK, genes related to flower development, were significantly upregulated and downregulated, respectively. Conclusions The transcriptome analysis indicated that the formation of flower buds with pistil deletion is a complex biological process. Our study identified ethylene synthesis, transcription factor WIP, and A and D-class genes, which warrant further investigation to understand the cause of pistil deletion in flower bud formation.
Collapse
|
18
|
Ma J, Deng S, Jia Z, Sang Z, Zhu Z, Zhou C, Ma L, Chen F. Conservation and divergence of ancestral AGAMOUS/SEEDSTICK subfamily genes from the basal angiosperm Magnolia wufengensis. TREE PHYSIOLOGY 2020; 40:90-107. [PMID: 31553477 DOI: 10.1093/treephys/tpz091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
AGAMOUS/SEEDSTICK (AG/STK) subfamily genes play crucial roles in the reproductive development of plants. However, most of our current knowledge of AG/STK subfamily genes is restricted to core eudicots and grasses, and the knowledge of ancestral exon-intron structures, expression patterns, protein-protein interaction patterns and functions of AG/STK subfamily genes remains unclear. To determine these, we isolated AG/STK subfamily genes (MawuAG1, MawuAG2 and MawuSTK) from a woody basal angiosperm Magnolia wufengensis (Magnoliaceae). MawuSTK arose from the gene duplication event occurring before the diversification of extant angiosperms, and MawuAG1 and MawuAG2 may result from a gene duplication event occurring before the divergence of Magnoliaceae and Lauraceae. Gene duplication led to apparent diversification in their expression and interaction patterns. It revealed that expression in both stamens and carpels likely represents the ancestral expression profiles of AG lineage genes, and expression of STK-like genes in stamens may have been lost soon after the appearance of the STK lineage. Moreover, AG/STK subfamily proteins may have immediately established interactions with the SEPALLATA (SEP) subfamily proteins following the emergence of the SEP subfamily; however, their interactions with the APETALA1/FRUITFULL subfamily proteins or themselves differ from those found in monocots and basal and core eudicots. MawuAG1 plays highly conserved roles in the determinacy of stamen, carpel and ovule identity, while gene duplication contributed to the functional diversification of MawuAG2 and MawuSTK. In addition, we investigated the evolutionary history of exon-intron structural changes of the AG/STK subfamily, and a novel splice-acceptor mode (GUU-AU) and the convergent evolution of N-terminal extension in the euAG and PLE subclades were revealed for the first time. These results further advance our understanding of ancestral AG/STK subfamily genes in terms of phylogeny, exon-intron structures, expression and interaction patterns, and functions, and provide strong evidence for the significance of gene duplication in the expansion and evolution of the AG/STK subfamily.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Yichang, 443002, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Yichang, 443002, Hubei Province, PR China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| |
Collapse
|
19
|
Differentially Expressed Genes between Carrot Petaloid Cytoplasmic Male Sterile and Maintainer during Floral Development. Sci Rep 2019; 9:17384. [PMID: 31757985 PMCID: PMC6874560 DOI: 10.1038/s41598-019-53717-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/31/2019] [Indexed: 11/09/2022] Open
Abstract
Petaloid cytoplasmic male sterility (CMS) is a maternally inherited loss of male fertility due to the complete conversion of stamens into petal-like organs, and CMS lines have been widely utilized in carrot breeding. Petaloid CMS is an ideal model not only for studying the mitochondrial-nuclear interaction but also for discovering genes that are essential for floral organ development. To investigate the comprehensive mechanism of CMS and homeotic organ alternation during carrot flower development, we conducted transcriptome analysis between the petaloid CMS line (P2S) and its maintainer line (P2M) at four flower developmental stages (T1-T4). A total of 2838 genes were found to be differentially expressed, among which 1495 genes were significantly downregulated and 1343 genes were significantly upregulated in the CMS line. Functional analysis showed that most of the differentially expressed genes (DEGs) were involved in protein processing in the endoplasmic reticulum, plant hormone signal transduction, and biosynthesis. A total of 16 MADS-box genes were grouped into class A, B, C, and E, but not class D, genes. Several key genes associated with oxidative phosphorylation showed continuously low expression from stage T2 in P2S, and the expression of DcPI and DcAG-like genes also greatly decreased at stage T2 in P2S. This indicated that energy deficiency might inhibit the expression of B- and C-class MADS-box genes resulting in the conversion of stamens into petals. Stamen petaloidy may act as an intrinsic stress, upregulating the expression of heat shock protein (HSP) genes and MADS-box genes at stages T3 and T4 in P2S, which results in some fertile revertants. This study will provide a better understanding of carrot petaloid CMS and floral development as a basis for further research.
Collapse
|
20
|
Yang C, Liu X, Li D, Zhu X, Wei Z, Feng Z, Zhang L, He J, Mou C, Jiang L, Wan J. OsLUGL is involved in the regulating auxin level and OsARFs expression in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110239. [PMID: 31521225 DOI: 10.1016/j.plantsci.2019.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/27/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Specification of floral organ identity is critical for floral morphology and inflorescence architecture. Floral organ identity in plants is controlled by floral homeotic A/B/C/D/E-class genes. Although multiple genes regulate floral organogenesis, our understanding of the regulatory network remains fragmentary. Here, we characterized a rice floral organ gene KAIKOUXIAO (KKX), mutation of which produces an uncharacteristic open hull, abnormal seed and semi-sterility. KKX encodes a putative LEUNIG-like (LUGL) transcriptional regulator OsLUGL. OsLUGL is preferentially expressed in young panicles and its protein can interact with OsSEU, which functions were reported as an adaptor for LEUNIG. OsLUGL-OsSEU functions together as a transcriptional co-regulatory complex to control organ identity. SEP3 (such as OsMADS8) and AP1 (such as OsMADS18) serve as the DNA-binding partner of OsLUGL-OsSEU complex. Further studies indicated that OsMADS8 and OsMADS18 could bind to the promoter of OsGH3-8. The altered expression of OsGH3-8 might cause the increased auxin level and the decreased expression of OsARFs. Overall, our results demonstrate a possible pathway whereby OsLUGL-OsSEU-OsAP1-OsSEP3 complex as a transcriptional co-regulator by targeting the promoter of OsGH3-8, then affecting auxin level, OsARFs expression and thereby influencing floral development. These findings provide a valuable insight into the molecular functions of OsLUGL in rice floral development.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianli Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingjie Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyao Wei
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China; National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
21
|
Girma G, Natsume S, Carluccio AV, Takagi H, Matsumura H, Uemura A, Muranaka S, Takagi H, Stavolone L, Gedil M, Spillane C, Terauchi R, Tamiru M. Identification of candidate flowering and sex genes in white Guinea yam (D. rotundata Poir.) by SuperSAGE transcriptome profiling. PLoS One 2019; 14:e0216912. [PMID: 31545796 PMCID: PMC6756524 DOI: 10.1371/journal.pone.0216912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/05/2019] [Indexed: 01/03/2023] Open
Abstract
Dioecy (distinct male and female individuals) and scarce to non-flowering are common features of cultivated yam (Dioscorea spp.). However, the molecular mechanisms underlying flowering and sex determination in Dioscorea are largely unknown. We conducted SuperSAGE transcriptome profiling of male, female and monoecious individuals to identify flowering and sex-related genes in white Guinea yam (D. rotundata), generating 20,236 unique tags. Of these, 13,901 were represented by a minimum of 10 tags. A total 88 tags were significantly differentially expressed in male, female and monoecious plants, of which 18 corresponded to genes previously implicated in flower development and sex determination in multiple plant species. We validated the SuperSAGE data with quantitative real-time PCR (qRT-PCR)-based analysis of the expression of three candidate genes. We further investigated the flowering patterns of 1938 D. rotundata accessions representing diverse geographical origins over two consecutive years. Over 85% of accessions were either male or non-flowering, less than 15% were female, while monoecious plants were rare. Intensity of flowering varied between male and female plants, with the former flowering more abundantly than the latter. Candidate genes identified in this study can be targeted for further validation and to induce regular flowering in poor to non-flowering cultivars. Findings of the study provide important inputs for further studies aiming to overcome the challenge of flowering in yams and to improve efficiency of yam breeding.
Collapse
Affiliation(s)
- Gezahegn Girma
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Satoshi Natsume
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Anna Vittoria Carluccio
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Hiroki Takagi
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Hideo Matsumura
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Aiko Uemura
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Satoru Muranaka
- Japan International Research Center for Agricultural Sciences (JIRCAS), Ohwashi, Tsukuba, Japan
- * E-mail:
| | - Hiroko Takagi
- Japan International Research Center for Agricultural Sciences (JIRCAS), Ohwashi, Tsukuba, Japan
| | - Livia Stavolone
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Melaku Gedil
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Charles Spillane
- Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Ryohei Terauchi
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Muluneh Tamiru
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| |
Collapse
|
22
|
Wang P, Wang S, Chen Y, Xu X, Guang X, Zhang Y. Genome-wide Analysis of the MADS-Box Gene Family in Watermelon. Comput Biol Chem 2019; 80:341-350. [PMID: 31082717 DOI: 10.1016/j.compbiolchem.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
MADS-box genes comprise a family of transcription factors that function in the growth and development of plants. To obtain insights into their evolution in watermelon (Citrullus lanatus), we carried out a genome-wide analysis and identified 39 MADS-box genes. These genes were classified into MIKCc (25), MIKC*(3), Mα (5), Mβ (3), and Mγ (3) clades according to their phylogenetic relationship with Arabidopsis thaliana and Cucumis sativus; moreover, these 25 genes in the MIKC clade could be classified into 13 subfamilies, and the Flowering Locus C (FLC) subfamily is absent in watermelon. Analysis of the conserved gene motifs showed similar motifs among clades. Continuing chromosomal localizations analysis indicated that MADS-box genes were distributed across 11 chromosomes in watermelon, and these genes were conditioned to be differentially expressed during plant growth and development. This research provides information that will aid further investigations into the evolution of the MADS-box gene family in plants.
Collapse
Affiliation(s)
- Ping Wang
- School of Information & Computer, Anhui Agricultural University, Hefei 230036, China
| | - Songbo Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410000, China
| | - Yong Chen
- Science and Technology Department, State Tobacco Monopoly Administration, Beijing 100045, China
| | - Xiaomin Xu
- Department of Mathematics, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xuanmin Guang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Youhua Zhang
- School of Information & Computer, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
23
|
Zhang J, Wang Y, Naeem M, Zhu M, Li J, Yu X, Hu Z, Chen G. An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:909-924. [PMID: 30481310 DOI: 10.1093/jxb/ery418] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/18/2018] [Indexed: 05/25/2023]
Abstract
AGAMOUS (AG) MADS-box transcription factors have been shown to play crucial roles in floral organ and fruit development in angiosperms. Here, we isolated a tomato (Solanum lycopersicum) AG MADS-box gene SlMBP3 and found that it is preferentially expressed in flowers and during early fruit developmental stages in the wild-type (WT), and in the Nr (never ripe) and rin (ripening inhibitor) mutants. Its transcripts are notably accumulated in the pistils; transcripts abundance decrease during seed and placental development, increasing again during flower development. SlMBP3-RNAi tomato plants displayed fleshy placenta without locular gel and extremely malformed seeds with no seed coat, while SlMBP3-overexpressing plants exhibited advanced liquefaction of the placenta and larger seeds. Enzymatic activities related to cell wall modification, and the contents of cell wall components and pigments were dramatically altered in the placentas of SlMBP3-RNAi compared with the WT. Alterations in these physiological features were also observed in the placentas of SlMBP3-overexpressing plants. The lignin content of mature seeds in SlMBP3-RNAi lines was markedly lower than that in the WT. RNA-seq and qRT-PCR analyses revealed that genes involved in seed development and the biosynthesis of enzymes related to cell wall modification, namely gibberellin, indole-3-acetic acid, and abscisic acid were down-regulated in the SlMBP3-RNAi lines. Taking together, our results demonstrate that SlMBP3 is involved in the regulation of placenta and seed development in tomato.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yicong Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Muhammad Naeem
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Mingku Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
24
|
Meng D, Cao Y, Chen T, Abdullah M, Jin Q, Fan H, Lin Y, Cai Y. Evolution and functional divergence of MADS-box genes in Pyrus. Sci Rep 2019; 9:1266. [PMID: 30718750 PMCID: PMC6362034 DOI: 10.1038/s41598-018-37897-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023] Open
Abstract
MADS-box transcription factors widely regulate all aspects of plant growth including development and reproduction. Although the MADS-box gene family genes have been extensively characterized in many plants, they have not been studied in closely related species. In this study, 73 and 74 MADS-box genes were identified in European pear (Pyrus communis) and Chinese pear (Pyrus bretschneideri), respectively. Based on the phylogenetic relationship, these genes could be clustered into five groups (Mα, Mβ, Mr, MIKCC, MIKC*) and the MIKCC group was further categorized into 10 subfamilies. The distribution of MADS-box genes on each chromosome was significantly nonrandom. Thirty-seven orthologs, twenty-five PcpMADS (P. communis MADS-box) paralogs and nineteen PbrMADS (P. bretschneideri MADS-box) paralogs were predicted. Among these paralogous genes, two pairs arose from tandem duplications (TD), nineteen from segmental duplication (SD) events and twenty-three from whole genome duplication (WGD) events, indicating SD/WGD events led to the expansion of MADS-box gene family. The MADS-box genes expression profiles in pear fruits indicated functional divergence and neo-functionalization or sub-functionalization of some orthologous genes originated from a common ancestor. This study provided a useful reference for further analysis the mechanisms of species differentiation and biodiversity formation among closely related species.
Collapse
Affiliation(s)
- Dandan Meng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunpeng Cao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Tianzhe Chen
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Abdullah
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Honghong Fan
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Lin
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
25
|
Pan J, Chang P, Ye X, Zhu J, Li D, Cui C, Wen B, Ma Y, Zhu X, Fang W, Wang Y. Transcriptome-wide analysis of MADS-box family genes involved in aluminum and fluoride assimilation in Camellia sinensis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:313-324. [PMID: 31892818 PMCID: PMC6905225 DOI: 10.5511/plantbiotechnology.18.0621a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/21/2018] [Indexed: 06/10/2023]
Abstract
MADS-box transcription factors (TFs) are involved in a variety of processes in flowering plants ranging from root growth to flower and fruit development. However, studies of the tolerance-related functions of MADS-box genes are very limited, and to date no such studies have been conducted on Camellia sinensis. To gain insight into the functions of genes of this family and to elucidate the role they may play in tissue development and Al and F response, we identified 45 MADS-box genes through transcriptomic analysis of C. sinensis. Phylogenetic analysis of these CsMADS-box genes, along with their homologues in Arabidopsis thaliana, enabled us to classify them into distinct groups, including: M-type (Mα), MIKC* and MIKCc (which contains the SOC1, AGL12, AGL32, SEP, ANR1, SVP, and FLC subgroups). Conserved motif analysis of the CsMADS-box proteins revealed diverse motif compositions indicating a complex evolutionary relationship. Finally, we examined the expression patterns of CsMADS-box genes in various tissues and under different Al and F concentration treatments. Our qPCR results showed that these CsMADS-box genes were involved in Al and F accumulation and root growth in C. sinensis. These findings lay the foundation for future research on the function of CsMADS-box genes and their role in response to Al and F accumulation in root tissues.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaojiao Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanlei Cui
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Gao B, Chen M, Li X, Liang Y, Zhu F, Liu T, Zhang D, Wood AJ, Oliver MJ, Zhang J. Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC PLANT BIOLOGY 2018; 18:256. [PMID: 30367626 PMCID: PMC6204039 DOI: 10.1186/s12870-018-1437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Facilitated by the rapid progress of sequencing technology, comparative genomic studies in plants have unveiled recurrent whole genome duplication (i.e. polyploidization) events throughout plant evolution. The evolutionary past of plant genes should be analyzed in a background of recurrent polyploidy events in distinctive plant lineages. The Vascular Plant One Zinc-finger (VOZ) gene family encode transcription factors associated with a number of important traits including control of flowering time and photoperiodic pathways, but the evolutionary trajectory of this gene family remains uncharacterized. RESULTS In this study, we deciphered the evolutionary history of the VOZ gene family by analyses of 107 VOZ genes in 46 plant genomes using integrated methods: phylogenic reconstruction, Ks-based age estimation and genomic synteny comparisons. By scrutinizing the VOZ gene family phylogeny the core eudicot γ event was well circumscribed, and relics of the precommelinid τ duplication event were detected by incorporating genes from oil palm and banana. The more recent T and ρ polyploidy events, closely coincident with the species diversification in Solanaceae and Poaceae, respectively, were also identified. Other important polyploidy events captured included the "salicoid" event in poplar and willow, the "early legume" and "soybean specific" events in soybean, as well as the recent polyploidy event in Physcomitrella patens. Although a small transcription factor gene family, the evolutionary history of VOZ genes provided an outstanding record of polyploidy events in plants. The evolutionary past of VOZ gene family demonstrated a close correlation with critical plant polyploidy events which generated species diversification and provided answer to Darwin's "abominable mystery". CONCLUSIONS We deciphered the evolutionary history of VOZ transcription factor family in plants and ancestral polyploidy events in plants were recapitulated simultaneously. This analysis allowed for the generation of an idealized plant gene tree demonstrating distinctive retention and fractionation patterns following polyploidy events.
Collapse
Affiliation(s)
- Bei Gao
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Yuqing Liang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Fuyuan Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037 China
| | - Tieyuan Liu
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University-Carbondale, Carbondale, IL 62901-6509 USA
| | - Melvin J. Oliver
- USDA-ARS, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211 USA
| | - Jianhua Zhang
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
27
|
Zhang Y, Tang D, Lin X, Ding M, Tong Z. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering. BMC PLANT BIOLOGY 2018; 18:176. [PMID: 30176795 PMCID: PMC6122543 DOI: 10.1186/s12870-018-1394-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/27/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND MADS-box genes encode a large family of transcription factors that play significant roles in plant growth and development. Bamboo is an important non-timber forest product worldwide, but previous studies on the moso bamboo (Phyllostachys edulis) MADS-box gene family were not accurate nor sufficiently detailed. RESULTS Here, a complete genome-wide identification and characterization of the MADS-box genes in moso bamboo was conducted. There was an unusual lack of type-I MADS-box genes in the bamboo genome database ( http://202.127.18.221/bamboo/index.php ), and some of the PeMADS sequences are fragmented and/or inaccurate. We performed several bioinformatics techniques to obtain more precise sequences using transcriptome assembly. In total, 42 MADS-box genes, including six new type-I MADS-box genes, were identified in bamboo, and their structures, phylogenetic relationships, predicted conserved motifs and promoter cis-elements were systematically investigated. An expression analysis of the bamboo MADS-box genes in floral organs and leaves revealed that several key members are involved in bamboo inflorescence development, like their orthologous genes in Oryza. The ectopic overexpression of one MADS-box gene, PeMADS5, in Arabidopsis triggered an earlier flowering time and the development of an aberrant flower phenotype, suggesting that PeMADS5 acts as a floral activator and is involved in bamboo flowering. CONCLUSION We produced the most comprehensive information on MADS-box genes in moso bamboo. Additionally, a critical PeMADS gene (PeMADS5) responsible for the transition from vegetative to reproductive growth was identified and shown to be related to bamboo floral development.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang China
| | - Dingqin Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin’an, Zhejiang China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang China
| |
Collapse
|
28
|
The rice TRIANGULAR HULL1 protein acts as a transcriptional repressor in regulating lateral development of spikelet. Sci Rep 2017; 7:13712. [PMID: 29057928 PMCID: PMC5651839 DOI: 10.1038/s41598-017-14146-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/06/2017] [Indexed: 11/08/2022] Open
Abstract
As a basic unit of rice inflorescence, spikelet has profound influence on grain size, weight and yield. The molecular mechanism underlying spikelet development has not been fully elucidated. Here, we identified four allelic rice mutants, s2-89, xd151, xd281 and xd425, which exhibited reduced width of spikelet, especially in the apical region. Map-based cloning revealed that all these mutants had missense mutation in the TRIANGULAR HULL1 (TH1) gene, encoding an ALOG family protein. TH1 has been shown to regulate the lateral development of spikelet, but its mode of action remains unclear. Microscopic analysis revealed that the reduction in spikelet width was caused by decreased cell size rather than cell division. The TH1 protein was shown to localize in the nucleus and possess transcriptional repression activity. TH1 could form a homodimer and point mutation in the s2-89, xd281 and xd425 mutant inhibited homodimerization. The transcriptional repression activity of TH1 was partially relieved by the His129Tyr substitution in the s2-89 mutant. Fusion of an exogenous EAR transcription suppression domain to the mutant protein TH1s2-89 could largely complemented the narrow spikelet phenotype. These results indicate that TH1 functions as a transcription repressor and regulates cell expansion during the lateral development of spikelet.
Collapse
|
29
|
Jin Y, Wang Y, Zhang D, Shen X, Liu W, Chen F. Floral organ MADS-box genes in Cercidiphyllum japonicum (Cercidiphyllaceae): Implications for systematic evolution and bracts definition. PLoS One 2017; 12:e0178382. [PMID: 28562649 PMCID: PMC5451075 DOI: 10.1371/journal.pone.0178382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
The dioecious relic Cercidiphyllum japonicum is one of two species of the sole genus Cercidiphyllum, with a tight inflorescence lacking an apparent perianth structure. In addition, its systematic place has been much debated and, so far researches have mainly focused on its morphology and chloroplast genes. In our investigation, we identified 10 floral organ identity genes, including four A-class, three B-class, two C-class and one D-class. Phylogenetic analyses showed that all ten genes are grouped with Saxifragales plants, which confirmed the phylogenetic place of C. japonicum. Expression patterns of those genes were examined by quantitative reverse transcriptase PCR, with some variations that did not completely coincide with the ABCDE model, suggesting some subfunctionalization. As well, our research supported the idea that thebract actually is perianth according to our morphological and molecular analyses in Cercidiphyllum japonicum.
Collapse
Affiliation(s)
- Yupei Jin
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province, P. R. China
| | - Yubing Wang
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province, P. R. China
| | - Dechun Zhang
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province, P. R. China
| | - Xiangling Shen
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province, P. R. China
| | - Wen Liu
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province, P. R. China
| | - Faju Chen
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province, P. R. China
- * E-mail:
| |
Collapse
|
30
|
Gong P, Ao X, Liu G, Cheng F, He C. Duplication and Whorl-Specific Down-Regulation of the Obligate AP3-PI Heterodimer Genes Explain the Origin of Paeonia lactiflora Plants with Spontaneous Corolla Mutation. PLANT & CELL PHYSIOLOGY 2017; 58:411-425. [PMID: 28013274 DOI: 10.1093/pcp/pcw204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/19/2016] [Indexed: 05/14/2023]
Abstract
Herbaceous peony (Paeonia lactiflora) is a globally important ornamental plant. Spontaneous floral mutations occur frequently during cultivation, and are selected as a way to release new cultivars, but the underlying evolutionary developmental genetics remain largely elusive. Here, we investigated a collection of spontaneous corolla mutational plants (SCMPs) whose other floral organs were virtually unaffected. Unlike the corolla in normal plants (NPs) that withered soon after fertilization, the transformed corolla (petals) in SCMPs was greenish and persistent similar to the calyx (sepals). Epidermal cellular morphology of the SCMP corolla was also similar to that of calyx cells, further suggesting a sepaloid corolla in SCMPs. Ten floral MADS-box genes from these Paeonia plants were comparatively characterized with respect to sequence and expression. Codogenic sequence variation of these MADS-box genes was not linked to corolla changes in SCMPs. However, we found that both APETALA3 (AP3) and PISTILLATA (PI) lineages of B-class MADS-box genes were duplicated, and subsequent selective expression alterations of these genes were closely associated with the origin of SCMPs. AP3-PI obligate heterodimerization, essential for organ identity of corolla and stamens, was robustly detected. However, selective down-regulation of these duplicated genes might result in a reduction of this obligate heterodimer concentration in a corolla-specific manner, leading to the sepaloid corolla in SCMPs, thus representing a new sepaloid corolla model taking advantage of gene duplication. Our work suggests that modifying floral MADS-box genes could facilitate the breeding of novel cultivars with distinct floral morphology in ornamental plants, and also provides new insights into the functional evolution of the MADS-box genes in plants.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiang Ao
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
| | - Gaixiu Liu
- Luoyang National Peony Garden, Mangshan Town, Old City District, Luoyang, China
| | - Fangyun Cheng
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, China
| |
Collapse
|
31
|
Abstract
The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth's biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems,Arabidopsis thalianaandAntirrhinum majus Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of "model clades" for genomic and evolutionary-developmental analyses, instead of the primary use of single "model organisms." We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution.
Collapse
|
32
|
Wu F, Shi X, Lin X, Liu Y, Chong K, Theißen G, Meng Z. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:310-324. [PMID: 27689766 DOI: 10.1111/tpj.13386] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 05/26/2023]
Abstract
The well-known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B- and C-functions are highly conserved throughout flowering plants and even in gymnosperms, the A-function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL-like subfamily of MADS-box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass-specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)-function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL-like genes were independently recruited to fulfil the (A)-function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed.
Collapse
Affiliation(s)
- Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaowei Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xuelei Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
33
|
Ren Z, Yu D, Yang Z, Li C, Qanmber G, Li Y, Li J, Liu Z, Lu L, Wang L, Zhang H, Chen Q, Li F, Yang Z. Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in Gossypium hirsutum L. Unravels Their Roles in Flowering. FRONTIERS IN PLANT SCIENCE 2017; 8:384. [PMID: 28382045 PMCID: PMC5360754 DOI: 10.3389/fpls.2017.00384] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/06/2017] [Indexed: 05/22/2023]
Abstract
Cotton is one of the major world oil crops. Cottonseed oil meets the increasing demand of fried food, ruminant feed, and renewable bio-fuels. MADS intervening keratin-like and C-terminal (MIKC)-type MADS-box genes encode transcription factors that have crucial roles in various plant developmental processes. Nevertheless, this gene family has not been characterized, nor its functions investigated, in cotton. Here, we performed a comprehensive analysis of MIKC-type MADS genes in the tetraploid Gossypium hirsutum L., which is the most widely cultivated cotton species. In total, 110 GhMIKC genes were identified and phylogenetically classified into 13 subfamilies. The Flowering locus C (FLC) subfamily was absent in the Gossypium hirsutum L. genome but is found in Arabidopsis and Vitis vinifera L. Among the genes, 108 were distributed across the 13 A and 12 of the D genome's chromosomes, while two were located in scaffolds. GhMIKCs within subfamilies displayed similar exon/intron characteristics and conserved motif compositions. According to RNA-sequencing, most MIKC genes exhibited high flowering-associated expression profiles. A quantitative real-time PCR analysis revealed that some crucial MIKC genes determined the identities of the five flower organs. Furthermore, the overexpression of GhAGL17.9 in Arabidopsis caused an early flowering phenotype. Meanwhile, the expression levels of the flowering-related genes CONSTANS (CO), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) were significantly increased in these lines. These results provide useful information for future studies of GhMIKCs' regulation of cotton flowering.
Collapse
Affiliation(s)
- Zhongying Ren
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Daoqian Yu
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Zhaoen Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Changfeng Li
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- Cotton Research Institute, Anhui Academy of Agricultural SciencesHefei, China
| | - Ghulam Qanmber
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Yi Li
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Jie Li
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Zhao Liu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Lili Lu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Lingling Wang
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Hua Zhang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
| | - Quanjia Chen
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
| | - Fuguang Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- *Correspondence: Zuoren Yang
| | - Zuoren Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- Fuguang Li
| |
Collapse
|
34
|
Zhu L, Shi Y, Zang Q, Shi Q, Liu S, Xu Y, Lin X. Functional analysis of PI-like gene in relation to flower development from bamboo (Bambusa oldhamii). J Genet 2016; 95:71-8. [PMID: 27019434 DOI: 10.1007/s12041-015-0605-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bamboo flowering owns many unique characteristics and remains a mystery. To investigate the molecular mechanisms underlying flower development in bamboo, a petal-identity gene was identified as a PISTILLATA homologue named BoPI from Bambusa oldhamii (bamboo family). Expression analysis showed that BoPI was highly expressed in flower organs and gradually increased during flower development stage, suggesting that BoPI played an important role in flower development. Ectopic expression of BoPI in Arabidopsis caused conversion of sepals to petals. 35S::BoPI fully rescued the defective petal formation in the pi-1 mutant. BoPI could interact with BoAP3 protein in vitro. These results suggested that BoPI regulated flower development of bamboo in a similar way with PI. Besides flower organs, BoPI was also expressed in leaf and branch, which revealed that BoPI may involve in leaf and branch development. Similar to other MIKC-type gene, BoPI contained the Cterminal sequence but its function was controversial. Ectopic expression of the C-terminal deletion construct (BoPI- ∆C) in Arabidopsis converted sepals to petals; BoPI- ∆C interacted with BoAP3 on yeast two-hybrid assay, just like the full-length con struct. The result implied that the C-terminal sequence may not be absolutely required for organ identity function in the context of BoPI.
Collapse
Affiliation(s)
- Longfei Zhu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Brkljacic J, Grotewold E. Combinatorial control of plant gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:31-40. [PMID: 27427484 DOI: 10.1016/j.bbagrm.2016.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/02/2023]
Abstract
Combinatorial gene regulation provides a mechanism by which relatively small numbers of transcription factors can control the expression of a much larger number of genes with finely tuned temporal and spatial patterns. This is achieved by transcription factors assembling into complexes in a combinatorial fashion, exponentially increasing the number of genes that they can target. Such an arrangement also increases the specificity and affinity for the cis-regulatory sequences required for accurate target gene expression. Superimposed on this transcription factor combinatorial arrangement is the increasing realization that histone modification marks expand the regulatory information, which is interpreted by histone readers and writers that are part of the regulatory apparatus. Here, we review the progress in these areas from the perspective of plant combinatorial gene regulation, providing examples of different regulatory solutions and comparing them to other metazoans. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jelena Brkljacic
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA
| | - Erich Grotewold
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Niu S, Yuan H, Sun X, Porth I, Li Y, El-Kassaby YA, Li W. A transcriptomics investigation into pine reproductive organ development. THE NEW PHYTOLOGIST 2016; 209:1278-1289. [PMID: 26406997 DOI: 10.1111/nph.13680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The development of reproductive structures in gymnosperms is still poorly studied because of a lack of genomic information and useful genetic tools. The hermaphroditic reproductive structure derived from unisexual gymnosperms is an even less studied aspect of seed plant evolution. To extend our understanding of the molecular mechanism of hermaphroditism and the determination of sexual identity of conifer reproductive structures in general, unisexual and bisexual cones from Pinus tabuliformis were profiled for gene expression using 60K microarrays. Expression patterns of genes during progression of sexual cone development were analysed using RNA-seq. The results showed that, overall, the transcriptomes of male structures in bisexual cones were more similar to those of female cones. However, the expression of several MADS-box genes in the bisexual cones was similar to that of male cones at the more juvenile developmental stage, while despite these expression shifts, male structures of bisexual cones and normal male cones were histologically indistinguishable and cone development was continuous. This study represents a starting point for in-depth analysis of the molecular regulation of cone development and also the origin of hermaphroditism in pine.
Collapse
Affiliation(s)
- Shihui Niu
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Huwei Yuan
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinrui Sun
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Ilga Porth
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yue Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
37
|
Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJW, Ko SS, Chan MT, Shih MC. Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:284-98. [PMID: 25917508 PMCID: PMC11389087 DOI: 10.1111/pbi.12383] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 05/04/2023]
Abstract
Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.
Collapse
Affiliation(s)
- Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-yi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Xiang C, Liang X, Chu R, Duan M, Cheng J, Ding Z, Wang J. Fine mapping of a palea defective 1 (pd1), a locus associated with palea and stamen development in rice. PLANT CELL REPORTS 2015; 34:2151-2159. [PMID: 26441054 DOI: 10.1007/s00299-015-1858-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/16/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE : pd1, a genetic factor in a 69 kb region between RM11239 and RM11245 on rice chromosome 1, controls stamen number and palea development. Spikelets are important organs that store photosynthetic products in rice. Spikelet development directly affects grain yield and rice quality. Here, we report a palea defective (pd1) mutant identified from selfing progenies of indica cv. 93-11 after (60)Co γ ray treatment. pd1 mutant flowers only had four stamens (wild-type has six), but pollen fertility was not affected. Compared with 93-11 palea, pd1 mutant palea showed smaller and flatter leaf, which caused the lemma to bend excessively inward. pd1 mutants had only 46% seed setting rate and 21.6 g 1000-grain weight, which led to two-thirds loss of grain yield. Scanning electron microscope analysis revealed that pd1 mutants had reduced epidermal cell size and reduced numbers of fibrous sclerenchyma cells in both palea and lemma. To analyze the genetic factors involved, we crossed pd1 mutants with three japonica cultivars and generated F1 and F2 populations. The F1 phenotype and F2 segregation ratio indicated that a recessive gene controlled the mutant traits. Using the F2 population, we found that pd1 mapped between the simple sequence repeat markers RM11236 and RM11280 on rice chromosome 1. From a segregating population of 2836 plants, 77 recombinants were screened by RM11236 and RM11280. High-resolution linkage analysis narrowed the pd1 locus to a 69 kb region between RM11239 and RM11245 that contained 10 open reading frames (ORFs). Sequence alignment and quantitative real-time PCR expression analysis of these ORFs between 93-11 and pd1 mutant plants found no unequivocal evidence to identify the pd1 gene.
Collapse
Affiliation(s)
- Chunyan Xiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinxing Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruizhen Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinping Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengquan Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
39
|
Wei X, Wang L, Yu J, Zhang Y, Li D, Zhang X. Genome-wide identification and analysis of the MADS-box gene family in sesame. Gene 2015; 569:66-76. [PMID: 25967387 DOI: 10.1016/j.gene.2015.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
Abstract
MADS-box genes encode transcription factors that play crucial roles in plant growth and development. Sesame (Sesamum indicum L.) is an oil crop that contributes to the daily oil and protein requirements of almost half of the world's population; therefore, a genome-wide analysis of the MADS-box gene family is needed. Fifty-seven MADS-box genes were identified from 14 linkage groups of the sesame genome. Analysis of phylogenetic relationships with Arabidopsis thaliana, Utricularia gibba and Solanum lycopersicum MADS-box genes was performed. Sesame MADS-box genes were clustered into four groups: 28 MIKC(c)-type, 5 MIKC(⁎)-type, 14 Mα-type and 10 Mγ-type. Gene structure analysis revealed from 1 to 22 exons of sesame MADS-box genes. The number of exons in type II MADS-box genes greatly exceeded the number in type I genes. Motif distribution analysis of sesame MADS-box genes also indicated that type II MADS-box genes contained more motifs than type I genes. These results suggested that type II sesame MADS-box genes had more complex structures. By analyzing expression profiles of MADS-box genes in seven sesame transcriptomes, we determined that MIKC(C)-type MADS-box genes played significant roles in sesame flower and seed development. Although most MADS-box genes in the same clade showed similar expression features, some gene functions were diversified from the orthologous Arabidopsis genes. This research will contribute to uncovering the role of MADS-box genes in sesame development.
Collapse
Affiliation(s)
- Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
40
|
Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Chung MY, Hur Y, Cho YG, Watanabe M, Nou IS. Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genomics 2015; 16:178. [PMID: 25881193 PMCID: PMC4422603 DOI: 10.1186/s12864-015-1349-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MADS-box transcription factors (TFs) are important in floral organ specification as well as several other aspects of plant growth and development. Studies on stress resistance-related functions of MADS-box genes are very limited and no such functional studies in Brassica rapa have been reported. To gain insight into this gene family and to elucidate their roles in organ development and stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in B. rapa. RESULTS Whole-genome survey of B. rapa revealed 167 MADS-box genes, which were categorized into type I (Mα, Mβ and Mγ) and type II (MIKC(c) and MIKC*) based on phylogeny, protein motif structure and exon-intron organization. Expression analysis of 89 MIKC(c) and 11 MIKC* genes was then carried out. In addition to those with floral and vegetative tissue expression, we identified MADS-box genes with constitutive expression patterns at different stages of flower development. More importantly, from a low temperature-treated whole-genome microarray data set, 19 BrMADS genes were found to show variable transcript abundance in two contrasting inbred lines of B. rapa. Among these, 13 BrMADS genes were further validated and their differential expression was monitored in response to cold stress in the same two lines via qPCR expression analysis. Additionally, the set of 19 BrMADS genes was analyzed under drought and salt stress, and 8 and 6 genes were found to be induced by drought and salt, respectively. CONCLUSION The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of MADS-box genes in stress resistance in addition to their growth and developmental functions, which ultimately provides the basis for functional characterization and exploitation of the candidate genes for genetic engineering of B. rapa.
Collapse
Affiliation(s)
- Gopal Saha
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Nasar Uddin Ahmed
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Yoonkang Hur
- Department of Biology, Chungnam National University, 96 Daehangno, Gung-dong, Yuseong-gu, Daejeon, 305-764, Republic of Korea.
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, 410 Seongbongro, Heungdokgu, Cheongju, 361-763, Republic of Korea.
| | - Masao Watanabe
- Laboratory of Plant Reproductive Genetics, Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| |
Collapse
|
41
|
Jiao Y, Paterson AH. Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0355. [PMID: 24958928 DOI: 10.1098/rstb.2013.0355] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more 'particulate' understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.
Collapse
Affiliation(s)
- Yuannian Jiao
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| |
Collapse
|
42
|
Jing D, Xia Y, Chen F, Wang Z, Zhang S, Wang J. Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:40-51. [PMID: 25575990 DOI: 10.1016/j.plantsci.2014.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/02/2014] [Accepted: 11/17/2014] [Indexed: 05/11/2023]
Abstract
PISTILLATA (PI) plays crucial roles in Arabidopsis flower development by specifying petal and stamen identities. To investigate the molecular mechanisms underlying organ development of woody angiosperm in Catalpa, we isolated and identified a PI homologue, referred to as CabuPI (C. bungei PISTILLATA), from two genetically cognate C. bungei (Bignoniaceae) bearing single and double flowers. Sequence and phylogenetic analyses revealed that the gene is closest related to the eudicot PI homologues. Moreover, a highly conserved PI-motif is found in the C-terminal regions of CabuPI. Semi-quantitative and quantitative real time PCR analyses showed that the expression of CabuPI was restricted to petals and stamens. However, CabuPI expression in the petals and stamens persisted throughout all floral development stages, but the expression levels were different. In 35S::CabuPI transgenic homozygous pi-1 mutant Arabidopsis, the second and the third whorl floral organs produced normal petals and a different number of stamens, respectively. Furthermore, ectopic expression of the CabuPI in transgenic wild-type or heterozygote pi-1 mutant Arabidopsis caused the first whorl sepal partially converted into a petal-like structure. These results clearly reveal the functional conservation of PI homologues between C. bungei and Arabidopsis.
Collapse
Affiliation(s)
- Danlong Jing
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Yan Xia
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Faju Chen
- Biotechnology Research Center, China Three Gorges University, Yichang City 443002, Hubei Province, PR China.
| | - Zhi Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Shougong Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Junhui Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| |
Collapse
|
43
|
Li X, Fan T, Song J, Sun W, Xia K, Liao J, Zhang M. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis. PLoS One 2014; 9:e114134. [PMID: 25461565 PMCID: PMC4252096 DOI: 10.1371/journal.pone.0114134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022] Open
Abstract
Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs) and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b) were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.
Collapse
Affiliation(s)
- Xiumei Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Fan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wei Sun
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing, 100700, China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
44
|
Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena K, Varma Penmetsa R, Varshney RK. Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2663-78. [PMID: 25331300 PMCID: PMC4236620 DOI: 10.1007/s00122-014-2406-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/01/2014] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE We report a likely candidate gene, CcTFL1, for determinacy in pigeonpea through candidate gene sequencing analysis, mapping, QTL analysis together with comparative genomics and expression profiling. Pigeonpea (Cajanus cajan) is the sixth most important legume crop grown on ~5 million hectares globally. Determinacy is an agronomically important trait selected during pigeonpea domestication. In the present study, seven genes related to determinacy/flowering pattern in pigeonpea were isolated through a comparative genomics approach. Single nucleotide polymorphism (SNP) analysis of these candidate genes on 142 pigeonpea lines found a strong association of SNPs with the determinacy trait for three of the genes. Subsequently, QTL analysis highlighted one gene, CcTFL1, as a likely candidate for determinacy in pigeonpea since it explained 45-96 % of phenotypic variation for determinacy, 45 % for flowering time and 77 % for plant height. Comparative genomics analysis of CcTFL1 with the soybean (Glycine max) and common bean (Phaseolus vulgaris) genomes at the micro-syntenic level further enhanced our confidence in CcTFL1 as a likely candidate gene. These findings have been validated by expression analysis that showed down regulation of CcTFL1 in a determinate line in comparison to an indeterminate line. Gene-based markers developed in the present study will allow faster manipulation of the determinacy trait in future breeding programs of pigeonpea and will also help in the development of markers for these traits in other related legume species.
Collapse
Affiliation(s)
- Reyazul Rouf Mir
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324 Hyderabad India
- Division of Plant Breeding and Genetics, Shere-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, 180 009 Jammu India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324 Hyderabad India
| | - Sandhya Srikanth
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324 Hyderabad India
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324 Hyderabad India
| | - Ashutosh Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324 Hyderabad India
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ UK
| | - Sarwar Azam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324 Hyderabad India
| | - Kulbhushan Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324 Hyderabad India
| | - R. Varma Penmetsa
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616 USA
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324 Hyderabad India
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| |
Collapse
|
45
|
Rameneni JJ, Dhandapani V, Paul P, Im S, Oh MH, Choi SR, Lim YP. Genome-wide identification, characterization, and comparative phylogeny analysis of MADS-box transcription factors in Brassica rapa. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0187-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Xu Z, Zhang Q, Sun L, Du D, Cheng T, Pan H, Yang W, Wang J. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. Mol Genet Genomics 2014; 289:903-20. [PMID: 24859011 DOI: 10.1007/s00438-014-0863-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 05/06/2014] [Indexed: 11/29/2022]
Abstract
MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.
Collapse
Affiliation(s)
- Zongda Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua east road, Haidian district, Beijing, 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS One 2014; 9:e84781. [PMID: 24454749 PMCID: PMC3890268 DOI: 10.1371/journal.pone.0084781] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/18/2013] [Indexed: 01/16/2023] Open
Abstract
MADS-box genes are important transcription factors for plant development, especially floral organogenesis. Brachypodium distachyon is a model for biofuel plants and temperate grasses such as wheat and barley, but a comprehensive analysis of MADS-box family proteins in Brachypodium is still missing. We report here a genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. We identified 57 MADS-box genes and classified them into 32 MIKCc-type, 7 MIKC*-type, 9 Mα, 7 Mβ and 2 Mγ MADS-box genes according to their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. Detailed gene structure and motif distribution were then studied. Investigation of their chromosomal localizations revealed that Brachypodium MADS-box genes distributed evenly across five chromosomes. In addition, five pairs of type II MADS-box genes were found on synteny blocks derived from whole genome duplication blocks. We then performed a systematic expression analysis of Brachypodium MADS-box genes in various tissues, particular floral organs. Further detection under salt, drought, and low-temperature conditions showed that some MADS-box genes may also be involved in abiotic stress responses, including type I genes. Comparative studies of MADS-box genes among Brachypodium, rice and Arabidopsis showed that Brachypodium had fewer gene duplication events. Taken together, this work provides useful data for further functional studies of MADS-box genes in Brachypodium distachyon.
Collapse
|
48
|
Liu S, Sun Y, Du X, Xu Q, Wu F, Meng Z. Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms. ANNALS OF BOTANY 2013; 112:1239-51. [PMID: 23956161 PMCID: PMC3806522 DOI: 10.1093/aob/mct182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/28/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS According to the floral ABC model, B-function genes appear to play a key role in the origin and diversification of the perianth during the evolution of angiosperms. The basal angiosperm Hedyosmum orientale (Chloranthaceae) has unisexual inflorescences associated with a seemingly primitive reproductive morphology and a reduced perianth structure in female flowers. The aim of this study was to investigate the nature of the perianth and the evolutionary state of the B-function programme in this species. METHODS A series of experiments were conducted to characterize B-gene homologues isolated from H. orientale, including scanning electron microscopy to observe the development of floral organs, phylogenetic analysis to reconstruct gene evolutionary history, reverse transcription-PCR, quantitative real-time PCR and in situ hybridization to identify gene expression patterns, the yeast two-hybrid assay to explore protein dimerization affinities, and transgenic analyses in Arabidopsis thaliana to determine activities of the encoded proteins. KEY RESULTS The expression of HoAP3 genes was restricted to stamens, whereas HoPI genes were broadly expressed in all floral organs. HoAP3 was able to partially restore the stamen but not petal identity in Arabidopsis ap3-3 mutants. In contrast, HoPI could rescue aspects of both stamen and petal development in Arabidopsis pi-1 mutants. When the complete C-terminal sequence of HoPI was deleted, however, no or weak transgenic phenotypes were observed and homodimerization capability was completely abolished. CONCLUSIONS The results suggest that Hedyosmum AP3-like genes have an ancestral function in specifying male reproductive organs, and that the activity of the encoded PI-like proteins is highly conserved between Hedyosmum and Arabidopsis. Moreover, there is evidence that the C-terminal region is important for the function of HoPI. Our findings indicate that the development of the proposed perianth in Hedyosmum does not rely on the B homeotic function.
Collapse
Affiliation(s)
- Shujun Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiu Du
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qijiang Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Department of Botany, Northeast Forestry University, Haerbin 150040, China
| | - Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- For correspondence. E-mail
| |
Collapse
|
49
|
Bliss BJ, Wanke S, Barakat A, Ayyampalayam S, Wickett N, Wall PK, Jiao Y, Landherr L, Ralph PE, Hu Y, Neinhuis C, Leebens-Mack J, Arumuganathan K, Clifton SW, Maximova SN, Ma H, dePamphilis CW. Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC PLANT BIOLOGY 2013; 13:13. [PMID: 23347749 PMCID: PMC3621149 DOI: 10.1186/1471-2229-13-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/12/2012] [Indexed: 05/15/2023]
Abstract
BACKGROUND Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza). RESULTS We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads. CONCLUSIONS Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms.
Collapse
Affiliation(s)
- Barbara J Bliss
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- USDA ARS PBARC, 64 Nowelo St., Hilo, HI 96720, USA
| | - Stefan Wanke
- Technische Universität Dresden, Institut für Botanik, D-01062, Dresden, Germany
| | - Abdelali Barakat
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- 100 Jordan Hall, Clemson University, Clemson, SC, 29634, USA
| | | | - Norman Wickett
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- Chicago Botanic Garden, Glencoe, IL, 27709, USA
| | - P Kerr Wall
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- BASF Plant Science, 26 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Yuannian Jiao
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Lena Landherr
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Paula E Ralph
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi Hu
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Christoph Neinhuis
- Technische Universität Dresden, Institut für Botanik, D-01062, Dresden, Germany
| | - Jim Leebens-Mack
- Department of Plant Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Kathiravetpilla Arumuganathan
- Benaroya Research Institute at Virginia Mason, Flow Cytometry and Imaging Core Laboratory, 1201 Ninth Avenue, Seattle, WA, 98101, USA
| | - Sandra W Clifton
- The Genome Institute,Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO, 63108, USA
- Stephenson Research and Technology Center, Advanced Center for Genome Technology, University of Oklahoma, 101 David L. Boren Blvd, Norman, OK, 73019, USA
| | - Siela N Maximova
- Department of Horticulture, 421 Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Genetic Engineering and the Institute of Plant Biology, the Center for Evolutionary Biology, the School of Life Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Claude W dePamphilis
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
50
|
Hu J, Zhang J, Shan H, Chen Z. Expression of floral MADS-box genes in Sinofranchetia chinensis (Lardizabalaceae): implications for the nature of the nectar leaves. ANNALS OF BOTANY 2012; 110:57-69. [PMID: 22652421 PMCID: PMC3380600 DOI: 10.1093/aob/mcs104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS The perianths of the Lardizabalaceae are diverse. The second-whorl floral organs of Sinofranchetia chinensis (Lardizabalaceae) are nectar leaves. The aim of this study was to explore the nature of this type of floral organ, and to determine its relationship to nectar leaves in other Ranunculales species, and to other floral organs in Sinofranchetia chinensis. METHODS Approaches of evolutionary developmental biology were used, including 3' RACE (rapid amplification of cDNA ends) for isolating floral MADS-box genes, phylogenetic analysis for reconstructing gene evolutionary history, in situ hybridization and tissue-specific RT-PCR for identifying gene expression patterns and SEM (scanning electron microscopy) for observing the epidermal cell morphology of floral organs. KEY RESULTS Fourteen new floral MADS-box genes were isolated from Sinofranchetia chinensis and from two other species of Lardizabalaceae, Holboellia grandiflora and Decaisnea insignis. The phylogenetic analysis of AP3-like genes in Ranunculales showed that three AP3 paralogues from Sinofranchetia chinensis belong to the AP3-I, -II and -III lineages. In situ hybridization results showed that SIchAP3-3 is significantly expressed only in nectar leaves at the late stages of floral development, and SIchAG, a C-class MADS-box gene, is expressed not only in stamens and carpels, but also in nectar leaves. SEM observation revealed that the adaxial surface of nectar leaves is covered with conical epidermal cells, a hallmark of petaloidy. CONCLUSIONS The gene expression data imply that the nectar leaves in S. chinensis might share a similar genetic regulatory code with other nectar leaves in Ranunculales species. Based on gene expression and morphological evidence, it is considered that the nectar leaves in S. chinensis could be referred to as petals. Furthermore, the study supports the hypothesis that the nectar leaves in some Ranunculales species might be derived from stamens.
Collapse
Affiliation(s)
- Jin Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- For correspondence. E-mail
| |
Collapse
|