1
|
Dhanasiri AK, Siciliani D, Kortner TM, Krogdahl Å. Epigenetic changes in pyloric caeca of Atlantic salmon fed diets containing increasing levels of lipids and choline. Epigenetics 2024; 19:2305079. [PMID: 38281164 PMCID: PMC10824149 DOI: 10.1080/15592294.2024.2305079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
An earlier study of ours investigating the effect of dietary lipid levels on the choline requirement of Atlantic salmon showed increasing severity of intestinal steatosis with increasing lipid levels. As choline is involved in epigenetic regulation by being the key methyl donor, pyloric caeca samples from the study were analysed for epigenetic effects of dietary lipid and choline levels. The diets varied in lipid levels between 16% and 28%, and choline levels between 1.9 and 2.3 g/kg. The diets were fed for 8 weeks to Atlantic salmon of 25 g of initial weight. Using reduced representation bisulfite sequencing (RRBS), this study revealed that increasing dietary lipid levels induced methylation differences in genes involved in membrane transport and signalling pathways, and in microRNAs important for the regulation of lipid homoeostasis. Increasing choline levels also affected genes involved in fatty acid biosynthesis and transport, lipolysis, and lipogenesis, as well as important immune genes. Our observations confirmed that choline is involved in epigenetic regulation in Atlantic salmon, as has been reported for higher vertebrates. This study showed the need for the inclusion of biomarkers of epigenetic processes in studies that must be conducted to define optimal choline levels in diets for Atlantic salmon.
Collapse
Affiliation(s)
- Anusha K.S. Dhanasiri
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Daphne Siciliani
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trond M. Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
2
|
Ding W, Gu J, Xu W, Wu J, Huang Y, Zhang S, Lin S. The Biosynthesis and Applications of Protein Lipidation. Chem Rev 2024; 124:12176-12212. [PMID: 39441663 DOI: 10.1021/acs.chemrev.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein lipidation dramatically affects protein structure, localization, and trafficking via remodeling protein-membrane and protein-protein interactions through hydrophobic lipid moieties. Understanding the biosynthesis of lipidated proteins, whether natural ones or mimetics, is crucial for reconstructing, validating, and studying the molecular mechanisms and biological functions of protein lipidation. In this Perspective, we first provide an overview of the natural enzymatic biosynthetic pathways of protein lipidation in mammalian cells, focusing on the enzymatic machineries and their chemical linkages. We then discuss strategies to biosynthesize protein lipidation in mammalian cells by engineering modification machineries and substrates. Additionally, we explore site-specific protein lipidation biosynthesis in vitro via enzyme-mediated ligations and in vivo primarily through genetic code expansion strategies. We also discuss the use of small molecule tools to modulate the process of protein lipidation biosynthesis. Finally, we provide concluding remarks and discuss future directions for the biosynthesis and applications of protein lipidation.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenyuan Xu
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
| | - Jing Wu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Huang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixian Lin
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
3
|
Yan G, Zhou J, Yin J, Gao D, Zhong X, Deng X, Kang H, Sun A. Membrane Ruffles: Composition, Function, Formation and Visualization. Int J Mol Sci 2024; 25:10971. [PMID: 39456754 PMCID: PMC11507850 DOI: 10.3390/ijms252010971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline. Membrane ruffles are involved in multiple cell functions such as cell motility, macropinocytosis, receptor internalization, fluid viscosity sensing in a two-dimensional culture environment, and protecting cells from death in response to physiologically compressive loads. Herein, we review the state-of-the-art knowledge on membrane ruffle structure and function, the growth factor-induced membrane ruffling process, and the growth factor-independent ruffling mode triggered by calcium and other stimulating factors, together with the respective underlying mechanisms. We also summarize the inhibitors used in ruffle formation studies and their specificity. In the last part, an overview is given of the various techniques in which the membrane ruffles have been visualized up to now.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| |
Collapse
|
4
|
Duewell BR, Faris KA, Hansen SD. Molecular basis of product recognition during PIP5K-mediated production of PI(4,5)P 2 with positive feedback. J Biol Chem 2024; 300:107631. [PMID: 39098525 PMCID: PMC11405805 DOI: 10.1016/j.jbc.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
The ability for cells to localize and activate peripheral membrane-binding proteins is critical for signal transduction. Ubiquitously important in these signaling processes are phosphatidylinositol phosphate (PIP) lipids, which are dynamically phosphorylated by PIP lipid kinases on intracellular membranes. Functioning primarily at the plasma membrane, phosphatidylinositol-4-phosphate 5-kinases (PIP5K) catalyzes the phosphorylation of PI(4)P to generate most of the PI(4,5)P2 lipids found in eukaryotic plasma membranes. Recently, we determined that PIP5K displays a positive feedback loop based on membrane-mediated dimerization and cooperative binding to its product, PI(4,5)P2. Here, we examine how two motifs contribute to PI(4,5)P2 recognition to control membrane association and catalysis of PIP5K. Using a combination of single molecule TIRF microscopy and kinetic analysis of PI(4)P lipid phosphorylation, we map the sequence of steps that allow PIP5K to cooperatively engage PI(4,5)P2. We find that the specificity loop regulates the rate of PIP5K membrane association and helps orient the kinase to more effectively bind PI(4,5)P2 lipids. After correctly orienting on the membrane, PIP5K transitions to binding PI(4,5)P2 lipids near the active site through a motif previously referred to as the substrate or PIP-binding motif (PIPBM). The PIPBM has broad specificity for anionic lipids and serves a role in regulating membrane association in vitro and in vivo. Overall, our data supports a two-step membrane-binding model where the specificity loop and PIPBM act in concert to help PIP5K orient and productively engage anionic lipids to drive the positive feedback during PI(4,5)P2 production.
Collapse
Affiliation(s)
- Benjamin R Duewell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Katherine A Faris
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
5
|
Wu Y, Hu X, Wei Z, Lin Q. Cellular Regulation of Macropinocytosis. Int J Mol Sci 2024; 25:6963. [PMID: 39000072 PMCID: PMC11241348 DOI: 10.3390/ijms25136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Interest in macropinocytosis has risen in recent years owing to its function in tumorigenesis, immune reaction, and viral infection. Cancer cells utilize macropinocytosis to acquire nutrients to support their uncontrolled proliferation and energy consumption. Macropinocytosis, a highly dynamic endocytic and vesicular process, is regulated by a series of cellular signaling pathways. The activation of small GTPases in conjunction with phosphoinositide signaling pivotally regulates the process of macropinocytosis. In this review, we summarize important findings about the regulation of macropinocytosis and provide information to increase our understanding of the regulatory mechanism underlying it.
Collapse
Affiliation(s)
| | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (X.H.); (Z.W.)
| |
Collapse
|
6
|
Yang L, Zhang S, Zheng L, Kong F, Pu P, Li X, Jia L. Association of ADP‑ribosylation factor family genes with prognosis and immune infiltration of breast cancer. Oncol Lett 2024; 27:280. [PMID: 38699662 PMCID: PMC11063756 DOI: 10.3892/ol.2024.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
Breast cancer (BC) is the most common type of cancer found in women. ADP-ribosylation factors (ARFs) are a group of small proteins that bind to GTP and are involved in controlling different cellular functions. The function and evolution of multiple ARFs in BC have remained to be fully elucidated, despite existing studies on this protein family in Homo sapiens and other species. In the present study, a systematic analysis of ARF expression levels in BC tissues compared to normal breast tissues was performed using data from The Cancer Genome Atlas database. The analysis revealed significantly higher expression of ARFs in BC tissues. In addition, the prognostic significance of ARF1 and ARF3-6 expression levels was assessed in patients with BC. Of note, elevated ARF1 expression was associated with reduced rates of distant metastasis-free survival (DMFS), overall survival (OS) and recurrence-free survival (RFS) in affected individuals. Similarly, patients with high expression levels of ARF3 had lower post-progression survival (PPS) rates. In addition, patients with higher ARF4 expression had worse PPS and patients with high ARF5 expression exhibited lower DMFS. Patients with high ARF6 expression had worse DMFS, OS, RFS and predictive power score values. Furthermore, the expression of ARF was found to be strongly linked to the infiltration of various immune cell types, namely dendritic cells, macrophages, neutrophils, CD8+ T cells and B cells. These significant associations offer a solid foundation for the potential utilization of new therapeutic targets and predictive markers for the treatment of BC.
Collapse
Affiliation(s)
- Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Lei Zheng
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Fanting Kong
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Pengpeng Pu
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Xiaowei Li
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Lining Jia
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| |
Collapse
|
7
|
Quirion L, Robert A, Boulais J, Huang S, Bernal Astrain G, Strakhova R, Jo CH, Kherdjemil Y, Faubert D, Thibault MP, Kmita M, Baskin JM, Gingras AC, Smith MJ, Côté JF. Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways. J Cell Sci 2024; 137:jcs262140. [PMID: 38606629 PMCID: PMC11166204 DOI: 10.1242/jcs.262140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The ADP-ribosylation factors (ARFs) and ARF-like (ARL) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we used proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ∼3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely, SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.
Collapse
Affiliation(s)
- Laura Quirion
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Shiying Huang
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Gabriela Bernal Astrain
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Regina Strakhova
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yacine Kherdjemil
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Denis Faubert
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | | | - Marie Kmita
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC H3G 2M1, Canada
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew J. Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
8
|
Quirion L, Robert A, Boulais J, Huang S, Bernal Astrain G, Strakhova R, Jo CH, Kherdjemil Y, Thibault MP, Faubert D, Kmita M, Baskin JM, Gingras AC, Smith MJ, Cote JF. Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.01.530598. [PMID: 36909472 PMCID: PMC10002736 DOI: 10.1101/2023.03.01.530598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The ADP-ribosylation factors (ARFs) and ARF-like (ARLs) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we utilized proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ~3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.
Collapse
|
9
|
Nikolatou K, Sandilands E, Román‐Fernández A, Cumming EM, Freckmann E, Lilla S, Buetow L, McGarry L, Neilson M, Shaw R, Strachan D, Miller C, Huang DT, McNeish IA, Norman JC, Zanivan S, Bryant DM. PTEN deficiency exposes a requirement for an ARF GTPase module for integrin-dependent invasion in ovarian cancer. EMBO J 2023; 42:e113987. [PMID: 37577760 PMCID: PMC10505920 DOI: 10.15252/embj.2023113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Dysregulation of the PI3K/AKT pathway is a common occurrence in high-grade serous ovarian carcinoma (HGSOC), with the loss of the tumour suppressor PTEN in HGSOC being associated with poor prognosis. The cellular mechanisms of how PTEN loss contributes to HGSOC are largely unknown. We here utilise time-lapse imaging of HGSOC spheroids coupled to a machine learning approach to classify the phenotype of PTEN loss. PTEN deficiency induces PI(3,4,5)P3 -rich and -dependent membrane protrusions into the extracellular matrix (ECM), resulting in a collective invasion phenotype. We identify the small GTPase ARF6 as a crucial vulnerability of HGSOC cells upon PTEN loss. Through a functional proteomic CRISPR screen of ARF6 interactors, we identify the ARF GTPase-activating protein (GAP) AGAP1 and the ECM receptor β1-integrin (ITGB1) as key ARF6 interactors in HGSOC regulating PTEN loss-associated invasion. ARF6 functions to promote invasion by controlling the recycling of internalised, active β1-integrin to maintain invasive activity into the ECM. The expression of the CYTH2-ARF6-AGAP1 complex in HGSOC patients is inversely associated with outcome, allowing the identification of patient groups with improved versus poor outcome. ARF6 may represent a therapeutic vulnerability in PTEN-depleted HGSOC.
Collapse
Affiliation(s)
- Konstantina Nikolatou
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Emma Sandilands
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Alvaro Román‐Fernández
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Erin M Cumming
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Eva Freckmann
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | | | | | | | | | | | | | | | - Danny T Huang
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Iain A McNeish
- Department of Surgery and Cancer, Ovarian Cancer Action Research CentreImperial College LondonLondonUK
| | - James C Norman
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Sara Zanivan
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - David M Bryant
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| |
Collapse
|
10
|
Wills RC, Doyle CP, Zewe JP, Pacheco J, Hansen SD, Hammond GRV. A novel homeostatic mechanism tunes PI(4,5)P2-dependent signaling at the plasma membrane. J Cell Sci 2023; 136:jcs261494. [PMID: 37534432 PMCID: PMC10482388 DOI: 10.1242/jcs.261494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The lipid molecule phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] controls all aspects of plasma membrane (PM) function in animal cells, from its selective permeability to the attachment of the cytoskeleton. Although disruption of PI(4,5)P2 is associated with a wide range of diseases, it remains unclear how cells sense and maintain PI(4,5)P2 levels to support various cell functions. Here, we show that the PIP4K family of enzymes, which synthesize PI(4,5)P2 via a minor pathway, also function as sensors of tonic PI(4,5)P2 levels. PIP4Ks are recruited to the PM by elevated PI(4,5)P2 levels, where they inhibit the major PI(4,5)P2-synthesizing PIP5Ks. Perturbation of this simple homeostatic mechanism reveals differential sensitivity of PI(4,5)P2-dependent signaling to elevated PI(4,5)P2 levels. These findings reveal that a subset of PI(4,5)P2-driven functions might drive disease associated with disrupted PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Colleen P. Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James P. Zewe
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Scott D. Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Li FL, Guan KL. The Arf family GTPases: Regulation of vesicle biogenesis and beyond. Bioessays 2023; 45:e2200214. [PMID: 36998106 PMCID: PMC10282109 DOI: 10.1002/bies.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
The Arf family proteins are best known for their roles in the vesicle biogenesis. However, they also play fundamental roles in a wide range of cellular regulation besides vesicular trafficking, such as modulation of lipid metabolic enzymes, cytoskeleton remodeling, ciliogenesis, lysosomal, and mitochondrial morphology and functions. Growing studies continue to expand the downstream effector landscape of Arf proteins, especially for the less-studied members, revealing new biological functions, such as amino acid sensing. Experiments with cutting-edge technologies and in vivo functional studies in the last decade help to provide a more comprehensive view of Arf family functions. In this review, we summarize the cellular functions that are regulated by at least two different Arf members with an emphasis on those beyond vesicle biogenesis.
Collapse
Affiliation(s)
- Fu-Long Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Liang D, Xiang H, Jin P, Xia J. Response mechanism of harmful algae Phaeocystis globosa to ocean warming and acidification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121008. [PMID: 36608724 DOI: 10.1016/j.envpol.2023.121008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Simultaneous ocean warming and acidification will alter marine ecosystem structure and directly affect marine organisms. The alga Phaeocystis globosa commonly causes harmful algal blooms in coastal areas of eastern China. P. globosa often outcompetes other species due to its heterotypic life cycle, primarily including colonies and various types of solitary cells. However, little is known about the adaptive response of P. globosa to ocean warming and acidification. This study aimed to reveal the global molecular regulatory networks implicated in the response of P. globosa to simultaneous warming and acidification. After exposure to warming and acidification, the phosphatidylinositol (PI) and mitogen-activated protein kinase (MAPK) signaling pathways of P. globosa were activated to regulate other molecular pathways in the cell, while the light harvesting complex (LHC) genes were downregulated to decrease photosynthesis. Exposure to warming and acidification also altered the intracellular energy flow, with more energy allocated to the TCA cycle rather than to the biosynthesis of fatty acids and hemolytic substances. The upregulation of genes associated with glycosaminoglycan (GAG) degradation prevented the accumulation of polysaccharides, which led to a reduction in colony formation. Finally, the upregulation of the Mre11 and Rad50 genes in response to warming and acidification implied an increase in meiosis, which may be used by P. globosa to increase the number of solitary cells. The increase in genetic diversity through sexual reproduction may be a strategy of P. globosa that supports rapid response to complex environments. Thus, the life cycle of P. globosa underwent a transition from colonies to solitary cells in response to warming and acidification, suggesting that this species may be able to rapidly adapt to future climate changes through life cycle transitions.
Collapse
Affiliation(s)
- Dayong Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hua Xiang
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Qin Y, Medina MW. Mechanism of the Regulation of Plasma Cholesterol Levels by PI(4,5)P 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:89-119. [PMID: 36988878 DOI: 10.1007/978-3-031-21547-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Elevated low-density lipoprotein (LDL) cholesterol (LDLc) is one of the most well-established risk factors for cardiovascular disease, while high levels of high-density lipoprotein (HDL) cholesterol (HDLc) have been associated with protection from cardiovascular disease. Cardiovascular disease remains one of the leading causes of death worldwide; thus it is important to understand mechanisms that impact LDLc and HDLc metabolism. In this chapter, we will discuss molecular processes by which phosphatidylinositol-(4,5)-bisphosphate, PI(4,5)P2, is thought to modulate LDLc or HDLc. Section 1 will provide an overview of cholesterol in the circulation, discussing processes that modulate the various forms of lipoproteins (LDL and HDL) carrying cholesterol. Section 2 will describe how a PI(4,5)P2 phosphatase, transmembrane protein 55B (TMEM55B), impacts circulating LDLc levels through its ability to regulate lysosomal decay of the low-density lipoprotein receptor (LDLR), the primary receptor for hepatic LDL uptake. Section 3 will discuss how PI(4,5)P2 interacts with apolipoprotein A-I (apoA1), the key apolipoprotein on HDL. In addition to direct mechanisms of PI(4,5)P2 action on circulating cholesterol, Sect. 4 will review how PI(4,5)P2 may indirectly impact LDLc and HDLc by affecting insulin action. Last, as cholesterol is controlled through intricate negative feedback loops, Sect. 5 will describe how PI(4,5)P2 is regulated by cholesterol.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Pediatrics, Division of Cardiology, University of California, San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, Division of Cardiology, University of California, San Francisco, Oakland, CA, USA.
| |
Collapse
|
15
|
Cologna SM, Pathmasiri KC, Pergande MR, Rosenhouse-Dantsker A. Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:143-165. [PMID: 36988880 DOI: 10.1007/978-3-031-21547-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Collapse
Affiliation(s)
| | | | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
16
|
Llorente A, Arora GK, Grenier SF, Emerling BM. PIP kinases: A versatile family that demands further therapeutic attention. Adv Biol Regul 2023; 87:100939. [PMID: 36517396 PMCID: PMC9992244 DOI: 10.1016/j.jbior.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are membrane-localized phospholipids that regulate a plethora of essential cellular processes. These lipid signaling molecules are critical for cell homeostasis and therefore their levels are strictly regulated by the coordinated action of several families of lipid kinases and phosphatases. In this review, we provide a focused perspective on the phosphatidylinositol phosphate kinase (PIPK) family and the three subfamilies that compose it: Type I PIPKs or phosphatidylinositol-4-phosphate 5-kinases (PI4P5Ks), Type II PIPKs or phosphatidylinositol-5-phosphate 4-kinases (PI5P4Ks), and Type III PIPKs or phosphatidylinositol-3-phosphate 5-kinases (PIKfyve). Each subfamily is responsible for catalyzing a hydroxyl phosphorylation on specific phosphoinositide species to generate a double phosphorylated lipid, therefore regulating the levels of both substrate and product. Here, we summarize our current knowledge about the functions and regulation of each PIPK subfamily. Further, we highlight the roles of these kinases in various in vivo genetic models and give an overview of their involvement in multiple pathological conditions. The phosphoinositide field has been long focused on targeting PI3K signaling, but growing evidence suggests that it is time to draw attention to the other phosphoinositide kinases. The discovery of the involvement of PIPKs in the pathogenesis of multiple diseases has prompted substantial efforts to turn these enzymes into pharmacological targets. An increasingly refined knowledge of the biology of PIPKs in a variety of in vitro and in vivo models will facilitate the development of effective approaches for therapeutic intervention with the potential to translate into meaningful clinical benefits for patients suffering from cancer, immunological and infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alicia Llorente
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Shea F Grenier
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA.
| |
Collapse
|
17
|
Yang S, Tang Y, Liu Y, Brown AJ, Schaks M, Ding B, Kramer DA, Mietkowska M, Ding L, Alekhina O, Billadeau DD, Chowdhury S, Wang J, Rottner K, Chen B. Arf GTPase activates the WAVE regulatory complex through a distinct binding site. SCIENCE ADVANCES 2022; 8:eadd1412. [PMID: 36516255 PMCID: PMC9750158 DOI: 10.1126/sciadv.add1412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 06/02/2023]
Abstract
Cross-talk between Rho- and Arf-family guanosine triphosphatases (GTPases) plays an important role in linking the actin cytoskeleton to membrane protrusions, organelle morphology, and vesicle trafficking. The central actin regulator, WAVE regulatory complex (WRC), integrates Rac1 (a Rho-family GTPase) and Arf signaling to promote Arp2/3-mediated actin polymerization in many processes, but how WRC senses Arf signaling is unknown. Here, we have reconstituted a direct interaction between Arf and WRC. This interaction is greatly enhanced by Rac1 binding to the D site of WRC. Arf1 binds to a previously unidentified, conserved surface on the Sra1 subunit of WRC, which, in turn, drives WRC activation using a mechanism distinct from that of Rac1. Mutating the Arf binding site abolishes Arf1-WRC interaction, disrupts Arf1-mediated WRC activation, and impairs lamellipodia formation and cell migration. This work uncovers a new mechanism underlying WRC activation and provides a mechanistic foundation for studying how WRC-mediated actin polymerization links Arf and Rac signaling in cells.
Collapse
Affiliation(s)
- Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Yubo Tang
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Abbigale J. Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Daniel D. Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- CSIR–Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| |
Collapse
|
18
|
Kunduri G, Acharya U, Acharya JK. Lipid Polarization during Cytokinesis. Cells 2022; 11:3977. [PMID: 36552741 PMCID: PMC9776629 DOI: 10.3390/cells11243977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The plasma membrane of eukaryotic cells is composed of a large number of lipid species that are laterally segregated into functional domains as well as asymmetrically distributed between the outer and inner leaflets. Additionally, the spatial distribution and organization of these lipids dramatically change in response to various cellular states, such as cell division, differentiation, and apoptosis. Division of one cell into two daughter cells is one of the most fundamental requirements for the sustenance of growth in all living organisms. The successful completion of cytokinesis, the final stage of cell division, is critically dependent on the spatial distribution and organization of specific lipids. In this review, we discuss the properties of various lipid species associated with cytokinesis and the mechanisms involved in their polarization, including forward trafficking, endocytic recycling, local synthesis, and cortical flow models. The differences in lipid species requirements and distribution in mitotic vs. male meiotic cells will be discussed. We will concentrate on sphingolipids and phosphatidylinositols because their transbilayer organization and movement may be linked via the cytoskeleton and thus critically regulate various steps of cytokinesis.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
19
|
Chidipi B, Chang M, Abou-Assali O, Reiser M, Tian Z, Allen-Gipson D, Noujaim SF. The Arf6/PIP5K pathway activates IKACh in cigarette smoke mediated atrial fibrillation. Cell Signal 2022; 100:110475. [PMID: 36150420 DOI: 10.1016/j.cellsig.2022.110475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Cigarette smoking (CS) is a major cause of cardiovascular diseases. Smokers are at a significantly higher risk for developing atrial fibrillation (AF), a dangerous and abnormal heart rhythm. In the US, 15.5% of adults are current smokers, and it is becoming clear that CS is an independent risk factor for AF, but a detailed mechanistic understanding of how CS contributes to the molecular patho-electrophysiology of AF remains elusive. We investigated if CS related AF is in part mediated through a mechanism that depends on the cardiac acetylcholine activated inward rectifier potassium current (IKACh). We tested the hypothesis that CS increases IKACh via phosphatidylinositol 4-phosphate 5-kinase alpha (PIP5K) and ADP ribosylation factor 6 (Arf6) signaling, leading to AF perpetuation. In vivo inducibility of AF was assessed in mice exposed to CS for 8 weeks. AF duration was increased in CS exposed mice, and TertiapinQ, an IKACh blocker prevented AF development in CS exposed mice. In HEK293 cells stably transfected with Kir3.1 and Kir3.4, the molecular correlates of IKACh, CS exposure increased the expression of the Kir3.1 and Kir3.4 proteins at the cell surface, activated Arf6 and increased the IKACh current. Inhibition of PIP5K, or of Kir3.1/Kir3.4 trafficking via Arf6 abrogated the CS effects on IKACh. Cigarette smoke modifies the atrial electrophysiological substrate, leading to arrhythmogenesis, in part, through IKACh activation via an Arf6/PIP5K dependent pathway.
Collapse
Affiliation(s)
- Bojjibabu Chidipi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America..
| | - Mengmeng Chang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Obada Abou-Assali
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Michelle Reiser
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Zhi Tian
- Department of Pharmaceutical Science, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States of America
| | - Diane Allen-Gipson
- Department of Pharmaceutical Science, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States of America
| | - Sami F Noujaim
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
20
|
Shi H, Duan J, Wang J, Li H, Wu Z, Wang S, Wu X, Lu M. 1,25(OH) 2D 3 Promotes Macrophage Efferocytosis Partly by Upregulating ASAP2 Transcription via the VDR-Bound Enhancer Region and ASAP2 May Affect Antiviral Immunity. Nutrients 2022; 14:4935. [PMID: 36432619 PMCID: PMC9699620 DOI: 10.3390/nu14224935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The active form of vitamin D3, i.e., 1,25(OH)2D3, exerts an anti-inflammatory effect on the immune system, especially macrophage-mediated innate immunity. In a previous study, we identified 1,25(OH)2D3-responsive and vitamin D receptor (VDR)-bound super-enhancer regions in THP-1 cells. Herein, we examined the transcriptional regulation of ArfGAP with SH3 Domain, Ankyrin Repeat and PH Domain 2 (ASAP2) (encoding a GTPase-activating protein) by 1,25(OH)2D3 through the top-ranked VDR-bound super-enhancer region in the first intron of ASAP2 and potential functions of ASAP2 in macrophages. First, we validated the upregulation of ASAP2 by 1,25(OH)2D3 in both THP-1 cells and macrophages. Subsequently, we identified three regulatory regions (i.e., the core, 1,25(OH)2D3-responsive, and inhibitory regions) in the VDR bound-enhancer of ASAP2. ASAP2 promoted RAC1-activity and macrophage efferocytosis in vitro. Next, we assessed the functions of ASAP2 by mass spectrometry and RNA sequencing analyses. ASAP2 upregulated the expressions of antiviral-associated genes and interacted with SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1). In vivo, vitamin D reduced the number of apoptotic cells in experimental autoimmune encephalomyelitis (EAE) and promoted macrophage efferocytosis in peritonitis without changing the mRNA level of ASAP2. Thus, we could better understand the regulatory mechanism underlying ASAP2 transcription and the function of ASAP2, which may serve as a potential treatment target against inflammatory diseases and virus infections.
Collapse
Affiliation(s)
- Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jiangling Duan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jiayu Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Haohao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhiheng Wu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shuaideng Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xueyan Wu
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
21
|
Zhai Y, Chan WWR, Li W, Lau KF. ARNO is recruited by the neuronal adaptor FE65 to potentiate ARF6-mediated neurite outgrowth. Open Biol 2022; 12:220071. [PMID: 36168805 PMCID: PMC9516341 DOI: 10.1098/rsob.220071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation factor 6 (ARF6) is a small GTPase that has a variety of neuronal functions including stimulating neurite outgrowth, a crucial process for the establishment and maintenance of neural connectivity. As impaired and atrophic neurites are often observed in various brain injuries and neurological diseases, understanding the intrinsic pathways that stimulate neurite outgrowth may provide insights into developing strategies to trigger the reconnection of injured neurons. The neuronal adaptor FE65 has been shown to interact with ARF6 and potentiate ARF6-mediated neurite outgrowth. However, the precise mechanism that FE65 activates ARF6 remains unclear, as FE65 does not possess a guanine nucleotide exchange factor (GEF) domain/function. Here, we show that FE65 interacts with the ARF6 GEF, namely the ARF nucleotide-binding site opener (ARNO). Moreover, a complex consisting of ARNO, ARF6 and FE65 is detected. Notably, FE65 potentiates the stimulatory effect of ARNO on ARF6-mediated neurite outgrowth, and the effect of FE65 is abrogated by an FE65 mutation that disrupts FE65–ARNO interaction. Additionally, the intramolecular interaction for mediating the autoinhibited conformation of ARNO is attenuated by FE65. Moreover, FE65 potentiates the effects of wild-type ARNO, but not the monomeric mutant, suggesting an association between FE65 and ARNO dimerization. Collectively, we demonstrate that FE65 binds to and activates ARNO and, consequently, potentiates ARF6-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Wen Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.,Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| |
Collapse
|
22
|
Hansen SD, Lee AA, Duewell BR, Groves JT. Membrane-mediated dimerization potentiates PIP5K lipid kinase activity. eLife 2022; 11:e73747. [PMID: 35976097 PMCID: PMC9470164 DOI: 10.7554/elife.73747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family of lipid-modifying enzymes generate the majority of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipids found at the plasma membrane in eukaryotic cells. PI(4,5)P2 lipids serve a critical role in regulating receptor activation, ion channel gating, endocytosis, and actin nucleation. Here, we describe how PIP5K activity is regulated by cooperative binding to PI(4,5)P2 lipids and membrane-mediated dimerization of the kinase domain. In contrast to constitutively dimeric phosphatidylinositol 5-phosphate 4-kinase (PIP4K, type II PIPK), solution PIP5K exists in a weak monomer-dimer equilibrium. PIP5K monomers can associate with PI(4,5)P2-containing membranes and dimerize in a protein density-dependent manner. Although dispensable for cooperative PI(4,5)P2 binding, dimerization enhances the catalytic efficiency of PIP5K through a mechanism consistent with allosteric regulation. Additionally, dimerization amplifies stochastic variation in the kinase reaction velocity and strengthens effects such as the recently described stochastic geometry sensing. Overall, the mechanism of PIP5K membrane binding creates a broad dynamic range of lipid kinase activities that are coupled to the density of PI(4,5)P2 and membrane-bound kinase.
Collapse
Affiliation(s)
- Scott D Hansen
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Albert A Lee
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Benjamin R Duewell
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Jay T Groves
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
| |
Collapse
|
23
|
A mechanism for exocyst-mediated tethering via Arf6 and PIP5K1C-driven phosphoinositide conversion. Curr Biol 2022; 32:2821-2833.e6. [PMID: 35609603 PMCID: PMC9382030 DOI: 10.1016/j.cub.2022.04.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Polarized trafficking is necessary for the development of eukaryotes and is regulated by a conserved molecular machinery. Late steps of cargo delivery are mediated by the exocyst complex, which integrates lipid and protein components to tether vesicles for plasma membrane fusion. However, the molecular mechanisms of this process are poorly defined. Here, we reconstitute functional octameric human exocyst, demonstrating the basis for holocomplex coalescence and biochemically stable subcomplexes. We determine that each subcomplex independently binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is minimally sufficient for membrane tethering. Through reconstitution and epithelial cell biology experiments, we show that Arf6-mediated recruitment of the lipid kinase PIP5K1C rapidly converts phosphatidylinositol 4-phosphate (PI(4)P) to PI(4,5)P2, driving exocyst recruitment and membrane tethering. These results provide a molecular mechanism of exocyst-mediated tethering and a unique functional requirement for phosphoinositide signaling on late-stage vesicles in the vicinity of the plasma membrane. Complete reconstitution and subunit connectivity of the human exocyst complex Binding to PI(4,5)P2 in trans by each subcomplex enables membrane tethering PI(4)P to PI(4,5)P2 conversion is sufficient for exocyst recruitment and tethering Arf6 controls phosphoinositide conversion by PIP5K1C in cells and in vitro
Collapse
|
24
|
Tian X, Bunda P, Ishibe S. Podocyte Endocytosis in Regulating the Glomerular Filtration Barrier. Front Med (Lausanne) 2022; 9:801837. [PMID: 35223901 PMCID: PMC8866310 DOI: 10.3389/fmed.2022.801837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a mechanism that internalizes and recycles plasma membrane components and transmembrane receptors via vesicle formation, which is mediated by clathrin-dependent and clathrin-independent signaling pathways. Podocytes are specialized, terminally differentiated epithelial cells in the kidney, located on the outermost layer of the glomerulus. These cells play an important role in maintaining the integrity of the glomerular filtration barrier in conjunction with the adjacent basement membrane and endothelial cell layers within the glomerulus. An intact podocyte endocytic machinery appears to be necessary for maintaining podocyte function. De novo pathologic human genetic mutations and loss-of-function studies of critical podocyte endocytosis genes in genetically engineered mouse models suggest that this pathway contributes to the pathophysiology of development and progression of proteinuria in chronic kidney disease. Here, we review the mechanism of cellular endocytosis and its regulation in podocyte injury in the context of glomerular diseases. A thorough understanding of podocyte endocytosis may shed novel insights into its biological function in maintaining a functioning filter and offer potential targeted therapeutic strategies for proteinuric glomerular diseases.
Collapse
Affiliation(s)
| | | | - Shuta Ishibe
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Tariq K, Luikart BW. Striking a balance: PIP 2 and PIP 3 signaling in neuronal health and disease. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 1:86-100. [PMID: 35098253 PMCID: PMC8797975 DOI: 10.37349/ent.2021.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphoinositides are membrane phospholipids involved in a variety of cellular processes like growth, development, metabolism, and transport. This review focuses on the maintenance of cellular homeostasis of phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidylinositol 3,4,5-trisphosphate (PIP3). The critical balance of these PIPs is crucial for regulation of neuronal form and function. The activity of PIP2 and PIP3 can be regulated through kinases, phosphatases, phospholipases and cholesterol microdomains. PIP2 and PIP3 carry out their functions either indirectly through their effectors activating integral signaling pathways, or through direct regulation of membrane channels, transporters, and cytoskeletal proteins. Any perturbations to the balance between PIP2 and PIP3 signaling result in neurodevelopmental and neurodegenerative disorders. This review will discuss the upstream modulators and downstream effectors of the PIP2 and PIP3 signaling, in the context of neuronal health and disease.
Collapse
Affiliation(s)
- Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Russo G, Krauss M. Septin Remodeling During Mammalian Cytokinesis. Front Cell Dev Biol 2021; 9:768309. [PMID: 34805175 PMCID: PMC8600141 DOI: 10.3389/fcell.2021.768309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Cytokinesis mediates the final separation of a mother cell into two daughter cells. Septins are recruited to the cleavage furrow at an early stage. During cytokinetic progression the septin cytoskeleton is constantly rearranged, ultimately leading to a concentration of septins within the intercellular bridge (ICB), and to the formation of two rings adjacent to the midbody that aid ESCRT-dependent abscission. The molecular mechanisms underlying this behavior are poorly understood. Based on observations that septins can associate with actin, microtubules and associated motors, we review here established roles of septins in mammalian cytokinesis, and discuss, how septins may support cytokinetic progression by exerting their functions at particular sites. Finally, we discuss how this might be assisted by phosphoinositide-metabolizing enzymes.
Collapse
Affiliation(s)
- Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
27
|
Chen PW, Gasilina A, Yadav MP, Randazzo PA. Control of cell signaling by Arf GTPases and their regulators: Focus on links to cancer and other GTPase families. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119171. [PMID: 34774605 DOI: 10.1016/j.bbamcr.2021.119171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
The ADP-ribosylation factors (Arfs) comprise a family of regulatory GTP binding proteins. The Arfs regulate membrane trafficking and cytoskeleton remodeling, processes critical for eukaryotes and which have been the focus of most studies on Arfs. A more limited literature describes a role in signaling and in integrating several signaling pathways to bring about specific cell behaviors. Here, we will highlight work describing function of Arf1, Arf6 and several effectors and regulators of Arfs in signaling.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Anjelika Gasilina
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States of America(1); Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Mukesh P Yadav
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
28
|
Zhang K, Liu Z, Wang Z, Zhou Z, Shao X, Hua X, Mao H, Yang H, Ren K, Chen K. Long Non-Coding RNA MDFIC-7 Promotes Chordoma Progression Through Modulating the miR-525-5p/ARF6 Axis. Front Oncol 2021; 11:743718. [PMID: 34621682 PMCID: PMC8491581 DOI: 10.3389/fonc.2021.743718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background Chordoma, an extremely rare malignant tumor, remains difficult to be cured because of its strong local invasiveness and high recurrence rate. Long non-coding RNAs (lncRNAs) have been demonstrated to play multiple roles in various cancers. The purpose of this study was to investigate the modulatory function of lncRNA MDFIC-7 in chordoma and to elucidate its underlying mechanisms. Methods Quantitative real-time polymerase chain reaction was performed to detect the expression of lncRNA MDFIC-7 in tumor tissues and adjacent nontumorous tissues collected from 15 chordoma patients, as well as in chordoma cell lines. Gene silencing and overexpression experiments were carried out by RNA interference and lentiviral transduction. The effect of lncRNA MDFIC-7 on the proliferation of chordoma cells was evaluated by cell counting kit-8 assay, colony formation assay and xenograft tumor experiments. RNA immunoprecipitation and dual luciferase reporter assays were conducted to evaluate the binding between lncRNA MDFIC-7 and miRNA-525-5p and the interaction between miR-525-5p and the 3′ untranslated region of ADP-ribosylation factor 6 (ARF6) mRNA. The glycolytic capacity and mitochondrial function of chordoma cells were measured by the Seahorse Bioscience XF96 Extracellular Flux Analyzer. Results The expression of lncRNA MDFIC-7 was higher in chordoma tumor tissues than in adjacent non-tumor tissues. Downregulation of lncRNA MDFIC-7 reduced colony formation and cell proliferation in chordoma cells and decreased xenograft tumor growth in a nude mouse model. Moreover, lncRNA MDFIC-7 knockdown attenuated the Warburg effect in chordoma cells and xenograft tumors. LncRNA MDFIC-7 knockdown elevated miR-525-5p levels and decreased ARF6 expressions. Overexpression of ARF6 reversed the inhibitory effect of lncRNA MDFIC-7 knockdown on cell proliferation and the Warburg effect in chordoma cells and xenograft tumors. Mechanistically, lncRNA MDFIC-7, as a molecular sponge of miR-525-5p, negatively regulated miR-525-5p expression and promoted the gene expression of ARF6, a miR-525-5p target. Conclusion Our findings demonstrate that lncRNA MDFIC-7 acts as a molecular sponge to competitively bind to miR-525-5p and promote expression of ARF6. The lncRNA MDFIC-7/miR-525-5p/ARF6 axis regulates chordoma progression and the Warburg effect in chordoma, suggesting that lncRNA MDFIC-7 and miR-525-5p could be promising therapeutic targets for the treatment of chordoma.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zixiang Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhidong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Shao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Hua
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiqing Mao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Ren
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, China.,School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Kangwu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
29
|
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal 2021; 19:92. [PMID: 34503523 PMCID: PMC8427877 DOI: 10.1186/s12964-021-00766-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 11/11/2022] Open
Abstract
Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocytosis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-independent mechanisms of endocytosis to T cell biology. Video Abstract
Collapse
Affiliation(s)
- John C Charpentier
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
30
|
Lee S, Ishitsuka A, Kuroki T, Lin YH, Shibuya A, Hongu T, Funakoshi Y, Kanaho Y, Nagata K, Kawaguchi A. Arf6 exacerbates allergic asthma through cell-to-cell transmission of ASC inflammasomes. JCI Insight 2021; 6:e139190. [PMID: 34423792 PMCID: PMC8410019 DOI: 10.1172/jci.insight.139190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways associated with excess production of Th2 cytokines and lung eosinophil accumulation. This inflammatory response persists in spite of steroid administration that blocks autocrine/paracrine loops of inflammatory cytokines, and the detailed mechanisms underlying asthma exacerbation remain unclear. Here, we show that asthma exacerbation is triggered by airway macrophages through a prion-like cell-to-cell transmission of extracellular particulates, including ASC protein, that assemble inflammasomes and mediate IL-1β production. OVA-induced allergic asthma and associated IL-1β production were alleviated in mice with small GTPase Arf6-deficient macrophages. The extracellular ASC specks were slightly engulfed by Arf6–/– macrophages, and the IL-1β production was reduced in Arf6–/– macrophages compared with that in WT macrophages. Furthermore, pharmacological inhibition of the Arf6 guanine nucleotide exchange factor suppressed asthma-like allergic inflammation in OVA-challenged WT mice. Collectively, the Arf6-dependent intercellular transmission of extracellular ASC specks contributes to the amplification of allergic inflammation and subsequent asthma exacerbation.
Collapse
Affiliation(s)
- SangJoon Lee
- Department of Infection Biology, Faculty of Medicine
| | - Akari Ishitsuka
- PhD Program in Human Biology, School of Integrative and Global Majors
| | | | | | | | - Tsunaki Hongu
- Department of Physiological Chemistry, Faculty of Medicine
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine
| | | | | | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine.,PhD Program in Human Biology, School of Integrative and Global Majors.,Graduate School of Comprehensive Human Sciences.,Transborder Medical Research Center, and.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
31
|
Guo X, Wang Z, Liu L, Li Y. Transcriptome and metabolome analyses of cold and darkness-induced pellicle cysts of Scrippsiella trochoidea. BMC Genomics 2021; 22:526. [PMID: 34246248 PMCID: PMC8272339 DOI: 10.1186/s12864-021-07840-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dinoflagellates are a group of unicellular organisms that are a major component of aquatic eukaryotes and important contributors to marine primary production. Nevertheless, many dinoflagellates are considered harmful algal bloom (HAB) species due to their detrimental environmental and human health impacts. Cyst formation is widely perceived as an adaptive strategy of cyst-forming dinoflagellates in response to adverse environmental conditions. Dinoflagellate cysts play critical roles in bloom dynamics. However, our insight into the underlying molecular basis of encystment is still limited. To investigate the molecular processes regulating encystment in dinoflagellates, transcriptome and metabolome investigations were performed on cold and darkness-induced pellicle cysts of Scrippsiella trochoidea. RESULTS No significant transcriptional response was observed at 2 h; however, massive transcriptome and metabolome reprogramming occurred at 5 h and in pellicle cysts. The gene-to-metabolite network demonstrated that the initial transformation from vegetative cells into pellicle cysts was highly energy demanding through the activation of catabolism, including glycolysis, β-oxidation, TCA cycle and oxidative phosphorylation, to cope with cold-darkness-induced stress. However, after transformation into pellicle cysts, the metabolism was greatly reduced, and various sugars, polyunsaturated fatty acids and amino acids accumulated to prolong survival. The identification of 56 differentially expressed genes (DEGs) related to signal transduction indicated that S. trochoidea received a cold-darkness signal that activated multiple signal transduction pathways, leading to encystment. The elevated expression of genes encoding enzymes involved in ROS stress suggested that pellicle cysts respond to increased oxidative stress. Several cell cycle-related genes were repressed. Intriguingly, 11 DEGs associated with sexual reproduction suggested that pellicle cysts (or some portion thereof) may be a product of sexual reproduction. CONCLUSIONS This study provides the first transcriptome and metabolome analyses conducted during the encystment of S. trochoidea, an event that requires complex regulatory mechanisms and impacts on population dynamics. The results reveal comprehensive molecular regulatory processes underlying life cycle regulation in dinoflagellates involving signal transduction, gene expression and metabolite profile, which will improve our ability to understand and monitor dinoflagellate blooms.
Collapse
Affiliation(s)
- Xin Guo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, 510631, Guangzhou, China.,Department of Ecology, College of Life Science and Technology, Jinan University, West 601 of Huangpu Avenue, 510632, Guangzhou, China
| | - Zhaohui Wang
- Department of Ecology, College of Life Science and Technology, Jinan University, West 601 of Huangpu Avenue, 510632, Guangzhou, China.
| | - Lei Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, West 601 of Huangpu Avenue, 510632, Guangzhou, China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, 510631, Guangzhou, China.
| |
Collapse
|
32
|
Veluthakal R, Thurmond DC. Emerging Roles of Small GTPases in Islet β-Cell Function. Cells 2021; 10:1503. [PMID: 34203728 PMCID: PMC8232272 DOI: 10.3390/cells10061503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Several small guanosine triphosphatases (GTPases) from the Ras protein superfamily regulate glucose-stimulated insulin secretion in the pancreatic islet β-cell. The Rho family GTPases Cdc42 and Rac1 are primarily involved in relaying key signals in several cellular functions, including vesicle trafficking, plasma membrane homeostasis, and cytoskeletal dynamics. They orchestrate specific changes at each spatiotemporal region within the β-cell by coordinating with signal transducers, guanine nucleotide exchange factors (GEFs), GTPase-activating factors (GAPs), and their effectors. The Arf family of small GTPases is involved in vesicular trafficking (exocytosis and endocytosis) and actin cytoskeletal dynamics. Rab-GTPases regulate pre-exocytotic and late endocytic membrane trafficking events in β-cells. Several additional functions for small GTPases include regulating transcription factor activity and mitochondrial dynamics. Importantly, defects in several of these GTPases have been found associated with type 2 diabetes (T2D) etiology. The purpose of this review is to systematically denote the identities and molecular mechanistic steps in the glucose-stimulated insulin secretion pathway that leads to the normal release of insulin. We will also note newly identified defects in these GTPases and their corresponding regulatory factors (e.g., GDP dissociation inhibitors (GDIs), GEFs, and GAPs) in the pancreatic β-cells, which contribute to the dysregulation of metabolism and the development of T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| |
Collapse
|
33
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
34
|
Phospholipase Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983572 DOI: 10.1007/978-981-32-9620-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Breast cancer progression results from subversion of multiple intra- or intercellular signaling pathways in normal mammary tissues and their microenvironment, which have an impact on cell differentiation, proliferation, migration, and angiogenesis. Phospholipases (PLC, PLD and PLA) are essential mediators of intra- and intercellular signaling. They hydrolyze phospholipids, which are major components of cell membrane that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid. Enzymatic processing of phospholipids by phospholipases converts these molecules into lipid mediators that regulate multiple cellular processes, which in turn can promote breast cancer progression. Thus, dysregulation of phospholipases contributes to a number of human diseases, including cancer. This review describes how phospholipases regulate multiple cancer-associated cellular processes, and the interplay among different phospholipases in breast cancer. A thorough understanding of the breast cancer-associated signaling networks of phospholipases is necessary to determine whether these enzymes are potential targets for innovative therapeutic strategies.
Collapse
|
35
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
36
|
Nacke M, Sandilands E, Nikolatou K, Román-Fernández Á, Mason S, Patel R, Lilla S, Yelland T, Galbraith LCA, Freckmann EC, McGarry L, Morton JP, Shanks E, Leung HY, Markert E, Ismail S, Zanivan S, Blyth K, Bryant DM. An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nat Commun 2021; 12:1623. [PMID: 33712589 PMCID: PMC7955138 DOI: 10.1038/s41467-021-21847-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.
Collapse
Affiliation(s)
- Marisa Nacke
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Konstantina Nikolatou
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Álvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | | | | | | | | | - Eva C Freckmann
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | - Shehab Ismail
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
- Department of Chemistry, KU Leuven, Celestijnenlaan, Belgium
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - David M Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- The CRUK Beatson Institute, Glasgow, UK.
| |
Collapse
|
37
|
Bouti P, Webbers SDS, Fagerholm SC, Alon R, Moser M, Matlung HL, Kuijpers TW. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front Immunol 2021; 11:619925. [PMID: 33679708 PMCID: PMC7930317 DOI: 10.3389/fimmu.2020.619925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
Collapse
Affiliation(s)
- Panagiota Bouti
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven D S Webbers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Ma J, Zhao S, Gao X, Wang R, Liu J, Zhou X, Zhou Y. The Roles of Inflammasomes in Host Defense against Mycobacterium tuberculosis. Pathogens 2021; 10:pathogens10020120. [PMID: 33503864 PMCID: PMC7911501 DOI: 10.3390/pathogens10020120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) infection is characterized by granulomatous lung lesions and systemic inflammatory responses during active disease. Inflammasome activation is involved in regulation of inflammation. Inflammasomes are multiprotein complexes serving a platform for activation of caspase-1, which cleaves the proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 into their active forms. These cytokines play an essential role in MTB control. MTB infection triggers activation of the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes in vitro, but only AIM2 and apoptosis-associated speck-like protein containing a caspase-activation recruitment domain (ASC), rather than NLRP3 or caspase-1, favor host survival and restriction of mycobacterial replication in vivo. Interferons (IFNs) inhibits MTB-induced inflammasome activation and IL-1 signaling. In this review, we focus on activation and regulation of the NLRP3 and AIM2 inflammasomes after exposure to MTB, as well as the effect of inflammasome activation on host defense against the infection.
Collapse
Affiliation(s)
- Jialu Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Shasha Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Xiao Gao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Rui Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| |
Collapse
|
40
|
In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1. Proc Natl Acad Sci U S A 2021; 118:2010054118. [PMID: 33443153 PMCID: PMC7817218 DOI: 10.1073/pnas.2010054118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1's functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1's enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.
Collapse
|
41
|
Sumiyoshi M, Kotani Y, Ikuta Y, Suzue K, Ozawa M, Katakai T, Yamada T, Abe T, Bando K, Koyasu S, Kanaho Y, Watanabe T, Matsuda S. Arf1 and Arf6 Synergistically Maintain Survival of T Cells during Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:366-375. [PMID: 33310872 DOI: 10.4049/jimmunol.2000971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation factor (Arf) family consisting of six family members, Arf1-Arf6, belongs to Ras superfamily and orchestrates vesicle trafficking under the control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins. It is well established that brefeldin A, a potent inhibitor of ArfGEFs, blocks cytokine secretion from activated T cells, suggesting that the Arf pathway plays important roles in T cell functions. In this study, because Arf1 and Arf6 are the best-characterized members among Arf family, we established T lineage-specific Arf1-deficient, Arf6-deficient, and Arf1/6 double-deficient mice to understand physiological roles of the Arf pathway in the immune system. Contrary to our expectation, Arf deficiency had little or no impact on cytokine secretion from the activated T cells. In contrast, the lack of both Arf1 and Arf6, but neither Arf1 nor Arf6 deficiency alone, rendered naive T cells susceptible to apoptosis upon TCR stimulation because of imbalanced expression of Bcl-2 family members. We further demonstrate that Arf1/6 deficiency in T cells alleviates autoimmune diseases like colitis and experimental autoimmune encephalomyelitis, whereas Ab response under Th2-polarizing conditions is seemingly normal. Our findings reveal an unexpected role for the Arf pathway in the survival of T cells during TCR-induced activation and its potential as a therapeutic target in the autoimmune diseases.
Collapse
Affiliation(s)
- Mami Sumiyoshi
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yui Kotani
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.,Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Yuki Ikuta
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Iruma-gun, Saitama 350-0495, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; and
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan;
| |
Collapse
|
42
|
Cross-Kingdom Activation of Vibrio Toxins by ADP-Ribosylation Factor Family GTPases. J Bacteriol 2020; 202:JB.00278-20. [PMID: 32900828 DOI: 10.1128/jb.00278-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Vibrio species use many different approaches to subvert, attack, and undermine the host response. The toxins they produce are often responsible for the devastating effects associated with their diseases. These toxins target a variety of host proteins, which leads to deleterious effects, including dissolution of cell organelle integrity and inhibition of protein secretion. Becoming increasingly prevalent as cofactors for Vibrio toxins are proteins of the small GTPase families. ADP-ribosylation factor small GTPases (ARFs) in particular are emerging as a common host cofactor necessary for full activation of Vibrio toxins. While ARFs are not the direct target of Vibrio cholerae cholera toxin (CT), ARF binding is required for its optimal activity as an ADP-ribosyltransferase. The makes caterpillars floppy (MCF)-like and the domain X (DmX) effectors of the Vibrio vulnificus multifunctional autoprocessing repeats-in-toxin (MARTX) toxin also both require ARFs to initiate autoprocessing and activation as independent effectors. ARFs are ubiquitously expressed in eukaryotes and are key regulators of many cellular processes, and as such they are ideal cofactors for Vibrio pathogens that infect many host species. In this review, we cover in detail the known Vibrio toxins that use ARFs as cross-kingdom activators to both stimulate and optimize their activity. We further discuss how these contrast to toxins and effectors from other bacterial species that coactivate, stimulate, or directly modify host ARFs as their mechanisms of action.
Collapse
|
43
|
Ibuchi K, Fukaya M, Shinohara T, Hara Y, Shiroshima T, Sugawara T, Sakagami H. The Vps52 subunit of the GARP and EARP complexes is a novel Arf6-interacting protein that negatively regulates neurite outgrowth of hippocampal neurons. Brain Res 2020; 1745:146905. [PMID: 32473257 DOI: 10.1016/j.brainres.2020.146905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 01/05/2023]
Abstract
ADP ribosylation factor 6 (Arf6) is a small GTP-binding protein implicated in neuronal morphogenesis through endosomal trafficking and actin remodeling. In this study, we identified Vps52, a core subunit of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, as a novel Arf6-binding protein by yeast two-hybrid screening. Vps52 interacted specifically with GTP-bound Arf6 among the Arf family. Immunohistochemical analyses of hippocampal pyramidal cells revealed that fine punctate immunolabeling for Vps52 was distributed throughout neuronal compartments, most densely in the cell body and dendritic shafts, and was largely associated with trans-Golgi network and vesicular endomembranes. In cultured hippocampal neurons, knockdown of Vps52 increased total length of axons and dendrites; these phenotypes were completely restored by co-expression of shRNA-resistant full-length Vps52. However, co-expression of a Vps52 mutant lacking the ability to interact with Arf6 restored only the Vps52-knockdown phenotype of the dendritic length. The present findings suggest that Vps52 is a novel Arf6-interacting protein that regulates neurite outgrowth in hippocampal neurons.
Collapse
Affiliation(s)
- Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuro Shinohara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
44
|
Platenkamp A, Detmar E, Sepulveda L, Ritz A, Rogers SL, Applewhite DA. The Drosophila melanogaster Rab GAP RN-tre cross-talks with the Rho1 signaling pathway to regulate nonmuscle myosin II localization and function. Mol Biol Cell 2020; 31:2379-2397. [PMID: 32816624 PMCID: PMC7851959 DOI: 10.1091/mbc.e20-03-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To identify novel regulators of nonmuscle myosin II (NMII) we performed an image-based RNA interference screen using stable Drosophila melanogaster S2 cells expressing the enhanced green fluorescent protein (EGFP)-tagged regulatory light chain (RLC) of NMII and mCherry-Actin. We identified the Rab-specific GTPase-activating protein (GAP) RN-tre as necessary for the assembly of NMII RLC into contractile actin networks. Depletion of RN-tre led to a punctate NMII phenotype, similar to what is observed following depletion of proteins in the Rho1 pathway. Depletion of RN-tre also led to a decrease in active Rho1 and a decrease in phosphomyosin-positive cells by immunostaining, while expression of constitutively active Rho or Rho-kinase (Rok) rescues the punctate phenotype. Functionally, RN-tre depletion led to an increase in actin retrograde flow rate and cellular contractility in S2 and S2R+ cells, respectively. Regulation of NMII by RN-tre is only partially dependent on its GAP activity as overexpression of constitutively active Rabs inactivated by RN-tre failed to alter NMII RLC localization, while a GAP-dead version of RN-tre partially restored phosphomyosin staining. Collectively, our results suggest that RN-tre plays an important regulatory role in NMII RLC distribution, phosphorylation, and function, likely through Rho1 signaling and putatively serving as a link between the secretion machinery and actomyosin contractility.
Collapse
Affiliation(s)
| | - Elizabeth Detmar
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Liz Sepulveda
- Department of Biology, Reed College, Portland, OR 97202
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202
| | - Stephen L Rogers
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | |
Collapse
|
45
|
Wu PF, Bhore N, Lee YL, Chou JY, Chen YW, Wu PY, Hsu WM, Lee H, Huang YS, Lu PJ, Liao YF. Phosphatidylinositol-4-phosphate 5-kinase type 1α attenuates Aβ production by promoting non-amyloidogenic processing of amyloid precursor protein. FASEB J 2020; 34:12127-12146. [PMID: 32686865 DOI: 10.1096/fj.202000113r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by a chronic decline in cognitive function and is pathologically typified by cerebral deposition of amyloid-β peptide (Aβ). The production of Aβ is mediated by sequential proteolysis of amyloid precursor protein (APP) by β- and γ-secretases, and has been implicated as the essential determinant of AD pathology. Previous studies have demonstrated that the level of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the membrane may potentially modulate Aβ production. Given that PI(4,5)P2 is produced by type 1 phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), we sought to determine whether the level of PIP5K type Iα (PIP5K1A) can affect production of Aβ by modulating the lipid composition of the membrane. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that overexpression of PIP5K1A results in significant enhancement of non-amyloidogenic APP processing and a concomitant suppression of the amyloidogenic pathway, leading to a marked decrease in secreted Aβ. Consistently, cells overexpressing PIP5K1A exhibited a significant redistribution of APP-YFP from endosomal compartments to the cell surface. Our findings suggest that PIP5K1A may play a critical role in governing Aβ production by modulating membrane distribution of APP, and as such, the pathway may be a valuable therapeutic target for AD.
Collapse
Affiliation(s)
- Po-Fan Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Noopur Bhore
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yen-Lurk Lee
- TIGP in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ju-Yun Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yun-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Shuian Huang
- TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,TIGP in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Jung Lu
- TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Han K, Pastor RW, Fenollar–Ferrer C. PLD2-PI(4,5)P2 interactions in fluid phase membranes: Structural modeling and molecular dynamics simulations. PLoS One 2020; 15:e0236201. [PMID: 32687545 PMCID: PMC7371163 DOI: 10.1371/journal.pone.0236201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Interaction of phospholipase D2 (PLD2) with phosphatidylinositol (4,5)-bisphosphate (PIP2) is regarded as the critical step of numerous physiological processes. Here we build a full-length model of human PLD2 (hPLD2) combining template-based and ab initio modeling techniques and use microsecond all-atom molecular dynamics (MD) simulations of the protein in contact with a complex membrane to determine hPLD2-PIP2 interactions. MD simulations reveal that the intermolecular interactions preferentially occur between specific PIP2 phosphate groups and hPLD2 residues; the most strongly interacting residues are arginine at the pbox consensus sequence (PX) and pleckstrin homology (PH) domain. Interaction networks indicate formation of clusters at the protein-membrane interface consisting of amino acids, PIP2, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (POPA); the largest cluster was in the PH domain.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cristina Fenollar–Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Genetics, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, United States of America
- Molecular Biology and Genetics Section, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Type I Phosphatidylinositol-4-Phosphate 5-Kinases α and γ Play a Key Role in Targeting HIV-1 Pr55 Gag to the Plasma Membrane. J Virol 2020; 94:JVI.00189-20. [PMID: 32376619 DOI: 10.1128/jvi.00189-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 assembly occurs principally at the plasma membrane (PM) of infected cells. Gag polyprotein precursors (Pr55Gag) are targeted to the PM, and their binding is mediated by the interaction of myristoylated matrix domain and a PM-specific phosphoinositide, the phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The major synthesis pathway of PI(4,5)P2 involves the activity of phosphatidylinositol-4-phosphate 5-kinase family type 1 composed of three isoforms (PIP5K1α, PIP5K1β, and PIP5K1γ). To examine whether the activity of a specific PIP5K1 isoform determines proper Pr55Gag localization at the PM, we compared the cellular behavior of Pr55Gag in the context of PIP5K1 inhibition using siRNAs that individually targeted each of the three isoforms in TZM-bl HeLa cells. We found that downregulation of PIP5K1α and PIP5K1γ strongly impaired the targeting of Pr55Gag to the PM with a rerouting of the polyprotein within intracellular compartments. The efficiency of Pr55Gag release was thus impaired through the silencing of these two isoforms, while PIP5K1β is dispensable for Pr55Gag targeting to the PM. The PM mistargeting due to the silencing of PIP5K1α leads to Pr55Gag hydrolysis through lysosome and proteasome pathways, while the silencing of PIP5K1γ leads to Pr55Gag accumulation in late endosomes. Our findings demonstrated that, within the PIP5K1 family, only the PI(4,5)P2 pools produced by PIP5K1α and PIP5K1γ are involved in the Pr55Gag PM targeting process.IMPORTANCE PM specificity of Pr55Gag membrane binding is mediated through the interaction of PI(4,5)P2 with the matrix (MA) basic residues. It was shown that overexpression of a PI(4,5)P2-depleting enzyme strongly impaired PM localization of Pr55Gag However, cellular factors that control PI(4,5)P2 production required for Pr55Gag-PM targeting have not yet been characterized. In this study, by individually inhibiting PIP5K1 isoforms, we elucidated a correlation between PI(4,5)P2 metabolism pathways mediated by PIP5K1 isoforms and the targeting of Pr55Gag to the PM of TZM-bl HeLa cells. Confocal microscopy analyses of cells depleted from PIP5K1α and PIP5K1γ show a rerouting of Pr55Gag to various intracellular compartments. Notably, Pr55Gag is degraded by the proteasome and/or by the lysosomes in PIP5K1α-depleted cells, while Pr55Gag is targeted to endosomal vesicles in PIP5K1γ-depleted cells. Thus, our results highlight, for the first time, the roles of PIP5K1α and PIP5K1γ as determinants of Pr55Gag targeting to the PM.
Collapse
|
48
|
Pathmasiri KC, Pergande MR, Tobias F, Rebiai R, Rosenhouse-Dantsker A, Bongarzone ER, Cologna SM. Mass spectrometry imaging and LC/MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice. J Lipid Res 2020; 61:1004-1013. [PMID: 32371566 DOI: 10.1194/jlr.ra119000606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized a consensus spectra analysis of MS imaging data sets and orthogonal LC/MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including PI, PIP, and PIP2, in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2α in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model, as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Fernando Tobias
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL
| | - Rima Rebiai
- Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | | | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL. mailto:
| |
Collapse
|
49
|
Assessment of Arf6 Deletion in PLB-985 Differentiated in Neutrophil-Like Cells and in Mouse Neutrophils: Impact on Adhesion and Migration. Mediators Inflamm 2020; 2020:2713074. [PMID: 32322163 PMCID: PMC7166286 DOI: 10.1155/2020/2713074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Chemoattractant sensing, adhesiveness, and migration are critical events underlying the recruitment of neutrophils (PMNs) to sites of inflammation or infection. Defects in leukocyte adhesion or migration result in immunodeficiency disorders characterized by recurrent infections. In this study, we evaluated the role of Arf6 on PMN adhesion in vitro and on migration to inflammatory sites using PMN-Arf6 conditional knockout (cKO) mice. In PMN-like PLB-985 silenced for Arf6 fMLP-mediated adhesion to the β2 integrin ligands, ICAM-1 and fibrinogen or the β1/β2 integrin ligand fibronectin was significantly reduced. Furthermore, overexpression of wild-type Arf6 promoted basal and fMLP-induced adhesion to immobilized integrin ligands, while overexpression of the dominant-negative Arf6 has the opposite effects. Using the Elane-Cre deleting mouse strains, we report that the level of Arf6 deletion in inflammatory PMNs isolated from the dorsal air pouches was stronger when compared to naïve cells isolated from the bone marrow. In PMN-Arf6 cKO mice, the recruitment of PMNs into the dorsal air pouch injected with LPS or the chemoattractant fMLP was significantly diminished. Impaired cell migration correlated with reduced cell surface expression of CD11a and CD11b in Arf6 cKO PMNs. Our results highlight that Arf6 regulates the activity and possibly the recycling of PMN integrins, and this compromises PMN migration to inflammatory sites.
Collapse
|
50
|
D'Souza RS, Lim JY, Turgut A, Servage K, Zhang J, Orth K, Sosale NG, Lazzara MJ, Allegood J, Casanova JE. Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex. eLife 2020; 9:54113. [PMID: 32234213 PMCID: PMC7159923 DOI: 10.7554/elife.54113] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Coordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here, we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane (PM) contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Jun Y Lim
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Alper Turgut
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Junmei Zhang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Nisha G Sosale
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, United States
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| |
Collapse
|