1
|
Schwartz HT, Sternberg PW. A sequencing-based screening method identifies regulators of EGFR signaling from nonviable mutants in Caenorhabditis elegans. Sci Signal 2025; 18:eadp9377. [PMID: 39999212 DOI: 10.1126/scisignal.adp9377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Suppressor screens can identify genetic modifiers of biochemical pathways but generally require that the suppressed mutant be viable and fertile. We developed a screening method that obviated this requirement and enabled the identification of mutations that partially suppressed the early developmental arrest and lethality caused by loss of the epidermal growth factor (EGF) receptor ortholog LET-23 in Caenorhabditis elegans. We chemically mutagenized animals carrying the loss-of-function allele let-23(sy15), recovered let-23(sy15) homozygotes that escaped early developmental arrest but were nevertheless inviable, and sequenced their genomes. Testing of candidate causal mutations identified 11 genes that, when mutated, mitigated the early lethality caused by loss of EGF signaling. These included genes encoding homologs of the small guanosine triphosphatase (GTPase) Ras (let-60), which is a downstream effector of LET-23, and of regulators of the small GTPase Rho, including the homolog of the phosphotyrosine-binding protein TENSIN (tns-1). We also recovered suppressing mutations in genes encoding nuclear proteins that protect against DNA damage, including the homolog of MutS homolog 4 (him-14). Genetic experiments were consistent with the repression of Rho activity or the activation of the DNA damage response compensating for the loss of EGF signaling. This sequencing-based, whole-animal screening method may be adapted to other organisms to enable the identification of mutations for which the phenotype does not allow the recovery of viable animals.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Harracksingh AN, Singh A, Mayorova T, Bejoy B, Hornbeck J, Elkhatib W, McEdwards G, Gauberg J, Taha ARW, Islam IM, Erclik T, Currie MA, Noyes M, Senatore A. Mint/X11 PDZ domains from non-bilaterian animals recognize and bind Ca V 2 calcium channel C-termini in vitro . BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582151. [PMID: 38463976 PMCID: PMC10925089 DOI: 10.1101/2024.02.26.582151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PDZ domain mediated interactions with voltage-gated calcium (Ca V ) channel C-termini play important roles in localizing membrane Ca 2+ signaling. The first such interaction was described between the scaffolding protein Mint-1 and Ca V 2.2 in mammals. In this study, we show through various in silico analyses that Mint is an animal-specific gene with a highly divergent N-terminus but a strongly conserved C-terminus comprised of a phosphotyrosine binding domain, two tandem PDZ domains (PDZ-1 and PDZ-2), and a C-terminal auto-inhibitory element that binds and inhibits PDZ-1. In addition to Ca V 2 channels, most genes that interact with Mint are also deeply conserved including amyloid precursor proteins, presenilins, neurexin, and CASK and Veli which form a tripartite complex with Mint in bilaterians. Through yeast and bacterial 2-hybrid experiments, we show that Mint and Ca V 2 channels from cnidarians and placozoans interact in vitro , and in situ hybridization revealed co-expression in dissociated neurons from the cnidarian Nematostella vectensis . Unexpectedly, the Mint orthologue from the ctenophore Hormiphora californiensis strongly binds the divergent C-terminal ligands of cnidarian and placozoan Ca V 2 channels, despite neither the ctenophore Mint, nor the placozoan and cnidarian orthologues, binding the ctenophore Ca V 2 channel C-terminus. Altogether, our analyses suggest that the capacity of Mint to bind CaV2 channels predates pre-bilaterian animals, and that evolutionary changes in Ca V 2 channel C-terminal sequences resulted in altered binding modalities with Mint.
Collapse
|
3
|
Majeed M, Han H, Zhang K, Cao WX, Liao CP, Hobert O, Lu H. Toolkits for detailed and high-throughput interrogation of synapses in C. elegans. eLife 2024; 12:RP91775. [PMID: 38224479 PMCID: PMC10945580 DOI: 10.7554/elife.91775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Visualizing synaptic connectivity has traditionally relied on time-consuming electron microscopy-based imaging approaches. To scale the analysis of synaptic connectivity, fluorescent protein-based techniques have been established, ranging from the labeling of specific pre- or post-synaptic components of chemical or electrical synapses to transsynaptic proximity labeling technology such as GRASP and iBLINC. In this paper, we describe WormPsyQi, a generalizable image analysis pipeline that automatically quantifies synaptically localized fluorescent signals in a high-throughput and robust manner, with reduced human bias. We also present a resource of 30 transgenic strains that label chemical or electrical synapses throughout the nervous system of the nematode Caenorhabditis elegans, using CLA-1, RAB-3, GRASP (chemical synapses), or innexin (electrical synapse) reporters. We show that WormPsyQi captures synaptic structures in spite of substantial heterogeneity in neurite morphology, fluorescence signal, and imaging parameters. We use these toolkits to quantify multiple obvious and subtle features of synapses - such as number, size, intensity, and spatial distribution of synapses - in datasets spanning various regions of the nervous system, developmental stages, and sexes. Although the pipeline is described in the context of synapses, it may be utilized for other 'punctate' signals, such as fluorescently tagged neurotransmitter receptors and cell adhesion molecules, as well as proteins in other subcellular contexts. By overcoming constraints on time, sample size, cell morphology, and phenotypic space, this work represents a powerful resource for further analysis of synapse biology in C. elegans.
Collapse
Affiliation(s)
- Maryam Majeed
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Haejun Han
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
| | - Keren Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Wen Xi Cao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Hang Lu
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
4
|
Wong CH, Rahat A, Chang HC. Fused in sarcoma regulates glutamate signaling and oxidative stress response. Free Radic Biol Med 2024; 210:172-182. [PMID: 38007141 PMCID: PMC10872661 DOI: 10.1016/j.freeradbiomed.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor GLR-1. We found that fust-1 ALS mutations act as loss-of-function in SOD-1 and VGLUT/EAT-4 phenotypes, whereas the fust-1 ALS mutations act as gain-of-function in redox homeostasis and the microbe-induced oxidative stress response. We hypothesized that FUST-1 is a link between glutamate signaling and SOD-1. Our results may provide new insights into the human ALS alleles and their roles in pathological mechanisms that lead to ALS.
Collapse
Affiliation(s)
- Chiong-Hee Wong
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, 104217, Taiwan
| | - Abu Rahat
- Integrative Neuroscience Program, SUNY Binghamton, Vestal, NY, 13850, USA
| | - Howard C Chang
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
| |
Collapse
|
5
|
Hulsey-Vincent H, Athanasopoulos A, McGehee A, Kowalski JR, Dahlberg C. A Fiji protocol for analyzing puncta is a robust tool for measuring GLR-1::GFP accumulation in the ventral nerve cord of C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001004. [PMID: 38170032 PMCID: PMC10760542 DOI: 10.17912/micropub.biology.001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
In C. elegans, DAF-7/TGF-beta signaling regulates development, metabolism, and behavior. In addition loss of daf-7 leads to an increase of the glutamate receptor GLR-1. In daf-7(e1372) mutants, GLR-1 tagged with GFP (GLR-1::GFP) accumulates in wide puncta along the ventral nerve cord of the animal. Previous automated analyses of GLR-1::GFP accumulation relied on the proprietary software, IgorPro, for measurement of GLR-1::GFP puncta size, intensity, and density. We did a side-by-side comparison of analyses by IgorPro and an open source macro written for Fiji to analyze images from animals expressing GLR-1::GFP in wild type and daf-7(e1372) backgrounds. Analyses by the two programs were in strong agreement and are in accordance with previously published data on the effects of daf-7(e1372) on GLR-1::GFP accumulation. Based on these data, we conclude that the Fiji platform is a robust method for analyzing the accumulation of a fluorescently-tagged neurotransmitter receptor and that the Fiji puncta plugin will be applicable for image analysis for other neural markers.
Collapse
Affiliation(s)
| | | | - Annette McGehee
- Biology, Suffolk University, Boston, Massachusetts, United States
| | | | - Caroline Dahlberg
- Biology, Western Washington University, Bellingham, Washington, United States
| |
Collapse
|
6
|
Gat A, Pechuk V, Peedikayil-Kurien S, Karimi S, Goldman G, Sela S, Lubliner J, Krieg M, Oren-Suissa M. Integration of spatially opposing cues by a single interneuron guides decision-making in C. elegans. Cell Rep 2023; 42:113075. [PMID: 37691148 DOI: 10.1016/j.celrep.2023.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
The capacity of animals to respond to hazardous stimuli in their surroundings is crucial for their survival. In mammals, complex evaluations of the environment require large numbers and different subtypes of neurons. The nematode C. elegans avoids hazardous chemicals they encounter by reversing their direction of movement. How does the worms' compact nervous system process the spatial information and direct motion change? We show here that a single interneuron, AVA, receives glutamatergic excitatory and inhibitory signals from head and tail sensory neurons, respectively. AVA integrates the spatially distinct and opposing cues, whose output instructs the animal's behavioral decision. We further find that the differential activation of AVA stems from distinct localization of inhibitory and excitatory glutamate-gated receptors along AVA's process and from different threshold sensitivities of the sensory neurons. Our results thus uncover a cellular mechanism that mediates spatial computation of nociceptive cues for efficient decision-making in C. elegans.
Collapse
Affiliation(s)
- Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladyslava Pechuk
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Karimi
- Neurophotonics and Mechanical Systems Biology, ICFO (Institut de Ciencies Fot'oniques), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Gal Goldman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sapir Sela
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jazz Lubliner
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Krieg
- Neurophotonics and Mechanical Systems Biology, ICFO (Institut de Ciencies Fot'oniques), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
7
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
8
|
Rennich BJ, Luth ES, Hofer J, Juo P. Low-Density Lipoprotein Receptor LRP-2 regulates GLR-1 glutamate receptors and glutamatergic behavior in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000837. [PMID: 37179968 PMCID: PMC10172966 DOI: 10.17912/micropub.biology.000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
We identified the Low-Density Lipoprotein (LDL) Receptor Related Protein-2 (LRP-2) in a RNAi screen for genes that regulate glutamatergic behavior in C. elegans . lrp-2 loss-of-function mutants have defects in glutamatergic mechanosensory nose-touch behavior and suppress increased spontaneous reversals induced by GLR-1(A/T), a constitutively-active form of the AMPA-type glutamate receptor GLR-1. Total and surface levels of GLR-1 are increased throughout the ventral nerve cord of lrp-2 mutants suggesting that LRP-2 promotes glutamatergic signaling by regulating some aspect of GLR-1 trafficking, localization or function.
Collapse
Affiliation(s)
- Bethany J Rennich
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Eric S Luth
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
- Biology, Simmons University, Boston, MA 02115
| | - Julia Hofer
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Peter Juo
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
- Correspondence to: Peter Juo (
)
| |
Collapse
|
9
|
Sridhar N, Fajrial AK, Doser RL, Hoerndli FJ, Ding X. Surface acoustic wave microfluidics for repetitive and reversible temporary immobilization of C. elegans. LAB ON A CHIP 2022; 22:4882-4893. [PMID: 36377422 PMCID: PMC10091851 DOI: 10.1039/d2lc00737a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Caenorhabditis elegans is an important genetic model for neuroscience studies, used for analyses of how genes control connectivity, neuronal function, and behavior. To date, however, most studies of neuronal function in C. elegans are incapable of obtaining microscopy imaging with subcellular resolution and behavior analysis in the same set of animals. This constraint stems from the immobilization requirement for high-resolution imaging that is incompatible with behavioral analysis using conventional immobilization techniques. Here, we present a novel microfluidic device that uses surface acoustic waves (SAW) as a non-contact method to temporarily immobilize worms for a short period (30 seconds). We optimize the SAW based protocol for rapid switching between free-swimming and immobilized states, facilitating non-invasive analysis of swimming behavior as well as high-resolution synaptic imaging in the same animal. We find that the coupling of heat and acoustic pressure play a key role in the immobilization process. We introduce a proof-of-concept longitudinal study, illustrating that the device enables repeated imaging of fluorescently tagged synaptic receptors in command interneurons and analysis of swimming behavior in the same animals for three days. This longitudinal approach provides the first correlative analysis of synaptic glutamatergic receptors and swimming behavior in aging animals. We anticipate that this device will enable further longitudinal analysis of animal motility and subcellular morphological changes during development and aging in C. elegans.
Collapse
Affiliation(s)
- Nakul Sridhar
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Apresio Kefin Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Rachel L Doser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
10
|
Lillis M, Zaccardi NJ, Heiman MG. Axon-dendrite and apical-basolateral sorting in a single neuron. Genetics 2022; 221:iyac036. [PMID: 35244146 PMCID: PMC9071548 DOI: 10.1093/genetics/iyac036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are highly organized machines with functionally specialized compartments. For example, membrane proteins are localized to axons or dendrites in neurons and to apical or basolateral surfaces in epithelial cells. Interestingly, many sensory cells-including vertebrate photoreceptors and olfactory neurons-exhibit both neuronal and epithelial features. Here, we show that Caenorhabditis elegans amphid neurons simultaneously exhibit axon-dendrite sorting like a neuron and apical-basolateral sorting like an epithelial cell. The distal ∼5-10 µm of the dendrite is apical, while the remainder of the dendrite, soma, and axon are basolateral. To determine how proteins are sorted among these compartments, we studied the localization of the conserved adhesion molecule SAX-7/L1CAM. Using minimal synthetic transmembrane proteins, we found that the 91-aa cytoplasmic tail of SAX-7 is necessary and sufficient to direct basolateral localization. Basolateral localization can be fully recapitulated using either of 2 short (10-aa or 19-aa) tail sequences that, respectively, resemble dileucine and Tyr-based motifs known to mediate sorting in mammalian epithelia. The Tyr-based motif is conserved in human L1CAM but had not previously been assigned a function. Disrupting key residues in either sequence leads to apical localization, while "improving" them to match epithelial sorting motifs leads to axon-only localization. Indeed, changing only 2 residues in a short motif is sufficient to redirect the protein between apical, basolateral, and axonal localization. Our results demonstrate that axon-dendrite and apical-basolateral sorting pathways can coexist in a single cell, and suggest that subtle changes to short sequence motifs are sufficient to redirect proteins between these pathways.
Collapse
Affiliation(s)
- Monique Lillis
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| | - Nathan J Zaccardi
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
11
|
Yu CY, Chang HC. Glutamate signaling mediates C. elegans behavioral plasticity to pathogens. iScience 2022; 25:103919. [PMID: 35252815 PMCID: PMC8889136 DOI: 10.1016/j.isci.2022.103919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chun-Ying Yu
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Howard C. Chang
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
- Corresponding author
| |
Collapse
|
12
|
Emmons SW, Yemini E, Zimmer M. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics 2021; 218:6303616. [PMID: 34151952 DOI: 10.1093/genetics/iyab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
The model research animal Caenorhabditis elegans has unique properties making it particularly advantageous for studies of the nervous system. The nervous system is composed of a stereotyped complement of neurons connected in a consistent manner. Here, we describe methods for studying nervous system structure and function. The transparency of the animal makes it possible to visualize and identify neurons in living animals with fluorescent probes. These methods have been recently enhanced for the efficient use of neuron-specific reporter genes. Because of its simple structure, for a number of years, C. elegans has been at the forefront of connectomic studies defining synaptic connectivity by electron microscopy. This field is burgeoning with new, more powerful techniques, and recommended up-to-date methods are here described that encourage the possibility of new work in C. elegans. Fluorescent probes for single synapses and synaptic connections have allowed verification of the EM reconstructions and for experimental approaches to synapse formation. Advances in microscopy and in fluorescent reporters sensitive to Ca2+ levels have opened the way to observing activity within single neurons across the entire nervous system.
Collapse
Affiliation(s)
- Scott W Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 1041, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria and.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
13
|
Gauthier KD, Rocheleau CE. Golgi localization of the LIN-2/7/10 complex points to a role in basolateral secretion of LET-23 EGFR in the Caenorhabditiselegans vulval precursor cells. Development 2021; 148:dev194167. [PMID: 33526581 PMCID: PMC10692275 DOI: 10.1242/dev.194167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/25/2021] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved LIN-2 (CASK)/LIN-7 (Lin7A-C)/LIN-10 (APBA1) complex plays an important role in regulating spatial organization of membrane proteins and signaling components. In Caenorhabditiselegans, the complex is essential for the development of the vulva by promoting the localization of the sole Epidermal growth factor receptor (EGFR) ortholog LET-23 to the basolateral membrane of the vulva precursor cells where it can specify the vulval cell fate. To understand how the LIN-2/7/10 complex regulates receptor localization, we determined its expression and localization during vulva development. We found that LIN-7 colocalizes with LET-23 EGFR at the basolateral membrane, whereas the LIN-2/7/10 complex colocalizes with LET-23 EGFR at cytoplasmic punctae that mostly overlap with the Golgi. Furthermore, LIN-10 recruits LIN-2, which in turn recruits LIN-7. We demonstrate that the complex forms in vivo with a particularly strong interaction and colocalization between LIN-2 and LIN-7, consistent with them forming a subcomplex. Thus, the LIN-2/7/10 complex forms on the Golgi on which it likely targets LET-23 EGFR trafficking to the basolateral membrane rather than functioning as a tether.
Collapse
Affiliation(s)
- Kimberley D Gauthier
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University; and the Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University; and the Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
14
|
Durbeck J, Breton C, Suter M, Luth ES, McGehee AM. The Doublesex/Mab-3 domain transcription factor DMD-10 regulates ASH-dependent behavioral responses. PeerJ 2021; 9:e10892. [PMID: 33665029 PMCID: PMC7916532 DOI: 10.7717/peerj.10892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
The Doublesex/Mab-3 Domain transcription factor DMD-10 is expressed in several cell types in C. elegans, including in the nervous system. We sought to investigate whether DMD-10 is required for normal neuronal function using behavioral assays. We found that mutation of dmd-10 did not broadly affect behavior. dmd-10 mutants were normal in several behavioral assays including a body bends assay for locomotion, egg laying, chemotaxis and response to gentle touch to the body. dmd-10 mutants did have defects in nose-touch responsiveness, which requires the glutamate receptor GLR-1. However, using quantitative fluorescence microscopy to measure levels of a GLR-1::GFP fusion protein in the ventral nerve cord, we found no evidence supporting a difference in the number of GLR-1 synapses or in the amount of GLR-1 present in dmd-10 mutants. dmd-10 mutants did have decreased responsiveness to high osmolarity, which, along with nose-touch, is sensed by the polymodal sensory neuron ASH. Furthermore, mutation of dmd-10 impaired behavioral response to optogenetic activation of ASH, suggesting that dmd-10 promotes neuronal signaling in ASH downstream of sensory receptor activation. Together our results suggest that DMD-10 is important in regulating the frequency of multiple ASH-dependent behavioral responses.
Collapse
Affiliation(s)
- Julia Durbeck
- Biology Department, Suffolk University, Boston, MA, USA
| | - Celine Breton
- Department of Biology, Simmons University, Boston, MA, USA
| | - Michael Suter
- Biology Department, Suffolk University, Boston, MA, USA
| | - Eric S Luth
- Department of Biology, Simmons University, Boston, MA, USA
| | | |
Collapse
|
15
|
The WD40-Repeat Protein WDR-20 and the Deubiquitinating Enzyme USP-46 Promote Cell Surface Levels of Glutamate Receptors. J Neurosci 2021; 41:3082-3093. [PMID: 33622778 DOI: 10.1523/jneurosci.1074-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Reversible modification of AMPA receptors (AMPARs) with ubiquitin regulates receptor levels at synapses and controls synaptic strength. The conserved deubiquitinating enzyme (DUB) ubiquitin-specific protease-46 (USP-46) removes ubiquitin from AMPARs and protects them from degradation in both Caenorhabditis elegans and mammals. Although DUBs are critical for diverse physiological processes, the mechanisms that regulate DUBs, especially in the nervous system, are not well understood. We and others previously showed that the WD40-repeat proteins WDR-48 and WDR-20 bind to and stimulate the catalytic activity of USP-46. Here, we identify an activity-dependent mechanism that regulates WDR-20 expression and show that WDR-20 works together with USP-46 and WDR-48 to promote surface levels of the C. elegans AMPAR GLR-1. usp-46, wdr-48, and wdr-20 loss-of-function mutants exhibit reduced levels of GLR-1 at the neuronal surface and corresponding defects in GLR-1-mediated behavior. Increased expression of WDR-20, but not WDR-48, is sufficient to increase GLR-1 surface levels in an usp-46-dependent manner. Loss of usp-46, wdr-48, and wdr-20 function reduces the rate of local GLR-1 insertion in neurites, whereas overexpression of wdr-20 is sufficient to increase the rate of GLR-1 insertion. Genetic manipulations that chronically reduce or increase glutamate signaling result in reciprocal alterations in wdr-20 transcription and homeostatic compensatory changes in surface GLR-1 levels that are dependent on wdr-20 This study identifies wdr-20 as a novel activity-regulated gene that couples chronic changes in synaptic activity with increased local insertion and surface levels of GLR-1 via the DUB USP-46.SIGNIFICANCE STATEMENT Deubiquitinating enzymes (DUBs) are critical regulators of synapse development and function; however, the regulatory mechanisms that control their various physiological functions are not well understood. This study identifies a novel role for the DUB ubiquitin-specific protease-46 (USP-46) and its associated regulatory protein WD40-repeat protein-20 (WDR-20) in regulating local insertion of glutamate receptors into the neuronal cell surface. This work also identifies WDR-20 as an activity-regulated gene that couples chronic changes in synaptic activity with homeostatic compensatory increases in surface levels of GLR-1 via USP-46. Given that 35% of USP family DUBs associate with WDR proteins, understanding the mechanisms by which WDR proteins regulate USP-46 could have implications for a large number of DUBs in other cell types.
Collapse
|
16
|
Gauthier KD, Rocheleau CE. LIN-10 can promote LET-23 EGFR signaling and trafficking independently of LIN-2 and LIN-7. Mol Biol Cell 2021; 32:788-799. [PMID: 33566630 PMCID: PMC8108513 DOI: 10.1091/mbc.e20-07-0490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During Caenorhabditis elegans larval development, an inductive signal mediated by the LET-23 EGFR (epidermal growth factor receptor), specifies three of six vulva precursor cells (VPCs) to adopt vulval cell fates. An evolutionarily conserved complex consisting of PDZ domain-containing scaffold proteins LIN-2 (CASK), LIN-7 (Lin7 or Veli), and LIN-10 (APBA1 or Mint1) (LIN-2/7/10) mediates basolateral LET-23 EGFR localization in the VPCs to permit signal transmission and development of the vulva. We recently found that the LIN-2/7/10 complex likely forms at Golgi ministacks; however, the mechanism through which the complex targets the receptor to the basolateral membrane remains unknown. Here we found that overexpression of LIN-10 or LIN-7 can compensate for loss of their complex components by promoting LET-23 EGFR signaling through previously unknown complex-independent and receptor-dependent pathways. In particular, LIN-10 can independently promote basolateral LET-23 EGFR localization, and its complex-independent function uniquely requires its PDZ domains that also regulate its localization to Golgi. These studies point to a novel complex-independent function for LIN-7 and LIN-10 that broadens our understanding of how this complex regulates targeted sorting of membrane proteins.
Collapse
Affiliation(s)
- Kimberley D Gauthier
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H4A 3J1, Canada.,Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H4A 3J1, Canada.,Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
17
|
Luth ES, Hodul M, Rennich BJ, Riccio C, Hofer J, Markoja K, Juo P. VER/VEGF receptors regulate AMPA receptor surface levels and glutamatergic behavior. PLoS Genet 2021; 17:e1009375. [PMID: 33561120 PMCID: PMC7899335 DOI: 10.1371/journal.pgen.1009375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/22/2021] [Accepted: 01/22/2021] [Indexed: 01/09/2023] Open
Abstract
Several intracellular trafficking pathways contribute to the regulation of AMPA receptor (AMPAR) levels at synapses and the control of synaptic strength. While much has been learned about these intracellular trafficking pathways, a major challenge is to understand how extracellular factors, such as growth factors, neuropeptides and hormones, impinge on specific AMPAR trafficking pathways to alter synaptic function and behavior. Here, we identify the secreted ligand PVF-1 and its cognate VEGF receptor homologs, VER-1 and VER-4, as regulators of glutamate signaling in C. elegans. Loss of function mutations in ver-1, ver-4, or pvf-1, result in decreased cell surface levels of the AMPAR GLR-1 and defects in glutamatergic behavior. Rescue experiments indicate that PVF-1 is expressed and released from muscle, whereas the VERs function in GLR-1-expressing neurons to regulate surface levels of GLR-1 and glutamatergic behavior. Additionally, ver-4 is unable to rescue glutamatergic behavior in the absence of pvf-1, suggesting that VER function requires endogenous PVF-1. Inducible expression of a pvf-1 rescuing transgene suggests that PVF-1 can function in the mature nervous system to regulate GLR-1 signaling. Genetic double mutant analysis suggests that the VERs act together with the VPS-35/retromer recycling complex to promote cell surface levels of GLR-1. Our data support a genetic model whereby PVF-1/VER signaling acts with retromer to promote recycling and cell surface levels of GLR-1 to control behavior. Sensation, behavior, and cognition all depend on the proper function of neuronal connections called synapses. Synapses that use the neurotransmitter glutamate to signal between nerve cells are the most abundant type in our brain. Presynaptic neurons release glutamate, which activates glutamate receptors on postsynaptic neurons. Dysfunction of glutamate synapses leads to several neurological disorders, and changing their strength–in part by altering glutamate receptors numbers on the surface of the postsynaptic cell—provides the cellular basis of learning and memory. Much remains to be learned about how factors released from other cell types affects synaptic communication. We took advantage of light-activated molecular switches engineered into specific sensory neurons of C. elegans worms to trigger a behavioral reflex that depends on glutamate synapses. Using this behavior, we identified proteins called VER-1 and VER-4 as important for glutamate synapse function. We found that worms missing these VER proteins or their activator PVF-1 have reduced levels of glutamate receptors at the postsynaptic surface and defects in glutamate-dependent behaviors. Our results suggest that inter-tissue cross-talk between muscle PVF-1 and neuronal VERs is important for controlling the number of glutamate receptors at the cell surface, robust neuronal communication and behavioral responses.
Collapse
Affiliation(s)
- Eric S. Luth
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biology, Simmons University, Boston, Massachusetts, United States of America
| | - Molly Hodul
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Bethany J. Rennich
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Carmino Riccio
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Julia Hofer
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Kaitlin Markoja
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Park L, Luth ES, Jones K, Hofer J, Nguyen I, Watters KE, Juo P. The Snail transcription factor CES-1 regulates glutamatergic behavior in C. elegans. PLoS One 2021; 16:e0245587. [PMID: 33529210 PMCID: PMC7853468 DOI: 10.1371/journal.pone.0245587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Regulation of AMPA-type glutamate receptor (AMPAR) expression and function alters synaptic strength and is a major mechanism underlying synaptic plasticity. Although transcription is required for some forms of synaptic plasticity, the transcription factors that regulate AMPA receptor expression and signaling are incompletely understood. Here, we identify the Snail family transcription factor ces-1 in an RNAi screen for conserved transcription factors that regulate glutamatergic behavior in C. elegans. ces-1 was originally discovered as a selective cell death regulator of neuro-secretory motor neuron (NSM) and I2 interneuron sister cells in C. elegans, and has almost exclusively been studied in the NSM cell lineage. We found that ces-1 loss-of-function mutants have defects in two glutamatergic behaviors dependent on the C. elegans AMPA receptor GLR-1, the mechanosensory nose-touch response and spontaneous locomotion reversals. In contrast, ces-1 gain-of-function mutants exhibit increased spontaneous reversals, and these are dependent on glr-1 consistent with these genes acting in the same pathway. ces-1 mutants have wild type cholinergic neuromuscular junction function, suggesting that they do not have a general defect in synaptic transmission or muscle function. The effect of ces-1 mutation on glutamatergic behaviors is not due to ectopic cell death of ASH sensory neurons or GLR-1-expressing neurons that mediate one or both of these behaviors, nor due to an indirect effect on NSM sister cell deaths. Rescue experiments suggest that ces-1 may act, in part, in GLR-1-expressing neurons to regulate glutamatergic behaviors. Interestingly, ces-1 mutants suppress the increased reversal frequencies stimulated by a constitutively-active form of GLR-1. However, expression of glr-1 mRNA or GFP-tagged GLR-1 was not decreased in ces-1 mutants suggesting that ces-1 likely promotes GLR-1 function. This study identifies a novel role for ces-1 in regulating glutamatergic behavior that appears to be independent of its canonical role in regulating cell death in the NSM cell lineage.
Collapse
Affiliation(s)
- Lidia Park
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cell, Developmental and Molecular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Eric S. Luth
- Department of Biology, Simmons University, Boston, Massachusetts, United States of America
| | - Kelsey Jones
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Julia Hofer
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Irene Nguyen
- Department of Biology, Simmons University, Boston, Massachusetts, United States of America
| | - Katherine E. Watters
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Oswald M, Hulsey-Vincent H, Dahlberg C(L. Mutations in two ERAD E3 ubiquitin ligase enzymes reduce spontaneous reversal frequency in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000329. [PMID: 33274327 PMCID: PMC7704257 DOI: 10.17912/micropub.biology.000329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mackenzi Oswald
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Heino Hulsey-Vincent
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Caroline (Lina) Dahlberg
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA,
Correspondence to: Caroline (Lina) Dahlberg ()
| |
Collapse
|
20
|
Bhardwaj A, Pandey P, Babu K. Control of Locomotory Behavior of Caenorhabditis elegans by the Immunoglobulin Superfamily Protein RIG-3. Genetics 2020; 214:135-145. [PMID: 31740450 PMCID: PMC6944407 DOI: 10.1534/genetics.119.302872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Cell surface immunoglobulin superfamily (IgSF) proteins play important roles in the development and function of the nervous system . Here we define the role of a Caenorhabditis elegans IgSF protein, RIG-3, in the function of the AVA command interneuron. This study reveals that RIG-3 regulates the abundance of the glutamate receptor subunit, GLR-1, in the AVA command interneuron and also regulates reversal behavior in C. elegans The mutant strain lacking rig-3 (rig-3 (ok2156)) shows increased reversal frequency during local search behaviors. Genetic and behavioral experiments suggest that RIG-3 functions through GLR-1 to regulate reversal behavior. We also show that the increased reversal frequency seen in rig-3 mutants is dependent on the increase in GLR-1 abundance at synaptic inputs to AVA, suggesting that RIG-3 alters the synaptic strength of incoming synapses through GLR-1 Consistent with the imaging experiments, altered synaptic strength was also reflected in increased calcium transients in rig-3 mutants when compared to wild-type control animals. Our results further suggest that animals lacking rig-3 show increased AVA activity, allowing the release of FLP-18 neuropeptide from AVA, which is an activity-dependent signaling molecule. Finally, we show that FLP-18 functions through the neuropeptide receptor, NPR-5, to modulate reversal behavior in C. elegans.
Collapse
Affiliation(s)
- Ashwani Bhardwaj
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
| | - Pratima Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
O'Brien D, Jones LM, Good S, Miles J, Vijayabaskar MS, Aston R, Smith CE, Westhead DR, van Oosten-Hawle P. A PQM-1-Mediated Response Triggers Transcellular Chaperone Signaling and Regulates Organismal Proteostasis. Cell Rep 2019; 23:3905-3919. [PMID: 29949773 PMCID: PMC6045774 DOI: 10.1016/j.celrep.2018.05.093] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/04/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
In metazoans, tissues experiencing proteotoxic stress induce "transcellular chaperone signaling" (TCS) that activates molecular chaperones, such as hsp-90, in distal tissues. How this form of inter-tissue communication is mediated to upregulate systemic chaperone expression and whether it can be utilized to protect against protein misfolding diseases remain open questions. Using C. elegans, we identified key components of a systemic stress signaling pathway that links the innate immune response with proteostasis maintenance. We show that mild perturbation of proteostasis in the neurons or the intestine activates TCS via the GATA zinc-finger transcription factor PQM-1. PQM-1 coordinates neuron-activated TCS via the innate immunity-associated transmembrane protein CLEC-41, whereas intestine-activated TCS depends on the aspartic protease ASP-12. Both TCS pathways can induce hsp-90 in muscle cells and facilitate amelioration of Aβ3-42-associated toxicity. This may have powerful implications for the treatment of diseases related to proteostasis dysfunction.
Collapse
Affiliation(s)
- Daniel O'Brien
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Laura M Jones
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Sarah Good
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Jo Miles
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - M S Vijayabaskar
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Aston
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Catrin E Smith
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - David R Westhead
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
22
|
Voelker L, Upadhyaya B, Ferkey DM, Woldemariam S, L’Etoile ND, Rabinowitch I, Bai J. INX-18 and INX-19 play distinct roles in electrical synapses that modulate aversive behavior in Caenorhabditis elegans. PLoS Genet 2019; 15:e1008341. [PMID: 31658255 PMCID: PMC6837551 DOI: 10.1371/journal.pgen.1008341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize to different regions of the nerve ring, indicating that they are not present in the same synapses. Second, removing inx-18 disrupts the distribution of INX-19, while removing inx-19 does not alter INX-18 localization. Finally, by using a fluorescent cGMP reporter, we find that INX-18 and INX-19 have distinct roles in establishing cGMP levels in ASK and ASH. Together, these results demonstrate that electrical synapses containing INX-18 and INX-19 facilitate modulation of ASH nociceptive signaling. Our findings support the idea that a network of electrical synapses mediates cGMP exchange between neurons, enabling modulation of sensory responses and behavior. Animals are constantly adjusting their behavior to respond to changes in the environment or to their internal state. This behavior modulation is achieved by altering the activity of neurons and circuits through a variety of neuroplasticity mechanisms. Chemical synapses are known to impact neuroplasticity in several different ways, but the diversity of mechanisms by which electrical synapses contribute is still being investigated. Electrical synapses are specialized sites of connection between neurons where ions and small signaling molecules can pass directly from one cell to the next. By passing small molecules through electrical synapses, neurons may be able to modify the activity of their neighbors. In this study we identify two genes that contribute to electrical synapses between two sensory neurons in C. elegans. We show that these electrical synapses are crucial for proper modulation of sensory responses, as without them animals are overly responsive to an aversive stimulus. In addition to pinpointing their sites of action, we present evidence that they may be contributing to neuromodulation by facilitating passage of the small molecule cGMP between neurons. Our work provides evidence for a role of electrical synapses in regulating animal behavior.
Collapse
Affiliation(s)
- Lisa Voelker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
| | - Bishal Upadhyaya
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States of America
| | - Sarah Woldemariam
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, United States of America
| | - Noelle D. L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, United States of America
| | - Ithai Rabinowitch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medical Neurobiology, Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem, Israel
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
23
|
McGehee A. The GLR-1 phenotypes of the daf-7(e1372) allele are not temperature sensitive. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000158. [PMID: 32550465 PMCID: PMC7252401 DOI: 10.17912/micropub.biology.000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Annette McGehee
- Biology Department, Suffolk University, Boston, MA,
Correspondence to: Annette McGehee ()
| |
Collapse
|
24
|
Guénette S, Strecker P, Kins S. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins. Front Mol Neurosci 2017; 10:87. [PMID: 28424586 PMCID: PMC5371672 DOI: 10.3389/fnmol.2017.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular mechanisms underlying amyloid precursor protein family (APP/APP-like proteins, APLP) function in the nervous system can be achieved by studying the APP/APLP interactome. In this review article, we focused on intracellular APP interacting proteins that bind the YENPTY internalization motif located in the last 15 amino acids of the C-terminal region. These proteins, which include X11/Munc-18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding partners exhibiting different neuronal functions. A comparison of FE65 and APP family member mutant mice revealed a shared function for APP/FE65 protein family members in neurogenesis and neuronal positioning. Accumulating evidence also supports a role for membrane-associated APP/APLP proteins in synapse formation and function. Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice lacking different APP/APLP interaction partners and discuss the possible downstream effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release, synaptic morphology and function. Given that the role of X11/Mint proteins at the synapse is well-established, we propose a model highlighting the role of FE65 protein family members for transduction of APP/APLP physiological function at the synapse.
Collapse
Affiliation(s)
| | - Paul Strecker
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| | - Stefan Kins
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| |
Collapse
|
25
|
Establishment of Time- and Cell-Specific RNAi in Caenorhabditis elegans. Methods Mol Biol 2016. [PMID: 27832533 DOI: 10.1007/978-1-4939-6518-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The nematode worm Caenorhabditis elegans, in which loss-of-function mutants and RNA interference (RNAi) models are available, is a model organism useful for analyzing effects of genes on various life phenomena. In particular, RNAi is a powerful tool that enables time- or cell-specific knockdown via heat shock-inducible RNAi or cell-specific RNAi. However, the conventional RNAi methods are insufficient for investigating pleiotropic genes with various sites of action and life stage-dependent functions. To investigate the temporal- and cell-specific profiles of multifunctional genes, we established a new RNAi method that enables simultaneous time- and cell-specific knockdown (T.C.RNAi) in C. elegans. In this method, one RNA strand is expressed by a cell-specific promoter and the other by a heat shock promoter, resulting in only expression of double-stranded RNA in the target cell when heat shock is induced. We confirmed the effect of T.C.RNAi by the knockdown of GFP and the odr-3 gene which encodes Gα and is essential for olfaction. Further, this technique revealed that the control of glutamate receptors GLR-1 localization in RMD motor neurons requires Ras at the adult stage to regulate locomotion behavior.
Collapse
|
26
|
Moss BJ, Park L, Dahlberg CL, Juo P. The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription. PLoS Genet 2016; 12:e1006180. [PMID: 27462879 PMCID: PMC4963118 DOI: 10.1371/journal.pgen.1006180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
Regulation of synaptic AMPA receptor levels is a major mechanism underlying homeostatic synaptic scaling. While in vitro studies have implicated several molecules in synaptic scaling, the in vivo mechanisms linking chronic changes in synaptic activity to alterations in AMPA receptor expression are not well understood. Here we use a genetic approach in C. elegans to dissect a negative feedback pathway coupling levels of the AMPA receptor GLR-1 with its own transcription. GLR-1 trafficking mutants with decreased synaptic receptors in the ventral nerve cord (VNC) exhibit compensatory increases in glr-1 mRNA, which can be attributed to increased glr-1 transcription. Glutamatergic transmission mutants lacking presynaptic eat-4/VGLUT or postsynaptic glr-1, exhibit compensatory increases in glr-1 transcription, suggesting that loss of GLR-1 activity is sufficient to trigger the feedback pathway. Direct and specific inhibition of GLR-1-expressing neurons using a chemical genetic silencing approach also results in increased glr-1 transcription. Conversely, expression of a constitutively active version of GLR-1 results in decreased glr-1 transcription, suggesting that bidirectional changes in GLR-1 signaling results in reciprocal alterations in glr-1 transcription. We identify the CMK-1/CaMK signaling axis as a mediator of the glr-1 transcriptional feedback mechanism. Loss-of-function mutations in the upstream kinase ckk-1/CaMKK, the CaM kinase cmk-1/CaMK, or a downstream transcription factor crh-1/CREB, result in increased glr-1 transcription, suggesting that the CMK-1 signaling pathway functions to repress glr-1 transcription. Genetic double mutant analyses suggest that CMK-1 signaling is required for the glr-1 transcriptional feedback pathway. Furthermore, alterations in GLR-1 signaling that trigger the feedback mechanism also regulate the nucleocytoplasmic distribution of CMK-1, and activated, nuclear-localized CMK-1 blocks the feedback pathway. We propose a model in which synaptic activity regulates the nuclear localization of CMK-1 to mediate a negative feedback mechanism coupling GLR-1 activity with its own transcription.
Collapse
Affiliation(s)
- Benjamin J. Moss
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Lidia Park
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Caroline L. Dahlberg
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Biology Department, Western Washington University, Bellingham, Washington, United States of America
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
28
|
Zhang D, Dubey J, Koushika SP, Rongo C. RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans. PLoS One 2016; 11:e0149314. [PMID: 26891225 PMCID: PMC4758642 DOI: 10.1371/journal.pone.0149314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/30/2016] [Indexed: 12/25/2022] Open
Abstract
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.
Collapse
Affiliation(s)
- Donglei Zhang
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jyoti Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
- Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bangalore, India
- Manipal University, Karnataka, India
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
29
|
Park EC, Rongo C. The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons. eLife 2016; 5. [PMID: 26731517 PMCID: PMC4775213 DOI: 10.7554/elife.12010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023] Open
Abstract
Neurons are sensitive to low oxygen (hypoxia) and employ a conserved pathway to combat its effects. Here, we show that p38 MAP Kinase (MAPK) modulates this hypoxia response pathway in C. elegans. Mutants lacking p38 MAPK components pmk-1 or sek-1 resemble mutants lacking the hypoxia response component and prolyl hydroxylase egl-9, with impaired subcellular localization of Mint orthologue LIN-10, internalization of glutamate receptor GLR-1, and depression of GLR-1-mediated behaviors. Loss of p38 MAPK impairs EGL-9 protein localization in neurons and activates the hypoxia-inducible transcription factor HIF-1, suggesting that p38 MAPK inhibits the hypoxia response pathway through EGL-9. As animals age, p38 MAPK levels decrease, resulting in GLR-1 internalization; this age-dependent downregulation can be prevented through either p38 MAPK overexpression or removal of CDK-5, an antagonizing kinase. Our findings demonstrate that p38 MAPK inhibits the hypoxia response pathway and determines how aging neurons respond to hypoxia through a novel mechanism. DOI:http://dx.doi.org/10.7554/eLife.12010.001 The brain accounts for 2% of our body weight, but consumes about 20% of our oxygen intake. This oxygen gluttony is due to the tremendous appetite of brain cells for energy, which neurons satisfy through oxygen-dependent (aerobic) metabolism. As a result, the loss of oxygen to the brain during a stroke, heart attack, or due to another medical condition can be very damaging to cells in the brain. Human and other animal cells use a communication system called the hypoxia response pathway to sense oxygen and trigger a protective response when oxygen is low. This pathway includes an enzyme called prolyl hydroxylase, which senses oxygen and modifies another protein in the pathway that regulates the production of enzymes involved in metabolism. This alters the balance of enzymes involved in aerobic and oxygen-independent (anaerobic) metabolism in the cell. However, it is not clear how the activity of the prolyl hydroxylase is regulated. Much of our knowledge about the hypoxia response pathway has been gained from studies using a small worm called C. elegans. This worm uses the pathway to cope with hypoxia in the harsh environment of the soil. Mutant worms that lack the prolyl hydroxylase have several abnormalities including higher levels of anaerobic metabolism even in the presence of oxygen, and defects in the connections between neurons. Park and Rongo used C. elegans to study the pathway in more detail. The experiments show that another enzyme called p38 MAPK activates the prolyl hydroxylase. Mutant worms that lack this enzyme have similar abnormalities in the hypoxia response pathway as animals that lack the prolyl hydroxylase. In normal worms, decreasing levels of p38 MAPK as the animals grow older contribute to the decline in the nervous system. The p38 MAPK enzyme appears to work by regulating the activity of the prolyl hydroxylase and its location inside neurons. These findings provide a new target for the development of drugs that may help to protect us from tissue damage caused by hypoxia. Future challenges are to find out what activates p38 MAPK, and how it influences the location of prolyl hydroxylase in neurons. DOI:http://dx.doi.org/10.7554/eLife.12010.002
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| | - Christopher Rongo
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| |
Collapse
|
30
|
Likhite N, Jackson CA, Liang MS, Krzyzanowski MC, Lei P, Wood JF, Birkaya B, Michaels KL, Andreadis ST, Clark SD, Yu MC, Ferkey DM. The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling. Sci Signal 2015; 8:ra115. [PMID: 26554819 PMCID: PMC5473623 DOI: 10.1126/scisignal.aad0872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyltransferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor-mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells. Analysis of prmt-5-deficient worms indicated that methylation promoted the dopamine-mediated modulation of chemosensory and locomotory behaviors in C. elegans through the DOP-3 receptor. In addition to delineating a previously uncharacterized means of regulating GPCR (heterotrimeric guanine nucleotide-binding protein-coupled receptor) signaling, these findings may lead to the development of a new class of pharmacological therapies that modulate GPCR signaling by changing the methylation status of these key proteins.
Collapse
Affiliation(s)
- Neah Likhite
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Christopher A Jackson
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Mao-Shih Liang
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Michelle C Krzyzanowski
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jordan F Wood
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Barbara Birkaya
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kerry L Michaels
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA. Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA. Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Michael C Yu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
31
|
Vangindertael J, Beets I, Rocha S, Dedecker P, Schoofs L, Vanhoorelbeke K, Vanhoorelbeeke K, Hofkens J, Mizuno H. Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Sci Rep 2015; 5:13532. [PMID: 26323790 PMCID: PMC4555104 DOI: 10.1038/srep13532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 07/28/2015] [Indexed: 11/09/2022] Open
Abstract
Photoactivated localization microscopy (PALM) is a super-resolution imaging technique based on the detection and subsequent localization of single fluorescent molecules. PALM is therefore a powerful tool in resolving structures and putative interactions of biomolecules at the ultimate analytical detection limit. However, its limited imaging depth restricts PALM mostly to in vitro applications. Considering the additional need for anatomical context when imaging a multicellular organism, these limitations render the use of PALM in whole animals difficult. Here we integrated PALM with confocal microscopy for correlated imaging of the C. elegans nervous system, a technique we termed confocal correlated PALM (ccPALM). The neurons, lying below several tissue layers, could be visualized up to 10 μm deep inside the animal. By ccPALM, we visualized ionotropic glutamate receptor distributions in C. elegans with an accuracy of 20 nm, revealing super-resolution structure of receptor clusters that we mapped onto annotated neurons in the animal. Pivotal to our results was the TIRF-independent detection of single molecules, achieved by genetic regulation of labeled receptor expression and localization to effectively reduce the background fluorescence. By correlating PALM with confocal microscopy, this platform enables dissecting biological structures with single molecule resolution in the physiologically relevant context of whole animals.
Collapse
Affiliation(s)
- Jeroen Vangindertael
- Laboratory for Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven. Celestijnenlaan 200F, 3001 Heverlee, Belgium.,Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, KU Leuven Kulak. E. Sabbelaan 53, 8500 Kortrijk, Belgium.,Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven. Celestijnenlaan 200G box 2403, 3001 Heverlee, Belgium
| | - Isabel Beets
- Laboratory for Functional Genomics and Proteomics, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven. Naamsestraat 59, 3000 Leuven, Belgium
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven. Celestijnenlaan 200F, 3001 Heverlee, Belgium.,Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven. Celestijnenlaan 200G box 2403, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Laboratory for Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven. Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Liliane Schoofs
- Laboratory for Functional Genomics and Proteomics, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven. Naamsestraat 59, 3000 Leuven, Belgium
| | | | - Karen Vanhoorelbeeke
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, KU Leuven Kulak. E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven. Celestijnenlaan 200F, 3001 Heverlee, Belgium.,Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Hideaki Mizuno
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven. Celestijnenlaan 200G box 2403, 3001 Heverlee, Belgium
| |
Collapse
|
32
|
McGehee AM, Moss BJ, Juo P. The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1. Mol Cell Neurosci 2015; 67:66-74. [PMID: 26054666 DOI: 10.1016/j.mcn.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the Caenorhabditis elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior.
Collapse
Affiliation(s)
- Annette M McGehee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Department of Biology, Suffolk University, Boston, MA 02114, USA.
| | - Benjamin J Moss
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
33
|
Garafalo SD, Luth ES, Moss BJ, Monteiro MI, Malkin E, Juo P. The AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans. Mol Biol Cell 2015; 26:1887-900. [PMID: 25788288 PMCID: PMC4436833 DOI: 10.1091/mbc.e14-06-1048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/06/2015] [Indexed: 01/23/2023] Open
Abstract
Regulation of glutamate receptor trafficking controls synaptic strength and plasticity. This study takes advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to reveal a novel and unexpected AP2-dependent trafficking step for glutamate receptors early in the secretory pathway. Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway.
Collapse
Affiliation(s)
- Steven D Garafalo
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111
| | - Eric S Luth
- Department of Developmental, Molecular & Chemical Biology
| | - Benjamin J Moss
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Michael I Monteiro
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111
| | - Emily Malkin
- Department of Developmental, Molecular & Chemical Biology
| | - Peter Juo
- Department of Developmental, Molecular & Chemical Biology
| |
Collapse
|
34
|
Hamakawa M, Uozumi T, Ueda N, Iino Y, Hirotsu T. A role for Ras in inhibiting circular foraging behavior as revealed by a new method for time and cell-specific RNAi. BMC Biol 2015; 13:6. [PMID: 25603799 PMCID: PMC4321700 DOI: 10.1186/s12915-015-0114-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The nematode worm Caenorhabditis elegans, in which loss-of-function mutants and RNA interference (RNAi) models are available, is a model organism useful for analyzing effects of genes on various life phenomena, including behavior. In particular, RNAi is a powerful tool that enables time- or cell-specific knockdown via heat shock-inducible RNAi or cell-specific RNAi. However, conventional RNAi is insufficient for investigating pleiotropic genes with various sites of action and life stage-dependent functions. RESULTS Here, we investigated the Ras gene for its role in exploratory behavior in C. elegans. We found that, under poor environmental conditions, mutations in the Ras-MAPK signaling pathway lead to circular locomotion instead of normal exploratory foraging. Spontaneous foraging is regulated by a neural circuit composed of three classes of neurons: IL1, OLQ, and RMD, and we found that Ras functions in this neural circuit to modulate the direction of locomotion. We further observed that Ras plays an essential role in the regulation of GLR-1 glutamate receptor localization in RMD neurons. To investigate the temporal- and cell-specific profiles of the functions of Ras, we developed a new RNAi method that enables simultaneous time- and cell-specific knockdown. In this method, one RNA strand is expressed by a cell-specific promoter and the other by a heat shock promoter, resulting in only expression of double-stranded RNA in the target cell when heat shock is induced. This technique revealed that control of GLR-1 localization in RMD neurons requires Ras at the adult stage. Further, we demonstrated the application of this method to other genes. CONCLUSIONS We have established a new RNAi method that performs simultaneous time- and cell-specific knockdown and have applied this to reveal temporal profiles of the Ras-MAPK pathway in the control of exploratory behavior under poor environmental conditions.
Collapse
Affiliation(s)
- Masayuki Hamakawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Takayuki Uozumi
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Naoko Ueda
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takaaki Hirotsu
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan. .,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan. .,Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan. .,Division of Applied Medical Sensing, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
35
|
Jones KA, Eng AG, Raval P, Srivastava DP, Penzes P. Scaffold protein X11α interacts with kalirin-7 in dendrites and recruits it to Golgi outposts. J Biol Chem 2014; 289:35517-29. [PMID: 25378388 PMCID: PMC4271236 DOI: 10.1074/jbc.m114.587709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pyramidal neurons in the mammalian forebrain receive their synaptic inputs through their dendritic trees, and dendritic spines are the sites of most excitatory synapses. Dendritic spine structure is important for brain development and plasticity. Kalirin-7 is a guanine nucleotide-exchange factor for the small GTPase Rac1 and is a critical regulator of dendritic spine remodeling. The subcellular localization of kalirin-7 is thought to be important for regulating its function in neurons. A yeast two-hybrid screen has identified the adaptor protein X11α as an interacting partner of kalirin-7. Here, we show that kalirin-7 and X11α form a complex in the brain, and this interaction is mediated by the C terminus of kalirin-7. Kalirin-7 and X11α co-localize at excitatory synapses in cultured cortical neurons. Using time-lapse imaging of fluorescence recovery after photobleaching, we show that X11α is present in a mobile fraction of the postsynaptic density. X11α also localizes to Golgi outposts in dendrites, and its overexpression induces the removal of kalirin-7 from spines and accumulation of kalirin-7 in Golgi outposts. In addition, neurons overexpressing X11α displayed thinner spines. These data support a novel mechanism of regulation of kalirin-7 localization and function in dendrites, providing insight into signaling pathways underlying neuronal plasticity. Dissecting the molecular mechanisms of synaptic structural plasticity will improve our understanding of neuropsychiatric and neurodegenerative disorders, as kalirin-7 has been associated with schizophrenia and Alzheimer disease.
Collapse
Affiliation(s)
| | - Andrew G Eng
- the Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, Illinois 60611, and
| | - Pooja Raval
- the Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 9NU, United Kingdom
| | - Deepak P Srivastava
- From the Departments of Physiology and the Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 9NU, United Kingdom
| | - Peter Penzes
- From the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611,
| |
Collapse
|
36
|
Marcette JD, Chen JJ, Nonet ML. The Caenorhabditis elegans microtubule minus-end binding homolog PTRN-1 stabilizes synapses and neurites. eLife 2014; 3:e01637. [PMID: 24569480 PMCID: PMC3930908 DOI: 10.7554/elife.01637] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/17/2014] [Indexed: 12/17/2022] Open
Abstract
Microtubule dynamics facilitate neurite growth and establish morphology, but the role of minus-end binding proteins in these processes is largely unexplored. CAMSAP homologs associate with microtubule minus-ends, and are important for the stability of epithelial cell adhesions. In this study, we report morphological defects in neurons and neuromuscular defects in mutants of the C. elegans CAMSAP, ptrn-1. Mechanosensory neurons initially extend wild-type neurites, and subsequently remodel by overextending neurites and retracting synaptic branches and presynaptic varicosities. This neuronal remodeling can be activated by mutations known to alter microtubules, and depends on a functioning DLK-1 MAP kinase pathway. We found that PTRN-1 localizes to both neurites and synapses, and our results suggest that alterations of microtubule structures caused by loss of PTRN-1 function activates a remodeling program leading to changes in neurite morphology. We propose a model whereby minus-end microtubule stabilization mediated by a functional PTRN-1 is necessary for morphological maintenance of neurons. DOI: http://dx.doi.org/10.7554/eLife.01637.001.
Collapse
Affiliation(s)
- Jana Dorfman Marcette
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
| | - Jessica Jie Chen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
| | - Michael L Nonet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
37
|
Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron 2014; 80:1421-37. [PMID: 24360545 DOI: 10.1016/j.neuron.2013.10.050] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 01/22/2023]
Abstract
A primary determinant of the strength of neurotransmission is the number of AMPA-type glutamate receptors (AMPARs) at synapses. However, we still lack a mechanistic understanding of how the number of synaptic AMPARs is regulated. Here, we show that UNC-116, the C. elegans homolog of vertebrate kinesin-1 heavy chain (KIF5), modifies synaptic strength by mediating the rapid delivery, removal, and redistribution of synaptic AMPARs. Furthermore, by studying the real-time transport of C. elegans AMPAR subunits in vivo, we demonstrate that although homomeric GLR-1 AMPARs can diffuse to and accumulate at synapses in unc-116 mutants, glutamate-gated currents are diminished because heteromeric GLR-1/GLR-2 receptors do not reach synapses in the absence of UNC-116/KIF5-mediated transport. Our data support a model in which ongoing motor-driven delivery and removal of AMPARs controls not only the number but also the composition of synaptic AMPARs, and thus the strength of synaptic transmission.
Collapse
|
38
|
Abstract
Plasticity models invoke the synaptic delivery of AMPARs, yet we know little about how receptors move in vivo. In this issue of Neuron, Hoerndli et al. (2013) show that lateral diffusion and kinesin-mediated transport move AMPARs between synapses in vivo.
Collapse
Affiliation(s)
- Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
39
|
Dahlberg CL, Juo P. The WD40-repeat proteins WDR-20 and WDR-48 bind and activate the deubiquitinating enzyme USP-46 to promote the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of Caenorhabditis elegans. J Biol Chem 2013; 289:3444-56. [PMID: 24356955 DOI: 10.1074/jbc.m113.507541] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-mediated endocytosis and degradation of glutamate receptors controls their synaptic abundance and is implicated in modulating synaptic strength. The deubiquitinating enzymes (DUBs) that function in the nervous system are beginning to be defined, but the mechanisms that control DUB activity in vivo are understood poorly. We found previously that the DUB USP-46 deubiquitinates the Caenorhabditis elegans glutamate receptor GLR-1 and prevents its degradation in the lysosome. The WD40-repeat (WDR) proteins WDR20 and WDR48/UAF1 have been shown to bind to USP46 and stimulate its catalytic activity in other systems. Here we identify the C. elegans homologs of these WDR proteins and show that C. elegans WDR-20 and WDR-48 can bind and stimulate USP-46 catalytic activity in vitro. Overexpression of these activator proteins in vivo increases the abundance of GLR-1 in the ventral nerve cord, and this effect is further enhanced by coexpression of USP-46. Biochemical characterization indicates that this increase in GLR-1 abundance correlates with decreased levels of ubiquitin-GLR-1 conjugates, suggesting that WDR-20, WDR-48, and USP-46 function together to deubiquitinate and stabilize GLR-1 in neurons. Overexpression of WDR-20 and WDR-48 results in alterations in locomotion behavior consistent with increased glutamatergic signaling, and this effect is blocked in usp-46 loss-of-function mutants. Conversely, wdr-20 and wdr-48 loss-of-function mutants exhibit changes in locomotion behavior that are consistent with decreased glutamatergic signaling. We propose that WDR-20 and WDR-48 form a complex with USP-46 and stimulate the DUB to deubiquitinate and stabilize GLR-1 in vivo.
Collapse
Affiliation(s)
- Caroline L Dahlberg
- From the Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
40
|
Abstract
Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body in Drosophila, a brain structure involved in learning and memory. Axonal localization of APP is mediated by an endocytic motif, and loss of X11/Mint results in a dramatic increase in cell-surface levels of APPL, especially on dendrites. Mutations in genes required for endocytosis show similar mislocalization of these proteins to dendrites, and strongly enhance defects seen in X11/Mint mutants. These results suggest that X11/Mint-dependent endocytosis in dendrites may serve to promote the axonal localization of membrane proteins. Since X11/Mint binds to APP, and abnormal trafficking of APP contributes to Alzheimer's disease, deregulation of X11/Mint may be important for Alzheimer's disease pathogenesis.
Collapse
|
41
|
Krzyzanowski MC, Brueggemann C, Ezak MJ, Wood JF, Michaels KL, Jackson CA, Juang BT, Collins KD, Yu MC, L'Etoile ND, Ferkey DM. The C. elegans cGMP-dependent protein kinase EGL-4 regulates nociceptive behavioral sensitivity. PLoS Genet 2013; 9:e1003619. [PMID: 23874221 PMCID: PMC3708839 DOI: 10.1371/journal.pgen.1003619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/23/2013] [Indexed: 11/25/2022] Open
Abstract
Signaling levels within sensory neurons must be tightly regulated to allow cells to integrate information from multiple signaling inputs and to respond to new stimuli. Herein we report a new role for the cGMP-dependent protein kinase EGL-4 in the negative regulation of G protein-coupled nociceptive chemosensory signaling. C. elegans lacking EGL-4 function are hypersensitive in their behavioral response to low concentrations of the bitter tastant quinine and exhibit an elevated calcium flux in the ASH sensory neurons in response to quinine. We provide the first direct evidence for cGMP/PKG function in ASH and propose that ODR-1, GCY-27, GCY-33 and GCY-34 act in a non-cell-autonomous manner to provide cGMP for EGL-4 function in ASH. Our data suggest that activated EGL-4 dampens quinine sensitivity via phosphorylation and activation of the regulator of G protein signaling (RGS) proteins RGS-2 and RGS-3, which in turn downregulate Gα signaling and behavioral sensitivity.
Collapse
Affiliation(s)
- Michelle C. Krzyzanowski
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| | - Meredith J. Ezak
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jordan F. Wood
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Kerry L. Michaels
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Christopher A. Jackson
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Bi-Tzen Juang
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| | - Kimberly D. Collins
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| | - Michael C. Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Noelle D. L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
42
|
Barry J, Gu C. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels. Neuroscientist 2013; 19:145-59. [PMID: 22910031 PMCID: PMC3625366 DOI: 10.1177/1073858412456088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Joshua Barry
- The Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Chen Gu
- The Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
43
|
Xie Y, Moussaif M, Choi S, Xu L, Sze JY. RFX transcription factor DAF-19 regulates 5-HT and innate immune responses to pathogenic bacteria in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003324. [PMID: 23505381 PMCID: PMC3591283 DOI: 10.1371/journal.pgen.1003324] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/04/2013] [Indexed: 02/06/2023] Open
Abstract
In Caenorhabditis elegans the Toll-interleukin receptor domain adaptor protein TIR-1 via a conserved mitogen-activated protein kinase (MAPK) signaling cascade induces innate immunity and upregulates serotonin (5-HT) biosynthesis gene tph-1 in a pair of ADF chemosensory neurons in response to infection. Here, we identify transcription factors downstream of the TIR-1 signaling pathway. We show that common transcription factors control the innate immunity and 5-HT biosynthesis. We demonstrate that a cysteine to tyrosine substitution in an ARM motif of the HEAT/Arm repeat region of the TIR-1 protein confers TIR-1 hyperactivation, leading to constitutive tph-1 upregulation in the ADF neurons, increased expression of intestinal antimicrobial genes, and enhanced resistance to killing by the human opportunistic pathogen Pseudomonas aeruginosa PA14. A forward genetic screen for suppressors of the hyperactive TIR-1 led to the identification of DAF-19, an ortholog of regulatory factor X (RFX) transcription factors that are required for human adaptive immunity. We show that DAF-19 concerts with ATF-7, a member of the activating transcription factor (ATF)/cAMP response element-binding B (CREB) family of transcription factors, to regulate tph-1 and antimicrobial genes, reminiscent of RFX-CREB interaction in human immune cells. daf-19 mutants display heightened susceptibility to killing by PA14. Remarkably, whereas the TIR-1-MAPK-DAF-19/ATF-7 pathway in the intestinal immunity is regulated by DKF-2/protein kinase D, we found that the regulation of tph-1 expression is independent of DKF-2 but requires UNC-43/Ca2+/calmodulin-dependent protein kinase (CaMK) II. Our results suggest that pathogenic cues trigger a common core-signaling pathway via tissue-specific mechanisms and demonstrate a novel role for RFX factors in neuronal and innate immune responses to infection. Toll-interleukin receptor (TIR)–domain adaptor proteins are keys to activate signaling cascades inducing transcriptional responses to internal and external pathogenic signals in evolutionary disparate organisms. Despite lacking a homolog of the mammalian innate immunity transcriptional regulator nuclear factor-kappaB (NF-κB), the nematode Caenorhabditis elegans responds to infections by activating TIR-1 signaling targets in the innate immune system and in neurons. Through a genetic screen for factors required for TIR-1 signaling to upregulate the serotonin biosynthesis gene tph-1, we identified DAF-19, an ortholog of regulatory factor X (RFX) transcription factors that were initially discovered in human immune cells. We show that DAF-19 concerts with ATF-7, a member of the activating transcription factor (ATF)/cAMP response element-binding B (CREB) family of transcription factors, to upregulate tph-1 in the ADF chemosensory neurons and antimicrobial genes in the intestine in response to bacterial infection, reminiscent of RFX-CREB interaction in human immune cells. daf-19 mutants display heightened susceptibility to killing by the human pathogen Pseudomonas aeruginosa PA14. Our studies suggest that RFX transcriptional regulation, which is essential for human adaptive immunity, has an ancient role in controlling serotonin biosynthesis and innate immunity.
Collapse
Affiliation(s)
| | | | | | | | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Lau HL, Timbers TA, Mahmoud R, Rankin CH. Genetic dissection of memory for associative and non-associative learning inCaenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2012; 12:210-23. [DOI: 10.1111/j.1601-183x.2012.00863.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/30/2012] [Accepted: 09/22/2012] [Indexed: 01/20/2023]
|
45
|
Monteiro MI, Ahlawat S, Kowalski JR, Malkin E, Koushika SP, Juo P. The kinesin-3 family motor KLP-4 regulates anterograde trafficking of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans. Mol Biol Cell 2012; 23:3647-62. [PMID: 22855524 PMCID: PMC3442412 DOI: 10.1091/mbc.e12-04-0334] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transport of glutamate receptors from the cell body to synapses is essential during neuronal development and may contribute to the regulation of synaptic strength in the mature nervous system. We previously showed that cyclin-dependent kinase-5 (CDK-5) positively regulates the abundance of GLR-1 glutamate receptors at synapses in the ventral nerve cord (VNC) of Caenorhabditis elegans. Here we identify a kinesin-3 family motor klp-4/KIF13 in a cdk-5 suppressor screen for genes that regulate GLR-1 trafficking. klp-4 mutants have decreased abundance of GLR-1 in the VNC. Genetic analysis of klp-4 and the clathrin adaptin unc-11/AP180 suggests that klp-4 functions before endocytosis in the ventral cord. Time-lapse microscopy indicates that klp-4 mutants exhibit decreased anterograde flux of GLR-1. Genetic analysis of cdk-5 and klp-4 suggests that they function in the same pathway to regulate GLR-1 in the VNC. Interestingly, GLR-1 accumulates in cell bodies of cdk-5 but not klp-4 mutants. However, GLR-1 does accumulate in klp-4-mutant cell bodies if receptor degradation in the multivesicular body/lysosome pathway is blocked. This study identifies kinesin KLP-4 as a novel regulator of anterograde glutamate receptor trafficking and reveals a cellular control mechanism by which receptor cargo is targeted for degradation in the absence of its motor.
Collapse
Affiliation(s)
- Michael I Monteiro
- Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sem X, Kreisberg JF, Kawli T, Tan MW, Rhen M, Tan P. Modulation of Caenorhabditis elegans infection sensitivity by the LIN-7 cell junction protein. Cell Microbiol 2012; 14:1584-99. [PMID: 22672310 PMCID: PMC3470699 DOI: 10.1111/j.1462-5822.2012.01824.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 12/03/2022]
Abstract
In Caenorhabditis elegans, the LIN-2/7/10 protein complex regulates the activity of signalling proteins. We found that inhibiting lin-7 function, and also lin-2 and lin-10, resulted in enhanced C. elegans survival after infection by Burkholderia spp., implicating a novel role for these genes in modulating infection outcomes. Genetic experiments suggested that this infection phenotype is likely caused by modulation of the DAF-2 insulin/IGF-1 signalling pathway. Supporting these observations, yeast two-hybrid assays confirmed that the LIN-2 PDZ domain can physically bind to the DAF-2 C-terminus. Loss of lin-7 activity also altered DAF-16 nuclear localization kinetics, indicating an additional contribution by hsf-1. Unexpectedly, silencing lin-7 in the hypodermis, but not the intestine, was protective against infection, implicating the hypodermis as a key tissue in this phenomenon. Finally, consistent with lin-7 acting as a general host infection factor, lin-7 mutants also exhibited enhanced survival upon infectionby two other Gram-negative pathogens, Pseudomonas and Salmonella spp.
Collapse
Affiliation(s)
- Xiaohui Sem
- Genome Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
47
|
A role for α-adducin (ADD-1) in nematode and human memory. EMBO J 2012; 31:1453-66. [PMID: 22307086 DOI: 10.1038/emboj.2012.14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/05/2012] [Indexed: 12/17/2022] Open
Abstract
Identifying molecular mechanisms that underlie learning and memory is one of the major challenges in neuroscience. Taken the advantages of the nematode Caenorhabditis elegans, we investigated α-adducin (add-1) in aversive olfactory associative learning and memory. Loss of add-1 function selectively impaired short- and long-term memory without causing acquisition, sensory, or motor deficits. We showed that α-adducin is required for consolidation of synaptic plasticity, for sustained synaptic increase of AMPA-type glutamate receptor (GLR-1) content and altered GLR-1 turnover dynamics. ADD-1, in a splice-form- and tissue-specific manner, controlled the storage of memories presumably through actin-capping activity. In support of the C. elegans results, genetic variability of the human ADD1 gene was significantly associated with episodic memory performance in healthy young subjects. Finally, human ADD1 expression in nematodes restored loss of C. elegans add-1 gene function. Taken together, our findings support a role for α-adducin in memory from nematodes to humans. Studying the molecular and genetic underpinnings of memory across distinct species may be helpful in the development of novel strategies to treat memory-related diseases.
Collapse
|
48
|
Hypoxia regulates glutamate receptor trafficking through an HIF-independent mechanism. EMBO J 2012; 31:1379-93. [PMID: 22252129 DOI: 10.1038/emboj.2011.499] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/23/2011] [Indexed: 12/14/2022] Open
Abstract
Oxygen influences behaviour in many organisms, with low levels (hypoxia) having devastating consequences for neuron survival. How neurons respond physiologically to counter the effects of hypoxia is not fully understood. Here, we show that hypoxia regulates the trafficking of the glutamate receptor GLR-1 in C. elegans neurons. Either hypoxia or mutations in egl-9, a prolyl hydroxylase cellular oxygen sensor, result in the internalization of GLR-1, the reduction of glutamate-activated currents, and the depression of GLR-1-mediated behaviours. Surprisingly, hypoxia-inducible factor (HIF)-1, the canonical substrate of EGL-9, is not required for this effect. Instead, EGL-9 interacts with the Mint orthologue LIN-10, a mediator of GLR-1 membrane recycling, to promote LIN-10 subcellular localization in an oxygen-dependent manner. The observed effects of hypoxia and egl-9 mutations require the activity of the proline-directed CDK-5 kinase and the CDK-5 phosphorylation sites on LIN-10, suggesting that EGL-9 and CDK-5 compete in an oxygen-dependent manner to regulate LIN-10 activity and thus GLR-1 trafficking. Our findings demonstrate a novel mechanism by which neurons sense and respond to hypoxia.
Collapse
|
49
|
Zhang D, Isack NR, Glodowski DR, Liu J, Chen CCH, Xu XZS, Grant BD, Rongo C. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. ACTA ACUST UNITED AC 2012; 196:85-101. [PMID: 22213799 PMCID: PMC3255976 DOI: 10.1083/jcb.201104141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RAB-6.2, its effector LIN-10, and the retromer complex maintain synaptic strength by recycling postsynaptic glutamate receptors along the retrograde transport pathway. Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2, the retromer genes vps-35 and snx-1, and rme-8 failed to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. In contrast, expression of constitutively active RAB-6.2 drove the retrograde transport of GLR-1 from dendrites back to cell body Golgi. We also find that activated RAB-6.2 bound to and colocalized with the PDZ/phosphotyrosine binding domain protein LIN-10. RAB-6.2 recruited LIN-10. Moreover, the regulation of GLR-1 transport by RAB-6.2 required LIN-10 activity. Our results demonstrate a novel role for RAB-6.2, its effector LIN-10, and the retromer complex in maintaining synaptic strength by recycling AMPARs along the retrograde transport pathway.
Collapse
Affiliation(s)
- Donglei Zhang
- The Waksman Institute, Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ezak MJ, Ferkey DM. A functional nuclear localization sequence in the C. elegans TRPV channel OCR-2. PLoS One 2011; 6:e25047. [PMID: 21957475 PMCID: PMC3177883 DOI: 10.1371/journal.pone.0025047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/23/2011] [Indexed: 01/31/2023] Open
Abstract
The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated.
Collapse
Affiliation(s)
- Meredith J. Ezak
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|