1
|
Ashworth A. Thirty years since the race to the BRCA1 gene. Nature 2024; 634:1062-1063. [PMID: 39478204 DOI: 10.1038/d41586-024-03358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
|
2
|
Talibova G, Bilmez Y, Tire B, Ozturk S. The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages. J Assist Reprod Genet 2024; 41:2419-2439. [PMID: 39023827 PMCID: PMC11405603 DOI: 10.1007/s10815-024-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (β-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT β-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
3
|
Zhai Z, Cui Z, Zhang Y, Song P, Wu J, Tan Z, Lin S, Ma X, Guan F, Kang H. Integrated pan-cancer analysis and experimental verification of the roles of meiotic nuclear divisions 1 in breast cancer. Biochem Biophys Res Commun 2024; 739:150600. [PMID: 39191147 DOI: 10.1016/j.bbrc.2024.150600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION The aberrant up-regulation of meiotic nuclear division 1 (MND1) in somatic cells is considered as one of the driving factors of oncogenesis, whereas its expression and role in breast invasive cancer (BRCA) remain unclear. Hence, this study embarked on a comprehensive evaluation of MND1 across various cancers and identified its roles in BRCA. METHODS Based on publicly available databases, including but not limited to UCSC Xena, TCGA, GTEx, GEO, STRING, GeneMANIA, and CancerSEA, we evaluated the expression patterns, genomic features, and biological functions of MND1 from a pan-cancer viewpoint and delved into the implications of MND1 in the prognosis and treatment of BRCA. Further molecular biology experiments were undertaken to identify the role of MND1 in proliferation, migration, and apoptosis in BRCA cells. RESULTS Elevated levels of MND1 were notably observed in a wide array of tumor types, especially in BRCA, COAD, HNSC, LIHC, LUAD, LUSC, STAD, and UCEC. Elevated MND1 expression was markedly associated with shortened OS in several tumors, including BRCA (HR = 1.52 [95%CI, 1.10-2.09], P = 0.011). The up-regulation of MND1 in BRCA was validated in external cohorts and clinical samples. Survival analyses demonstrated that elevated MND1 expression was associated with decreased survival for patients with BRCA. Co-expressed genes of MND1 were identified, and subsequent pathway analyses based on significantly associated genes indicated that MND1 plays key roles in DNA replication, cell cycle regulation, and DNA damage repair. The observed abnormal elevation and activation of MND1 led to increased proliferation and migration, along with decreased apoptosis in BRCA cells. CONCLUSIONS MND1 emerges as a promising biomarker for diagnostic and therapeutic targeting in various cancers, including BRCA. The abnormal up-regulation and activation of MND1 are linked to carcinogenesis and poor prognosis among BRCA patients, which may be attributed to its involvement in HR-dependent ALT, warranting further scrutiny.
Collapse
Affiliation(s)
- Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China; Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi' an, China
| | - Yu Zhang
- Department of Infectious Diseases, Honghui-hospital, Xi'an Jiaotong University, Shanghua Road, Xi'an, China
| | - Ping Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 157, West Fifth Road, Xi'an, China
| | - Jinpeng Wu
- College of Life Sciences, Northwest University, No. 229, Taibai North Road, Xi'an, China
| | - Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, No. 229, Taibai North Road, Xi'an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China; Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China; Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China
| | - Feng Guan
- College of Life Sciences, Northwest University, No. 229, Taibai North Road, Xi'an, China.
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China; Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China.
| |
Collapse
|
4
|
Feng P, Wang Y, Liu N, Chen Y, Hu Y, Huang Z, Liu Y, Zheng S, Jiang T, Xiao X, Dai W, Huang P, Xia Y. High expression of PPP1CC promotes NHEJ-mediated DNA repair leading to radioresistance and poor prognosis in nasopharyngeal carcinoma. Cell Death Differ 2024; 31:683-696. [PMID: 38589496 PMCID: PMC11094031 DOI: 10.1038/s41418-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Ping Feng
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ying Wang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Na Liu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yanming Chen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yujun Hu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zilu Huang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ya Liu
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shuohan Zheng
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tongchao Jiang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang Xiao
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (SAR), China
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Metabolic Innovation Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Yunfei Xia
- State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Bastos IM, Rebelo S, Silva VLM. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem Pharmacol 2024; 221:116045. [PMID: 38336156 DOI: 10.1016/j.bcp.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Cancer is a disease with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. The hallmarks of cancer evidence the acquired cells characteristics that promote the growth of malignant tumours, including genomic instability and mutations, the ability to evade cellular death and the capacity of sustaining proliferative signalization. Poly(ADP-ribose) polymerase-1 (PARP1) is a protein that plays key roles in cellular regulation, namely in DNA damage repair and cell survival. The inhibition of PARP1 promotes cellular death in cells with homologous recombination deficiency, and therefore, the interest in PARP protein has been rising as a target for anticancer therapies. There are already some PARP1 inhibitors approved by Food and Drug Administration (FDA), such as Olaparib and Niraparib. The last compound presents in its structure an indazole core. In fact, pyrazoles and indazoles have been raising interest due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as inhibitors of PARP1 and presented promising results. Therefore, this review aims to address the importance of PARP1 in cell regulation and its role in cancer. Moreover, it intends to report a comprehensive literature review of PARP1 inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PARP1 inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Hecht F, Zocchi M, Alimohammadi F, Harris IS. Regulation of antioxidants in cancer. Mol Cell 2024; 84:23-33. [PMID: 38029751 PMCID: PMC10843710 DOI: 10.1016/j.molcel.2023.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Scientists in this field often joke, "If you don't have a mechanism, say it's ROS." Seemingly connected to every biological process ever described, reactive oxygen species (ROS) have numerous pleiotropic roles in physiology and disease. In some contexts, ROS act as secondary messengers, controlling a variety of signaling cascades. In other scenarios, they initiate damage to macromolecules. Finally, in their worst form, ROS are deadly to cells and surrounding tissues. A set of molecules with detoxifying abilities, termed antioxidants, is the direct counterpart to ROS. Notably, antioxidants exist in the public domain, touted as a "cure-all" for diseases. Research has disproved many of these claims and, in some cases, shown the opposite. Of all the diseases, cancer stands out in its paradoxical relationship with antioxidants. Although the field has made numerous strides in understanding the roles of antioxidants in cancer, many questions remain.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fatemeh Alimohammadi
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
7
|
Minello A, Carreira A. BRCA1/2 Haploinsufficiency: Exploring the Impact of Losing one Allele. J Mol Biol 2024; 436:168277. [PMID: 37714298 DOI: 10.1016/j.jmb.2023.168277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Since their discovery in the late 20th century, significant progress has been made in elucidating the functions of the tumor suppressor proteins BRCA1 and BRCA2. These proteins play vital roles in maintaining genome integrity, including DNA repair, replication fork protection, and chromosome maintenance. It is well-established that germline mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancer; however, the precise mechanism underlying tumor formation in this context is not fully understood. Contrary to the long-standing belief that the loss of the second wild-type allele is necessary for tumor development, a growing body of evidence suggests that tumorigenesis can occur despite the presence of a single functional allele. This entails that heterozygosity in BRCA1/2 confers haploinsufficiency, where a single copy of the gene is not sufficient to fully suppress tumor formation. Here we provide an overview of the findings and the ongoing debate regarding BRCA haploinsufficiency. We further put out the challenges in studying this topic and discuss its potential relevance in the prevention and treatment of BRCA-related cancers.
Collapse
Affiliation(s)
- Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France; Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
8
|
Bao S, Sun N, Li Y, Shu J, Xu J, Zhang Y, Qiu X. BRCA mutation status and pathological characterization of breast cancer in Zhoushan Islands, China. J Int Med Res 2024; 52:3000605231223426. [PMID: 38263931 PMCID: PMC10807394 DOI: 10.1177/03000605231223426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE To investigate BRCA1/2 gene mutations and their relationship with clinicopathological features in patients with breast cancer in Zhoushan Islands. METHODS High-throughput whole-exome gene sequencing was used to detect BRCA1/2 mutations in 776 breast cancer patients in Zhoushan Islands. RESULTS The BRCA1/2 mutation rate of breast cancer patients in Zhoushan Islands was 4.38% (34/776). BRCA1 mutations were significantly correlated with age, molecular type, and family history of breast and ovarian cancers. BRCA2 mutations were most commonly found in invasive lobular carcinoma. Moreover, the BRCA2 mutation rate of cancers with molecular type luminal B (receptor protein-tyrosine kinase [HER2]-negative) was also relatively high. CONCLUSION The rate of BRCA1/2 mutations in breast cancer patients from Zhoushan Islands is approximately 4.38%, and BRCA1 mutation is related to age, molecular type, and family history of breast and ovarian cancers.
Collapse
Affiliation(s)
- Shuhui Bao
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
- Department of Breast Surgery, Zhoushan Hospital, Zhejiang, China
| | - Nini Sun
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Yaling Li
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Jiaojie Shu
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Jing Xu
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Yong Zhang
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xia Qiu
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| |
Collapse
|
9
|
Nagy G, Diabate M, Banerjee T, Adamovich AI, Smith N, Jeon H, Dhar S, Liu W, Burgess K, Chung D, Starita LM, Parvin JD. Multiplexed assay of variant effect reveals residues of functional importance in the BRCA1 coiled-coil and serine cluster domains. PLoS One 2023; 18:e0293422. [PMID: 37917606 PMCID: PMC10621863 DOI: 10.1371/journal.pone.0293422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Delineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation. Here we employ a homology-directed repair (HDR) reporter assay to evaluate over 300 missense and nonsense BRCA1 variants between amino acid residues 1280 and 1576, which encompasses the coiled-coil and serine cluster domains. Functionally abnormal variants tended to cluster in residues known to interact with PALB2, which is critical for homology-directed repair. Multiplexed results were confirmed by singleton assay and by ClinVar database variant interpretations. Comparison of multiplexed results to designated benign or likely benign or pathogenic or likely pathogenic variants in the ClinVar database yielded 100% specificity and 100% sensitivity of the multiplexed assay. Clinicians can reference the results of this functional assay for help in guiding cancer treatment and surveillance options. These results are the first to evaluate this domain of BRCA1 using a multiplexed approach and indicate the importance of this domain in the DNA repair process.
Collapse
Affiliation(s)
- Gregory Nagy
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Mariame Diabate
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Aleksandra I. Adamovich
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Nahum Smith
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Hyeongseon Jeon
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Shruti Dhar
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Wenfang Liu
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Katherine Burgess
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Jeffrey D. Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
10
|
Wang M, Li W, Tomimatsu N, Yu CH, Ji JH, Alejo S, Witus SR, Alimbetov D, Fitzgerald O, Wu B, Wang Q, Huang Y, Gan Y, Dong F, Kwon Y, Sareddy GR, Curiel TJ, Habib AA, Hromas R, Dos Santos Passos C, Yao T, Ivanov DN, Brzovic PS, Burma S, Klevit RE, Zhao W. Crucial roles of the BRCA1-BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair. Mol Cell 2023; 83:3679-3691.e8. [PMID: 37797621 PMCID: PMC10591799 DOI: 10.1016/j.molcel.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Corey H Yu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Salvador Alejo
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Samuel R Witus
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dauren Alimbetov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - O'Taveon Fitzgerald
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qijing Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yaqi Gan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Felix Dong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gangadhara R Sareddy
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tyler J Curiel
- Geisel School of Medicine at Dartmouth and Department of Medicine, Dartmouth Health, Lebanon, NH 03765, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Hromas
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Carolina Dos Santos Passos
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Han Y, Rovella V, Smirnov A, Buonomo OC, Mauriello A, Perretta T, Shi Y, Woodmsith J, Bischof J, Melino G, Candi E, Bernassola F. A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient. Cell Death Discov 2023; 9:370. [PMID: 37813891 PMCID: PMC10562433 DOI: 10.1038/s41420-023-01651-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Department of Ophthalmology, The Affiliated Hospital of Jiangnan University, 214000, Wuxi, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tommaso Perretta
- Department of Diagnostic Imaging and Interventional Radiology, Policlinico Tor Vergata University, Rome, 00133, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | | | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
12
|
Wu D, Huang H, Chen T, Gai X, Li Q, Wang C, Yao J, Liu Y, Cai S, Yu X. The BRCA1/BARD1 complex recognizes pre-ribosomal RNA to facilitate homologous recombination. Cell Discov 2023; 9:99. [PMID: 37789001 PMCID: PMC10547766 DOI: 10.1038/s41421-023-00590-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/16/2023] [Indexed: 10/05/2023] Open
Abstract
The BRCA1/BARD1 complex plays a key role in the repair of DNA double-strand breaks (DSBs) in both somatic cells and germ cells. However, the underlying molecular mechanism by which this complex mediates DSB repair is not fully understood. Here, we examined the XY body of male germ cells, where DSBs are accumulated. We show that the recruitment of the BRCA1/BARD1 complex to the unsynapsed axis of the XY body is mediated by pre-ribosomal RNA (pre-rRNA). Similarly, the BRCA1/BARD1 complex associates with pre-rRNA in somatic cells, which not only forms nuclear foci in response to DSBs, but also targets the BRCA1/BARD1 complex to DSBs. The interactions between the BRCT domains of the BRCA1/BARD1 complex and pre-rRNA induce liquid-liquid phase separations, which may be the molecular basis of DSB-induced nuclear foci formation of the BRCA1/BARD1 complex. Moreover, cancer-associated mutations in the BRCT domains of BRCA1 and BARD1 abolish their interactions with pre-rRNA. Pre-rRNA also mediates BRCA1-dependent homologous recombination, and suppression of pre-rRNA biogenesis sensitizes cells to PARP inhibitor treatment. Collectively, this study reveals that pre-rRNA is a functional partner of the BRCA1/BARD1 complex in the DSB repair.
Collapse
Affiliation(s)
- Duo Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Huang Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tenglong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochen Gai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qilin Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chunhui Wang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jia Yao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shang Cai
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Zhong AX, Chen Y, Chen PL. BRCA1 the Versatile Defender: Molecular to Environmental Perspectives. Int J Mol Sci 2023; 24:14276. [PMID: 37762577 PMCID: PMC10532398 DOI: 10.3390/ijms241814276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The evolving history of BRCA1 research demonstrates the profound interconnectedness of a single protein within the web of crucial functions in human cells. Mutations in BRCA1, a tumor suppressor gene, have been linked to heightened breast and ovarian cancer risks. However, despite decades of extensive research, the mechanisms underlying BRCA1's contribution to tissue-specific tumor development remain elusive. Nevertheless, much of the BRCA1 protein's structure, function, and interactions has been elucidated. Individual regions of BRCA1 interact with numerous proteins to play roles in ubiquitination, transcription, cell checkpoints, and DNA damage repair. At a cellular scale, these BRCA1 functions coordinate tumor suppression, R-loop prevention, and cellular differentiation, all of which may contribute to BRCA1's role in cancer tissue specificity. As research on BRCA1 and breast cancer continues to evolve, it will become increasingly evident that modern materials such as Bisphenol A should be examined for their relationship with DNA stability, cancer incidence, and chemotherapy. Overall, this review offers a comprehensive understanding of BRCA1's many roles at a molecular, cellular, organismal, and environmental scale. We hope that the knowledge gathered here highlights both the necessity of BRCA1 research and the potential for novel strategies to prevent and treat cancer in individuals carrying BRCA1 mutations.
Collapse
Affiliation(s)
- Amy X. Zhong
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Irvine, CA 92697, USA;
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Park J, Kim JY, Park JW, Kang JY, Oh H, Hahm J, Chae YC, Chakravarti D, Seo S. INHAT subunit SET/TAF-Iβ regulates PRC1-independent H2AK119 mono-ubiquitination via E3 ligase MIB1 in colon cancer. NAR Cancer 2023; 5:zcad050. [PMID: 37746636 PMCID: PMC10516711 DOI: 10.1093/narcan/zcad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
SET/TAF-Iβ, a subunit of the inhibitor of acetyltransferases (INHAT) complex, exhibits transcriptional repression activity by inhibiting histone acetylation. We find that SET/TAF-Iβ regulates mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), which is involved in polycomb-mediated transcriptional repression, in HCT116 cells. In this report, we demonstrate that SET/TAF-Iβ acts as an E2 ubiquitin-conjugating enzyme for PRC1-independent H2AK119ub. Furthermore, we identify that MIB1 is the E3 ligase partner for SET/TAF-Iβ using LC-MS/MS and in vitro ubiquitination assays. Transcriptome analysis reveals that SET/TAF-Iβ and MIB1 regulate the expression of genes related to DNA replication and cell cycle progression in HCT116 cells, and knockdown of either protein reduces proliferation of HCT116 cells by impeding cell cycle progression. Together, our study reveals a novel PRC1-independent epigenetic regulatory mechanism for H2AK119ub by SET/TAF-Iβ and MIB1 in colon cancer.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joo Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyein Oh
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Cheol Chae
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
Dilmac S, Ozpolat B. Mechanisms of PARP-Inhibitor-Resistance in BRCA-Mutated Breast Cancer and New Therapeutic Approaches. Cancers (Basel) 2023; 15:3642. [PMID: 37509303 PMCID: PMC10378018 DOI: 10.3390/cancers15143642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recent success of Poly (ADP-ribose) polymerase (PARP) inhibitors has led to the approval of four different PARP inhibitors for the treatment of BRCA1/2-mutant breast and ovarian cancers. About 40-50% of BRCA1/2-mutated patients do not respond to PARP inhibitors due to a preexisting innate or intrinsic resistance; the majority of patients who initially respond to the therapy inevitably develop acquired resistance. However, subsets of patients experience a long-term response (>2 years) to treatment with PARP inhibitors. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that plays an important role in the recognition and repair of DNA damage. PARP inhibitors induce "synthetic lethality" in patients with tumors with a homologous-recombination-deficiency (HRD). Several molecular mechanisms have been identified as causing PARP-inhibitor-resistance. In this review, we focus on the molecular mechanisms underlying the PARP-inhibitor-resistance in BRCA-mutated breast cancer and summarize potential therapeutic strategies to overcome the resistance mechanisms.
Collapse
Affiliation(s)
- Sayra Dilmac
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Xu W, Liu L, Cui Z, Li M, Ni J, Huang N, Zhang Y, Luo J, Sun L, Sun F. Identification of key enzalutamide-resistance-related genes in castration-resistant prostate cancer and verification of RAD51 functions. Open Med (Wars) 2023; 18:20230715. [PMID: 37251536 PMCID: PMC10224628 DOI: 10.1515/med-2023-0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Patients with castration-resistant prostate cancer (CRPC) often develop drug resistance after treatment with enzalutamide. The goal of our study was to identify the key genes related to enzalutamide resistance in CRPC and to provide new gene targets for future research on improving the efficacy of enzalutamide. Differential expression genes (DEGs) associated with enzalutamide were obtained from the GSE151083 and GSE150807 datasets. We used R software, the DAVID database, protein-protein interaction networks, the Cytoscape program, and Gene Set Cancer Analysis for data analysis. The effect of RAD51 knockdown on prostate cancer (PCa) cell lines was demonstrated using Cell Counting Kit-8, clone formation, and transwell migration experiments. Six hub genes with prognostic values were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which were significantly associated with immune cell infiltration in PCa. High RAD51, BLM, EXO1, and RFC2 expression was associated with androgen receptor signaling pathway activation. Except for APOE, high expression of hub genes showed a significant negative correlation with the IC50 of Navitoclax and NPK76-II-72-1. RAD51 knockdown inhibited the proliferation and migration of PC3 and DU145 cell lines and promoted apoptosis. Additionally, 22Rv1 cell proliferation was more significantly inhibited with RAD51 knockdown than without RAD51 knockdown under enzalutamide treatment. Overall, six key genes associated with enzalutamide resistance were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which are potential therapeutic targets for enzalutamide-resistant PCa in the future.
Collapse
Affiliation(s)
- Wen Xu
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Liu
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Mingyang Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Jie Luo
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Fenyong Sun
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Shanghai Clinical College, Anhui Medical University, No. 301, Yanchang Middle Road, Jingan District, Shanghai, 200072, China
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, No. 301, Yanchang Middle Road, Jingan District, 200072, Shanghai, China
| |
Collapse
|
17
|
Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed Pharmacother 2023; 158:114090. [PMID: 36493696 DOI: 10.1016/j.biopha.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in breast cancer-associated 1 (BRCA1) increase the lifetime risk of developing breast cancer by up to 51% over the risk of the general population. Many aspects of this multifunctional protein have been revealed, including its essential role in homologous recombination repair, E3 ubiquitin ligase activity, transcriptional regulation, and apoptosis. Although most studies have focused on BRCA1 deficiency due to mutations, only a minority of patients carry BRCA1 mutations. A recent study has suggested an expanded definition of BRCA1 deficiency with reduced BRCA1 levels, which accounts for almost half of all triple-negative breast cancer (TNBC) patients. Reduced BRCA1 levels can result from epigenetic modifications or increased proteasomal degradation. In this review, we discuss how this knowledge of BRCA1 function and regulation of BRCA1 protein stability can help overcome the challenges encountered in the clinic and advance current treatment strategies for BRCA1-related breast cancer patients, especially focusing on TNBC.
Collapse
Affiliation(s)
- Eun Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gil-Im Mun
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
18
|
Ibnat N, Chowdhury EH. Retarding breast tumor growth with nanoparticle-facilitated intravenous delivery of BRCA1 and BRCA2 tumor suppressor genes. Sci Rep 2023; 13:536. [PMID: 36631481 PMCID: PMC9834397 DOI: 10.1038/s41598-022-25511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Gene augmentation therapy entails replacement of the abnormal tumor suppressor genes in cancer cells. In this study, we performed gene augmentation for BRCA1/2 tumor suppressors in order to retard tumor development in breast cancer mouse model. We formulated inorganic carbonate apatite (CA) nanoparticles (NPs) to carry and deliver the purified BRCA1/2 gene- bearing plasmid DNA both in vitro and in vivo. The outcome of BRCA1/2 plasmid-loaded NPs delivery on cellular viability of three breast cancer cell lines such as MCF-7, MDA-MB-231 and 4T1 were evaluated by MTT assay. The result in MCF-7 cell line exhibited that transfection of BRCA 1/2 plasmids with CA NPs significantly reduced cancer cell growth in comparison to control group. Moreover, we noticed a likely pattern of cellular cytotoxicity in 4T1 murine cancer cell line. Following transfection with BRCA1 plasmid-loaded NPs, and Western blot analysis, a notable reduction in the phospho-MAPK protein of MAPK signaling pathway was detected, revealing reduced growth signal. Furthermore, in vivo study in 4T1 induced breast cancer mouse model showed that the tumor growth rate and final volume were decreased significantly in the mouse group treated intravenously with BRCA1 + NPs and BRCA2 + NPs formulations. Our results established that BRCA1/2 plasmids incorporated into CA NPs mitigated breast tumor growth, signifying their application in the therapy for breast cancer.
Collapse
Affiliation(s)
- Nabilah Ibnat
- grid.440425.30000 0004 1798 0746Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia ,grid.22448.380000 0004 1936 8032Department of Bioengineering, George Mason University, Fairfax, VA 20110 USA
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| |
Collapse
|
19
|
Kim J, Jeong K, Jun H, Kim K, Bae JM, Song MG, Yi H, Park S, Woo GU, Lee DW, Kim TY, Lee KH, Im SA. Mutations of TP53 and genes related to homologous recombination repair in breast cancer with germline BRCA1/2 mutations. Hum Genomics 2023; 17:2. [PMID: 36604691 PMCID: PMC9817339 DOI: 10.1186/s40246-022-00447-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Germline mutations of breast cancer susceptibility gene BRCA1 and BRCA2 (gBRCA1/2) are associated with elevated risk of breast cancer in young women in Asia. BRCA1 and BRCA2 proteins contribute to genomic stability through homologous recombination (HR)-mediated double-strand DNA break repair in cooperation with other HR-related proteins. In this study, we analyzed the targeted sequencing data of Korean breast cancer patients with gBRCA1/2 mutations to investigate the alterations in HR-related genes and their clinical implications. MATERIALS AND METHODS Data of the breast cancer patients with pathogenic gBRCA1/2 mutations and qualified targeted next-generation sequencing, SNUH FiRST cancer panel, were analyzed. Single nucleotide polymorphisms, small insertions, and deletions were analyzed with functional annotations using ANNOVAR. HR-related genes were defined as ABL1, ATM, ATR, BARD1, BRCA1, BRCA2, CDKN1A, CDKN2A, CHEK1, CHEK2, FANCA, FANCD2, FANCG, FANCI, FANCL, KDR, MUTYH, PALB2, POLE, POLQ, RAD50, RAD51, RAD51D, RAD54L, and TP53. Mismatch-repair genes were MLH1, MSH2, and MSH6. Clinical data were analyzed with cox proportional hazard models and survival analyses. RESULTS Fifty-five Korean breast cancer patients with known gBRCA1/2 mutations and qualified targeted NGS data were analyzed. Ethnically distinct mutations in gBRCA1/2 genes were noted, with higher frequencies of Val1833Ser (14.8%), Glu1210Arg (11.1%), and Tyr130Ter (11.1%) in gBRCA1 and Arg2494Ter (25.0%) and Lys467Ter (14.3%) in gBRCA2. Considering subtypes, gBRCA1 mutations were associated with triple-negative breast cancers (TNBC), while gBRCA2 mutations were more likely hormone receptor-positive breast cancers. At least one missense mutation of HR-related genes was observed in 44 cases (80.0%). The most frequently co-mutated gene was TP53 (38.1%). In patients with gBRCA1/2 mutations, however, genetic variations of TP53 occurred in locations different from the known hotspots of those with sporadic breast cancers. The patients with both gBRCA1/2 and TP53 mutations were more likely to have TNBC, high Ki-67 values, and increased genetic mutations, especially of HR-related genes. Survival benefit was observed in the TP53 mutants of patients with gBRCA2 mutations, compared to those with TP53 wild types. CONCLUSION Our study showed genetic heterogeneity of breast cancer patients with gBRCA1 and gBRCA2 mutations in the Korean populations. Further studies on precision medicine are needed for tailored treatments of patients with genetic diversity among different ethnic groups.
Collapse
Affiliation(s)
- Jinyong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyeonghun Jeong
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeji Jun
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Myung Geun Song
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hanbaek Yi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Songyi Park
- Division of Hematology/Oncology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Go-Un Woo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dae-Won Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae-Yong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
21
|
Abe H, Yeh YH, Munakata Y, Ishiguro KI, Andreassen PR, Namekawa SH. Active DNA damage response signaling initiates and maintains meiotic sex chromosome inactivation. Nat Commun 2022; 13:7212. [PMID: 36443288 PMCID: PMC9705562 DOI: 10.1038/s41467-022-34295-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential process in the male germline. While genetic experiments have established that the DNA damage response (DDR) pathway directs MSCI, due to limitations to the experimental systems available, mechanisms underlying MSCI remain largely unknown. Here we establish a system to study MSCI ex vivo, based on a short-term culture method, and demonstrate that active DDR signaling is required both to initiate and maintain MSCI via a dynamic and reversible process. DDR-directed MSCI follows two layers of modifications: active DDR-dependent reversible processes and irreversible histone post-translational modifications. Further, the DDR initiates MSCI independent of the downstream repressive histone mark H3K9 trimethylation (H3K9me3), thereby demonstrating that active DDR signaling is the primary mechanism of silencing in MSCI. By unveiling the dynamic nature of MSCI, and its governance by active DDR signals, our study highlights the sex chromosomes as an active signaling hub in meiosis.
Collapse
Affiliation(s)
- Hironori Abe
- grid.27860.3b0000 0004 1936 9684Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 USA ,grid.274841.c0000 0001 0660 6749Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811 Japan
| | - Yu-Han Yeh
- grid.27860.3b0000 0004 1936 9684Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 USA
| | - Yasuhisa Munakata
- grid.27860.3b0000 0004 1936 9684Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 USA
| | - Kei-Ichiro Ishiguro
- grid.274841.c0000 0001 0660 6749Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811 Japan
| | - Paul R. Andreassen
- grid.24827.3b0000 0001 2179 9593Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Satoshi H. Namekawa
- grid.27860.3b0000 0004 1936 9684Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 USA
| |
Collapse
|
22
|
Kachkin DV, Volkov KV, Sopova JV, Bobylev AG, Fedotov SA, Inge-Vechtomov SG, Galzitskaya OV, Chernoff YO, Rubel AA, Aksenova AY. Human RAD51 Protein Forms Amyloid-like Aggregates In Vitro. Int J Mol Sci 2022; 23:ijms231911657. [PMID: 36232958 PMCID: PMC9570251 DOI: 10.3390/ijms231911657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
RAD51 is a central protein of homologous recombination and DNA repair processes that maintains genome stability and ensures the accurate repair of double-stranded breaks (DSBs). In this work, we assessed amyloid properties of RAD51 in vitro and in the bacterial curli-dependent amyloid generator (C-DAG) system. Resistance to ionic detergents, staining with amyloid-specific dyes, polarized microscopy, transmission electron microscopy (TEM), X-ray diffraction and other methods were used to evaluate the properties and structure of RAD51 aggregates. The purified human RAD51 protein formed detergent-resistant aggregates in vitro that had an unbranched cross-β fibrillar structure, which is typical for amyloids, and were stained with amyloid-specific dyes. Congo-red-stained RAD51 aggregates demonstrated birefringence under polarized light. RAD51 fibrils produced sharp circular X-ray reflections at 4.7 Å and 10 Å, demonstrating that they had a cross-β structure. Cytoplasmic aggregates of RAD51 were observed in cell cultures overexpressing RAD51. We demonstrated that a key protein that maintains genome stability, RAD51, has amyloid properties in vitro and in the C-DAG system and discussed the possible biological relevance of this observation.
Collapse
Affiliation(s)
- Daniel V. Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill V. Volkov
- Research Resource Center “Molecular and Cell Technologies”, Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Julia V. Sopova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia
| | - Sergei A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei G. Inge-Vechtomov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Oxana V. Galzitskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (A.A.R.); (A.Y.A.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (A.A.R.); (A.Y.A.)
| |
Collapse
|
23
|
Qi L, Chakravarthy R, Li MM, Deng CX, Li R, Hu Y. Phosphorylation of BRCA1 by ATM upon double-strand breaks impacts ATM function in end-resection: A potential feedback loop. iScience 2022; 25:104944. [PMID: 36065181 PMCID: PMC9440284 DOI: 10.1016/j.isci.2022.104944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
BRCA1 maintains genome stability by promoting homologous recombination (HR)-mediated DNA double-strand break (DSB) repair. Mutation of mouse BRCA1-S1152, corresponding to an ATM phosphorylation site in its human counterpart, resulted in increased genomic instability and tumor incidence. In this study, we report that BRCA1-S1152 is part of a feedback loop that sustains ATM activity. BRCA1-S1152A mutation impairs recruitment of the E3 ubiquitin ligase SKP2. This in turn attenuates NBS1-K63 ubiquitination by SKP2 at DSB, impairs sustained ATM activation, and ultimately leads to deficient end resection, the commitment step in the HR repair pathway. Auto-phosphorylation of human ATM at S1981 is known to be important for its kinase activation; we mutated the corresponding amino acid residue in mouse ATM (S1987A) to characterize potential roles of mouse ATM-S1987 in the BRCA1-SKP2-NBS1-ATM feedback loop. Unexpectedly, MEFs carrying the ATM-S1987A knockin mutation maintain damage-induced ATM kinase activation, suggesting a species-specific function of human ATM auto-phosphorylation.
Collapse
Affiliation(s)
- Leilei Qi
- Department of Anatomy and Cell Biology, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| | - Reka Chakravarthy
- Department of Anatomy and Cell Biology, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| | - Monica M. Li
- Department of Anatomy and Cell Biology, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR China
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| | - Yanfen Hu
- Department of Anatomy and Cell Biology, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| |
Collapse
|
24
|
Malik S, Kaur K, Prasad S, Jha NK, Kumar V. A perspective review on medicinal plant resources for their antimutagenic potentials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62014-62029. [PMID: 34431051 DOI: 10.1007/s11356-021-16057-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Mutagens present in the environment manifest toxic effects and are considered as serious threat for human health and healthcare. Recent reports reveal that medicinal plant resources are being explored for identifying potent antimutagenic as well as cancer preventing agents. There is mounting evidence that cancer and other mutation-related diseases can be prevented with the use of medicinal pant resources including crude extracts, active fractions, phytochemicals, and pure phytomolecules. These medicinal plant resources possessing antimutagenic potentials have been shown to target molecular mechanisms underlying the mutagenic impacts. Technological advents and high-throughput screening/activity methods have revolutionized this field, though several potent plants and their active principles have been reported as effective antimutagens. The translational success rate needs to be improved, but the trends are encouraging. In this review, we present the current understandings and updates on various mutagens in the environment, toxicities related/attributed to them, the resultant mutations (and cancer), and how medicinal plants come to the rescue. A perspective review has been presented on whether and how medicinal plant resources can be an effective approach for addressing mutagens in the environment. An account of medicinal plant resources used as antimutagenic agents has been given along with the underlying mechanism of action and their therapeutic potential in various models of cancer. Recent success stories, current challenges, and future prospects are discussed.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
25
|
Ogiri M, Seishima R, Nakamura K, Aimono E, Matsui S, Shigeta K, Chiyoda T, Tanishima S, Okabayashi K, Nishihara H, Kitagawa Y. Real-world application of next-generation sequencing-based test for surgically resectable colorectal cancer in clinical practice. Future Oncol 2022; 18:2701-2711. [PMID: 35818975 DOI: 10.2217/fon-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the significance of next-generation sequencing-based gene panel testing in surgically resectable colorectal cancer by analyzing real-world data. Materials & methods: A total of 107 colorectal cancer patients who underwent curative surgery were included, and correlations between next-generation sequencing data and clinicopathological findings were evaluated. Results: More combination patterns in gene alteration were identified in advanced-stage tumors than in early-stage tumors. The copy number alteration count was significantly lower in right-sided colon tumors and early-stage tumors. Homologous recombination deficiency was more often identified in advanced-stage tumors, and high homologous recombination deficiency status was useful for identifying high-risk stage II tumors. Conclusion: Homologous recombination deficiency was identified as a useful result of gene panel testing with novel utility in clinical practice.
Collapse
Affiliation(s)
- Masayo Ogiri
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Seishima
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Shimpei Matsui
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Shigeta
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Tanishima
- Department of Biomedical Informatics, Kansai Division, Mitsubishi Space Software Co., Ltd., Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Insights into the Possible Molecular Mechanisms of Resistance to PARP Inhibitors. Cancers (Basel) 2022; 14:cancers14112804. [PMID: 35681784 PMCID: PMC9179506 DOI: 10.3390/cancers14112804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The increasingly wide use of PARP inhibitors in breast, ovarian, pancreatic, and prostate cancers harbouring a pathogenic variant in BRCA1 or BRCA2 has highlighted the problem of resistance to therapy. This review summarises the complex interactions between PARP1, cell cycle regulation, response to stress replication, homologous recombination, and other DNA damage repair pathways in the setting of BRCA1/2 mutated cancers that could explain the development of primary or secondary resistance to PARP inhibitors. Abstract PARP1 enzyme plays an important role in DNA damage recognition and signalling. PARP inhibitors are approved in breast, ovarian, pancreatic, and prostate cancers harbouring a pathogenic variant in BRCA1 or BRCA2, where PARP1 inhibition results mainly in synthetic lethality in cells with impaired homologous recombination. However, the increasingly wide use of PARP inhibitors in clinical practice has highlighted the problem of resistance to therapy. Several different mechanisms of resistance have been proposed, although only the acquisition of secondary mutations in BRCA1/2 has been clinically proved. The aim of this review is to outline the key molecular findings that could explain the development of primary or secondary resistance to PARP inhibitors, analysing the complex interactions between PARP1, cell cycle regulation, PI3K/AKT signalling, response to stress replication, homologous recombination, and other DNA damage repair pathways in the setting of BRCA1/2 mutated cancers.
Collapse
|
27
|
Oura S, Hino T, Satoh T, Noda T, Koyano T, Isotani A, Matsuyama M, Akira S, Ishiguro KI, Ikawa M. Trim41 is required to regulate chromosome axis protein dynamics and meiosis in male mice. PLoS Genet 2022; 18:e1010241. [PMID: 35648791 PMCID: PMC9191731 DOI: 10.1371/journal.pgen.1010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/13/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Meiosis is a hallmark event in germ cell development that accompanies sequential events executed by numerous molecules. Therefore, characterization of these factors is one of the best strategies to clarify the mechanism of meiosis. Here, we report tripartite motif-containing 41 (TRIM41), a ubiquitin ligase E3, as an essential factor for proper meiotic progression and fertility in male mice. Trim41 knockout (KO) spermatocytes exhibited synaptonemal complex protein 3 (SYCP3) overloading, especially on the X chromosome. Furthermore, mutant mice lacking the RING domain of TRIM41, required for the ubiquitin ligase E3 activity, phenocopied Trim41 KO mice. We then examined the behavior of mutant TRIM41 (ΔRING-TRIM41) and found that ΔRING-TRIM41 accumulated on the chromosome axes with overloaded SYCP3. This result suggested that TRIM41 exerts its function on the chromosome axes. Our study revealed that Trim41 is essential for preventing SYCP3 overloading, suggesting a TRIM41-mediated mechanism for regulating chromosome axis protein dynamics during male meiotic progression.
Collapse
Affiliation(s)
- Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Toshiaki Hino
- Department of Biological Sciences, Asahikawa Medical University, Asahikawa, Japan
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Ayako Isotani
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
28
|
Ravindranathan R, Raveendran K, Papanikos F, San-Segundo P, Tóth A. Chromosomal synapsis defects can trigger oocyte apoptosis without elevating numbers of persistent DNA breaks above wild-type levels. Nucleic Acids Res 2022; 50:5617-5634. [PMID: 35580048 PMCID: PMC9177993 DOI: 10.1093/nar/gkac355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
Generation of haploid gametes depends on a modified version of homologous recombination in meiosis. Meiotic recombination is initiated by single-stranded DNA (ssDNA) ends originating from programmed DNA double-stranded breaks (DSBs) that are generated by the topoisomerase-related SPO11 enzyme. Meiotic recombination involves chromosomal synapsis, which enhances recombination-mediated DSB repair, and thus, crucially contributes to genome maintenance in meiocytes. Synapsis defects induce oocyte apoptosis ostensibly due to unrepaired DSBs that persist in asynaptic chromosomes. In mice, SPO11-deficient oocytes feature asynapsis, apoptosis and, surprisingly, numerous foci of the ssDNA-binding recombinase RAD51, indicative of DSBs of unknown origin. Hence, asynapsis is suggested to trigger apoptosis due to inefficient DSB repair even in mutants that lack programmed DSBs. By directly detecting ssDNAs, we discovered that RAD51 is an unreliable marker for DSBs in oocytes. Further, SPO11-deficient oocytes have fewer persistent ssDNAs than wild-type oocytes. These observations suggest that oocyte quality is safeguarded in mammals by a synapsis surveillance mechanism that can operate without persistent ssDNAs.
Collapse
Affiliation(s)
- Ramya Ravindranathan
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Attila Tóth
- To whom correspondence should be addressed. Tel: +49 351 458 6467; Fax: +49 351 458 6305;
| |
Collapse
|
29
|
|
30
|
Deng J, Zhang T, Liu F, Han Q, Li Q, Guo X, Ma Y, Li L, Shao G. CRL4-DCAF8L2 E3 ligase promotes ubiquitination and degradation of BARD1. Biochem Biophys Res Commun 2022; 611:107-113. [PMID: 35487060 DOI: 10.1016/j.bbrc.2022.04.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
BARD1 is a tumor suppressor that is necessary for the functioning and stability of BRCA1, with which it forms a heterodimer and participates in the repair of DNA double-strand breaks. The cellular level of BARD1 and its interaction with BRCA1 are crucial for BRCA1/BARD1 function in homologous recombination and tumor suppression. However, the regulatory mechanism underpinning the stability of BARD1 is largely unclear. In this study, we identified DCAF8L2, a DDB1-Cullin associated factor (DCAF) associated with CRL4 E3 ligase, as a negative regulator of BARD1. Mechanistically, DCAF8L2 interacts with and targets BARD1 for ubiquitination and degradation. In addition, the interaction of DCAF8L2 with BARD1 through the RING domain could compete with the dimerization of BRCA1 and BARD1, leading to increased cellular uncoupling of BARD1 and BRCA1, subjecting the latter to degradation. The overexpression of DCAF8L2 compromises the homologous recombination process and confers cells with increased sensitivity to DNA damage. Furthermore, DCAF8L2 was aberrantly expressed in breast cancer cell lines. Our findings suggest that DCAF8L2 may play an oncogenic role in the pathogenesis of breast cancer, possibly by negative regulation of BARD1.
Collapse
Affiliation(s)
- Jingcheng Deng
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Fei Liu
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Qianying Han
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Qin Li
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Xueyuan Guo
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Yanfang Ma
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Li Li
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Genze Shao
- Department of Cell Biology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
31
|
He Z, Ghorayeb R, Tan S, Chen K, Lorentzian AC, Bottyan J, Aalam SMM, Pujana MA, Lange PF, Kannan N, Eaves CJ, Maxwell CA. Pathogenic BRCA1 variants disrupt PLK1-regulation of mitotic spindle orientation. Nat Commun 2022; 13:2200. [PMID: 35459234 PMCID: PMC9033786 DOI: 10.1038/s41467-022-29885-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Ghorayeb
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanna Tan
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ke Chen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda C Lorentzian
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack Bottyan
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Syed Mohammed Musheer Aalam
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Miguel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
FBXO47 is essential for preventing the synaptonemal complex from premature disassembly in mouse male meiosis. iScience 2022; 25:104008. [PMID: 35310947 PMCID: PMC8931362 DOI: 10.1016/j.isci.2022.104008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Meiotic prophase I is a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase I, homologous chromosomes undergo synapsis to facilitate meiotic recombination yielding crossovers. It remains largely elusive how homolog synapsis is temporally maintained and destabilized during meiotic prophase I. Here we show that FBXO47 is the stabilizer of the synaptonemal complex during male meiotic prophase I. Disruption of FBXO47 shows severe impact on homologous chromosome synapsis, meiotic recombination, and XY body formation, leading to male infertility. Notably, in the absence of FBXO47, although once homologous chromosomes are synapsed, the synaptonemal complex is precociously disassembled before progressing beyond pachytene. Remarkably, Fbxo47 KO spermatocytes remain in an earlier stage of meiotic prophase I and lack crossovers, despite apparently exhibiting diplotene-like chromosome morphology. We propose that FBXO47 plays a crucial role in preventing the synaptonemal complex from premature disassembly during cell cycle progression of meiotic prophase I. FBXO47 is a stabilizer of the synaptonemal complex during male meiotic prophase FBXO47 KO shows precocious disassembly of the synaptonemal complex FBXO47 may function independently of SCF E3 ligase to maintain homolog synapsis
Collapse
|
33
|
Chukrallah LG, Badrinath A, Vittor GG, Snyder EM. ADAD2 regulates heterochromatin in meiotic and post-meiotic male germ cells via translation of MDC1. J Cell Sci 2022; 135:jcs259196. [PMID: 35191498 PMCID: PMC8919335 DOI: 10.1242/jcs.259196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
Male germ cells establish a unique heterochromatin domain, the XY-body, early in meiosis. How this domain is maintained through the end of meiosis and into post-meiotic germ cell differentiation is poorly understood. ADAD2 is a late meiotic male germ cell-specific RNA-binding protein, loss of which leads to post-meiotic germ cell defects. Analysis of ribosome association in Adad2 mouse mutants revealed defective translation of Mdc1, a key regulator of XY-body formation, late in meiosis. As a result, Adad2 mutants show normal establishment but failed maintenance of the XY-body. Observed XY-body defects are concurrent with abnormal autosomal heterochromatin and ultimately lead to severely perturbed post-meiotic germ cell heterochromatin and cell death. These findings highlight the requirement of ADAD2 for Mdc1 translation, the role of MDC1 in maintaining meiotic male germ cell heterochromatin and the importance of late meiotic heterochromatin for normal post-meiotic germ cell differentiation.
Collapse
Affiliation(s)
| | - Aditi Badrinath
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gabrielle G. Vittor
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elizabeth M. Snyder
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
34
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
35
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
36
|
Cantor SB, Sellers WR, Pathania S, Greenberg RA. David Livingston (1941-2021). Mol Cell 2022. [PMID: 34995508 DOI: 10.1016/j.molcel.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - William R Sellers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
37
|
Kumar V, Kumar A, Mir KUI, Yadav V, Chauhan SS. Pleiotropic role of PARP1: an overview. 3 Biotech 2022; 12:3. [PMID: 34926116 PMCID: PMC8643375 DOI: 10.1007/s13205-021-03038-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) protein is encoded by the PARP1 gene located on chromosome 1 (1q42.12) in human cells. It plays a crucial role in post-translational modification by adding poly (ADP-ribose) (PAR) groups to various proteins and PARP1 itself by utilizing nicotinamide adenine dinucleotide (NAD +) as a substrate. Since the discovery of PARP1, its role in DNA repair and cell death has been its identity. This is evident from an overwhelmingly high number of scientific reports in this regard. However, PARP1 also plays critical roles in inflammation, metabolism, tumor development and progression, chromatin modification and transcription, mRNA stability, and alternative splicing. In the present study, we attempted to compile all the scattered scientific information about this molecule, including the structure and multifunctional role of PARP1 in cancer and non-cancer diseases, along with PARP1 inhibitors (PARPis). Furthermore, for the first time, we have classified PARP1-mediated cell death for ease of understanding its role in cell death pathways.
Collapse
Affiliation(s)
- Vikas Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khursheed Ul Islam Mir
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
38
|
Wang M, Rogers CM, Alimbetov D, Zhao W. In Vitro Reconstitution of BRCA1-BARD1/RAD51-Mediated Homologous DNA Pairing. Methods Mol Biol 2022; 2444:207-225. [PMID: 35290640 DOI: 10.1007/978-1-0716-2063-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RAD51-mediated homologous recombination (HR) is a conserved mechanism for the repair of DNA double-strand breaks and the maintenance of DNA replication forks. Several breast and ovarian tumor suppressors, including BRCA1 and BARD1, have been implicated in HR since their discovery in the 1990s. However, a holistic understanding of how they participate in HR has been hampered by the immense challenge of expressing and purifying these large and unstable protein complexes for mechanistic analysis. Recently, we have overcome such a challenge for the BRCA1-BARD1 complex, allowing us to demonstrate its pivotal role in HR via the promotion of RAD51-mediated DNA strand invasion. In this chapter, we describe detailed procedures for the expression and purification of the BRCA1-BARD1 complex and in vitro assays using this tumor suppressor complex to examine its ability to promote RAD51-mediated homologous DNA pairing. This includes two distinct biochemical assays, namely, D-loop formation and synaptic complex assembly. These methods are invaluable for studying the BRCA1-BARD1 complex and its functional interplay with other factors in the HR process.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dauren Alimbetov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
39
|
Alavattam KG, Maezawa S, Andreassen PR, Namekawa SH. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci 2021; 79:18. [PMID: 34971404 DOI: 10.1007/s00018-021-04075-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
In mammalian male meiosis, the heterologous X and Y chromosomes remain unsynapsed and, as a result, are subject to meiotic sex chromosome inactivation (MSCI). MSCI is required for the successful completion of spermatogenesis. Following the initiation of MSCI, the X and Y chromosomes undergo various epigenetic modifications and are transformed into a nuclear body termed the XY body. Here, we review the mechanisms underlying the initiation of two essential, sequential processes in meiotic prophase I: MSCI and XY-body formation. The initiation of MSCI is directed by the action of DNA damage response (DDR) pathways; downstream of the DDR, unique epigenetic states are established, leading to the formation of the XY body. Accumulating evidence suggests that MSCI and subsequent XY-body formation may be driven by phase separation, a physical process that governs the formation of membraneless organelles and other biomolecular condensates. Thus, here we gather literature-based evidence to explore a phase separation hypothesis for the initiation of MSCI and the formation of the XY body.
Collapse
Affiliation(s)
- Kris G Alavattam
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
40
|
Krishnan R, Patel PS, Hakem R. BRCA1 and Metastasis: Outcome of Defective DNA Repair. Cancers (Basel) 2021; 14:cancers14010108. [PMID: 35008272 PMCID: PMC8749860 DOI: 10.3390/cancers14010108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary BRCA1 has critical functions in accurately repairing double stand breaks in the DNA through a process known as homologous recombination. BRCA1 also has various functions in other cellular processes that safeguard the genome. Thus, mutations or silencing of this tumor suppressor significantly increases the risk of developing breast, ovarian, and other cancers. Metastasis refers to the spread of cancer to other parts of the body and is the leading cause of cancer-related deaths. In this review, we discuss the mechanisms by which BRCA1 mutations contribute to the metastatic and aggressive nature of the tumor cells. Abstract Heritable mutations in BRCA1 and BRCA2 genes are a major risk factor for breast and ovarian cancer. Inherited mutations in BRCA1 increase the risk of developing breast cancers by up to 72% and ovarian cancers by up to 69%, when compared to individuals with wild-type BRCA1. BRCA1 and BRCA2 (BRCA1/2) are both important for homologous recombination-mediated DNA repair. The link between BRCA1/2 mutations and high susceptibility to breast cancer is well established. However, the potential impact of BRCA1 mutation on the individual cell populations within a tumor microenvironment, and its relation to increased aggressiveness of cancer is not well understood. The objective of this review is to provide significant insights into the mechanisms by which BRCA1 mutations contribute to the metastatic and aggressive nature of the tumor cells.
Collapse
Affiliation(s)
- Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
| | - Parasvi S. Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: or
| |
Collapse
|
41
|
Li W, Zhang L, Shinohara A, Keeney S. Editorial: Meiosis: From Molecular Basis to Medicine. Front Cell Dev Biol 2021; 9:812292. [PMID: 34926477 PMCID: PMC8671932 DOI: 10.3389/fcell.2021.812292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY, United States
| |
Collapse
|
42
|
Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes (Basel) 2021; 12:genes12121960. [PMID: 34946909 PMCID: PMC8701046 DOI: 10.3390/genes12121960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Accurate and complete genome replication is a fundamental cellular process for the proper transfer of genetic material to cell progenies, normal cell growth, and genome stability. However, a plethora of extrinsic and intrinsic factors challenge individual DNA replication forks and cause replication stress (RS), a hallmark of cancer. When challenged by RS, cells deploy an extensive range of mechanisms to safeguard replicating genomes and limit the burden of DNA damage. Prominent among those is homologous recombination (HR). Although fundamental to cell division, evidence suggests that cancer cells exploit and manipulate these RS responses to fuel their evolution and gain resistance to therapeutic interventions. In this review, we focused on recent insights into HR-mediated protection of stress-induced DNA replication intermediates, particularly the repair and protection of daughter strand gaps (DSGs) that arise from discontinuous replication across a damaged DNA template. Besides mechanistic underpinnings of this process, which markedly differ depending on the extent and duration of RS, we highlight the pathophysiological scenarios where DSG repair is naturally silenced. Finally, we discuss how such pathophysiological events fuel rampant mutagenesis, promoting cancer evolution, but also manifest in adaptative responses that can be targeted for cancer therapy.
Collapse
|
43
|
Sherker A, Chaudhary N, Adam S, Heijink AM, Noordermeer SM, Fradet-Turcotte A, Durocher D. Two redundant ubiquitin-dependent pathways of BRCA1 localization to DNA damage sites. EMBO Rep 2021; 22:e53679. [PMID: 34726323 PMCID: PMC8647010 DOI: 10.15252/embr.202153679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
The tumor suppressor BRCA1 accumulates at sites of DNA damage in a ubiquitin‐dependent manner. In this work, we revisit the role of RAP80 in promoting BRCA1 recruitment to damaged chromatin. We find that RAP80 acts redundantly with the BRCA1 RING domain to promote BRCA1 recruitment to DNA damage sites. We show that that RNF8 E3 ligase acts upstream of both the RAP80‐ and RING‐dependent activities, whereas RNF168 acts uniquely upstream of the RING domain. BRCA1 RING mutations that do not impact BARD1 interaction, such as the E2 binding‐deficient I26A mutation, render BRCA1 unable to accumulate at DNA damage sites in the absence of RAP80. Cells that combine BRCA1 I26A and mutations that disable the RAP80–BRCA1 interaction are hypersensitive to PARP inhibition and are unable to form RAD51 foci. Our results suggest that in the absence of RAP80, the BRCA1 E3 ligase activity is necessary for recognition of histone H2A Lys13/Lys15 ubiquitylation by BARD1, although we cannot rule out the possibility that the BRCA1 RING facilitates ubiquitylated nucleosome recognition in other ways.
Collapse
Affiliation(s)
- Alana Sherker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natasha Chaudhary
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Sylvie M Noordermeer
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Amélie Fradet-Turcotte
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec, QC, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
Banerjee D, Langberg K, Abbas S, Odermatt E, Yerramothu P, Volaric M, Reidenbach MA, Krentz KJ, Rubinstein CD, Brautigan DL, Abbas T, Gelfand BD, Ambati J, Kerur N. A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat Commun 2021; 12:6207. [PMID: 34707113 PMCID: PMC8551335 DOI: 10.1038/s41467-021-26240-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.
Collapse
Affiliation(s)
- Daipayan Banerjee
- Aravind Medical Research Foundation, Madurai, 625020, India
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kurt Langberg
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Salar Abbas
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eric Odermatt
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Martin Volaric
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kathy J Krentz
- Genome Editing & Animal Models Core, University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - C Dustin Rubinstein
- Genome Editing & Animal Models Core, University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - David L Brautigan
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
45
|
Matveevsky S, Grishaeva T. Heterogeneity in conservation of multifunctional partner enzymes with meiotic importance, CDK2 kinase and BRCA1 ubiquitin ligase. PeerJ 2021; 9:e12231. [PMID: 34692254 PMCID: PMC8483008 DOI: 10.7717/peerj.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
The evolution of proteins can be accompanied by changes not only to their amino acid sequences, but also their structural and spatial molecular organization. Comparison of the protein conservation within different taxonomic groups (multifunctional, or highly specific) allows to clarify their specificity and the direction of evolution. Two multifunctional enzymes, cyclin-dependent kinase 2 (CDK2) and BRCA1 ubiquitin ligase, that are partners in some mitotic and meiotic processes were investigated in the present work. Two research methods, bioinformatics and immunocytochemical, were combined to examine the conservation levels of the two enzymes. It has been established that CDK2 is a highly conserved protein in different taxonomic lineages of the eukaryotic tree. Immunocytochemically, a conserved CDK2 pattern was revealed in the meiotic autosomes of five rodent species and partially in domestic turkey and clawed frog. Nevertheless, variable CDK2 distribution was detected at the unsynapsed segments of the rodent X chromosomes. BRCA1 was shown to be highly conserved only within certain mammalian taxa. It was also noted that in those rodent nuclei, where BRCA1 specifically binds to antigens, asynaptic regions of sex chromosomes were positive. BRCA1 staining was not always accompanied by specific binding, and a high nonspecificity in the nucleoplasm was observed. Thus, the studies revealed different conservation of the two enzymes at the level of protein structure as well as at the level of chromosome behavior. This suggests variable rates of evolution due to both size and configuration of the protein molecules and their multifunctionality.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Grishaeva
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
46
|
Akagawa R, Nabeshima YI, Kawauchi T. Alternative Functions of Cell Cycle-Related and DNA Repair Proteins in Post-mitotic Neurons. Front Cell Dev Biol 2021; 9:753175. [PMID: 34746147 PMCID: PMC8564117 DOI: 10.3389/fcell.2021.753175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Proper regulation of neuronal morphological changes is essential for neuronal migration, maturation, synapse formation, and high-order function. Many cytoplasmic proteins involved in the regulation of neuronal microtubules and the actin cytoskeleton have been identified. In addition, some nuclear proteins have alternative functions in neurons. While cell cycle-related proteins basically control the progression of the cell cycle in the nucleus, some of them have an extra-cell cycle-regulatory function (EXCERF), such as regulating cytoskeletal organization, after exit from the cell cycle. Our expression analyses showed that not only cell cycle regulators, including cyclin A1, cyclin D2, Cdk4/6, p21cip1, p27kip1, Ink4 family, and RAD21, but also DNA repair proteins, including BRCA2, p53, ATM, ATR, RAD17, MRE11, RAD9, and Hus1, were expressed after neurogenesis, suggesting that these proteins have alternative functions in post-mitotic neurons. In this perspective paper, we discuss the alternative functions of the nuclear proteins in neuronal development, focusing on possible cytoplasmic roles.
Collapse
Affiliation(s)
- Remi Akagawa
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Yo-ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
BET Proteins as Attractive Targets for Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222011102. [PMID: 34681760 PMCID: PMC8538173 DOI: 10.3390/ijms222011102] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be an essential driver of cancer initiation and progression. Loss of transcriptional control can cause cancer cells to become dependent on certain regulators of gene expression. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate the expression of multiple genes involved in carcinogenesis. BET inhibitors (BETis) disrupt BET protein binding to acetylated lysine residues of chromatin and suppress the transcription of various genes, including oncogenic transcription factors. Phase I and II clinical trials demonstrated BETis’ potential as anticancer drugs against solid tumours and haematological malignancies; however, their clinical success was limited as monotherapies. Emerging treatment-associated toxicities, drug resistance and a lack of predictive biomarkers limited BETis’ clinical progress. The preclinical evaluation demonstrated that BETis synergised with different classes of compounds, including DNA repair inhibitors, thus supporting further clinical development of BETis. The combination of BET and PARP inhibitors triggered synthetic lethality in cells with proficient homologous recombination. Mechanistic studies revealed that BETis targeted multiple essential homologous recombination pathway proteins, including RAD51, BRCA1 and CtIP. The exact mechanism of BETis’ anticancer action remains poorly understood; nevertheless, these agents provide a novel approach to epigenome and transcriptome anticancer therapy.
Collapse
|
48
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
49
|
Racca C, Britton S, Hédouin S, Francastel C, Calsou P, Larminat F. BRCA1 prevents R-loop-associated centromeric instability. Cell Death Dis 2021; 12:896. [PMID: 34599155 PMCID: PMC8486751 DOI: 10.1038/s41419-021-04189-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023]
Abstract
Centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive α-satellite sequences, which are actively transcribed throughout the cell cycle. Centromeres play an essential role in chromosome inheritance and genome stability through coordinating kinetochores assembly during mitosis. Structural and functional alterations of the centromeres cause aneuploidy and chromosome aberrations which can induce cell death. In human cells, the tumor suppressor BRCA1 associates with centromeric chromatin in the absence of exogenous damage. While we previously reported that BRCA1 contributes to proper centromere homeostasis, the mechanism underlying its centromeric function and recruitment was not fully understood. Here, we show that BRCA1 association with centromeric chromatin depends on the presence of R-loops, which are non-canonical three-stranded structures harboring a DNA:RNA hybrid and are frequently formed during transcription. Subsequently, BRCA1 counteracts the accumulation of R-loops at centromeric α-satellite repeats. Strikingly, BRCA1-deficient cells show impaired localization of CENP-A, higher transcription of centromeric RNA, increased breakage at centromeres and formation of acentric micronuclei, all these features being R-loop-dependent. Finally, BRCA1 depletion reveals a Rad52-dependent hyper-recombination process between centromeric satellite repeats, associated with centromere instability and missegregation. Altogether, our findings provide molecular insights into the key function of BRCA1 in maintaining centromere stability and identity.
Collapse
Affiliation(s)
- Carine Racca
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Sabrine Hédouin
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris, F-75013, France.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris, F-75013, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Florence Larminat
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France. .,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France.
| |
Collapse
|
50
|
Yang J, Qi L, Chiang HC, Yuan B, Li R, Hu Y. BRCA1 Antibodies Matter. Int J Biol Sci 2021; 17:3239-3254. [PMID: 34421362 PMCID: PMC8375228 DOI: 10.7150/ijbs.63115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) encodes a tumor suppressor that is frequently mutated in familial breast and ovarian cancer patients. BRCA1 functions in multiple important cellular processes including DNA damage repair, cell cycle checkpoint activation, protein ubiquitination, chromatin remodeling, transcriptional regulation, as well as R-loop formation and apoptosis. A large number of BRCA1 antibodies have been generated and become commercially available over the past three decades, however, many commercial antibodies are poorly characterized and, when widely used, led to unreliable data. In search of reliable and specific BRCA1 antibodies (Abs), particularly antibodies recognizing mouse BRCA1, we performed a rigorous validation of a number of commercially available anti-BRCA1 antibodies, using proper controls in a panel of validation applications, including Western blot (WB), immunoprecipitation (IP), immunoprecipitation-mass spectrometry (IP-MS), chromatin immunoprecipitation (ChIP) and immunofluorescence (IF). Furthermore, we assessed the specificity of these antibodies to detect mouse BRCA1 protein through the use of testis tissue and mouse embryonic fibroblasts (MEFs) from Brca1+/+ and Brca1Δ11/Δ11 mice. We find that Ab1, D-9, 07-434 (for recognizing human BRCA1) and 287.17, 440621, BR-64 (for recognizing mouse BRCA1) are specific with high quality performance in the indicated assays. We share these results here with the goal of helping the community combat the common challenges associated with anti-BRCA1 antibody specificity and reproducibility and, hopefully, better understanding BRCA1 functions at cellular and tissue levels.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Leilei Qi
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Bin Yuan
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|