1
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Xu H, Ban W, Tian J, Xu J, Tan Z, Li S, Chen K, Ou M, Li K. The New Roles of traf6 Gene Involved in the Development of Zebrafish Liver and Gonads. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:917-930. [PMID: 38861111 DOI: 10.1007/s10126-024-10329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Traf6, an adaptor protein, exhibits non-conventional E3 ubiquitin ligase activity and was well studied as an important factor in immune systems and cancerogenesis. In mice, the traf6-null caused a perinatal death, so that the underlying pathophysiology of traf6-defeciency is still largely unclear in animals. Here, in the present study, a traf6 knockout zebrafish line (traf6-/-) was generated and could survive until adulthood, providing a unique opportunity to demonstrate the functions of traf6 gene in animals' organogenesis beyond the mouse model. The body of traf6-/- fish was found to be significantly shorter than that of the wildtype (WT). Likewise, a comparative transcriptome analysis showed that 866 transcripts were significantly altered in the traf6-/- liver, mainly involved in the immune system, metabolic pathways, and progesterone-mediated oocyte maturation. Especially, the mRNA expression of the pancreas duodenum homeobox protein 1 (pdx1), glucose-6-phosphatase (g6pcb), and the vitellogenesis genes (vtgs) were significantly decreased in the traf6-/- liver. Subsequently, the glucose was found to be accumulated in the traf6-/- liver tissues, and the meiotic germ cell was barely detected in traf6-/- testis or ovary. The findings of this study firstly implied the pivotal functions of traf6 gene in the liver and gonads' development in fish species.
Collapse
Affiliation(s)
- Hongyan Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China.
| | - Wenzhuo Ban
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Jiaming Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Jianfei Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Zhimin Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Sendong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Kaili Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Ministry of Education, Chongqing, 402460, China
| | - Mi Ou
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kaibin Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
3
|
Xu Z, Zhang X, Chen J, Shi Y, Ji S. Bacterial Infections in Acute-on-chronic Liver Failure: Epidemiology, Diagnosis, Pathogenesis, and Management. J Clin Transl Hepatol 2024; 12:667-676. [PMID: 38993512 PMCID: PMC11233977 DOI: 10.14218/jcth.2024.00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 07/13/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a distinct condition characterized by the abrupt exacerbation of pre-existing chronic liver disease, often leading to multi-organ failures and significant short-term mortalities. Bacterial infection is one of the most frequent triggers for ACLF and a common complication following its onset. The impact of bacterial infections on the clinical course and outcome of ACLF underscores their critical role in the pathogenesis of systemic inflammation and organ failures. In addition, the evolving epidemiology and increasing prevalence of multidrug-resistant bacteria in cirrhosis and ACLF highlight the importance of appropriate empirical antibiotic use, as well as accurate and prompt microbiological diagnosis. This review provided an update on recent advances in the epidemiology, diagnosis, pathogenesis, and management of bacterial infections in ACLF.
Collapse
Affiliation(s)
- Zhaoyu Xu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuding Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiyang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shangwei Ji
- Department of Infectious Diseases, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Fan K, Gökbağ B, Tang S, Li S, Huang Y, Wang L, Cheng L, Li L. Synthetic lethal connectivity and graph transformer improve synthetic lethality prediction. Brief Bioinform 2024; 25:bbae425. [PMID: 39210507 PMCID: PMC11361842 DOI: 10.1093/bib/bbae425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Synthetic lethality (SL) has shown great promise for the discovery of novel targets in cancer. CRISPR double-knockout (CDKO) technologies can only screen several hundred genes and their combinations, but not genome-wide. Therefore, good SL prediction models are highly needed for genes and gene pairs selection in CDKO experiments. However, lack of scalable SL properties prevents generalizability of SL interactions to out-of-sample data, thereby hindering modeling efforts. In this paper, we recognize that SL connectivity is a scalable and generalizable SL property. We develop a novel two-step multilayer encoder for individual sample-specific SL prediction model (MLEC-iSL), which predicts SL connectivity first and SL interactions subsequently. MLEC-iSL has three encoders, namely, gene, graph, and transformer encoders. MLEC-iSL achieves high SL prediction performance in K562 (AUPR, 0.73; AUC, 0.72) and Jurkat (AUPR, 0.73; AUC, 0.71) cells, while no existing methods exceed 0.62 AUPR and AUC. The prediction performance of MLEC-iSL is validated in a CDKO experiment in 22Rv1 cells, yielding a 46.8% SL rate among 987 selected gene pairs. The screen also reveals SL dependency between apoptosis and mitosis cell death pathways.
Collapse
Affiliation(s)
- Kunjie Fan
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, United States
| | - Birkan Gökbağ
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, United States
| | - Shan Tang
- Department of Biomedical Informatics, College of Pharmacy, The Ohio State University, 500 W. 12 ave, Columbus, OH 43210, United States
| | - Shangjia Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, United States
| | - Yirui Huang
- Department of Biomedical Informatics, College of Pharmacy, The Ohio State University, 500 W. 12 ave, Columbus, OH 43210, United States
| | - Lingling Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, United States
| | - Lijun Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, United States
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, United States
- Department of Biomedical Informatics, College of Pharmacy, The Ohio State University, 500 W. 12 ave, Columbus, OH 43210, United States
| |
Collapse
|
5
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2024. [PMID: 38874196 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ju Youn Kim
- Department of Molecular and Life Science, Hanyang University ERICA, Ansan, Korea
| |
Collapse
|
6
|
Romiani A, Simonsson K, Pettersson D, Al-Awar A, Rassol N, Bakr H, Lind D, Umapathy G, Spetz J, Palmer R, Hallberg B, Helou K, Forssell-Aronsson E. Comparison of 177Lu-octreotate and 177Lu-octreotide for treatment in human neuroblastoma-bearing mice. Heliyon 2024; 10:e31409. [PMID: 38826727 PMCID: PMC11141386 DOI: 10.1016/j.heliyon.2024.e31409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Background Patients with high-risk neuroblastoma (NB) have a 5-year event-free survival of less than 50 %, and novel and improved treatment options are needed. Radiolabeled somatostatin analogs (SSTAs) could be a treatment option. The aims of this work were to compare the biodistribution and the therapeutic effects of 177Lu-octreotate and 177Lu-octreotide in mice bearing the human CLB-BAR NB cell line, and to evaluate their regulatory effects on apoptosis-related genes. Methods The biodistribution of 177Lu-octreotide in mice bearing CLB-BAR tumors was studied at 1, 24, and 168 h after administration, and the absorbed dose was estimated to tumor and normal tissues. Further, animals were administered different amounts of 177Lu-octreotate or 177Lu-octreotide. Tumor volume was measured over time and compared to a control group given saline. RNA was extracted from tumors, and the expression of 84 selected genes involved in apoptosis was quantified with qPCR. Results The activity concentration was generally lower in most tissues for 177Lu-octreotide compared to 177Lu-octreotate. Mean absorbed dose per administered activity to tumor after injection of 1.5 MBq and 15 MBq was 0.74 and 0.03 Gy/MBq for 177Lu-octreotide and 2.9 and 0.45 Gy/MBq for 177Lu-octreotate, respectively. 177Lu-octreotide treatment resulted in statistically significant differences compared to controls. Fractionated administration led to a higher survival fraction than after a single administration. The pro-apoptotic genes TNSFS8, TNSFS10, and TRADD were regulated after administration with 177Lu-octreotate. Treatment with 177Lu-octreotide yielded regulation of the pro-apoptotic genes CASP5 and TRADD, and of the anti-apoptotic gene IL10 as well as the apoptosis-related gene TNF. Conclusion 177Lu-octreotide gave somewhat better anti-tumor effects than 177Lu-octreotate. The similar effect observed in the treated groups with 177Lu-octreotate suggests saturation of the somatostatin receptors. Pronounced anti-tumor effects following fractionated administration merited receptor saturation as an explanation. The gene expression analyses suggest apoptosis activation through the extrinsic pathway for both radiopharmaceuticals.
Collapse
Affiliation(s)
- A. Romiani
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K. Simonsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D. Pettersson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A. Al-Awar
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - N. Rassol
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H. Bakr
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - D.E. Lind
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - G. Umapathy
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J. Spetz
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - R.H. Palmer
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - B. Hallberg
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K. Helou
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E. Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Huang YJ, Ferrari MW, Lin S, Wang ZH. Recent advances on the Role of Gut Microbiota in the Development of Heart Failure by Mediating Immune Metabolism. Curr Probl Cardiol 2024; 49:102128. [PMID: 37802162 DOI: 10.1016/j.cpcardiol.2023.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
The association between gut microbiota and the development of heart failure has become a research hotspot in recent years and the impact of gut microbiota on heart failure has attracted growing interest. From 2006 to 2021, the global research on gut microbiota and heart failure has gradually expanded, indicating a developed and promising research field. There were 40 countries, 196 institutions, and 257 authors involved in the publication on the relationship between gut microbiota and heart failure, respectively. In patients with heart failure, inadequate visceral perfusion leads to ischemia and intestinal edema, which compromise the gut barrier. This subsequently results in the translocation of bacteria and bacterial metabolites into the circulatory system and causes local and systemic inflammatory responses. The gastrointestinal tract contains the largest number of immune cells in the human body and gut microbiota play important roles in the immune system by promoting immune tolerance to symbiotic bacteria. Studies have shown that probiotics can act on gut microorganisms, thereby increasing choline metabolism and reducing plasma TMA and TMAO concentrations, thus inhibiting the development of heart failure. Meanwhile, probiotics induce the production of inflammatory suppressors to maintain gut immune stability and inhibit the progression of heart failure by reducing ventricular remodeling. Here, we review the current understanding of gut microbiota-driven immune dysfunction in experimental and clinical heart failure, as well as the therapeutic interventions that could be used to address these issues.
Collapse
Affiliation(s)
- Yu-Jing Huang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, PR China
| | - Markus W Ferrari
- Clinic of Internal Medicine 1, HSK, Clinic of the City of Wiesbaden and the HELIOS Group, Wiesbaden, Germany.
| | - Shu Lin
- Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, PR China; Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia.
| | - Zhen-Hua Wang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, PR China.
| |
Collapse
|
8
|
Hassanein EHM, Ibrahim IM, Abd El-Maksoud MS, Abd El-Aziz MK, Abd-Alhameed EK, Althagafy HS. Targeting necroptosis in fibrosis. Mol Biol Rep 2023; 50:10471-10484. [PMID: 37910384 PMCID: PMC10676318 DOI: 10.1007/s11033-023-08857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Necroptosis, a type of programmed cell death that resembles necrosis, is now known to depend on a different molecular mechanism from apoptosis, according to several recent studies. Many efforts have reported the possible influence of necroptosis in human disorders and concluded the crucial role in the pathophysiology of various diseases, including liver diseases, renal injuries, cancers, and others. Fibrosis is the most common end-stage pathological cascade of several chronic inflammatory disorders. In this review, we explain the impact of necroptosis and fibrosis, for which necroptosis has been demonstrated to be a contributing factor. We also go over the inhibitors of necroptosis and how they have been applied to fibrosis models. This review helps to clarify the role of necroptosis in fibrosis and will encourage clinical efforts to target this pathway of programmed cell death.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mostafa S Abd El-Maksoud
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mostafa K Abd El-Aziz
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Hu B, Xin Y, Hu G, Li K, Tan Y. Fluid shear stress enhances natural killer cell's cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng 2023; 7:036108. [PMID: 37575881 PMCID: PMC10423075 DOI: 10.1063/5.0156628] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Tumor cells metastasize to distant organs mainly via hematogenous dissemination, in which circulating tumor cells (CTCs) are relatively vulnerable, and eliminating these cells has great potential to prevent metastasis. In vasculature, natural killer (NK) cells are the major effector lymphocytes for efficient killing of CTCs under fluid shear stress (FSS), which is an important mechanical cue in tumor metastasis. However, the influence of FSS on the cytotoxicity of NK cells against CTCs remains elusive. We report that the death rate of CTCs under both NK cells and FSS is much higher than the combined death induced by either NK cells or FSS, suggesting that FSS may enhance NK cell's cytotoxicity. This death increment is elicited by shear-induced NK activation and granzyme B entry into target cells rather than the death ligand TRAIL or secreted cytokines TNF-α and IFN-γ. When NK cells form conjugates with CTCs or adhere to MICA-coated substrates, NK cell activating receptor NKG2D can directly sense FSS to induce NK activation and degranulation. These findings reveal the promotive effect of FSS on NK cell's cytotoxicity toward CTCs, thus providing new insight into immune surveillance of CTCs within circulation.
Collapse
Affiliation(s)
| | | | | | | | - Youhua Tan
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
Kashyap D, Rele S, Bagde PH, Saini V, Chatterjee D, Jain AK, Pandey RK, Jha HC. Comprehensive insight into altered host cell-signaling cascades upon Helicobacter pylori and Epstein-Barr virus infections in cancer. Arch Microbiol 2023; 205:262. [PMID: 37310490 DOI: 10.1007/s00203-023-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/β-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Pranit Hemant Bagde
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | | | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Solna, Sweden
| | - Hem Chandra Jha
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Madhya Pradesh, 453552, Indore, India.
| |
Collapse
|
11
|
Jin K, Qiu S, Chen B, Zhang Z, Zhang C, Zhou X, Yang L, Ai J, Wei Q. DOK3 promotes proliferation and inhibits apoptosis of prostate cancer via the NF-κB signaling pathway. Chin Med J (Engl) 2023; 136:423-432. [PMID: 36867541 PMCID: PMC10106266 DOI: 10.1097/cm9.0000000000002251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND DOK3 (Downstream of kinase 3) is involved primarily with immune cell infiltration. Recent research reported the role of DOK3 in tumor progression, with opposite effects in lung cancer and gliomas; however, its role in prostate cancer (PCa) remains elusive. This study aimed to explore the role of DOK3 in PCa and to determine the mechanisms involved. METHODS To investigate the functions and mechanisms of DOK3 in PCa, we performed bioinformatic and biofunctional analyses. Samples from patients with PCa were collected from West China Hospital, and 46 were selected for the final correlation analysis. A lentivirus-based short hairpin ribonucleic acid (shRNA) carrier was established for silencing DOK3. A series of experiments involving the cell counting kit-8, bromodeoxyuridine, and flow cytometry assays were performed to identify cell proliferation and apoptosis. Changes in biomarkers from the nuclear factor kappa B (NF-κB) signaling pathway were detected to verify the relationship between DOK3 and the NF-κB pathway. A subcutaneous xenograft mouse model was performed to examine phenotypes after knocking down DOK3 in vivo . Rescue experiments with DOK3 knockdown and NF-κB pathway activation were designed to verify regulating effects. RESULTS DOK3 was up-regulated in PCa cell lines and tissues. In addition, a high level of DOK3 was predictive of higher pathological stages and worse prognoses. Similar results were observed with PCa patient samples. After silencing DOK3 in PCa cell lines 22RV1 and PC3, cell proliferation was significantly inhibited while apoptosis was promoted. Gene set enrichment analysis revealed that DOK3 function was enriched in the NF-κB pathway. Mechanism experiments determined that knockdown of DOK3 suppressed activation of the NF-κB pathway, increased the expressions of B-cell lymphoma-2 like 11 (BIM) and B-cell lymphoma-2 associated X (BAX), and decreased the expression of phosphorylated-P65 and X-linked inhibitor of apoptosis (XIAP). In the rescue experiments, pharmacological activation of NF-κB by tumor necrosis factor-α (TNF-α) partially recovered cell proliferation after the knockdown of DOK3. CONCLUSION Our findings suggest that overexpression of DOK3 promotes PCa progression by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Kun Jin
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shi Qiu
- Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bo Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zilong Zhang
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chichen Zhang
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghong Zhou
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Yang
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Wei
- Department of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
The Roles of TRAF3 in Immune Responses. DISEASE MARKERS 2023; 2023:7787803. [PMID: 36845015 PMCID: PMC9949957 DOI: 10.1155/2023/7787803] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
Seven tumor necrosis factor receptor- (TNFR-) associated factors (TRAFs) have been found in mammals, which are primarily involved in the signal translation of the TNFR superfamily, the Toll-like receptor (TLR) family, and the retinoic acid-inducible gene I- (RIG-I-) like receptor (RLR) family. TRAF3 is one of the most diverse members of the TRAF family. It can positively regulate type I interferon production while negatively regulating signaling pathways of classical nuclear factor-κB, nonclassical nuclear factor-κB, and mitogen-activated protein kinase (MAPK). This review summarizes the roles of TRAF3 signaling and the related immune receptors (e.g., TLRs) in several preclinical and clinical diseases and focuses on the roles of TRAF3 in immune responses, the regulatory mechanisms, and its role in disease.
Collapse
|
13
|
Patel AG, Moxham S, Bamezai AK. Ly-6A-Induced Growth Inhibition and Cell Death in a Transformed CD4 + T Cell Line: Role of Tumor Necrosis Factor-α. Arch Immunol Ther Exp (Warsz) 2023; 71:4. [PMID: 36725744 DOI: 10.1007/s00005-023-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/21/2022] [Indexed: 02/03/2023]
Abstract
Ly-6A, a member of the Ly-6/uPAR supergene family of proteins, is a cell adhesion and cell signaling protein. Signaling through Ly-6A activates the cell-intrinsic apoptotic cell death pathway in CD4+ T cell lines, as indicated by the release of cytochrome C, and activation of caspases 9 and 3. In addition, Ly-6A induces cytokine production and growth inhibition. The mechanism underlying the distinct cellular responses that are triggered by engaging Ly-6A protein has remained unknown. To examine the relatedness of these distinct responses, we have quantified the production of pro-apoptotic, growth inhibitory and tumor suppressive cytokines, such as TNF-α, TGF-β and a related protein GDF-10, in response to Ly-6A signaling. Anti-Ly-6A monoclonal antibody-induced activation of YH16.33 CD4+ T cell line generated low levels of TGF-β and GDF-10 but elevated levels of TNF-α. Blocking the biological activity of TNF-α resulted in reduced Ly-6A-induced apoptosis in T cells. The Ly-6A-induced response in the T cell line was distinct, as signaling through the antigen receptor complex did not cause growth inhibition and apoptosis despite high levels of TGF-β and GDF-10 that were detected in these cultures. Additionally, in response to antigen receptor complex signaling, lower amount of TNF-α was detected. These results indicate the contribution of TNF-α in the observed Ly-6A-induced growth inhibition and apoptosis and provide a mechanistic explanation for the biologically distinct responses observed in CD4+ T cells after engaging Ly-6A protein. Additionally, the findings reported here will aid in the understanding of inhibitory signaling initiated by Ly-6A protein, especially in the context of its potential immune checkpoint inhibitory role in T cells.
Collapse
Affiliation(s)
- Akshay G Patel
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Sarah Moxham
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Anil K Bamezai
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
14
|
Peng L, Liu D, Liu H, Xia M, Wan L, Li M, Zhao J, Tang C, Chen G, Qu X, Dong Z, Liu H. Bombesin receptor-activated protein exacerbates cisplatin-induced AKI by regulating the degradation of SIRT2. Nephrol Dial Transplant 2022; 37:2366-2385. [PMID: 35488871 DOI: 10.1093/ndt/gfac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a public health problem with no specific therapies in the clinic and the underlying pathogenesis of AKI remains obscure. Bombesin receptor-activated protein (BRAP, C6ORF89 protein) was initially discovered as a ligand for a previously orphan G-protein-coupled receptor bombesin-like receptor-3. At present, accepted biological effects of BRAP include cell cycle progression, wound repair and the activation of histone deacetylases. However, its role in kidney disease is unknown. In this study we have investigated the role of BRAP and underlying mechanisms involved in cisplatin (CP)-induced AKI. METHODS Here we used Bc004004 (homologous of C6ORF89 in mice) knockout mice and HK2 cells to investigate the effect of BRAP on AKI in vitro and in vivo. We analyzed ChIP-Seq and RNA-Seq data to search for the upstream regulators of BRAP and downstream mediators of BRAP action in AKI. Immunostaining, real-time polymerase chain reaction (PCR), co-immunoprecipitation, a dual-luciferase reporter assay and ChIP-PCR assay were applied to reveal the upstream and downstream regulation mechanism of BRAP during cisplatin-induced AKI. RESULTS BRAP was downregulated in mice and human kidneys with AKI. Global Bc004004 deletion alleviated tubular cell apoptosis and necroptosis in CP-induced AKI mice, whereas local overexpression of BRAP in kidneys aggravated them. Pan-caspase inhibitor Z-VAD pretreatment attenuated CP-induced blood creatinine increase and kidney injury in wild-type mice but not in BRAP -/- mice. The activation of mixed lineage kinase like-domain was magnified by Z-VAD in CP-treated mice, especially in BRAP -/- mice. The cytoprotective effect of Z-VAD was more substantial than necrostatin-1 (Nec-1, an inhibitor of necroptosis) in CP-treated human kidney proximal tubular epithelial (HK2) cells. Furthermore, Nec-1 pretreatment reduced the CP-induced cell death in BRAP overexpression HK2 cells but did not work in cells with normal BRAP levels. We determined that CP treatment activated the nuclear factor-κB subunit P65 and inhibition of P65 increased the messenger RNA (mRNA) levels of BRAP in HK2 cells. The chromatin immunoprecipitation assay and dual-luciferase reporter gene assay verified P65 binding to the C6ORF89 promoter and reduced its mRNA expression upon CP treatment. Next we found that sirtuin 2 (SIRT2) was downregulated in CP-induced AKI and BRAP levels directly impacted the protein levels of SIRT2. Our findings further confirmed that BRAP regulates the SIRT2 protein levels by affecting SIRT2's interactions with E3 ubiquitin ligase HRD1 and subsequent proteasomal degradation. CONCLUSIONS Our results demonstrated that BRAP played an important role in tubular cell apoptosis and necroptosis during CP-induced AKI. Safe and efficient BRAP inhibitors might be effective therapeutic options for AKI.
Collapse
Affiliation(s)
- Liang Peng
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Haiyang Liu
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Xia
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lili Wan
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Mei Li
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Junyong Zhao
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiangpin Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Hong Liu
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
15
|
Skartsis N, Ferreira LMR, Tang Q. The dichotomous outcomes of TNFα signaling in CD4 + T cells. Front Immunol 2022; 13:1042622. [PMID: 36466853 PMCID: PMC9708889 DOI: 10.3389/fimmu.2022.1042622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Gladstone University of California San Francisco (UCSF) Institute of Genome Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Agborbesong E, Li LX, Li L, Li X. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Front Mol Biosci 2022; 9:922428. [PMID: 35847973 PMCID: PMC9277309 DOI: 10.3389/fmolb.2022.922428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, which is caused by mutations in the PKD1 and PKD2 genes, characterizing by progressive growth of multiple cysts in the kidneys, eventually leading to end-stage kidney disease (ESKD) and requiring renal replacement therapy. In addition, studies indicate that disease progression is as a result of a combination of factors. Understanding the molecular mechanisms, therefore, should facilitate the development of precise therapeutic strategies for ADPKD treatment. The roles of epigenetic modulation, interstitial inflammation, and regulated cell death have recently become the focuses in ADPKD. Different epigenetic regulators, and the presence of inflammatory markers detectable even before cyst growth, have been linked to cyst progression. Moreover, the infiltration of inflammatory cells, such as macrophages and T cells, have been associated with cyst growth and deteriorating renal function in humans and PKD animal models. There is evidence supporting a direct role of the PKD gene mutations to the regulation of epigenetic mechanisms and inflammatory response in ADPKD. In addition, the role of regulated cell death, including apoptosis, autophagy and ferroptosis, have been investigated in ADPKD. However, there is no consensus whether cell death promotes or delays cyst growth in ADPKD. It is therefore necessary to develop an interactive picture between PKD gene mutations, the epigenome, inflammation, and cell death to understand why inherited PKD gene mutations in patients may result in the dysregulation of these processes that increase the progression of renal cyst formation.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Lyu S, Zhang X, Tu Z, Zhou H, Ke X, Qu Y. GPR108 is Required for Gambogic Acid Inhibiting NF-κB Signaling in Cancer. Pharmacol Res 2022; 182:106279. [PMID: 35659621 DOI: 10.1016/j.phrs.2022.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
GPCRs are the most potential targets for drug discovery, however, their role in oncology is underappreciated and GPCR-based anti-cancer drug is not fully investigated. Herein, we identified GPR108, a GPCR protein described in innate immune system, is a potential therapeutic target of cancer. Depletion of GPR108 dramatically inhibited the survival of various cancers. Notably, TNFα activation of NF-κB was totally impaired after GPR108 knockout. We identified gambogic acid (GA), a natural prenylated xanthone, selectively targeting GPR108. Importantly, GA engaged with GPR108 and promoted its degradation, knockout of GPR108 remarkably blocked GA inhibition of NF-κB signaling. Furthermore, in vitro and in vivo assays demonstrated that GA was dependent on GPR108 to exert anti-cancer activity. Overall, our findings supported GPR108 as a promising therapeutic target of cancer, and provided a small molecule inhibitor GA directly and selectively targeting GPR108 for cancer therapy.
Collapse
Affiliation(s)
- Song Lyu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenzhen Tu
- Department of Biochemistry and Molecular Biology, Anhui Medical University. No. 69 Mei Shan Road, Hefei, China
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University. No. 69 Mei Shan Road, Hefei, China
| | - Xisong Ke
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yi Qu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
18
|
Zhou W, Xu Y, Zhang J, Zhang P, Yao Z, Yan Z, Wang H, Chu J, Yao S, Zhao S, Yang S, Guo Y, Miao J, Liu K, Chan WC, Xia Q, Liu Y. MiRNA-363-3p/DUSP10/JNK axis mediates chemoresistance by enhancing DNA damage repair in diffuse large B-cell lymphoma. Leukemia 2022; 36:1861-1869. [PMID: 35488020 PMCID: PMC9252898 DOI: 10.1038/s41375-022-01565-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
Anthracycline-based chemotherapy resistance represents a major challenge in diffuse large B-cell lymphoma (DLBCL). MiRNA and gene expression profiles (n = 47) were determined to uncover potential chemoresistance mechanisms and therapeutic approaches. An independent correlation between high expression of miRNA-363-3p and chemoresistance was observed and validated in a larger cohort (n = 106). MiRNA-363-3p was shown to reduce doxorubicin-induced apoptosis and tumor shrinkage in in vitro and in vivo experiments by ectopic expression and CRISPR/Cas9-mediated knockout in DLBCL cell lines. DNA methylation was found to participate in transcriptional regulation of miRNA-363-3p. Further investigation revealed that dual specificity phosphatase 10 (DUSP10) is a target of miRNA-363-3p and its suppression promotes the phosphorylation of c-Jun N-terminal kinase (JNK). The miRNA-363-3p/DUSP10/JNK axis was predominantly associated with negative regulation of homologous recombination (HR) and DNA repair pathways. Ectopic expression of miRNA-363-3p more effectively repaired doxorubicin-induced double-strand break (DSB) while enhancing non-homologous end joining repair and reducing HR repair. Targeting JNK and poly (ADP-ribose) polymerase 1 significantly inhibited doxorubicin-induced DSB repair, increased doxorubicin-induced cell apoptosis and tumor shrinkage, and improved the survival of tumor-bearing mice. In conclusion, the miRNA-363-3p/DUSP10/JNK axis is a novel chemoresistance mechanism in DLBCL that may be reversed by targeted therapy.
Collapse
Affiliation(s)
- Wenping Zhou
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Lymphoma Research, Henan Cancer Institute, Zhengzhou, Henan, China
| | - Yuanlin Xu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jiuyang Zhang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Peipei Zhang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Lymphoma Research, Henan Cancer Institute, Zhengzhou, Henan, China
| | - Zhihua Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Haiying Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Junfeng Chu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuna Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuang Zhao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shujun Yang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongjun Guo
- Department of Molecule and Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Qingxin Xia
- Department of Molecule and Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Yanyan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China. .,Department of Lymphoma Research, Henan Cancer Institute, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Wu S, Sun M, Zhang L, Kang S, Liao J, Zhu Z, Chen H, Xu Z, Xu L, Zhang X, Wei J, Qin Q. Grouper TRAF3 inhibits nodavirus infection by regulating the STING-mediated antiviral signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 123:172-181. [PMID: 35276350 DOI: 10.1016/j.fsi.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are major signal transducers for the TNF and interleukin-1/Toll-like receptor superfamilies that transduce signals from various immune receptors. To investigate the interaction of TRAF3 and other proteins in signaling pathways and to identify its antiviral function in teleosts, we cloned and characterized a TRAF3 homolog from orange-spotted grouper (Epinephelus coioides) (EcTRAF3). The open reading frame of EcTRAF3 consists of 1767 base pairs encoding a 588 amino acid protein, and the predicted molecular mass is 66.71 kDa EcTRAF3 shares 99.83% identity with TRAF3 of Epinephelus lanceolatus. Expression analysis revealed that EcTRAF3 was broadly distributed in examined tissues and was up-regulated under polyinosinic-polycytidylic acid and red-spotted grouper nervous necrosis virus (RGNNV) stimulation in vivo. EcTRAF3 was identified as a cytosolic protein based on fluorescence microscopy analysis. Overexpression of EcTRAF3 inhibited RGNNV replication in grouper spleen cells, and it interacted with the coat protein of RGNNV. Overexpression of EcTRAF3 also induced the activation of interferon β (IFN-β), IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB). EcTRAF3 co-transfected with Stimulator of Interferon Genes (STING) of grouper (EcSTING) induced a significantly higher level of IFN-β promoter activity. Moreover, EcTRAF3 interacted with EcSTING, implying that EcTRAF3 may function as an enhancer in EcSTING-mediated signaling. Taken together, our results suggest that EcTRAF3 negatively regulates the RGNNV-induced cellular antiviral response and plays an important role in the immune response system of fish.
Collapse
Affiliation(s)
- Siting Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Mengshi Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Luhao Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaozhu Kang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaming Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zheng Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hong Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhuqing Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Linting Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jingguang Wei
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Qiwei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, China.
| |
Collapse
|
20
|
Pillai VV, Kei TG, Gurung S, Das M, Siqueira LGB, Cheong SH, Hansen PJ, Selvaraj V. RhoA/ROCK signaling antagonizes bovine trophoblast stem cell self-renewal and regulates preimplantation embryo size and differentiation. Development 2022; 149:274909. [DOI: 10.1242/dev.200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Exponential proliferation of trophoblast stem cells (TSC) is crucial in Ruminantia to maximize numerical access to caruncles, the restricted uterine sites that permit implantation. When translating systems biology of the undifferentiated bovine trophectoderm, we uncovered that inhibition of RhoA/Rock promoted self-renewing proliferation and substantially increased blastocyst size. Analysis of transcripts suppressed by Rock inhibition revealed transforming growth factor β1 (TGFβ1) as a primary upstream effector. TGFβ1 treatment induced changes consistent with differentiation in bTSCs, a response that could be replicated by induced expression of the bovine ROCK2 transgene. Rocki could partially antagonize TGFβ1 effects, and TGFβ receptor inhibition promoted proliferation identical to Rocki, indicating an all-encompassing upstream regulation. Morphological differentiation included formation of binucleate cells and infrequent multinucleate syncytia, features we also localize in the in vivo bovine placenta. Collectively, we demonstrate a central role for TGFβ1, RhoA and Rock in inducing bTSC differentiation, attenuation of which is sufficient to sustain self-renewal and proliferation linked to blastocyst size and preimplantation development. Unraveling these mechanisms augments evolutionary/comparative physiology of the trophoblast cell lineage and placental development in eutherians.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany G. Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shailesh Gurung
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Luiz G. B. Siqueira
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Embrapa Gado de Leite, Juiz de Fora, MG 36038-330, Brazil
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter J. Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
ATXN2-mediated translation of TNFR1 promotes esophageal squamous cell carcinoma via m 6A-dependent manner. Mol Ther 2022; 30:1089-1103. [PMID: 34995801 PMCID: PMC8899599 DOI: 10.1016/j.ymthe.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent RNA modification, and the effect of its dysregulation on esophageal squamous cell carcinoma (ESCC) development remains unclear. Here, by performing transcriptome-wide m6A sequencing in 16 ESCC tissue samples, we identified the key roles of m6A in TNFRSF1A (also known as TNFR1)-mediated MAPK and NF-κB activation in ESCC. Mechanistically, a functional protein involved in m6A methylation, ATXN2, is identified that augments the translation of TNFRSF1A by binding to m6A-modified TNFRSF1A mRNA. Upregulation of the TNFRSF1A protein level, a vital upstream switch for TNFRSF1A-mediated signaling events, activates the NF-κB and MAPK pathways and thus promotes ESCC development. Furthermore, TNFRSF1A m6A modifications and protein levels are upregulated in ESCC, and high levels of TNFRSF1A m6A and protein are correlated with poor ESCC patient survival. These results collectively indicate that the m6A-TNFRSF1A axis is critical for ESCC development and thus may serve as a potential druggable target.
Collapse
|
22
|
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Baradaran B. Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 2022; 49:43. [PMID: 35137914 DOI: 10.3892/ijmm.2022.5098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) is a pleiotropic pro‑inflammatory cytokine that contributes to the pathophysiology of several autoimmune diseases, such as multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, psoriatic arthritis and systemic lupus erythematosus (SLE). The specific role of TNF‑α in autoimmunity is not yet fully understood however, partially, in a complex disease such as SLE. Through the engagement of the TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), both the two variants, soluble and transmembrane TNF‑α, can exert multiple biological effects according to different settings. They can either function as immune regulators, impacting B‑, T‑ and dendritic cell activity, modulating the autoimmune response, or as pro‑inflammatory mediators, regulating the induction and maintenance of inflammatory processes in SLE. The present study reviews the dual role of TNF‑α, focusing on the different effects that TNF‑α may have on the pathogenesis of SLE. In addition, the efficacy and safety of anti‑TNF‑α therapies in preclinical and clinical trials SLE are discussed.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Niloufar Sadat Nourbakhsh
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Fars 7319846451, Iran
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| |
Collapse
|
23
|
Dichtl S, Sanin DE, Koss CK, Willenborg S, Petzold A, Tanzer MC, Dahl A, Kabat AM, Lindenthal L, Zeitler L, Satzinger S, Strasser A, Mann M, Roers A, Eming SA, El Kasmi KC, Pearce EJ, Murray PJ. Gene-selective transcription promotes the inhibition of tissue reparative macrophages by TNF. Life Sci Alliance 2022; 5:5/4/e202101315. [PMID: 35027468 PMCID: PMC8761491 DOI: 10.26508/lsa.202101315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Pro-inflammatory TNF is a highly gene-selective inhibitor of the gene expression program of tissue repair and wound healing macrophages. Anti-TNF therapies are a core anti-inflammatory approach for chronic diseases such as rheumatoid arthritis and Crohn’s Disease. Previously, we and others found that TNF blocks the emergence and function of alternative-activated or M2 macrophages involved in wound healing and tissue-reparative functions. Conceivably, anti-TNF drugs could mediate their protective effects in part by an altered balance of macrophage activity. To understand the mechanistic basis of how TNF regulates tissue-reparative macrophages, we used RNAseq, scRNAseq, ATACseq, time-resolved phospho-proteomics, gene-specific approaches, metabolic analysis, and signaling pathway deconvolution. We found that TNF controls tissue-reparative macrophage gene expression in a highly gene-specific way, dependent on JNK signaling via the type 1 TNF receptor on specific populations of alternative-activated macrophages. We further determined that JNK signaling has a profound and broad effect on activated macrophage gene expression. Our findings suggest that TNF’s anti-M2 effects evolved to specifically modulate components of tissue and reparative M2 macrophages and TNF is therefore a context-specific modulator of M2 macrophages rather than a pan-M2 inhibitor.
Collapse
Affiliation(s)
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Carolin K Koss
- Boehringer Ingelheim Pharma GmbH and Co KG, Biberach, Germany
| | | | - Andreas Petzold
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Maria C Tanzer
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Dahl
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | | | - Leonie Zeitler
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | | | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
24
|
Peng J, Ramatchandirin B, Pearah A, Maheshwari A, He L. Development and Functions of Mitochondria in Early Life. NEWBORN (CLARKSVILLE, MD.) 2022; 1:131-141. [PMID: 37206110 PMCID: PMC10193534 DOI: 10.5005/jp-journals-11002-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are highly dynamic organelles of bacterial origin in eukaryotic cells. These play a central role in metabolism and adenosine triphosphate (ATP) synthesis and in the production and regulation of reactive oxygen species (ROS). In addition to the generation of energy, mitochondria perform numerous other functions to support key developmental events such as fertilization during reproduction, oocyte maturation, and the development of the embryo. During embryonic and neonatal development, mitochondria may have important effects on metabolic, energetic, and epigenetic regulation, which may have significant short- and long-term effects on embryonic and offspring health. Hence, the environment, epigenome, and early-life regulation are all linked by mitochondrial integrity, communication, and metabolism.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Balamurugan Ramatchandirin
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alexia Pearah
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| | - Ling He
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
25
|
Agnihotri SK, Kumar B, Jain A, Anjali A, Negi MPS, Sachan R, Bhatt MLB, Tripathi RK, Sachdev M. Clinical Significance of Circulating Serum Levels of sCD95 and TNF-α in Cytoprotection of Cervical Cancer. Rep Biochem Mol Biol 2022; 10:711-721. [PMID: 35291617 PMCID: PMC8903371 DOI: 10.52547/rbmb.10.4.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND This study correlates the serum levels of sCD95 & TNF-α with a simple cell-based assay to evaluate the capacity of the serum sample to induce apoptosis in Jurkat cells. Interlinking of these parameters can be explored to design a minimum invasive diagnostic strategy for cervical cancer (CC). METHODS Sera samples were assessed to induce apoptosis in Jurkat cells through FACS. Serum levels of sCD95 and TNF-α were measured by ELISA. JNK phosphorylation was evaluated in sera incubated Jurkat cells. Data was scrutinized through statistical analysis. RESULTS Significantly higher serum levels of sCD95 and lower TNF-α levels were observed in CC patients; their sera samples inhibited induction of apoptosis in Jurkat cells through reduced JNK phosphorylation. Statistical analysis linked these three parameters for the early screening of CC. CONCLUSION Distinct sera levels of sCD95 & TNF-α in CC patients showed an anti-apoptotic effect, which can be considered for early detection of CC.
Collapse
Affiliation(s)
- Saurabh Kumar Agnihotri
- Department of Radiotherapy, King George’s Medical University, Lucknow 226 003, India.
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- The first and the second authors contributed equally to this work.
| | - Balawant Kumar
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- The first and the second authors contributed equally to this work.
| | - Ankita Jain
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| | - Anjali Anjali
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | - Mahendra Pal Singh Negi
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| | - Rekha Sachan
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | | | - Raj Kamal Tripathi
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
26
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
27
|
Li H, Fang H, Chang L, Qiu S, Ren X, Cao L, Bian J, Wang Z, Guo Y, Lv J, Sun Z, Wang T, Li B. TC2N: A Novel Vital Oncogene or Tumor Suppressor Gene In Cancers. Front Immunol 2021; 12:764749. [PMID: 34925334 PMCID: PMC8674203 DOI: 10.3389/fimmu.2021.764749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Several C2 domain-containing proteins play key roles in tumorigenesis, signal transduction, and mediating protein–protein interactions. Tandem C2 domains nuclear protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in several types of cancers and is closely associated with tumorigenesis and tumor progression. Notably, TC2N has been identified as an oncogene in lung and gastric cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and carcinoembryonic antigen, have been identified in a variety of malignant tumors. Differences in the expression levels of TAAs between cancer cells and normal cells have led to these antigens being investigated as diagnostic and prognostic biomarkers and as novel targets in cancer treatment. In this review, we summarize the clinical characteristics of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence and development of specific cancers. This article provides an exploration of TC2N as a potential target for the diagnosis and treatment of different types of cancers.
Collapse
Affiliation(s)
- Hanyang Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Qiu
- Department of Biobank, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaojun Ren
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Department of Breast Surgery, The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| |
Collapse
|
28
|
The Antimicrobial, Antioxidative, and Anti-Inflammatory Effects of Polycaprolactone/Gelatin Scaffolds Containing Chrysin for Regenerative Endodontic Purposes. Stem Cells Int 2021; 2021:3828777. [PMID: 34630572 PMCID: PMC8497129 DOI: 10.1155/2021/3828777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023] Open
Abstract
The appropriate endodontic material should eliminate the infection and inflammation to provide a situation for regeneration and healing of pulp tissue besides biomineralization. Chrysin is one of the active ingredients of plant flavonoids, which has significant anti-inflammatory and antimicrobial properties. In the present study, this natural substance was evaluated for antioxidant, anti-inflammatory, and mineralization properties on dental pulp stem cells (DPSCs). SEM, FTIR, and TGA tests were used to determine the successful synthesize of chrysin-loaded scaffolds. The antimicrobial effects of the synthesized scaffold against Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis were assessed by the agar diffusion test and live/dead assay. The proliferation of DPSCs on these scaffolds was determined by the MTT assay, DAPI staining, and DNA extraction. Moreover, the antioxidant and anti-inflammation activity of chrysin-loaded scaffolds on inflamed DPSCs was evaluated. Alkaline phosphatase activity and Alizarin Red S Stain tests were done to evaluate the mineralization of DPSCs seeded on these scaffolds. The chrysin-loaded scaffolds reported antimicrobial effects against evaluated bacterial strains. The proliferation of DPSCs seeded on these scaffolds was increased significantly (p < 0.05). The TNFα and DCF levels in inflamed DPSCs showed a significant decrease in the presence of chrysin-loaded scaffolds (p < 0.05). The ALP activity and formation of mineralized nodules of DPSCs on these scaffolds were significantly increased compared with the control group (p < 0.05). These results indicated that chrysin as an ancient therapeutic agent can accelerate the healing and regeneration of damaged pulp tissue, and this active ingredient can be a potential natural substance for regenerative endodontic procedures.
Collapse
|
29
|
Prasad V, Greber UF. The endoplasmic reticulum unfolded protein response - homeostasis, cell death and evolution in virus infections. FEMS Microbiol Rev 2021; 45:fuab016. [PMID: 33765123 PMCID: PMC8498563 DOI: 10.1093/femsre/fuab016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses elicit cell and organismic stress, and offset homeostasis. They trigger intrinsic, innate and adaptive immune responses, which limit infection. Viruses restore homeostasis by harnessing evolutionary conserved stress responses, such as the endoplasmic reticulum (ER) unfolded protein response (UPRER). The canonical UPRER restores homeostasis based on a cell-autonomous signalling network modulating transcriptional and translational output. The UPRER remedies cell damage, but upon severe and chronic stress leads to cell death. Signals from the UPRER flow along three branches with distinct stress sensors, the inositol requiring enzyme (Ire) 1, protein kinase R (PKR)-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). This review shows how both enveloped and non-enveloped viruses use the UPRER to control cell stress and metabolic pathways, and thereby enhance infection and progeny formation, or undergo cell death. We highlight how the Ire1 axis bypasses apoptosis, boosts viral transcription and maintains dormant viral genomes during latency and persistence periods concurrent with long term survival of infected cells. These considerations open new options for oncolytic virus therapies against cancer cells where the UPRER is frequently upregulated. We conclude with a discussion of the evolutionary impact that viruses, in particular retroviruses, and anti-viral defense has on the UPRER.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
30
|
Mureşan M, Olteanu D, Filip GA, Clichici S, Baldea I, Jurca T, Pallag A, Marian E, Frum A, Gligor FG, Svera P, Stancu B, Vicaș L. Comparative Study of the Pharmacological Properties and Biological Effects of Polygonum aviculare L. herba Extract-Entrapped Liposomes versus Quercetin-Entrapped Liposomes on Doxorubicin-Induced Toxicity on HUVECs. Pharmaceutics 2021; 13:pharmaceutics13091418. [PMID: 34575493 PMCID: PMC8467102 DOI: 10.3390/pharmaceutics13091418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to evaluate the comparative biological effects of Polygonum aviculare L. herba (PAH) extract and quercetin-entrapped liposomes on doxorubicin (Doxo)-induced toxicity in HUVECs. HUVECs were treated with two formulations of liposomes loaded with PAH extract (L5 and L6) and two formulations of liposomes loaded with quercetin (L3 prepared with phosphatidylcholine and L4 prepared with phosphatidylserine). The results obtained with atomic force microscopy, zeta potential and entrapment liposome efficiency confirmed the interactions of the liposomes with PAH or free quercetin and a controlled release of flavonoids entrapped in all the liposomes. Doxo decreased the cell viability and induced oxidative stress, inflammation, DNA lesions and apoptosis in parallel with the activation of Nrf2 and NF-kB. Free quercetin, L3 and L4 inhibited the oxidative stress and inflammation and reduced apoptosis, particularly L3. Additionally, these compounds diminished the Nrf2 and NF-kB expressions and DNA lesions, principally L4. PAH extract, L5 and L6 exerted antioxidant and anti-inflammatory activities, reduced γH2AX formation and inhibited extrinsic apoptosis and transcription factors activation but to a lesser extent. The loading of quercetin in liposomes increased the cell viability and exerted better endothelial protection compared to free quercetin, especially L3. The liposomes with PAH extract had moderate efficiency, mainly due to the antioxidant and anti-inflammatory effects and the inhibition of extrinsic apoptosis.
Collapse
Affiliation(s)
- Mariana Mureşan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| | - Diana Olteanu
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
- Correspondence: or
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Adina Frum
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No. 2A, 550169 Sibiu, Romania; (A.F.); (F.G.G.)
| | - Felicia Gabriela Gligor
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No. 2A, 550169 Sibiu, Romania; (A.F.); (F.G.G.)
| | - Paula Svera
- INCEMC-National Institute for Research and Development in Electrochemistry and Condensed Matter-Timisoara, No. 144 Dr. A. Paunescu Podeanu Street, 300569 Timisoara, Romania;
| | - Bogdan Stancu
- 2nd Department of General Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| |
Collapse
|
31
|
Xian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, Zhang Y, Aleman-Muench GR, Lewis G, Chen W, Kang S, Luevanos M, Trudler D, Lipton SA, Soroosh P, Teijaro J, de la Torre JC, Arditi M, Karin M, Sanchez-Lopez E. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021; 54:1463-1477.e11. [PMID: 34115964 PMCID: PMC8189765 DOI: 10.1016/j.immuni.2021.05.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1β production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.
Collapse
Affiliation(s)
- Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Yuan Liu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Alexandra Rundberg Nilsson
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Raphaella Gatchalian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Timothy R Crother
- Departments of Biomedical Sciences and Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Warren G Tourtellotte
- Departments of Pathology, Neurology, Neurological Surgery and Biomedical Sciences, Cedars-Sinai Medical Center. Los Angeles, CA 90048, USA; Samuel Oschin Cancer Center, Cedars-Sinai Medical Center. Los Angeles, CA 90048, USA
| | - Yi Zhang
- Departments of Pathology, Neurology, Neurological Surgery and Biomedical Sciences, Cedars-Sinai Medical Center. Los Angeles, CA 90048, USA
| | - German R Aleman-Muench
- CVM discovery, Immunometabolism, Janssen Research & Development, San Diego CA 92121, USA
| | - Gavin Lewis
- CVM discovery, Immunometabolism, Janssen Research & Development, San Diego CA 92121, USA
| | - Weixuan Chen
- Janssen Research & Development, LLC, San Diego, CA, USA
| | - Sarah Kang
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Melissa Luevanos
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dorit Trudler
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Pejman Soroosh
- CVM discovery, Immunometabolism, Janssen Research & Development, San Diego CA 92121, USA
| | - John Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moshe Arditi
- Departments of Biomedical Sciences and Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA.
| | - Elsa Sanchez-Lopez
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Ai Q, Lin X, Xie H, Li B, Liao M, Fan H. Proteome Analysis in PAM Cells Reveals That African Swine Fever Virus Can Regulate the Level of Intracellular Polyamines to Facilitate Its Own Replication through ARG1. Viruses 2021; 13:v13071236. [PMID: 34206713 PMCID: PMC8310191 DOI: 10.3390/v13071236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
In 2018, African swine fever broke out in China, and the death rate after infection was close to 100%. There is no effective and safe vaccine in the world. In order to better characterize and understand the virus–host-cell interaction, quantitative proteomics was performed on porcine alveolar macrophages (PAM) infected with ASFV through tandem mass spectrometry (TMT) technology, high-performance liquid chromatography (HPLC), and mass spectrometry (MS). The proteome difference between the simulated group and the ASFV-infected group was found at 24 h. A total of 4218 proteins were identified, including 306 up-regulated differentially expressed proteins and 238 down-regulated differentially expressed proteins. Western blot analysis confirmed changes in the expression level of the selected protein. Pathway analysis is used to reveal the regulation of protein and interaction pathways after ASFV infection. Functional network and pathway analysis can provide an insight into the complexity and dynamics of virus–host cell interactions. Further study combined with proteomics data found that ARG1 has a very important effect on ASFV replication. It should be noted that the host metabolic pathway of ARG1-polyamine is important for virus replication, revealing that the virus may facilitate its own replication by regulating the level of small molecules in the host cell.
Collapse
Affiliation(s)
- Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiwei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China;
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (M.L.); (H.F.); Tel.: +86-20-85280240 (M.L.); +86-20-85283309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (M.L.); (H.F.); Tel.: +86-20-85280240 (M.L.); +86-20-85283309 (H.F.)
| |
Collapse
|
33
|
Ayıkgöz Y, Salih Aydın M, Kankılıç N, Temiz E. Nuclear factor erythroid 2-related factor 2 (Nrf2), tumor necrosis factor alpha protein (TNF-α), heme oxygenase-1 (HO-1) gene expressions during cardiopulmonary bypass. Gene 2021; 790:145690. [PMID: 33961973 DOI: 10.1016/j.gene.2021.145690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE During extracorporeal circulation, blood is in contact with nonendothelial surfaces. The increase in the amount of blood touching the non-endothelial surface increases the damage to the blood elements. This initiates and increases oxidative stress. Increased oxidative stress leads to the activation of antioxidant systems. These two systems work gradually in the process of Cardiopulmonary Bypass. This study aims to investigate the changes of TNF-α, Nrf2 and HO-1 gene expression in extracorporeal circulation. MATERIALS AND METHODS Fifteen patients who underwent open heart surgery were included in the study. Blood samples were taken preoperatively, during cardiopulmonary bypass (CPB) and 24 hours postoperatively. TNF-α, Nrf2 and HO-1 gene expressions in plasma samples were studied by using appropriate kits. Changes in gene expressions were compared. RESULTS TNF-α gene expression increased during CPB compared to preoperative levels (p <0.05). Similarly, Nrf-2 gene expression increased significantly during CPB (p <0.001) and decreased postoperatively (p <0.001). There was a significant increase in HO-1 gene expression during CPB (p <0.01). Postoperatively, this increase was found to decrease similar to Nrf2 (p <0.05). CONCLUSIONS According to the results, TNF-α, Nrf2, HO-1 gene expressions increase during CPB and these values decrease after the operation. This shows that oxidative stress and inflammatory processes start with CPB and antioxidant processes start similarly. With the termination of CPB, both processes are terminated. This has been demonstrated by gene expressions. Future studies will make it easier to understand these processes.
Collapse
Affiliation(s)
- Yusuf Ayıkgöz
- Department of Cardiovascular Surgery, Medical Faculty, Harran University, Şanlıurfa, Turkey
| | - Mehmet Salih Aydın
- Department of Cardiovascular Surgery, Medical Faculty, Harran University, Şanlıurfa, Turkey
| | - Nazım Kankılıç
- Department of Cardiovascular Surgery, Medical Faculty, Harran University, Şanlıurfa, Turkey.
| | - Ebru Temiz
- Medical Promotion and Marketing Program, Health Services Vocational School, Harran University, Department of Biochemistry, Medical Faculty, Harran University, Şanlıurfa, Turkey
| |
Collapse
|
34
|
Kokolakis G, Sabat R, Krüger-Krasagakis S, Eberle J. Ambivalent Effects of Tumor Necrosis Factor Alpha on Apoptosis of Malignant and Normal Human Keratinocytes. Skin Pharmacol Physiol 2021; 34:94-102. [PMID: 33730739 DOI: 10.1159/000513725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that may paradoxically induce either apoptosis or cell survival. It mediates its activity through binding of TNF-receptor (TNFR) 1 or 2. TNFR1 is mainly responsible for transmitting apoptotic signals. The activation of apoptotic mechanisms can either be intrinsic (mitochondrial) or extrinsic (death receptors). Death ligands such as TNF-related apoptosis-inducing ligand (TRAIL) specifically induce extrinsic apoptosis, while cytostatic drugs such as 5-fluorouracil (5FU) induce intrinsic apoptosis. OBJECTIVES To investigate the effects of TNFα on apoptosis in malignant and normal human keratinocytes. METHODS Human cutaneous squamous cell carcinoma (SCC) cell line SCC-13 and immortalized human keratinocytes HaCaT as well as primary normal human keratinocytes (PNHK) were stimulated with TNFα and then treated either with TRAIL or 5FU. Cell viability and cell proliferation, DNA fragmentation, apoptosis, and cytotoxicity were determined by WST-1 proliferation assay, ELISA, flow cytometry, and colorimetric analysis of lactate dehydrogenase, respectively. In addition, Western blotting was performed for analysis of caspase-3. RESULTS TNFα affected viability of SCC-13 and HaCaT cells in combination with 5FU or TRAIL. In contrast, TNFα did not influence cell viability of PNHK. It enhanced the apoptotic effects of both extrinsic and intrinsic stimuli in SCC-13 and HaCaT. In clear contrast, TNFα protected PNHK against TRAIL- and 5FU-induced apoptosis. The effects were dose-dependent and TNFα-specific; furthermore, the apoptosis pathway was caspase-dependent. CONCLUSIONS In summary, opposing effects of TNFα in malignant versus normal human keratinocytes were observed with possibly relevant clinical implications, when patients are treated with TNFα inhibitors.
Collapse
Affiliation(s)
- Georgios Kokolakis
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany, .,Psoriasis Research and Treatment Centre, Charité - Universitätsmedizin Berlin, Berlin, Germany, .,Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany,
| | - Robert Sabat
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Psoriasis Research and Treatment Centre, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Krüger-Krasagakis
- Department of Dermatology and Venereology, School of Medicine, University of Crete, Heraklion, Greece
| | - Jürgen Eberle
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Dermatology, Venereology and Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
36
|
Chu F, Shi M, Lang Y, Chao Z, Jin T, Cui L, Zhu J. Adoptive transfer of immunomodulatory M2 macrophages suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice via blockading NF-κB pathway. Clin Exp Immunol 2021; 204:199-211. [PMID: 33426702 DOI: 10.1111/cei.13572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages play important roles in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), and M2 macrophage may have anti-inflammatory effects. In this study, we elucidated the roles of M1 and M2 macrophages in the pathogenesis of EAE and the effects of treatment with M2 macrophages that target certain proinflammatory cytokines and with immunomodulatory preparations that beneficially influence the disease course. We found macrophages increased at the onset of clinical signs in the EAE group, consistent with an increased proportion of M1 macrophages and low numbers of M2 macrophages. As the disease progressed and the symptoms worsened, M1 macrophages decreased and M2 macrophages gradually increased until the peak. In the recovery stage, M2 macrophages gradually decreased. Treatment with M2 macrophages inhibited the nuclear factor kappa B (NF-κB) pathway, alleviated the symptoms of EAE, reduced inflammatory cell infiltration and demyelination in the central nervous system and decreased the numbers of macrophages in the spleens. BAY-11-7082, an NF-κB blocking agent, could reduce the total number of macrophages both in vivo and in vitro, effectively prevented EAE development and significantly inhibited EAE symptoms in mice. Our study demonstrates that macrophages may play a crucial role in the pathogenesis of EAE, while M2 macrophages have anti-inflammatory effects. Transfer of M2 macrophages to EAE mice can block the NF-κB pathway successfully and relieve EAE symptoms. Application of NF-κB blockers is useful in the prevention and treatment of EAE.
Collapse
Affiliation(s)
- F Chu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - M Shi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Y Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Z Chao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - T Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - L Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - J Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
37
|
Xu W, Chen S, Wang X, Wu H, Yamada H, Hirano T. Methylprednisolone potentiates tetrandrine pharmacodynamics against human T lymphoblastoid leukemia MOLT-4 cells via regulation of NF-κB activation and cell cycle transition. Steroids 2020; 163:108714. [PMID: 32818521 DOI: 10.1016/j.steroids.2020.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 11/20/2022]
Abstract
Low response to glucocorticoid (GC) predicts therapeutic failure in acute T lymphoblastic leukemia (T-ALL). The efficient and safe strategies are still required for the treatment of relapsed T-ALL. Our previous study revealed that tetrandrine induces apoptosis in human T lymphoblastoid leukemia cells possibly via activation of NF-κB. GCs are recognized as typical NF-κB inhibitors and are used for the treatment of T-ALL patients. In the present study, we examined whether methylprednisolone (MP) potentiates the cytotoxic effect of tetrandrine (TET) via NF-κB regulation by using human T lymphoblastoid leukemia MOLT-4 cells. WST-8 assay data showed that nM grade of MP increased cytotoxicity of TET against MOLT-4 cells in vitro. This effect seemed to be related to the potentiation of TET action by MP to induce apoptosis. Meanwhile, the combination also impeded the transition of cell cycle from G0/G1 phase to S phase. However, the regulation effect of this combination on cell cycle had no relationship with cyclin signaling pathway, since the drug-combination did not influence on the expression of cyclin A2/B1/D1 in MOLT-4 cells. On the other hand, the combination significantly inhibited the phosphorylation of NF-κB (p < 0.01). These results suggest that nM grade of MP potentiates the cytotoxic effect of TET possibly via regulation of NF-κB activation and "G0/G1 to S" phase transition in human T lymphoblastoid leukemia MOLT-4 cells. Combination of TET and MP may provide a new therapeutic strategy for relapsed T-ALL.
Collapse
Affiliation(s)
- Wencheng Xu
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China; Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Shuhe Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China; Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Hongguang Wu
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruki Yamada
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
38
|
Li H, Wu X, Chen T, Jiang X, Ren C. Molecular characterization, inducible expression and functional analysis of an IKKβ from the tropical sea cucumber Holothuria leucospilota. FISH & SHELLFISH IMMUNOLOGY 2020; 104:622-632. [PMID: 32585358 DOI: 10.1016/j.fsi.2020.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The inhibitory kappa B kinase (IKK) is a critical regulator for the nuclear factor-κB (NF-κB) pathway. In this study, an IKKβ named as HLIKKβ was identified from the sea cucumber Holothuria leucospilota. The full-length cDNA of HLIKKβ is 4246 bp in size, containing a 132 bp 5'-untranslated region (UTR), a 1783 bp 3'-UTR and a 2331 bp open reading frame (ORF) encoding a protein of 776 amino acids with a deduced molecular weight of 89.66 kDa. HLIKKβ contains a kinase domain (KD) at its N-terminal, a leucine zipper (LZ) and a helix-loop-helix (HLH) motif at its C-terminal. In the KD, a conserved active loop (SXXXS) were identified. The results of luciferase reporter assay and ELISA assay showed that over-expressed HLIKKβ in HEK293T cells could activate the nuclear factor-κB (NF-κB) and induce the secretion of proinflammatory cytokines TNF-α and IL-1β. When HLIKKβ was silenced by siRNA, the apoptosis rate of sea cucumber coelomocytes was increased significantly, indicating the anti-apoptotic function of HLIKKβ. Moreover, the up-regulation of HLIKKβ mRNA was observed in the sea cucumber coelomocytes after polyriboinosinic polyribocytidylic acid [Poly (I:C)] or lipopolysaccharides (LPS) challenge, suggesting that the HLIKKβ might play important roles in the innate immune defense of sea cucumber against the viral and bacterial infections.
Collapse
Affiliation(s)
- Haipeng Li
- Guangzhou University, School of Environmental Science and Engineering, Guangzhou, 510006, PR China.
| | - Xiaofen Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China.
| |
Collapse
|
39
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
40
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
41
|
Hu S, Wang L, Xie X, Yang X, Cai L, Zhu A. Molecular characterization and functional analysis of tumor necrosis factor receptor-associated factor 2/7 and tumor necrosis factor receptor 1-associated death domain protein from Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2020; 103:385-402. [PMID: 32387478 DOI: 10.1016/j.fsi.2020.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we characterized tumor necrosis factor receptor-associated factor 2/7 (lcTRAF2/7) and TNFR1-associated death domain protein (lcTRADD) in Larimichthys crocea (L. crocea) and examined their expression profiles in tissues of Vibrio-challenged and unchallenged fish. The coding sequences of lcTRAF2, lcTRAF7, and lcTRADD were 1488, 2454, and 744 nucleotides, and they encoded proteins of 495, 344, and 248 amino acids, respectively. The results of phylogenetic analysis revealed that lcTRAF2, lcTRAF7, and lcTRADD were closest to Oplegnathus fasciatus (85%), Xiphophorus maculatus (97%), and Acanthochromis polyacanthus (65%), respectively. Multiple sequence alignment showed that lcTRAF2 and lcTRAF7 were highly conserved with other vertebrate TRAFs in their functional domains; however, lcTRADD was poorly conserved. The results of quantitative real-time polymerase chain reaction analysis indicated that lcTRAF2, lcTRAF7, and lcTRADD were constitutively expressed in the spleen, liver, kidney, heart, brain, gill, bladder, skin, fin, eye, and muscle. After challenging fish with Vibrio parahaemolyticus, the mRNA expression levels of lcTRAF2, lcTRAF7, and lcTRADD were upregulated in liver, spleen, and kidney. Immunofluorescence staining revealed that lcTRAF2 and lcTRADD were cytoplasmic in localization, whereas lcTRAF7 targeted both the cytoplasm and nucleus. In addition, the NF-κB protein level was upregulated after lipopolysaccharide stimulation in lcTRAF2, lcTRAF7, or lcTRADD overexpressing cells. Taken collectively, these results have improved our understanding of the functions of TRAF2, TRAF7, and TRADD in pathogenic infections in teleosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiyi Zhu
- Zhejiang Ocean University, China.
| |
Collapse
|
42
|
NF-κB inhibitors in treatment and prevention of lung cancer. Biomed Pharmacother 2020; 130:110569. [PMID: 32750649 DOI: 10.1016/j.biopha.2020.110569] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022] Open
Abstract
Intracellular signalling pathways have provided excellent resource for drug development particularly in the development of cancer therapeutics. A wide variety of malignancies common in human exhibit aberrant NF-κB constitutive expression which results in tumorigenic processes and cancer survival in a variety of solid tumour, including pancreatic cancer, lung, cervical, prostate, breast and gastric carcinoma. Numerous evidences indicate that NF-κB signalling mechanism is mainly involved in the progression of several cancers which may intensify an enhanced knowledge on its role in disease particularly lung tumorigenesis. This has led to tremendous research in designing a variety of NF-κB antagonists with enhanced clinical applications through different approaches the most common being suppression of IκB kinase (IKK) beta activity. Many NF-κB inhibitors for lung cancer are now under clinical trials. Preliminary results of clinical trials for several of these agents include small-molecule inhibitors and monoclonal antibodies. A few combinatorial treatment therapies are currently under investigation in the clinics and have shown promise, particularly NF-κB inhibition associated with lung cancer.
Collapse
|
43
|
Zwiri A, Al-Hatamleh MAI, W. Ahmad WMA, Ahmed Asif J, Khoo SP, Husein A, Ab-Ghani Z, Kassim NK. Biomarkers for Temporomandibular Disorders: Current Status and Future Directions. Diagnostics (Basel) 2020; 10:E303. [PMID: 32429070 PMCID: PMC7277983 DOI: 10.3390/diagnostics10050303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Numerous studies have been conducted in the previous years with an objective to determine the ideal biomarker or set of biomarkers in temporomandibular disorders (TMDs). It was recorded that tumour necrosis factor (TNF), interleukin 8 (IL-8), IL-6, and IL-1 were the most common biomarkers of TMDs. As of recently, although the research on TMDs biomarkers still aims to find more diagnostic agents, no recent study employs the biomarker as a targeting point of pharmacotherapy to suppress the inflammatory responses. This article represents an explicit review on the biomarkers of TMDs that have been discovered so far and provides possible future directions towards further research on these biomarkers. The potential implementation of the interactions of TNF with its receptor 2 (TNFR2) in the inflammatory process has been interpreted, and thus, this review presents a new hypothesis towards suppression of the inflammatory response using TNFR2-agonist. Subsequently, this hypothesis could be explored as a potential pain elimination approach in patients with TMDs.
Collapse
Affiliation(s)
- Abdalwhab Zwiri
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Wan Muhamad Amir W. Ahmad
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
| | - Jawaad Ahmed Asif
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Suan Phaik Khoo
- Department of Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia;
| | - Adam Husein
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zuryati Ab-Ghani
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Karyatee Kassim
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.Z.); (W.M.A.W.A.); (J.A.A.); (A.H.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
44
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
45
|
Alabi B, Omobowale T, Badejo J, Adedapo A, Fagbemi O, Iwalewa O. Protective effects and chemical composition of Corchorus olitorius leaf fractions against isoproterenol-induced myocardial injury through p65NFkB-dependent anti-apoptotic pathway in rats. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0108/jbcpp-2019-0108.xml. [PMID: 32319968 DOI: 10.1515/jbcpp-2019-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
Abstract
Background The fractions of Corchorus olitorius leaf (COLF) were evaluated against oxidative stress, inflammation and apoptosis in isoproterenol (ISO)-induced myocardial injury (MI) Wistar rats. Methods The n-hexane, dichloromethane, ethylacetate and ethanol fractions were obtained from COLF extract. Male Wistar strains were randomly grouped into 11 groups (n = 6 in each group), which comprises normal control group, MI control group, 4 fraction groups with two doses (50 and 100 mg/kg) and enalapril (10 mg/kg). The sera were obtained for biochemical studies like AOPP (advance oxidized protein product), CRP (C-reactive protein), LDH (lactate dehydrogenase), CKMB (creatine kinase-MB) and myocardial tissue obtained for GSH, p65NFkB, bax, bcl2, p53 and p65NFkB assays. Results The subcutaneous administration of ISO increased the serum level of CRP, LDH and CKMB significantly (p < 0.05) and decreased serum AOPP, tissue GSH and p65NFkB (p < 0.05) in the infarction control rats. Pretreatment with COLF and enalapril increased the tissue GSH and p65NFkB levels (p < 0.05) and significantly reduced serum CRP, AOPP, LDH and CKMB. The dichloromethane fraction (CODCM) being the most active was chosen to evaluate the anti-apoptotic effect. CODCM (50 and 100 mg/kg) and enalapril showed a significant (p < 0.05) effect through severe expression of p65NFkB, which correlates with increased bcl2 protein expression, decreased bax protein and p53 expression. Gas chromatography mass spectrometry revealed the presence of 26 compounds in CODCM. Conclusions From the present study, COLF protected the myocardial tissue against ischemic injury in rats probably via the p65NFkB-dependent anti-apoptotic pathway and attenuation of pro-inflammatory marker level.
Collapse
Affiliation(s)
- Babatunde Alabi
- Faculty of Basic Medical Science, University of Ibadan, Department of Pharmacology and Therapeutics, Oyo State, Nigeria
| | - Temidayo Omobowale
- University of Ibadan, Department of Veterinary Medicine, Oyo State, Nigeria
| | - Joseph Badejo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Science, University of Ibadan, Oyo State, Nigeria
| | - Adeolu Adedapo
- University of Ibadan, Department of Veterinary Pharmacology & Toxicology, Oyo State, Nigeria
| | - Oluwole Fagbemi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Science, University of Ibadan, Oyo State, Nigeria
| | - Olugbenga Iwalewa
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Science, University of Ibadan, Oyo State, Nigeria
| |
Collapse
|
46
|
Vadivel S, Vincent P, Sekaran S, Visaga Ambi S, Muralidar S, Selvaraj V, Palaniappan B, Thirumalai D. Inflammation in myocardial injury- Stem cells as potential immunomodulators for myocardial regeneration and restoration. Life Sci 2020; 250:117582. [PMID: 32222465 DOI: 10.1016/j.lfs.2020.117582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
The ineffective immunosuppressant's and targeted strategies to neutralize inflammatory mediators have worsened the scenario of heart failure and have opened many questions for debate. Stem cell therapy has proven to be a promising approach for treating heart following myocardial infarction (MI). Adult stem cells, induced pluripotent stem cells and embryonic stem cells are possible cell types and have successfully shown to regenerate damaged myocardial tissue in pre-clinical and clinical studies. Current implications of using mesenchymal stem cells (MSCs) owing to their immunomodulatory functions and paracrine effects could serve as an effective alternative treatment option for rejuvenating the heart post MI. The major setback associated with the use of MSCs is reduced cell retention, engraftment and decreased effectiveness. With a few reports on understanding the role of inflammation and its dual effects on the structure and function of heart, this review focuses on these missing insights and further exemplifies the role of MSCs as an alternative therapy in treating the pathological consequences in myocardial infarction (MI).
Collapse
Affiliation(s)
- Sajini Vadivel
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Preethi Vincent
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Saravanan Sekaran
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India.
| | - Senthil Visaga Ambi
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India.
| | - Shibi Muralidar
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Vimalraj Selvaraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Balamurugan Palaniappan
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
47
|
Regulation of liver regeneration by prostaglandin E 2 and thromboxane A 2 following partial hepatectomy in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1437-1446. [PMID: 32162076 DOI: 10.1007/s00210-020-01848-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
Abstract
The implication of prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) in the striking process of liver regeneration has been previously reported. However, their exact roles and downstream signals have not been utterly revealed. Therefore, the present study was conducted to explore whether inhibition of cyclooxygenase-2 (COX-2)-derived PGE2 by celecoxib and blocking of TXA2 action by seratrodast could alter the progression of liver regeneration after 70% partial hepatectomy (PHx) in rats. Celecoxib (20 mg/kg/day) and seratrodast (2 mg/kg/day) were given orally 1 h before PHx and then daily till the end of experiment (1, 3, or 7 days after the operation). Interestingly, celecoxib-treated rats showed a further increase in interleukin-6, p65 nuclear factor κB, and phosphorylated signal transducer and activator of transcription 3 as compared with PHx control rats. Furthermore, the liver contents of growth factors as well as β-catenin and cyclin D1protein expressions were also enhanced by celecoxib. Accordingly, celecoxib significantly improved hepatic proliferation as indicated by the increase in Ki67 expression and liver index. Contrariwise, seratrodast hindered the normal regeneration process and completely abolished the proliferative effect of celecoxib. In conclusion, TXA2 has a major role in liver regeneration that could greatly mediate the triggering effect of celecoxib on hepatocytes proliferation following PHx.
Collapse
|
48
|
Atretkhany KSN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol 2020; 107:893-905. [PMID: 32083339 DOI: 10.1002/jlb.2mr0120-510r] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.
Collapse
Affiliation(s)
- Kamar-Sulu N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Violetta S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
49
|
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020; 43:1-18. [PMID: 31900901 DOI: 10.1007/s13402-019-00489-1] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women worldwide and the fifth cause of death among all cancer patients. Breast cancer development is driven by genetic and epigenetic alterations, with the tumor microenvironment (TME) playing an essential role in disease progression and evolution through mechanisms like inflammation promotion. TNF-α is one of the essential pro-inflammatory cytokines found in the TME of breast cancer patients, being secreted both by stromal cells, mainly by tumor-associated macrophages, and by the cancer cells themselves. In this review, we explore the biological and clinical impact of TNF-α in all stages of breast cancer development. First of all, we explore the correlation between TNF-α expression levels at the tumor site or in plasma/serum of breast cancer patients and their respective clinical status and outcome. Secondly, we emphasize the role of TNF-α signaling in both estrogen-positive and -negative breast cancer cells. Thirdly, we underline TNF-α involvement in epithelial-to-mesenchymal transition (EMT) and metastasis of breast cancer cells, and we point out the contribution of TNF-α to the development of acquired drug resistance. CONCLUSIONS Collectively, these data reveal a pro-tumorigenic role of TNF-α during breast cancer progression and metastasis. We systemize the knowledge regarding TNF-α-related therapies in breast cancer, and we explain how TNF-α may act as both a target and a drug in different breast cancer therapeutic approaches. By corroborating the known molecular effects of TNF-α signaling in breast cancer cells with the results from several preclinical and clinical trials, including TNF-α-related clinical observations, we conclude that the potential of TNF-α in breast cancer therapy promises to be of great interest.
Collapse
Affiliation(s)
- Daniel Cruceriu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,11th Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. .,MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
| |
Collapse
|
50
|
Al-Hatamleh MAI, E.A.R. ENS, Boer JC, Ferji K, Six JL, Chen X, Elkord E, Plebanski M, Mohamud R. Synergistic Effects of Nanomedicine Targeting TNFR2 and DNA Demethylation Inhibitor-An Opportunity for Cancer Treatment. Cells 2019; 9:E33. [PMID: 31877663 PMCID: PMC7016661 DOI: 10.3390/cells9010033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is expressed on some tumor cells, such as myeloma, Hodgkin lymphoma, colon cancer and ovarian cancer, as well as immunosuppressive cells. There is increasingly evidence that TNFR2 expression in cancer microenvironment has significant implications in cancer progression, metastasis and immune evasion. Although nanomedicine has been extensively studied as a carrier of cancer immunotherapeutic agents, no study to date has investigated TNFR2-targeting nanomedicine in cancer treatment. From an epigenetic perspective, previous studies indicate that DNA demethylation might be responsible for high expressions of TNFR2 in cancer models. This perspective review discusses a novel therapeutic strategy based on nanomedicine that has the capacity to target TNFR2 along with inhibition of DNA demethylation. This approach may maximize the anti-cancer potential of nanomedicine-based immunotherapy and, consequently, markedly improve the outcomes of the management of patients with malignancy.
Collapse
Affiliation(s)
- Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia;
| | - Engku Nur Syafirah E.A.R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia;
| | - Jennifer C. Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (M.P.)
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, F-5400 Nancy, France; (K.F.); (J.-L.S.)
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-5400 Nancy, France; (K.F.); (J.-L.S.)
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences. University of Macau, Macao 999078, China
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, 34110 Doha, Qatar;
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (M.P.)
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia;
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan 16150, Malaysia
| |
Collapse
|