1
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
2
|
Sajjad F, Jalal A, Jalal A, Gul Z, Mubeen H, Rizvi SZ, Un-Nisa EA, Asghar A, Butool F. Multi-omic analysis of dysregulated pathways in triple negative breast cancer. Asia Pac J Clin Oncol 2024. [PMID: 38899578 DOI: 10.1111/ajco.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The aggressive characteristics of triple-negative breast cancer (TNBC) and the absence of targeted medicines make TNBC a challenging clinical case. The molecular landscape of TNBC has been well-understood thanks to recent developments in multi-omic analysis, which have also revealed dysregulated pathways and possible treatment targets. This review summarizes the utilization of multi-omic approaches in elucidating TNBC's complex biology and therapeutic avenues. Dysregulated pathways including cell cycle progression, immunological modulation, and DNA damage response have been uncovered in TNBC by multi-omic investigations that integrate genomes, transcriptomics, proteomics, and metabolomics data. Methods like this pave the door for the discovery of new therapeutic targets, such as the EGFR, PARP, and mTOR pathways, which in turn direct the creation of more precise treatments. Recent developments in TNBC treatment strategies, including immunotherapy, PARP inhibitors, and antibody-drug conjugates, show promise in clinical trials. Emerging biomarkers like MUC1, YB-1, and immune-related markers offer insights into personalized treatment approaches and prognosis prediction. Despite the strengths of multi-omic analysis in offering a more comprehensive view and personalized treatment strategies, challenges exist. Large sample sizes and ensuring high-quality data remain crucial for reliable findings. Multi-omic analysis has revolutionized TNBC research, shedding light on dysregulated pathways, potential targets, and emerging biomarkers. Continued research efforts are imperative to translate these insights into improved outcomes for TNBC patients.
Collapse
Affiliation(s)
- Fatima Sajjad
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmer Jalal
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Amir Jalal
- Department of Biochemistry, Sahara Medical College, Narowal, Pakistan
| | - Zulekha Gul
- Environmental and Biological Science, Nanjing University of Science and Technology, Nanjing, China
| | - Hira Mubeen
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Seemal Zahra Rizvi
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ex Alim Un-Nisa
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Farah Butool
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University Lahore, Lahore, Pakistan
| |
Collapse
|
3
|
Asiedu K. Neurophysiology of corneal neuropathic pain and emerging pharmacotherapeutics. J Neurosci Res 2024; 102:e25285. [PMID: 38284865 DOI: 10.1002/jnr.25285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 01/30/2024]
Abstract
The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Anterior Mandibular Displacement in Growing Rats—A Systematic Review. Animals (Basel) 2022; 12:ani12162059. [PMID: 36009649 PMCID: PMC9405253 DOI: 10.3390/ani12162059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Mandibular deficiency is a very common orthodontic problem. Many different types of appliances have been utilized to correct such malocclusions. Most are appliances that alter the function of the mandible resulting in a more forward positioning of the lower jaw. Many researchers state that such an alteration results in a different rate of mandibular growth, due to condyle endochondral ossification, thus correcting the orthodontic anomaly. Their effect though remains controversial. The aim of the present study was to investigate the effect of such functional appliances in the mandible of growing rats by reviewing the existing literature up to March of 2022. Most of them stated that true condylar growth is observed, although there are many limitations due to the nature of such experiments. Abstract Skeletal Class II malocclusion is the most common skeletal anomaly in orthodontics. Growth in the body of the deficient mandible is induced by periosteal apposition and endochondral ossification in the condyle. Functional appliances have been used in the correction of Class II malocclusions by inducing mandibular growth. Despite their utilization though, their effect still remains controversial. The aim of the present study is to review the existing literature regarding the effects of mandibular protrusion in mandibular growth of growing rats. A protocol was followed according to the guidelines of the Cohrane Handbook for Systematic Reviews. Databases were searched using a specific algorithm. From the ten studies finally analyzed, we conclude that the use of a functional appliance in growing rats induces cell proliferation and bone formation in their condyles, resulting in mandibular growth.
Collapse
|
5
|
Aniridia-related keratopathy relevant cell signaling pathways in human fetal corneas. Histochem Cell Biol 2022; 158:169-180. [PMID: 35551459 PMCID: PMC9338123 DOI: 10.1007/s00418-022-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
We aimed to study aniridia-related keratopathy (ARK) relevant cell signaling pathways [Notch1, Wnt/β-catenin, Sonic hedgehog (SHH) and mTOR] in normal human fetal corneas compared with normal human adult corneas and ARK corneas. We found that fetal corneas at 20 weeks of gestation (wg) and normal adult corneas showed similar staining patterns for Notch1; however 10–11 wg fetal corneas showed increased presence of Notch1. Numb and Dlk1 had an enhanced presence in the fetal corneas compared with the adult corneas. Fetal corneas showed stronger immunolabeling with antibodies against β-catenin, Wnt5a, Wnt7a, Gli1, Hes1, p-rpS6, and mTOR when compared with the adult corneas. Gene expression of Notch1, Wnt5A, Wnt7A, β-catenin, Hes1, mTOR, and rps6 was higher in the 9–12 wg fetal corneas compared with adult corneas. The cell signaling pathway differences found between human fetal and adult corneas were similar to those previously found in ARK corneas with the exception of Notch1. Analogous profiles of cell signaling pathway activation between human fetal corneas and ARK corneas suggests that there is a less differentiated host milieu in ARK.
Collapse
|
6
|
Ding LLQ, Hu SF, He XW, Zhang P, Zhao FF, Liu TP, Zhang Q, He F, Yu Y, Xiong P, Wang CK. Acupuncture combined with moxibustion promote the recovery of spinal cord injury in correlation with Shh/Gli-1 signaling pathway. J Spinal Cord Med 2022; 45:106-116. [PMID: 32441569 PMCID: PMC8890527 DOI: 10.1080/10790268.2020.1766900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: Acupuncture combined with moxibustion (AM) therapy has been applied to treat spinal cord injury (SCI), but the underlying mechanism is unclear. The present study aimed to confirm the effect and mechanism of AM treatment on the recovery of SCI.Design: Male Sprague-Dawley rats were used to establish the SCI model by impact method. SCI rat models were subjected to AM treatment at Dazhui (GV14) and Jiaji points (T7-T12), Yaoyangguan (GV3), Zusanli (ST36) and Ciliao (BL32).Outcome measures: Motor function and cell apoptosis in rats after SCI. The mRNA and protein expression levels of Shh and Gli-1 were determined by real-time quantitative polymerase chain reaction, western blot and immunohistochemistry.Results: After AM treatment, the hindlimb motor function of SCI rats was significantly increased than the SCI group at 7, 9, 11, 14 days (P < 0.05). AM treatment 7 d and 14 d significantly preserved the nissl-stained positive neurons and significantly decreased number of apoptotic cells, compared to that of SCI 7 and 14 d groups (P < 0.05). AM treatment improved the mRNA protein levels of Shh and Gli-1 after 7 and 14 days treatment compared to the SCI group (P < 0.05).Conclusion: AM could improve the expression of Shh and Gli-1 in injured spinal cord of rats. That could be part of underlying mechanisms of AM treatment including recover motor function and preserve the neuron cells and alleviate the apoptosis of nerve cells in rats after SCI.
Collapse
Affiliation(s)
- Li-Li-Qiang Ding
- Department of Hypertension, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Song-Feng Hu
- Fourth Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Xing-Wei He
- Fourth Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China,Correspondence to: Xing-Wei He, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Fusheng road 666, Nanchang, Jiangxi, People’s Republic of China; Ph: 86 13970062508.
| | - Peng Zhang
- Department of Acupuncture, The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Fen-Fen Zhao
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Ting-Ping Liu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zhang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Fan He
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Ying Yu
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Peng Xiong
- Fourth Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Chang-Kang Wang
- Fourth Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
7
|
Avery JT, Zhang R, Boohaker RJ. GLI1: A Therapeutic Target for Cancer. Front Oncol 2021; 11:673154. [PMID: 34113570 PMCID: PMC8186314 DOI: 10.3389/fonc.2021.673154] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
GLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh) pathway and is tightly regulated during embryonic development and tissue patterning/differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain cancers, aberrant activation of GLI1 has been linked to the promotion of numerous hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1’s role in regulating cell cycle, DNA replication and DNA damage repair processes. The consequences of GLI1 oncogenic activity, specifically the activity surrounding DNA damage repair proteins, such as NBS1, and cell cycle proteins, such as CDK1, can be linked to tumorigenesis and chemoresistance. Therefore, understanding the underlying mechanisms driving GLI1 dysregulation can provide prognostic and diagnostic biomarkers to identify a patient population that would derive therapeutic benefit from either direct inhibition of GLI1 or targeted therapy towards proteins downstream of GLI1 regulation.
Collapse
Affiliation(s)
- Justin T Avery
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| | - Ruowen Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rebecca J Boohaker
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| |
Collapse
|
8
|
Iriana S, Asha K, Repak M, Sharma-Walia N. Hedgehog Signaling: Implications in Cancers and Viral Infections. Int J Mol Sci 2021; 22:1042. [PMID: 33494284 PMCID: PMC7864517 DOI: 10.3390/ijms22031042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.
Collapse
|
9
|
Wang Z, Dai T, Peng Q, Gao X, Zhong S, Gao H, Liu P, Liu X. Bioactivity of the Novel Fungicide SYP-14288 Against Plant Pathogens and the Study of its Mode of Action Based on Untargeted Metabolomics. PLANT DISEASE 2020; 104:2086-2094. [PMID: 32544002 DOI: 10.1094/pdis-01-20-0142-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant disease is a major threat to crop production, and fungicide application is one of the most effective methods to control plant disease. With emerging issues related to toxic residues and pathogen resistance, new fungicides with novel modes of action are urgently needed. SYP-14288 is a novel fungicide that could efficiently promote respiration and inhibit ATP biosynthesis in target organisms, but its bioactivity against various plant pathogens and exact mode of action are still unknown. In this study, we found that SYP-14288 is highly effective against 31 important plant pathogens belonging to a range of taxonomic groups. In addition, SYP-14288 has demonstrated excellent activity against all life stages of the important fungal plant pathogen Magnaporthe oryzae and is especially effective during the pathogen's high energy consumption stages. SYP-14288 showed good preventative control efficacy against pepper blight and rice blast in the greenhouse and field, respectively. In an untargeted metabolomics assay designed to determine the exact mode of action of SYP-14288, significant changes occurred in 25 metabolites, with the accumulation of seven fatty acid metabolites and a decrease in 18 starch and sugar metabolites (e.g., from the tricarboxylic acid cycle). This suggests that SYP-14288 is an uncoupling agent similar to 2,4-dinitrophenol, which can allow for accumulation of various fatty acids after destroying oxidative phosphorylation coupling, thereby inhibiting the growth of the phytopathogen. These results indicate that the novel uncoupler SYP-14288 is a promising agrochemical in plant disease management.
Collapse
Affiliation(s)
- Zhiwen Wang
- China Agricultural University, Beijing 100193, China
| | - Tan Dai
- China Agricultural University, Beijing 100193, China
| | - Qin Peng
- China Agricultural University, Beijing 100193, China
| | - Xiang Gao
- China Agricultural University, Beijing 100193, China
| | - Shan Zhong
- China Agricultural University, Beijing 100193, China
| | - Huige Gao
- China Agricultural University, Beijing 100193, China
| | - Pengfei Liu
- China Agricultural University, Beijing 100193, China
| | - Xili Liu
- China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712110, China
| |
Collapse
|
10
|
Qiu S, Chen G, Peng J, Liu J, Chen J, Wang J, Li L, Yang K. LncRNA EGOT decreases breast cancer cell viability and migration via inactivation of the Hedgehog pathway. FEBS Open Bio 2020; 10:817-826. [PMID: 32150666 PMCID: PMC7193175 DOI: 10.1002/2211-5463.12833] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 01/04/2023] Open
Abstract
The long noncoding RNA (lncRNA) Eosinophil Granule Ontogeny Transcript (EGOT) has been reported to inhibit the proliferation and migration of glioma cells, and promote the development and progression of gastric cancer through the Hedgehog (Hh) signaling pathway. This study was conducted to assess the role of EGOT in the progression of breast cancer. We observed that EGOT is significantly down-regulated in breast cancer tissues and cell lines, and EGOT expression is negatively correlated with the Ki67 expression. Overexpression of EGOT in BT549 cells decreased cell viability and migration. In addition, overexpression of EGOT resulted in decreases in expression of key genes in the Hh pathway, including Gli1, smoothened protein, protein patched homolog 1 and Hedgehog-interacting protein (HHIP). Breast cancer tissues exhibited an increase in Gli1 expressions. Altered expression of Gli1, smoothened protein, protein patched homolog 1 and HHIP caused by EGOT overexpression were fully restored in cells transfected with plasmid complementory DNA (pcDNA) EGOT and treated with purmorphamine, an agonist of the Hh pathway. Cell viability and migration were also restored by purmorphamine. We conclude that lncRNA EGOT may inhibit breast cancer cell viability and migration via inactivation of the Hh pathway.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Guobing Chen
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Juan Peng
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Jia Liu
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Jumin Chen
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Jianjun Wang
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Li Li
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Kunxian Yang
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| |
Collapse
|
11
|
Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta 2019; 502:15-24. [PMID: 31812758 DOI: 10.1016/j.cca.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinoic acid is a metabolite of vitamin A that is necessary to maintain health in human and most of the other vertebrates. MicroRNAs (miR or miRNAs) are small, non-coding RNA particles that diminish mRNA translation of various genes and so can regulate critical cell processes including cell death, proliferation, development, etc. The aim of this review is to study interrelations between retinoic acid with miRNAs. METHODS We reviewed and summarized all published articles in PubMed, Europe PMC, and Embase databases with any relationship between retinoic acid and miRNAs from Jun 2003 to Dec 2018 that includes 126 articles. RESULTS Results showed direct and indirect relationships between retinoic acid and miRNAs in various levels including effects of retinoic acid on expression of various miRNAs and miRNA-biogenesis enzymes, and effect of miRNAs on metabolism of retinoic acid. DISCUTION AND CONCLUSION This review indicates that retinoic acid has inter-correlations with various miRNA members and their metabolism in health and disease may require implications of the other.
Collapse
Affiliation(s)
- Reza Gholikhani-Darbroud
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
12
|
Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate. Int J Mol Sci 2019; 20:ijms20235840. [PMID: 31757091 PMCID: PMC6928971 DOI: 10.3390/ijms20235840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the “growth plate”, is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances.
Collapse
|
13
|
Ali SA, Niu B, Cheah KSE, Alman B. Unique and overlapping GLI1 and GLI2 transcriptional targets in neoplastic chondrocytes. PLoS One 2019; 14:e0211333. [PMID: 30695055 PMCID: PMC6350985 DOI: 10.1371/journal.pone.0211333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 01/11/2019] [Indexed: 01/11/2023] Open
Abstract
Excessive Hedgehog (Hh) signaling in chondrocytes is sufficient to cause formation of enchondroma-like lesions which can progress to chondrosarcoma. To elucidate potential underlying mechanisms, we identified GLI1 and GLI2 target genes in human chondrosarcoma. Using chromatin immunoprecipitation (ChIP) sequencing and microarray data, in silico analyses were conducted to identify and characterize unique and overlapping GLI1 and GLI2 binding regions in neoplastic chondrocytes. After overlaying microarray data from human chondrosarcoma, 204 upregulated and 106 downregulated genes were identified as Hh-responsive Gli binding targets. After overlaying published Gli ChIP-on-chip data from mouse, 48 genes were identified as potential direct downstream targets of Hedgehog signaling with shared GLI binding regions in evolutionarily conserved DNA elements. Among these was BMP2, pointing to potential cross-talk between TGF beta signaling and Hh signaling. Our identification of potential target genes that are unique and common to GLI1 and GLI2 in neoplastic chondrocytes contributes to elucidating potential pathways through which Hh signaling impacts cartilage tumor biology.
Collapse
Affiliation(s)
- Shabana Amanda Ali
- Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Ben Niu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kathryn S. E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Benjamin Alman
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kaushal JB, Popli P, Sankhwar P, Shukla V, Dwivedi A. Sonic hedgehog protects endometrial hyperplasial cells against oxidative stress via suppressing mitochondrial fission protein dynamin-like GTPase (Drp1). Free Radic Biol Med 2018; 129:582-599. [PMID: 30347228 DOI: 10.1016/j.freeradbiomed.2018.10.427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
Hh/Gli1 cascade as well as Gsk3β-Gli1 crosstalk play crucial role in estrogen-dependent progression of endometrial hyperplasia (EH). However, the underlying mechanisms involved in progression of disease still remain unclear. In the present study, we explored the role of Hh signaling in protection of endometrial hyperplasial cells against oxidative stress and the underlying mechanism involved therein. EH cells were found to be more resistant towards H2O2-induced oxidative stress (IC50: ~ 3×) as compared with normal endometrial cells. Estrogen (E2) pre-treatment followed by cytotoxic dose of H2O2, almost rescued the EH cells from apoptosis and caused the increased expression of downstream Shh signaling molecules i.e., Smo, Ptch and Gli1. Whereas pretreatment with cyclopamine was not able to curtail H2O2-induced effects indicating that estrogen protects these cells via activation of Shh pathway. Further, H2O2-induced ROS and lipid peroxidation alongwith decreased activities of antioxidant enzymes glutathione peroxidase and superoxide dismutase were found to be reversed in EH cells pre-exposed to E2 or rShh. The rShh suppressed H2O2-induced cell death and caused attenuation of mitochondrial apoptotic mediators and prevented disruption in mitochondrial morphology and mitochondrial membrane potential in EH cells. The functional blockage of signaling by Shh siRNA or Gli1siRNA led to significantly increased expression of mitochondrial fission protein dynamin-like GTPase (Drp1). The H2O2-treated EH cells showed diminished Gli1 and increased Drp1 expression, concurrent with reduced p-Drp1-(serine637). Whereas rShh pre-treated EH cells presented normal mitochondrial dynamics with dense, long networks of mitochondria alongwith nuclear accumulation of Gli1 and the decreased expression of Drp1. Overall, our results implicated that Shh signaling modulates antioxidant defense system and stabilizes mitochondrial dynamics by suppressing Drp1 protein which maintains survival of EH cells against oxidative stress.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Pooja Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pushplata Sankhwar
- Department of Obstetrics & Gynaecology, King George's Medical University, Lucknow 226003, U.P., India
| | - Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India.
| |
Collapse
|
15
|
Cong P, Yi C, Wang XY. Expression of Smo in pancreatic cancer CD44 +CD24 +cells and construction of a lentiviral expression vector to silence Smo. Oncol Lett 2018; 16:4855-4862. [PMID: 30250551 PMCID: PMC6144425 DOI: 10.3892/ol.2018.9315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
The present study focused on the roles of members of the Hedgehog (Hh) signaling pathway in the maintenance of malignant biological characteristics, such as tumorigenesis, similar to that of pancreatic tumor cells. Cluster of differentiation (CD)44+CD24+/CD44−CD24− cells were isolated from three different pancreatic cancer cell lines by flow cytometry. Among the three pancreatic cancer cell lines, the SW1990 cell line exhibited the highest percentage of CD44+CD24+ cells, which accounted for 39.9% of the total. The expression of members of the Hh signaling pathway in CD44+CD24+/CD44−CD24− cells was detected using reverse transcription-polymerase chain reaction and western blot analysis. The results demonstrated that members of the Hh signaling pathway were differentially expressed in CD44+CD24+ cells compared with CD44−CD24−, normal pancreatic duct cells and unsorted SW1990 cells. In addition, lentiviral expression vectors expressing Smoothened (Smo) small interfering RNA (siRNA) were constructed. Following transfection with the lentiviral expression vectors, Smo expression was markedly reduced in CD44+CD24+ cells. The present study represents a preliminary investigation into the biological characteristics of CD44+CD24+ pancreatic cancer cells.
Collapse
Affiliation(s)
- Peng Cong
- Department of Laparoscopic and Liver Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chao Yi
- Department of Hepato-Pancreato-Biliary Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Xi-Yan Wang
- Department of Hepato-Pancreato-Biliary Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
16
|
Moon JS, Kim MJ, Ko HM, Kim YJ, Jung JY, Kim JH, Kim SH, Kim MS. The role of Hedgehog signaling in cementoblast differentiation. Arch Oral Biol 2018; 90:100-107. [PMID: 29587133 DOI: 10.1016/j.archoralbio.2018.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE It has been well known that Hedgehog (Hh) signaling plays an important role in bone development, however, its function in cementogenesis has not yet been reported. This study was intended to elucidate the role of Hh signaling in cementoblast differentiation. DESIGN Expression changes of various Hh signaling components and levels of skeletogenic markers (alkaline phosphatase, osteocalcin, osteopontin) and osteogenic transcription factors (RUNX2, Osterix) by Hh signaling modulators during OCCM-30 cementoblast differentiation were determined by quantitative real-time reverse transcriptase polymerase chain reaction. To investigate effects of Hh signaling modulators on the mineralization of cementoblast, alkaline phosphatase and alizarin red S staining were used. Then, the interaction between Hh and BMP signaling during cementoblast differentiation was evaluated using co-treatment of BMP7 and Hh signaling modulators. RESULTS We observed the consistent expression of Hh signaling molecules in the OCCM-30, which were up-regulated during cementoblast differentiation. We also found that the treatment of cells with Purmo, an Hh activator, enhanced cementoblast differentiation by increasing the mRNA expression of skeletogenic markers and osteogenic transcription factors, as well as increasing alkaline phosphate activity and mineralization capability. On the contrary, an Hh antagonist, like Cyclo, effectively inhibited cementoblast differentiation. Furthermore, BMP7 promoted cementoblast differentiation through crosstalk with the Hh signaling. CONCLUSION These results suggest that Hh signaling is involved in cementoblast differentiation, and Hh signaling molecules may therefore represent new therapeutic targets in periodontal treatment and regeneration.
Collapse
Affiliation(s)
- Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Ju Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun-Mi Ko
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Jun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Hyung Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
17
|
Mastrangelo E, Milani M. Role and inhibition of GLI1 protein in cancer. LUNG CANCER-TARGETS AND THERAPY 2018; 9:35-43. [PMID: 29628779 PMCID: PMC5877502 DOI: 10.2147/lctt.s124483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GLI1 is a transcriptional regulator involved in the development of different types of cancer. GLI1 transcriptional activity is regulated within the Hedgehog pathway (canonical activity), but can also be controlled independently (non-canonical activity) in the context of other signaling pathways. Experimental evidences show GLI1 involvement in both small- and non–small-cell lung cancers. Direct inhibition of the protein, in combination with other chemotherapeutic agents, represents a promising strategy for the treatment of different malignancies.
Collapse
Affiliation(s)
- Eloise Mastrangelo
- CNR - Biophysics Institute, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Mario Milani
- CNR - Biophysics Institute, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
18
|
Amantini C, Morelli MB, Nabissi M, Cardinali C, Santoni M, Gismondi A, Santoni G. Capsaicin triggers autophagic cell survival which drives epithelial mesenchymal transition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner. Oncotarget 2018; 7:50180-50194. [PMID: 27367032 PMCID: PMC5226576 DOI: 10.18632/oncotarget.10326] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer (BC) is a common urologic tumor characterized by high risk of recurrence and mortality. Capsaicin (CPS), used as an intravesical drug for overactive bladder, was demonstrated to induce cell death in different cancer cells including BC cells. Here we found that treatment of high-grade BC cells with high dose of CPS triggers autophagy. Infact, the CPS treatment alters the redox homeostasis by inducing production of radicals, mitochondrial depolarization, alterations of ADP/ATP ratio and activation of AMPK pathway stimulating the autophagic process in BC cells. The inhibition of autophagy, by using the specific inhibitor bafilomycin A or Beclin 1 knock-down, enhanced the CPS-induced cell death, demonstrating that CPS-induced autophagy acts as a pro-survival process in BC cells. By using PCR arrays and FACS analysis, we found that the CPS-treated BC cells displayed typical mesenchymal features of the epithelial mesenchymal transition (EMT) as elongated shape and over-expression of vimentin, α5 and β1 integrin subunits, integrin-like kinase and the anti-apoptotic Bcl-2 proteins. Moreover, we demonstrated that CPS treatment stimulates upregulation of Dhh/Ptch2/Zeb2 members of the Hedgehog signaling pathway, increases CD24, VEGFA and TIMP1 and decreases CD44 and ALCAM mRNA expression levels. By PTCH2 knock-down we found that the Hedgehog signaling pathway is involved in the CPS-induced autophagy and EMT phenotype. Finally, we also showed that the CPS-resistant EMT-positive BC cells displayed an increased drug-resistance to the cytotoxic effects of mitomycin C, gemcitabine and doxorubicine drugs commonly used in BC therapy.
Collapse
Affiliation(s)
- Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Claudio Cardinali
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Matteo Santoni
- Department of Medical Oncology, Polytechnic University of Marche, Ancona, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
19
|
Thomas JL, Morgan GW, Dolinski KM, Thummel R. Characterization of the pleiotropic roles of Sonic Hedgehog during retinal regeneration in adult zebrafish. Exp Eye Res 2018; 166:106-115. [PMID: 29030175 PMCID: PMC5756498 DOI: 10.1016/j.exer.2017.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 08/25/2017] [Accepted: 10/08/2017] [Indexed: 01/12/2023]
Abstract
In contrast to the mammalian retina, the zebrafish retina possesses the ability to regenerate. This is primarily accomplished through Müller glial cells, which, upon damage, re-enter the cell cycle to form retinal progenitors. The progenitors continue to proliferate as they migrate to the area of damage and ultimately differentiate into new neurons. The purpose of this study was to characterize the expression and function of Sonic Hedgehog (Shh) during regeneration of the adult zebrafish retina. Expression profiling of Shh pathway genes showed a significant upregulation of expression associated with stages of progenitor proliferation and neuronal differentiation. Activation of Shh signaling during early stages of retinal regeneration using intraocular injections of the recombinant human SHH (SHH-N) resulted in increased Müller cell gliosis, proliferation, and neuroprotection of damaged retinal neurons. Continued activation of Shh resulted in a greater number of differentiated amacrine and ganglion cells in the fully regenerated retina. Conversely, inhibition of Shh signaling using intraocular injections of cyclopamine resulted in decreased Müller glial cell proliferation and a fewer number of regenerated amacrine and ganglion cells. These data suggest that Shh signaling plays pleiotropic roles in proliferation and differentiation during adult zebrafish retinal regeneration.
Collapse
Affiliation(s)
- Jennifer L Thomas
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | - Gregory W Morgan
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | - Kaylee M Dolinski
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | - Ryan Thummel
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA; Department of Ophthalmology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| |
Collapse
|
20
|
Wang XF, Shen Y, Cheng Q, Fu CL, Zhou ZZ, Hirose S, Liu QX. Apontic directly activates hedgehog and cyclin E for proper organ growth and patterning. Sci Rep 2017; 7:12470. [PMID: 28963499 PMCID: PMC5622130 DOI: 10.1038/s41598-017-12766-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/14/2017] [Indexed: 11/09/2022] Open
Abstract
Hedgehog (Hh) signaling pathway and Cyclin E are key players in cell proliferation and organ development. Hyperactivation of hh and cyclin E has been linked to several types of cancer. However, coordination of the expression of hh and cyclin E was not well understood. Here we show that an evolutionarily conserved transcription factor Apontic (Apt) directly activates hh and cyclin E through its binding site in the promoter regions of hh and cyclin E. This Apt-dependent proper expression of hh and cyclin E is required for cell proliferation and development of the Drosophila wing. Furthermore, Fibrinogen silencer-binding protein (FSBP), a mammalian homolog of Apt, also positively regulates Sonic hh (Shh), Desert hh (Dhh), Cyclin E1 (CCNE1) and Cyclin E2 (CCNE2) in cultured human cells, suggesting evolutionary conservation of the mechanism. Apt-mediated expression of hh and cyclin E can direct proliferation of Hh-expressing cells and simultaneous growth, patterning and differentiation of Hh-recipient cells. The discovery of the simultaneous expression of Hh and principal cell-cycle regulator Cyclin E by Apt implicates insight into the mechanism by which deregulated hh and cyclin E promotes tumor formation.
Collapse
Affiliation(s)
- Xian-Feng Wang
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yang Shen
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qian Cheng
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong-Lei Fu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zi-Zhang Zhou
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
| | - Qing-Xin Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
21
|
Armas-López L, Zúñiga J, Arrieta O, Ávila-Moreno F. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget 2017; 8:60684-60703. [PMID: 28948003 PMCID: PMC5601171 DOI: 10.18632/oncotarget.19527] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation and epigenetic mechanisms closely control gene expression through diverse physiological and pathophysiological processes. These include the development of germ layers and post-natal epithelial cell-tissue differentiation, as well as, involved with the induction, promotion and/or progression of human malignancies. Diverse studies have shed light on the molecular similarities and differences involved in the stages of embryological epithelial development and dedifferentiation processes in malignant tumors of epithelial origin, of which many focus on lung carcinomas. In lung cancer, several transcriptional, epigenetic and genetic aberrations have been described to partly arise from environmental risk factors, but ethnic genetic predisposition factors may also play a role. The classification of the molecular hallmarks of cancer has been essential to study and achieve a comprehensive view of the interaction networks between cell signaling pathways and functional roles of the transcriptional and epigenetic regulatory mechanisms. This has in turn increased understanding on how these molecular networks are involved in embryo-layers and malignant diseases development. Ultimately, a major biomedicine goal is to achieve a thorough understanding of their roles as diagnostic, prognostic and treatment response indicators in lung oncological patients. Recently, several notable cell-signaling pathways have been studied based on their contribution to promoting and/or regulating the engagement of different cancer hallmarks, among them genome instability, exacerbated proliferative signaling, replicative immortality, tumor invasion-metastasis, inflammation, and immune-surveillance evasion mechanisms. Of these, the Hedgehog-GLI (Hh) cell-signaling pathway has been identified as a main molecular contribution into several of the abovementioned functional embryo-malignancy processes. Nonetheless, the systematic study of the regulatory epigenetic and transcriptional mechanisms has remained mostly unexplored, which could identify the interaction networks between specific biomarkers and/or new therapeutic targets in malignant tumor progression and resistance to lung oncologic therapy. In the present work, we aimed to revise the most important up-to-date experimental and clinical findings in biology, embryology and cancer research regarding the Hh pathway. We explore the potential control of the transcriptional-epigenetic programming versus reprogramming mechanisms associated with its Hh-GLI cell signaling pathway members. Last, we present a summary of this information to systematically integrate the Hh signaling pathway to identify and propose novel compound strategies or better oncological therapeutic schemes for lung cancer patients.
Collapse
Affiliation(s)
- Leonel Armas-López
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| | - Oscar Arrieta
- Instituto Nacional de Cancerología (INCAN), Thoracic Oncology Clinic, Mexico City, México
| | - Federico Ávila-Moreno
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| |
Collapse
|
22
|
Salehi H, Amirpour N, Niapour A, Razavi S. An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Rev Rep 2016; 12:26-41. [PMID: 26490462 DOI: 10.1007/s12015-015-9631-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.
Collapse
|
23
|
Abstract
Indian hedgehog (Ihh) is a critical mediator transducing mechanical signals to stimulate chondrocyte proliferation. To clarify the cellular signal transduction pathway that senses and converts mechanical signals into tissue growth in mandibular condyle, we evaluated Ihh expression and its relation to the kinetics of replicating mesenchymal cells in condylar cartilage during natural growth and mandibular advancement. Thirty-five-day-old Sprague-Dawley rats were fitted with functional appliances. Experimental animals with matched controls were doubly labeled with iododeoxyuridine and bromodeoxyuridine so that we could evaluate the cycles of the proliferative mesenchymal cells. Mandibular advancement triggered Ihh expression in condylar cartilage. A higher level of Ihh expression coincided with the increase of the replicating mesenchymal cells’ population and the shortening of the turnover time. These findings suggested that Ihh acts as a mediator of mechanotransduction that converts mechanical signals resulting from anterior mandibular displacement to stimulate cellular proliferation in condylar cartilage.
Collapse
Affiliation(s)
- G H Tang
- Hard Tissue Biology and Repair Research Group and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong SAR, China
| | | | | |
Collapse
|
24
|
Martin TJ. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases. Physiol Rev 2016; 96:831-71. [DOI: 10.1152/physrev.00031.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects.
Collapse
Affiliation(s)
- T. John Martin
- St Vincent's Institute of Medical Research, Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
25
|
Chen X, Fu J, Wang A. Expression of genes involved in progesterone receptor paracrine signaling and their effect on litter size in pigs. J Anim Sci Biotechnol 2016; 7:31. [PMID: 27231548 PMCID: PMC4881214 DOI: 10.1186/s40104-016-0090-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
Background Embryonic mortality during the period of implantation strongly affects litter size in pigs. Progesterone receptor (PGR) paracrine signaling has been recognized to play a significant role in embryonic implantation. IHH, NR2F2, BMP2, FKBP4 and HAND2 were proved to involve in PGR paracrine signaling. The objective of this study was to evaluate the expression of IHH, NR2F2, BMP2, FKBP4 and HAND2 in endometrium of pregnant sows and to further investigate these genes’ effect on litter size in pigs. Real-time PCR, western blot and immunostaining were used to study target genes/proteins expression in endometrium in pigs. RFLP-PCR was used to detect single nucleotide polymorphisms (SNPs) of target genes. Results The results showed that the mRNA and protein expression levels of IHH, NR2F2 and BMP2 were up-regulated during implantation period (P < 0.05 or P < 0.01). All target proteins were mainly observed in luminal epithelium and glandular epithelium. Interestingly, the staining of NR2F2 and HAND2 was also strong in stroma. SNPs detection revealed that there was a -204C > A mutation in promoter region of NR2F2 gene. Three genotypes were found in Large White, Landrace and Duroc sows. A total of 1847 litter records from 625 sows genotyped at NR2F2 gene were used to analyze the total number born (TNB) and number born alive (NBA). The study of the effect on litter size suggested that sows with genotype CC tend to have higher litter size. Conclusions These results showed the expression patterns of genes/proteins involved in PGR paracrine signaling over implantation time. And the candidate gene for litter size was identified from genes involved in this signaling. This study could be a resource for further studies to identify the roles of these genes for embryonic implantation in pigs. Electronic supplementary material The online version of this article (doi:10.1186/s40104-016-0090-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Chen
- College of Animal Sciences and Technology, National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing, 100193 People's Republic of China ; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093 People's Republic of China
| | - Jinluan Fu
- College of Animal Sciences and Technology, National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Aiguo Wang
- College of Animal Sciences and Technology, National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
26
|
Bhurke AS, Bagchi IC, Bagchi MK. Progesterone-Regulated Endometrial Factors Controlling Implantation. Am J Reprod Immunol 2016; 75:237-45. [PMID: 26804062 DOI: 10.1111/aji.12473] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/05/2015] [Indexed: 12/11/2022] Open
Abstract
The steroid hormone progesterone (P), acting via the progesterone receptor (PR) isoforms, PR-A and PR-B, exerts a profound influence on uterine functions during early gestation. In recent years, chromatin immunoprecipitation-sequencing in combination with microarray-based gene expression profiling analyses have revealed that the PR isoforms control a substantially large cistrome and transcriptome during endometrial differentiation in the human and the mouse. Genetically engineered mouse models have established that several PR-regulated genes, such as Ihh, Bmp2, Hoxa10, and Hand2, are essential for implantation and decidualization. PR-A and PR-B also collaborate with other transcription factors, such as FOS, JUN, C/EBPβ and STAT3, to regulate the expression of many target genes that functions in concert to properly control uterine epithelial proliferation, stromal differentiation, angiogenesis, and local immune response to render the uterus 'receptive' and allow embryo implantation. This review article highlights recent work describing the key PR-regulated pathways that govern critical uterine functions during establishment of pregnancy.
Collapse
Affiliation(s)
- Arpita S Bhurke
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Zhou ZG, Zhang CY, Fei HX, Zhong LL, Bai Y. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway. Pharmacogn Mag 2015; 11:690-7. [PMID: 26600712 PMCID: PMC4621636 DOI: 10.4103/0973-1296.165548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: The Hedgehog (Hh) signaling pathway plays an important role in pancreatic cancer (PC) cells. Phenolic alkaloids from Menispermum dauricum (PAMD), a traditional Chinese medicine used for the treatment of immune disorders, have been reported to have antitumor activity recently. Objective: To investigate the efficacy and mechanism of PAMD against PC cell BxPC-3. Materials and Methods: F assay was used to assess cell proliferation inhibition of PAMD; the apoptotic induction and cell cycle arrest was detected by flow cytometry; the BxPC-3 xenograft was established to evaluate the tumor growth inhibition of PAMD; hematoxylin-eosin staining was applied to analyze the pathological morphology of tumor tissues; immunohistochemistry (IHC) and Western blot was adopted to detect the protein levels; quantitative real-time polymerase chain reaction was used to determine the mRNA expressions. Results: PAMD shows time-and dose-dependent proliferation inhibition on the BxPC-3 cell, induced G0/G1 phase arrest and cell apoptosis in vitro. PAMD also showed better inhibition of tumor growth and a preferable safety profile compared with chemotherapeutic regimen 5-fluoro-2, 4 (1 H, 3 H) pyrimidinedione in BxPC-3 xenograft in vivo. Furthermore, PAMD directly decreases the protein and mRNA levels of Sonic Hedgehog (Shh) and its downstream transcription factor Gli-1 in the BxPC-3 tumor tissues. Conclusion: The treatment of PAMD displayed Hh signaling pathway blockade through decreasing the protein and mRNA levels of Shh and its downstream transcription factor Gli-1, suggesting a promising strategy in treating human PC.
Collapse
Affiliation(s)
- Zhong-Guang Zhou
- Research Institute of Traditional Chinese Medicine, Heilongjiang, China
| | - Chao-Ying Zhang
- The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Hong-Xin Fei
- Research Institute of Traditional Chinese Medicine, Heilongjiang, China ; Department of Qiqihar Medical University, Basic Medicine, Heilongjiang, China
| | - Li-Li Zhong
- Department of Pathology, The First Affiliated Hospital, Heilongjiang, China
| | - Yun Bai
- Basic Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| |
Collapse
|
28
|
Yimamumaimaitijiang•Abula, Li DW, Yi C, Li HJ. Functional significance of expression of Hedgehog pathway components Shh, Ptch1, Smo and Gli1 in human pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:2894-2900. [DOI: 10.11569/wcjd.v23.i18.2894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of Hedgehog pathway components Sonic Hedgehog (Shh), Patched1 (Ptch1), Smoothened (Smo) and glioma-associated oncogene homolog 1 (Gli1) genes in pancreatic cancer, and to discuss their biological significance.
METHODS: Expression of Shh, Ptch1, Smo and Gli1 mRNAs was evaluated by RT-PCR in 48 cases of pancreatic cancer and matched tumor adjacent tissue.
RESULTS: The relative expression levels of Shh, Ptch1, Smo and Gli1 mRNAs in pancreatic cancer were 0.652 ± 0.036, 0.604 ± 0.063, 0.493 ± 0.011 and 0.512 ± 0.052, respectively, significantly higher than those in tumor adjacent tissue (0.312 ± 0.013, 0.319 ± 0.053, 0.214 ± 0.046 and 0.247 ± 0.059) (P < 0.05). Overexpression of these genes was associated with tumor differentiation (P < 0.05), but not with age, gender, tumorous size, TNM stage, lymph node metastasis, or CA19-9 (P > 0.05).
CONCLUSION: The expression of Shh, Ptch1, Smo and Gli1 is increased in human pancreatic cancer. The genesis and development of pancreatic cancer may be associated with the abnormal activation of Hedgehog signaling pathway.
Collapse
|
29
|
Hantak AM, Bagchi IC, Bagchi MK. Role of uterine stromal-epithelial crosstalk in embryo implantation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:139-46. [PMID: 25023679 DOI: 10.1387/ijdb.130348mb] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embryo implantation is a crucial step for successful pregnancy. Prior to implantation, the luminal epithelium undergoes steroid hormone-induced structural and functional changes that render it competent for embryo attachment. Subsequent invasion of the embryo into the maternal tissue triggers differentiation of the underlying stromal cells to form the decidua, a transient tissue which supports the developing embryo. Many molecular cues of both stromal and epithelial origin have been identified that are critical mediators of this process. An important aspect of uterine biology is the elaborate crosstalk that occurs between these tissue compartments during early pregnancy through expression of paracrine factors regulated by the steroid hormones estrogen and progesterone. Aberrant expression of these factors often leads to implantation failure and infertility. Genetically-engineered mouse models have been instrumental in elucidating what these paracrine factors are, what drives their expression, and what their effects are on neighboring cells. This review provides an overview of several well-characterized signaling pathways that span both epithelial and stromal compartments and their function during implantation in the mouse.
Collapse
Affiliation(s)
- Alison M Hantak
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
30
|
Jahan E, Matsumoto A, Rafiq AM, Hashimoto R, Inoue T, Udagawa J, Sekine J, Otani H. Fetal jaw movement affects Ihh signaling in mandibular condylar cartilage development: the possible role of Ihh as mechanotransduction mediator. Arch Oral Biol 2014; 59:1108-18. [PMID: 25033382 DOI: 10.1016/j.archoralbio.2014.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 06/12/2014] [Accepted: 06/22/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Jaw movement is an important mechanical factor for prenatal development of the condylar cartilage of mandible. Fetal jaw movement restriction has been shown to cause deformity of the mandibular condyle. We hypothesized that this treatment affects the expression of mechanosensitive molecules, namely Indian hedgehog (Ihh) and Parathyroid hormone related protein (PTHrP) in the condyle. EXPERIMENTAL METHODS We restrained jaw movement by suturing the jaw of E15.5 mouse embryos and allowed them to develop until E18.5 using exo utero system, and analyzed them by immunohistochemistry and in situ hybridization methods. RESULTS Morphological, histomorphometric and immunohistochemical study showed that the mandibular condylar cartilage was reduced and deformed, the volume and total cell numbers in the condylar cartilage were also reduced, and number and/or distribution of 5-bromo-2'-deoxyuridine-positive cells, Ihh-positive cells in the mesenchymal and pre-hypertrophic zones were significantly and correspondingly decreased in the sutured group. Using in situ hybridization, reduced expression of Ihh, PTHrP and their related receptors were observed in condylar cartilage of the sutured embryos. CONCLUSIONS Our results revealed that the altered mechanical stress induced by prenatal jaw movement restriction decreased proliferating cells, the amount of cartilage, and altered expression of the Ihh and PTHrP, suggesting that Ihh act as mechanotransduction mediators in the development of mandibular condylar cartilage.
Collapse
Affiliation(s)
- Esrat Jahan
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Ashiq Mahmood Rafiq
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Ryuju Hashimoto
- Department of Clinical Nursing, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Takayuki Inoue
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Joji Sekine
- Department of Oral & Maxillofacial Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
31
|
Evolutionarily conserved transcription factor Apontic controls the G1/S progression by inducing cyclin E during eye development. Proc Natl Acad Sci U S A 2014; 111:9497-502. [PMID: 24979795 DOI: 10.1073/pnas.1407145111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During Drosophila eye development, differentiation initiates in the posterior region of the eye disk and progresses anteriorly as a wave marked by the morphogenetic furrow (MF), which demarcates the boundary between anterior undifferentiated cells and posterior differentiated photoreceptors. However, the mechanism underlying the regulation of gene expression immediately before the onset of differentiation remains unclear. Here, we show that Apontic (Apt), which is an evolutionarily conserved transcription factor, is expressed in the differentiating cells posterior to the MF. Moreover, it directly induces the expression of cyclin E and is also required for the G1-to-S phase transition, which is known to be essential for the initiation of cell differentiation at the MF. These observations identify a pathway crucial for eye development, governed by a mechanism in which Cyclin E promotes the G1-to-S phase transition when regulated by Apt.
Collapse
|
32
|
Xu Y, An Y, Wang X, Zha W, Li X. Inhibition of the Hedgehog pathway induces autophagy in pancreatic ductal adenocarcinoma cells. Oncol Rep 2013; 31:707-12. [PMID: 24297612 DOI: 10.3892/or.2013.2881] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/04/2013] [Indexed: 11/06/2022] Open
Abstract
The HH signaling pathway is a 'core' signal transduction pathway in pancreatic cancer that promotes the tumorigenesis of pancreatic cancers via enhancing cell proliferation, increasing invasion and metastasis and protecting against apoptosis. In the present study, we found that HH signaling regulates autophagy in pancreatic cancer cells. Activation of HH signaling inhibits autophagy, while inhibition of the HH pathway induces autophagy. Although the role of autophagy in cell survival and apoptosis may depend on tumor type and the microenvironment, our data clearly demonstrated that GANT61-induced autophagy contributed to reduced viability and increased apoptosis in pancreatic cancer cells both in vivo and in vitro, and these effects were reversed by the autophagy inhibitor, 3-MA. We propose that HH signaling by regulating autophagy plays an important role in determining the cellular response to HH-targeted therapy in pancreatic cancer and further investigation of the interaction between autophagy and HH signaling is particularly important.
Collapse
Affiliation(s)
- Yonghua Xu
- Department of General Surgery, Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R. China
| | - Yong An
- Hepatobiliary Surgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, P.R. China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wenzhang Zha
- Department of General Surgery, Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R. China
| | - Xiangcheng Li
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
33
|
Nagaraja P, Parashivamurthy K, Sidnal N, Mali S, Nagaraja D, Reddy S. Analysis of gene expression on ngn3 gene signaling pathway in endocrine pancreatic cancer. Bioinformation 2013; 9:739-47. [PMID: 23976832 PMCID: PMC3746099 DOI: 10.6026/97320630009739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 07/20/2013] [Accepted: 07/20/2013] [Indexed: 11/23/2022] Open
Abstract
In order to define the undifferentiated transcriptional factors present in neurogenesis of pancreatic β-islet cells, we studied the effect of Pdx1 in embryonic stem cell derived endocrine lineage. There are undifferentiated transcriptional progenitors Pdx1+/Ptf1a+/Cpa1+ tracking the growth of acini, ducts, α and β-islet cells. The upregulated transcriptional factors Pdx1 and ngn3 specify consequences of cell cycle regulation in early gut endocrine cells. The undifferentiated transcriptional factors basic helix loop helix (bHLH) protein regulate Ptf1a+/Cpa1+ in acini, ducts and it also regulate ngn3 to decrease expression of insulin and other pancreas secretions. The Pdx1+ and other unknown gene mutations show abnormal growth of neurogenesis in endocrine lineages. Using microarray based gene expression analysis to determine undifferential gene ontology in tissue specific gene regulation and disease progression that common in both metabolic and biological signaling pathways. The data expression profiles of ngn3 of wild- type pancreatic islet and islet derived tumor stem cells provide information on endocrine specific ngn3 genes. Therefore, 3755 genes were significantly regulated by Ngn3 induced pancreatic islet cell development. Moreover 317 upregulated and 175 downregulated, 757 genes deemed as undifferential expressions in endocrine cell. Furthermore to predict signaling pathways that associates with diabetes is highlighted.
Collapse
Affiliation(s)
| | - Kavya Parashivamurthy
- Department of Biotechnology, KLE Dr.M.S. Sheshagiri College of Engineering and Technology, Belgaum-590008
| | - Nandini Sidnal
- Department of Biotechnology, KLE Dr.M.S. Sheshagiri College of Engineering and Technology, Belgaum-590008
| | - Siddappa Mali
- Department of Biotechnology, KLE Dr.M.S. Sheshagiri College of Engineering and Technology, Belgaum-590008
| | | | - Sivarami Reddy
- Department of Biotechnology, Scientific Bio-Minds, Bangalore-560092
| |
Collapse
|
34
|
Barber BA, Liyanage VRB, Zachariah RM, Olson CO, Bailey MAG, Rastegar M. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann Anat 2013; 195:431-40. [PMID: 23756022 DOI: 10.1016/j.aanat.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Central nervous system development is controlled by highly conserved homeoprotein transcription factors including HOX and TALE (Three Amino acid Loop Extension). TALE proteins are primarily known as HOX-cofactors and play key roles in cell proliferation, differentiation and organogenesis. MEIS1 is a TALE member with established expression in the developing central nervous system. MEIS1 is essential for embryonic development and Meis1 knockout mice dies at embryonic day (E) 14.5. However, Meis1/MEIS1 expression in the devolving forebrain, at this critical time-point has not been studied. Here, for the first time we characterize the region-specific expression of MEIS1 in E14.5 mouse forebrain, filling the gap of MEIS1 expression profile between E12.5 and E16.5. Previously, we reported MEIS1 transcriptional regulatory role in neuronal differentiation and established forebrain-derived neural stem cells (NSC) for gene therapy application of neuronal genes. Here, we show the dynamic expression of Meis1/MEIS1 during the differentiation of forebrain-derived NSC toward a glial lineage. Our results show that Meis1/MEIS1 expression is induced during NSC differentiation and is expressed in both differentiated neurons and astrocytes. Confirming these results, we detected MEIS1 expression in primary cultures of in vivo differentiated cortical neurons and astrocytes. We further demonstrate Meis1/MEIS1 expression relative to other TALE family members in the forebrain-derived NSC in the absence of Hox genes. Our data provide evidence that forebrain-derived NSC can be used as an accessible in vitro model to study the expression and function of TALE proteins, supporting their potential role in modulating NSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Benjamin A Barber
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Wu X, Cai ZD, Lou LM, Chen ZR. The effects of inhibiting hedgehog signaling pathways by using specific antagonist cyclopamine on the chondrogenic differentiation of mesenchymal stem cells. Int J Mol Sci 2013; 14:5966-77. [PMID: 23493060 PMCID: PMC3634433 DOI: 10.3390/ijms14035966] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the effects of cyclopamine, a specific inhibitor of Hedgehog signaling pathways, on the chondrogenic differentiation of mesenchymal stem cells (MSCs). During culture, the experimental groups were treated with cyclopamine and their cell proliferation status was assessed using the MTT test. The extra-bone cellular matrix (ECM) and Collagen II (Col II) was detected by toluidine blue staining and immunohistochemistry of cells. The concentrations of Col II and aggrecan in the culture solution and cytosol were detected using ELISA on the 7th, 14th, and 21st days of cyclopamine induction. Gene and protein expression of Col II and aggrecan were analyzed on the 14th day of cyclopamine induction using real-time PCR and western blot analyses. No significant differences in proliferation of mesenchymal stem cells were found between the control group and the group treated with cyclopamine. Compared to the blank control group, the ECM level was low and the protein and mRNA concentrations of Collagen II (Col II) and aggrecan in the culture solution and cytosol, respectively, were significantly reduced in the experimental group. The Smo acted as a key point in the regulations of Hedgehog signaling pathway on the chondrogenic differentiation of rabbit MSCs.
Collapse
Affiliation(s)
- Xing Wu
- Department of Orthopaedics, Shanghai tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; E-Mails: (Z.-D.C.); (L.-M.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-21-6630-0588; Fax: +86-21-6630-1051
| | - Zheng-Dong Cai
- Department of Orthopaedics, Shanghai tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; E-Mails: (Z.-D.C.); (L.-M.L.)
| | - Lei-Ming Lou
- Department of Orthopaedics, Shanghai tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; E-Mails: (Z.-D.C.); (L.-M.L.)
| | - Zheng-Rong Chen
- Department of Orthopaedics, Shanghai Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200032, China; E-Mail:
| |
Collapse
|
36
|
An Y, Cai B, Chen J, Lv N, Yao J, Xue X, Tu M, Tang D, Wei J, Jiang K, Wu J, Li Q, Gao W, Miao Y. MAP3K10 promotes the proliferation and decreases the sensitivity of pancreatic cancer cells to gemcitabine by upregulating Gli-1 and Gli-2. Cancer Lett 2013. [PMID: 23178452 DOI: 10.1016/j.canlet.2012.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal human malignancies and is regulated by Sonic Hedgehog (Shh) signaling. Recently, MAP3K10 has been shown to regulate Shh signaling, suggesting a role for MAP3K10 in the tumorigenesis of PDAC. We determined the expression status of MAP3K10 in PDAC tissues and cell lines, and analyzed the viability and cell proliferation of PDAC cells with an overexpression or knockdown of MAP3K10 in vitro. MAP3K10 was upregulated in PDAC tissues and cell lines. Overexpression of MAP3K10 promoted the proliferation and decreased the gemcitabine sensitivity of pancreatic cancer cells. In contrast, knockdown of MAP3K10 significantly decreased cell proliferation and sensitized cells to gemcitabine. However, neither overexpression nor knockdown of MAP3K10 affected cell migration. Moreover, overexpression of MAP3K10 resulted in upregulation of Gli-1 and Gli-2 in PDAC cells. Our results indicate a novel and important role for MAP3K10 in the proliferation and chemoresistance of PDAC. Our study suggests that targeting MAP3K10 is a potential strategy for the development of alternative therapies for pancreatic cancers.
Collapse
Affiliation(s)
- Yong An
- Laboratory of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc. PLoS One 2012; 7:e35944. [PMID: 22558278 PMCID: PMC3338762 DOI: 10.1371/journal.pone.0035944] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/23/2012] [Indexed: 01/21/2023] Open
Abstract
Intervertebral discs (IVD) are essential components of the vertebral column. They maintain separation, and provide shock absorbing buffers, between adjacent vertebrae, while also allowing movements between them. Each IVD consists of a central semi-liquid nucleus pulposus (NP) surrounded by a multi-layered fibrocartilagenous annulus fibrosus (AF). Although the IVDs grow and differentiate after birth along with the vertebral column, little is known about the mechanism of this. Understanding the signals that control normal IVD growth and differentiation would also provide potential therapies for degenerative disc disease, which is the major cause of lower back pain and affects a large proportion of the population. In this work, we show that during postnatal growth of the mouse, Sonic hedgehog (Shh) signaling from the NP cells controls many aspects of growth and differentiation of both the NP cells themselves and of the surrounding AF, and that it acts, at least partly, by regulating other signaling pathways in the NP and AF. Recent studies have shown that the NP cells arise from the embryonic notochord, which acts as a major signaling center in the embryo. This work shows that this notochord-derived tissue continues to carry out a major signaling function in the postnatal body and that the IVDs are signaling centers, in addition to their already known functions in the mechanics of vertebral column function.
Collapse
|
38
|
Pignot G, Vieillefond A, Vacher S, Zerbib M, Debre B, Lidereau R, Amsellem-Ouazana D, Bieche I. Hedgehog pathway activation in human transitional cell carcinoma of the bladder. Br J Cancer 2012; 106:1177-86. [PMID: 22361633 PMCID: PMC3304423 DOI: 10.1038/bjc.2012.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/27/2012] [Accepted: 02/03/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Hedgehog (Hh) signalling pathway functions as an organiser in embryonic development. Recent studies have shown constitutive activation of this pathway in various malignancies, but its role in bladder cancer remains poorly studied. METHODS Expression levels of 31 genes and 9 microRNAs (miRNAs) involved in the Hh pathway were determined by quantitative real-time RT-PCR in 71 bladder tumour samples (21 muscle-invasive (MIBC) and 50 non-muscle-invasive (NMIBC) bladder cancers), as well as in 6 bladder cancer cell lines. RESULTS The SHH ligand gene and Gli-inducible target genes (FOXM1, IGF2, OSF2, H19, and SPP1) were overexpressed in tumour samples as compared with normal bladder tissue. SHH overexpression was found in 96% of NMIBC and 52% of MIBC samples, as well as in two bladder cancer cell lines. Altered expression of miRNAs supported their oncogene or tumour-suppressor gene status. In univariate analysis, high expression levels of PTCH2, miRNA-92A, miRNA-19A, and miRNA-20A were associated with poorer overall survival in MIBC (P=0.02, P=0.012, P=0.047, and P=0.036, respectively). CONCLUSION We observed constitutive activation of the Hh pathway in most NMIBC and about 50% of MIBC. We also found that some protein-coding genes and miRNAs involved in the Hh pathway may have prognostic value at the individual level.
Collapse
Affiliation(s)
- G Pignot
- Department of Urology, Service d'Urologie, Université Paris Descartes, Sorbonne Paris Cité, 27 rue du Faubourg Saint Jaques, Paris F-75014, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Galluccio G, Castellano M, La Monaca C. Genetic basis of non-syndromic anomalies of human tooth number. Arch Oral Biol 2012; 57:918-30. [PMID: 22325622 DOI: 10.1016/j.archoralbio.2012.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/25/2022]
Abstract
Teeth organogenesis develops through a well-ordered series of inductive events involving genes and BMP, FGF, SHH and WNT represent the main signalling pathways that regulate epithelial-mesenchymal interactions. Moreover, progress in genetics and molecular biology indicates that more than 300 genes are involved in different phases of teeth development. Mutations in genes involved in odontogenesis are responsible for many dental anomalies, including a number of dental anomalies that can be associated with other systemic skeletal or organic manifestations (syndromic dental anomalies) or not (non-syndromic dental anomalies). The knowledge of the genetic development mechanisms of the latter is of major interest. Understanding the mechanisms of pathogenesis of non-syndromic teeth anomalies would also clarify the role of teeth in craniofacial development, and this would represent an important contribution to the diagnosis, treatment and prognosis of congenital malformations, and the eventual association to other severe diseases. Future research in this area is likely to lead to the development of tests for doctors to formulate an early diagnosis of these anomalies.
Collapse
Affiliation(s)
- Gabriella Galluccio
- Sapienza University of Rome, Department of Oral Medicine, Course of Dentistry Degree, Courses of Orthognatodontics 2 and Clinical Gnatology 2, Italy.
| | | | | |
Collapse
|
40
|
Abstract
The Hedgehog (Hh) pathway is a major regulator of many fundamental processes in vertebrate embryonic development including stem cell maintenance, cell differentiation, tissue polarity and cell proliferation. Constitutive activation of the Hh pathway leading to tumorigenesis is seen in basal cell carcinomas and medulloblastoma. A variety of other human cancers, including brain, gastrointestinal, lung, breast and prostate cancers, also demonstrate inappropriate activation of this pathway. Paracrine Hh signaling from the tumor to the surrounding stroma was recently shown to promote tumorigenesis. This pathway has also been shown to regulate proliferation of cancer stem cells and to increase tumor invasiveness. Targeted inhibition of Hh signaling may be effective in the treatment and prevention of many types of human cancers. The discovery and synthesis of specific Hh pathway inhibitors have significant clinical implications in novel cancer therapeutics. Several synthetic Hh antagonists are now available, several of which are undergoing clinical evaluation. The orally available compound, GDC-0449, is the farthest along in clinical development. Initial clinical trials in basal cell carcinoma and treatment of select patients with medulloblastoma have shown good efficacy and safety. We review the molecular basis of Hh signaling, the current understanding of pathway activation in different types of human cancers and we discuss the clinical development of Hh pathway inhibitors in human cancer therapy.
Collapse
Affiliation(s)
- Sachin Gupta
- Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | | | | |
Collapse
|
41
|
Abstract
BACKGROUND To review the current progress in osteosarcoma stem cells, including isolation and identification, special cell surface markers, relationship between drug-resistance and metastasis, and the involving signal pathways. METHODS A review of the literature encompassing osteosarcoma stem cells was performed. RESULTS Although the cancer stem cells hypothesis was first proposed about 50 years ago, it is only in the last 10 years that advances in stem cell biology have provided increasing experimental evidence supporting this hypothesis. It has been postulated that within a tumor, a minor subpopulation of cells, termed cancer stem cells (CSC), drive the self-renewal and differentiation that account for the initiation, proliferation, metastasis, therapeutic resistance and recurrence of cancer. The CSC hypothesis opens up a novel conceptual approach for curing tumors that selectively kills CSCs, making it possible to eradicate cancer. Currently, osteosarcoma stem cells have been isolated and identified using various methods. Given the specific stem cell features, the study of CSCs has important implications in osteosarcoma prevention, detection and treatment, especially in curing early metastasis and preventing drug resistance. Focusing on their stem-like character, CSCs can be appropriately targeted by identifying links between the cells and their microenvironment. CONCLUSION All of this research is in its infancy - many problems still exist. Further studies are needed to search for specific targeted therapies for osteosarcoma, in-depth study of mechanism of drug resistance, identifying the role that CSCs play in tumor metastasis, and demonstrate the imbalance of specific pathways in osteosarcoma stem cells.
Collapse
Affiliation(s)
- Bin Liu
- Department of Orthopedic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China
| | | | | | | |
Collapse
|
42
|
The desmosterolosis phenotype: spasticity, microcephaly and micrognathia with agenesis of corpus callosum and loss of white matter. Eur J Hum Genet 2011; 19:942-6. [PMID: 21559050 DOI: 10.1038/ejhg.2011.74] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Desmosterolosis is a rare autosomal recessive disorder of elevated levels of the cholesterol precursor desmosterol in plasma, tissue and cultured cells. With only two sporadic cases described to date with two very different phenotypes, the clinical entity arising from mutations in 24-dehydrocholesterol reductase (DHCR24) has yet to be defined. We now describe consanguineous Bedouin kindred with four surviving affected individuals, all presenting with severe failure to thrive, psychomotor retardation, microcephaly, micrognathia and spasticity with variable degree of hand contractures. Convulsions near birth, nystagmus and strabismus were found in most. Brain MRI demonstrated significant reduction in white matter and near agenesis of corpus callosum in all. Genome-wide linkage analysis and fine mapping defined a 6.75 cM disease-associated locus in chromosome 1 (maximum multipoint LOD score of six), and sequencing of candidate genes within this locus identified in the affected individuals a homozygous missense mutation in DHCR24 leading to dramatically augmented plasma desmosterol levels. We thus establish a clear consistent phenotype of desmosterolosis (MIM 602398).
Collapse
|
43
|
Dentice M. Hedgehog-mediated regulation of thyroid hormone action through iodothyronine deiodinases. Expert Opin Ther Targets 2011; 15:493-504. [DOI: 10.1517/14728222.2011.553607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Biological pathways involved in the aggressive behavior of the keratocystic odontogenic tumor and possible implications for molecular oriented treatment – An overview. Oral Oncol 2010; 46:19-24. [DOI: 10.1016/j.oraloncology.2009.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 01/09/2023]
|
45
|
Shah A, Tenzen T, McMahon AP, Woolf PJ. Using mechanistic Bayesian networks to identify downstream targets of the sonic hedgehog pathway. BMC Bioinformatics 2009; 10:433. [PMID: 20021670 PMCID: PMC3087349 DOI: 10.1186/1471-2105-10-433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 12/18/2009] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. RESULTS We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs) that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL). We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. CONCLUSIONS The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.
Collapse
Affiliation(s)
- Abhik Shah
- Bioinformatics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
46
|
Abler LL, Mansour SL, Sun X. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn 2009; 238:1999-2013. [PMID: 19618463 DOI: 10.1002/dvdy.22032] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fibroblast growth factor 10 (FGF10) signaling through FGF receptor 2 (FGFR2) is required for lung initiation. While studies indicate that Fgf10 and Fgfr2 are also important at later stages of lung development, their roles in early branching events remain unclear. We addressed this question through conditional inactivation of both genes in mouse subsequent to lung initiation. Inactivation of Fgf10 in lung mesenchyme resulted in smaller lobes with a reduced number of branches. Inactivation of Fgfr2 in lung epithelium resulted in disruption of lobes and small epithelial outgrowths that arose arbitrarily along the main bronchi. In both mutants, there was an increase in cell death. Also, the expression patterns of key signaling molecules implicated in branching morphogenesis were altered and a proximal lung marker was expanded distally. Our results indicate that both Fgf10 and Fgfr2 are required for a normal branching program and for proper proximal-distal patterning of the lung.
Collapse
Affiliation(s)
- Lisa L Abler
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
47
|
Kim KH, Kim JM, Choi YL, Shin YK, Lee HC, Seong IO, Kim BK, Chae SW, Chung YS, Kim SH. Expression of sonic hedgehog signaling molecules in normal, hyperplastic and carcinomatous endometrium. Pathol Int 2009; 59:279-87. [PMID: 19432668 DOI: 10.1111/j.1440-1827.2009.02366.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of the present study was to determine the expression profile of the hedgehog (Hh) signaling molecules in normal, hyperplastic, and carcinomatous uterine endometrium. For this purpose, 271 endometrial tissue samples, (62 of normal endometrium, 127 of endometrial hyperplasias, and 82 endometrial adenocarcinomas) were studied using antibodies recognizing Hh-related signaling proteins, such as, sonic hedgehog (Shh), Patched (PTCH), Smoothened (Smo), Suppressor of fused [Su(Fu)], Gli-1, Gli-2, and Gli-3 by immunohistochemistry. The mRNA expression of these molecules was also assessed on reverse transcription-polymerase chain reaction. In the normal endometrium, the expression of Hh signaling molecules was generally downregulated except for Su(Fu), Gli-2, and Shh. In particular, the expression of both PTCH and Smo was very low or almost absent. Overall expression of Hh signaling molecules increased in hyperplastic endometrium; in particular, PTCH and Smo were significantly highly expressed in complex and atypical hyperplasia. In carcinoma samples extensive alterations were observed in the expression pattern of the signaling molecules. Nuclear Gli-2, cytoplasmic Gli-3, and Su(Fu) were overexpressed, whereas Shh, PTCH, and Smo expression were significantly reduced compared with the hyperplastic endometrium. The results suggest that the alteration of Hh signaling may be implicated in tumorigenesis of the endometrium.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Department of Pathology, Eulji University College of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Limited knowledge about human oligodendrogenesis prompted us to explore the lineage relationship between cortical radial glia (RG) cells and oligodendrocytes (OLs) in the human fetal forebrain. RG cells were isolated from cortical ventricular/subventricular zone and their progeny was followed in vitro. One portion of RG cells differentiated into cells of OL lineage identified by cell-type specific antibodies, including platelet-derived growth factor receptor-alpha (PDGFRalpha), NG2, O4, myelin basic protein, and myelin oligodendrocyte glycoprotein. Moreover, using Cre Lox fate mapping (brain lipid binding protein-Cre/Floxed-yellow fluorescent protein) we established a direct link between RG cells and OL progenitors. In vitro generation of RG-derived O4(+) OL progenitors was enhanced by addition of sonic hedgehog (SHH) and reduced by the SHH inhibitor, cyclopamine, suggesting the role of SHH signaling in this process. In summary, our in vitro experiments revealed that a portion of cortical RG cells isolated from human forebrain at the second trimester of gestation generates OL progenitors and this suggests a role of SHH in this process.
Collapse
Affiliation(s)
- Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | |
Collapse
|
49
|
Gialmanidis IP, Bravou V, Amanetopoulou SG, Varakis J, Kourea H, Papadaki H. Overexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer 2009; 66:64-74. [PMID: 19200615 DOI: 10.1016/j.lungcan.2009.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/15/2008] [Accepted: 01/05/2009] [Indexed: 01/17/2023]
Abstract
The hedgehog (HH)-signaling pathway is implicated in developmental processes and its aberrant activation in adult tissues has been associated with malignancy. The aim of this study was to determine the expression pattern of HH-signaling molecules in non-small cell lung carcinomas (NSCLC), as well as the involvement of the transcription factor FOXM1, that controls cell proliferation, in this process. Paraffin-embedded tissue sections of 80 NSCLC cases and adjacent non-neoplastic lung parenchyma were immunohistochemically analyzed with anti-SHH, anti-Patched1 (PTCH1), anti-Smoothened (SMO), anti-GLI1, anti-GLI2 and anti-FOXM1 antibodies. Correlations of HH molecules with clinicopathological parameters and FOXM1 expression were evaluated. All the HH-signaling molecules examined were overexpressed in NSCLC compared with the adjacent non-neoplastic lung parenchyma. HH pathway activity and expression of PTCH1 and SMO were significantly higher in squamous cell carcinomas compared to other NSCLC histological types. Activation of HH pathway and PTCH1 expression were correlated with tumor grade being higher in low grade tumors. There was a significant correlation of lymph node metastases with expression of SMO in all NSCLC histological types and with nuclear GLI1 immunolocalization only in adenocarcinomas. Overexpression of FOXM1 in NSCLC was also significantly correlated with PTCH1, SMO and GLI1 expression. In conclusion, HH-signaling pathway is activated in NSCLC and correlates with histological type, prognostic parameters of the tumors as well as with the increased expression of FOXM1.
Collapse
Affiliation(s)
- Ioannis P Gialmanidis
- Department of Anatomy, School of Medicine, University of Patras, 26500 Rio Patras, Greece. gialmanidis
| | | | | | | | | | | |
Collapse
|
50
|
Li M, Li C, Liu YH, Xing Y, Hu L, Borok Z, Kwong KYC, Minoo P. Mesodermal deletion of transforming growth factor-beta receptor II disrupts lung epithelial morphogenesis: cross-talk between TGF-beta and Sonic hedgehog pathways. J Biol Chem 2008; 283:36257-64. [PMID: 18990706 DOI: 10.1074/jbc.m806786200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, Sonic hedgehog (Shh) and transforming growth factor-beta (TGF-beta) signaling pathways occur in an overlapping manner in many morphogenetic processes. In vitro data indicate that the two pathways may interact. Whether such interactions occur during embryonic development remains unknown. Using embryonic lung morphogenesis as a model, we generated transgenic mice in which exon 2 of the TbetaRII gene, which encodes the type II TGF-beta receptor, was deleted via a mesodermal-specific Cre. Mesodermal-specific deletion of TbetaRII (TbetaRII(Delta/Delta)) resulted in embryonic lethality. The lungs showed abnormalities in both number and shape of cartilage in trachea and bronchi. In the lung parenchyma, where epithelial-mesenchymal interactions are critical for normal development, deletion of mesenchymal TbetaRII caused abnormalities in epithelial morphogenesis. Failure in normal epithelial branching morphogenesis in the TbetaRII(Delta/Delta) lungs caused cystic airway malformations. Interruption of the TbetaRII locus in the lung mesenchyme increased mRNA for Patched and Gli-1, two downstream targets of Shh signaling, without alterations in Shh ligand levels produced in the epithelium. Therefore, we conclude that TbetaRII-mediated signaling in the lung mesenchyme modulates transduction of Shh signaling that originates from the epithelium. To our knowledge, this is the first in vivo evidence for a reciprocal and novel mode of cross-communication between Shh and TGF-beta pathways during embryonic development.
Collapse
Affiliation(s)
- Min Li
- Division of Neonatology, Department of Pediatrics, Will Rogers Institute Pulmonary Research Center, University of Southern California School of Medicine, Los Angeles, CA 90093, USA
| | | | | | | | | | | | | | | |
Collapse
|