1
|
Design of typical genes for heterologous gene expression. Sci Rep 2022; 12:9625. [PMID: 35688911 PMCID: PMC9187722 DOI: 10.1038/s41598-022-13089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
Heterologous protein expression is an important method for analysing cellular functions of proteins, in genetic circuit engineering and in overexpressing proteins for biopharmaceutical applications and structural biology research. The degeneracy of the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, plays an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the influence of a profiled codon usage adaptation approach on protein expression levels in the eukaryotic model organism Saccharomyces cerevisiae. We selected green fluorescent protein (GFP) and human α-synuclein (αSyn) as representatives for stable and intrinsically disordered proteins and representing a benchmark and a challenging test case. A new approach was implemented to design typical genes resembling the codon usage of any subset of endogenous genes. Using this approach, synthetic genes for GFP and αSyn were generated, heterologously expressed and evaluated in yeast. We demonstrate that GFP is expressed at high levels, and that the toxic αSyn can be adapted to endogenous, low-level expression. The new software is publicly available as a web-application for performing host-specific protein adaptations to a set of the most commonly used model organisms ( https://odysseus.motorprotein.de ).
Collapse
|
2
|
Bhaskar V, Graff-Meyer A, Schenk AD, Cavadini S, von Loeffelholz O, Natchiar SK, Artus-Revel CG, Hotz HR, Bretones G, Klaholz BP, Chao JA. Dynamics of uS19 C-Terminal Tail during the Translation Elongation Cycle in Human Ribosomes. Cell Rep 2021; 31:107473. [PMID: 32268098 DOI: 10.1016/j.celrep.2020.03.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/06/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Ribosomes undergo multiple conformational transitions during translation elongation. Here, we report the high-resolution cryoelectron microscopy (cryo-EM) structure of the human 80S ribosome in the post-decoding pre-translocation state (classical-PRE) at 3.3-Å resolution along with the rotated (hybrid-PRE) and the post-translocation states (POST). The classical-PRE state ribosome structure reveals a previously unobserved interaction between the C-terminal region of the conserved ribosomal protein uS19 and the A- and P-site tRNAs and the mRNA in the decoding site. In addition to changes in the inter-subunit bridges, analysis of different ribosomal conformations reveals the dynamic nature of this domain and suggests a role in tRNA accommodation and translocation during elongation. Furthermore, we show that disease-associated mutations in uS19 result in increased frameshifting. Together, this structure-function analysis provides mechanistic insights into the role of the uS19 C-terminal tail in the context of mammalian ribosomes.
Collapse
Affiliation(s)
- Varun Bhaskar
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | | | - Hans-Rudolf Hotz
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gabriel Bretones
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
3
|
Hu M, Zhang Q, Yang J, Li X. Unit quaternion description of spatial rotations in 3D electron cryo-microscopy. J Struct Biol 2020; 212:107601. [PMID: 33068699 DOI: 10.1016/j.jsb.2020.107601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Electron cryo-microscopy (cryoEM) involves the estimation of spatial rotations, or saying orientations, of projection images or three-dimensional (3D) volumes. Euler angle system is widely used to describe spatial rotations in most cryoEM algorithms and software. In this review, we introduce unit quaternion as an alternate to Euler angles for describing spatial rotations, customize and develop corresponding tools for increasing demands of statistical analysis of spatial rotations in cryoEM. Some basic properties and definitions of quaternion are first recalled. Thereafter, distance and geodesic between rotations are introduced to aid comparisons and interpolations between rotations, which are prerequisites of statistics of rotations in 3D cryoEM. Furthermore, statistics of rotations are reviewed. Techniques potentially useful in cryoEM, such as calculations of the average rotation, generation of quasi-regular grids, sampling, inference with uniform distribution and angular central Gaussian (ACG) distribution, and estimation of rotation precision, are reviewed and developed. Finally, molecular symmetry presented in unit quaternion form is discussed. Unit quaternion system is shown as a convenient and comprehensive mathematical tool for cryoEM.
Collapse
Affiliation(s)
- Mingxu Hu
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, Beijing, China; School of Life Science, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, China
| | - Qi Zhang
- Department of Mathematical Sciences, Tsinghua University, China
| | - Jing Yang
- Department of Mathematical Sciences, Tsinghua University, China.
| | - Xueming Li
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, Beijing, China; School of Life Science, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, China; Beijing Frontier Research Center for Biological Structure, China.
| |
Collapse
|
4
|
Tirumalai MR, Kaelber JT, Park DR, Tran Q, Fox GE. Cryo-electron microscopy visualization of a large insertion in the 5S ribosomal RNA of the extremely halophilic archaeon Halococcus morrhuae. FEBS Open Bio 2020; 10:1938-1946. [PMID: 32865340 PMCID: PMC7530397 DOI: 10.1002/2211-5463.12962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The extreme halophile Halococcus morrhuae (ATCC® 17082) contains a 108-nucleotide insertion in its 5S rRNA. Large rRNA expansions in Archaea are rare. This one almost doubles the length of the 5S rRNA. In order to understand how such an insertion is accommodated in the ribosome, we obtained a cryo-electron microscopy reconstruction of the native large subunit at subnanometer resolution. The insertion site forms a four-way junction that fully preserves the canonical 5S rRNA structure. Moving away from the junction site, the inserted region is conformationally flexible and does not pack tightly against the large subunit. The high-salt requirement of the H. morrhuae ribosomes for their stability conflicted with the low-salt threshold for cryo-electron microscopy procedures. Despite this obstacle, this is the first cryo-electron microscopy map of Halococcus ribosomes.
Collapse
Affiliation(s)
| | - Jason T. Kaelber
- National Center for Macromolecular ImagingBaylor College of MedicineHoustonTXUSA
- Present address:
Rutgers New Jersey Cryo‐electron Microscopy & Tomography Core FacilityInstitute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNJUSA
| | - Donghyun R. Park
- National Center for Macromolecular ImagingBaylor College of MedicineHoustonTXUSA
- Present address:
Department of Microbial PathogenesisYale UniversityNew HavenCTUSA
| | - Quyen Tran
- Department of Biology and BiochemistryUniversity of HoustonTXUSA
| | - George E. Fox
- Department of Biology and BiochemistryUniversity of HoustonTXUSA
| |
Collapse
|
5
|
Abstract
Ribosomes are biological nanomachine that synthesise all proteins within a cell. It took decades to reveal the architecture of this essential cellular component. To understand the structure -function relationship of this nanomachine needed the utilisisation of different biochemical, biophysical and structural techniques. Structural studies combined with mutagenesis of the different ribosomal complexes comprising various RNAs and proteins enabled us to understand how this machine works inside a cell. Nowadays quite a number of ribosomal structures were published that confirmed biochemical studies on particular steps of protein synthesis by the ribosome . Four major steps were identified: initiation , elongation, termination and recycling. These steps lead us to the important question how the ribosome function can be regulated. Advances in technology for cryo electron microscopy: sample preparations, image recording, developments in algorithms for image analysis and processing significantly helped in revelation of structural details of the ribosome . We now have a library of ribosome structures from prokaryotes to eukaryotes that enable us to understand the complex mechanics of this nanomachine. As this structural library continues to grow, we gradually improve our understanding of this process and how it can be regulated and how the specific ribosomes can be stalled or activated, or completely disabled. This article provides a comprehensive overview of ribosomal structures that represent structural snapshots of the ribosome at its different functional states. Better understanding rises more particular questions that have to be addressed by determination structures of more complexes.Synopsis: Structural biology of the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
6
|
C.P. A, Subhramanian S, Sizochenko N, Melge AR, Leszczynski J, Mohan CG. Multiple e-Pharmacophore modeling to identify a single molecule that could target both streptomycin and paromomycin binding sites for 30S ribosomal subunit inhibition. J Biomol Struct Dyn 2018; 37:1582-1596. [DOI: 10.1080/07391102.2018.1462731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anju C.P.
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Sunitha Subhramanian
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Natalia Sizochenko
- Interdisciplinary Centre for Nanotoxicity, Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS-39217, MI, USA
| | - Anu R. Melge
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Jerzy Leszczynski
- Interdisciplinary Centre for Nanotoxicity, Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS-39217, MI, USA
| | - C. Gopi Mohan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| |
Collapse
|
7
|
Yusupova G, Yusupov M. Crystal structure of eukaryotic ribosome and its complexes with inhibitors. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0184. [PMID: 28138070 DOI: 10.1098/rstb.2016.0184] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 01/26/2023] Open
Abstract
A high-resolution structure of the eukaryotic ribosome has been determined and has led to increased interest in studying protein biosynthesis and regulation of biosynthesis in cells. The functional complexes of the ribosome crystals obtained from bacteria and yeast have permitted researchers to identify the precise residue positions in different states of ribosome function. This knowledge, together with electron microscopy studies, enhances our understanding of how basic ribosome processes, including mRNA decoding, peptide bond formation, mRNA, and tRNA translocation and cotranslational transport of the nascent peptide, are regulated. In this review, we discuss the crystal structure of the entire 80S ribosome from yeast, which reveals its eukaryotic-specific features, and application of X-ray crystallography of the 80S ribosome for investigation of the binding mode for distinct compounds known to inhibit or modulate the protein-translation function of the ribosome. We also refer to a challenging aspect of the structural study of ribosomes, from higher eukaryotes, where the structures of major distinctive features of higher eukaryote ribosome-the high-eukaryote-specific long ribosomal RNA segments (about 1MDa)-remain unresolved. Presently, the structures of the major part of these high-eukaryotic expansion ribosomal RNA segments still remain unresolved.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, CNRS/INSERM, University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, CNRS/INSERM, University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| |
Collapse
|
8
|
Blythe AJ, Fox AH, Bond CS. The ins and outs of lncRNA structure: How, why and what comes next? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:46-58. [PMID: 26325022 DOI: 10.1016/j.bbagrm.2015.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/07/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Abstract
The field of structural biology has the unique advantage of being able to provide a comprehensive picture of biological mechanisms at the molecular and atomic level. Long noncoding RNAs (lncRNAs) represent the new frontier in the molecular biology of complex organisms yet remain the least characterised of all the classes of RNA. Thousands of new lncRNAs are being reported each year yet very little structural data exists for this rapidly expanding field. The length of lncRNAs ranges from 200 nt to over 100 kb in length and they generally exhibit low cellular abundance. Therefore, obtaining sufficient quantities of lncRNA to use for structural analysis is challenging. However, as technologies develop structures of lncRNAs are starting to emerge providing important information regarding their mechanism of action. Here we review the current methods used to determine the structure of lncRNA and lncRNA:protein complexes and describe the significant contribution structural biology has and will make to the field of lncRNA research. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Archa H Fox
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
9
|
Abstract
Although the basic facts about the ribosome were already known 40 years ago, elucidating its atomic structure and molecular mechanisms required sheer persistence and the innovative use of new technology and methods. These advances have transformed our understanding of translation in the cell.
Collapse
Affiliation(s)
- V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
10
|
Abstract
The high-resolution structure of the eukaryotic ribosome from yeast, determined at 3.0-Å resolution, permitted the unambiguous determination of the protein side chains, eukaryote-specific proteins, protein insertions, and ribosomal RNA expansion segments of the 80 proteins and ∼5,500 RNA bases that constitute the 80S ribosome. A comparison between this first atomic model of the entire 80S eukaryotic ribosome and previously determined structures of bacterial ribosomes confirmed early genetic and structural data indicating that they share an evolutionarily conserved core of ribosomal RNA and proteins. It also confirmed the conserved organization of essential functional sites, such as the peptidyl transferase center and the decoding site. New structural information about eukaryote-specific elements, such as expansion segments and new ribosomal proteins, forms the structural framework for the design and analysis of experiments that will explore the eukaryotic translational apparatus and the evolutionary forces that shaped it. New nomenclature for ribosomal proteins, based on the names of protein families, has been proposed.
Collapse
Affiliation(s)
- Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg F-67000, France
| | | |
Collapse
|
11
|
Scripture JB, Huber PW. Binding site for Xenopus ribosomal protein L5 and accompanying structural changes in 5S rRNA. Biochemistry 2011; 50:3827-39. [PMID: 21446704 DOI: 10.1021/bi200286e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of the eukaryotic L5-5S rRNA complex was investigated in protection and interference experiments and is compared with the corresponding structure (L18-5S rRNA) in the Haloarcula marismortui 50S subunit. In close correspondence with the archaeal structure, the contact sites for the eukaryotic ribosomal protein are located primarily in helix III and loop C and secondarily in loop A and helix V. While the former is unique to L5, the latter is also a critical contact site for transcription factor IIIA (TFIIIA), accounting for the mutually exclusive binding of these two proteins to 5S RNA. The binding of L5 causes structural changes in loops B and C that expose nucleotides that contact the Xenopus L11 ortholog in H. marismortui. This induced change in the structure of the RNA reveals the origins of the cooperative binding to 5S rRNA that has been observed for the bacterial counterparts of these proteins. The native structure of helix IV and loop D antagonizes binding of L5, indicating that this region of the RNA is dynamic and also influenced by the protein. Examination of the crystal structures of Thermus thermophilus ribosomes in the pre- and post-translocation states identified changes in loop D and in the surrounding region of 23S rRNA that support the proposal that 5S rRNA acts to transmit information between different functional domains of the large subunit.
Collapse
Affiliation(s)
- J Benjamin Scripture
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
12
|
Kolb VA. Properties of intraribosomal part of nascent polypeptide. BIOCHEMISTRY (MOSCOW) 2011; 75:1517-27. [DOI: 10.1134/s000629791013002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Romby P, Marzi et Eric Westhof S. La structure atomique du ribosome en pleine lumière. Med Sci (Paris) 2009; 25:977-81. [DOI: 10.1051/medsci/20092511977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
14
|
rRNA mutations that inhibit transfer-messenger RNA activity on stalled ribosomes. J Bacteriol 2009; 192:553-9. [PMID: 19897649 DOI: 10.1128/jb.01178-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eubacteria, stalled ribosomes are rescued by a conserved quality-control mechanism involving transfer-messenger RNA (tmRNA) and its protein partner, SmpB. Mimicking a tRNA, tmRNA enters stalled ribosomes, adds Ala to the nascent polypeptide, and serves as a template to encode a short peptide that tags the nascent protein for destruction. To further characterize the tagging process, we developed two genetic selections that link tmRNA activity to cell death. These negative selections can be used to identify inhibitors of tagging or to identify mutations in key residues essential for ribosome rescue. Little is known about which ribosomal elements are specifically required for tmRNA activity. Using these selections, we isolated rRNA mutations that block the rescue of ribosomes stalled at rare Arg codons or at the inefficient termination signal Pro-opal. We found that deletion of A1150 in the 16S rRNA blocked tagging regardless of the stalling sequence, suggesting that it inhibits tmRNA activity directly. The C889U mutation in 23S rRNA, however, lowered tagging levels at Pro-opal and rare Arg codons, but not at the 3' end of an mRNA lacking a stop codon. We concluded that the C889U mutation does not inhibit tmRNA activity per se but interferes with an upstream step intermediate between stalling and tagging. C889 is found in the A-site finger, where it interacts with the S13 protein in the small subunit (forming intersubunit bridge B1a).
Collapse
|
15
|
Munro JB, Sanbonmatsu KY, Spahn CMT, Blanchard SC. Navigating the ribosome's metastable energy landscape. Trends Biochem Sci 2009; 34:390-400. [PMID: 19647434 DOI: 10.1016/j.tibs.2009.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms by which tRNA molecules enter and transit the ribosome during mRNA translation remains elusive. However, recent genetic, biochemical and structural studies offer important new findings into the ordered sequence of events underpinning the translocation process that help place the molecular mechanism within reach. In particular, new structural and kinetic insights have been obtained regarding tRNA movements through 'hybrid state' configurations. These dynamic views reveal that the macromolecular ribosome particle, like many smaller proteins, has an intrinsic capacity to reversibly sample an ensemble of similarly stable native states. Such perspectives suggest that substrates, factors and environmental cues contribute to translation regulation by helping the dynamic system navigate through a highly complex and metastable energy landscape.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
16
|
Abstract
This essay gives the autho's personal account on the development of concepts underlying single-particle reconstruction, a technique in electron microscopy of macromolecular assemblies with a remarkable record of achievements as of late. The ribosome proved to be an ideal testing ground for the development of specimen preparation methods, cryo-EM techniques, and algorithms, with discoveries along the way as a rich reward. Increasingly, cryo-EM and single-particle reconstruction, in combination with classification techniques, is revealing dynamic information on functional molecular machines uninhibited by molecular contacts.
Collapse
Affiliation(s)
- Joachim Frank
- The Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Jiang L, Schaffitzel C, Bingel-Erlenmeyer R, Ban N, Korber P, Koning RI, de Geus DC, Plaisier JR, Abrahams JP. Recycling of Aborted Ribosomal 50S Subunit-Nascent Chain-tRNA Complexes by the Heat Shock Protein Hsp15. J Mol Biol 2009; 386:1357-67. [DOI: 10.1016/j.jmb.2008.10.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/19/2008] [Accepted: 10/26/2008] [Indexed: 10/21/2022]
|
18
|
Connell SR, Topf M, Qin Y, Wilson DN, Mielke T, Fucini P, Nierhaus KH, Spahn CMT. A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat Struct Mol Biol 2009; 15:910-5. [PMID: 19172743 DOI: 10.1038/nsmb.1469] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
EF4 (LepA) is an almost universally conserved translational GTPase in eubacteria. It seems to be essential under environmental stress conditions and has previously been shown to back-translocate the tRNAs on the ribosome, thereby reverting the canonical translocation reaction. In the current work, EF4 was directly visualized in the process of back-translocating tRNAs by single-particle cryo-EM. Using flexible fitting methods, we built a model of ribosome-bound EF4 based on the cryo-EM map and a recently published unbound EF4 X-ray structure. The cryo-EM map establishes EF4 as a noncanonical elongation factor that interacts not only with the elongating ribosome, but also with the back-translocated tRNA in the A-site region, which is present in a previously unseen, intermediate state and deviates markedly from the position of a canonical A-tRNA. Our results, therefore, provide insight into the underlying structural principles governing back-translocation.
Collapse
Affiliation(s)
- Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Munro JB, Vaiana A, Sanbonmatsu KY, Blanchard SC. A new view of protein synthesis: mapping the free energy landscape of the ribosome using single-molecule FRET. Biopolymers 2008; 89:565-77. [PMID: 18286627 DOI: 10.1002/bip.20961] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This article reviews the application of single-molecule fluorescence resonance energy transfer (smFRET) methods to the study of protein synthesis catalyzed by the ribosome. smFRET is a powerful new technique that can be used to investigate dynamic processes within enzymes spanning many orders of magnitude. The application of wide-field smFRET imaging methods to the study of dynamic processes in the ribosome offers a new perspective on the mechanism of protein synthesis. Using this technique, the structural and kinetic parameters of tRNA motions within wild-type and specifically mutated ribosome complexes have been obtained that provide valuable new insights into the mechanism and regulation of translation elongation. The results of these studies are discussed in the context of current knowledge of the ribosome mechanism from both structural and biophysical perspectives.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, NY, USA
| | | | | | | |
Collapse
|
20
|
Piekna-Przybylska D, Przybylski P, Baudin-Baillieu A, Rousset JP, Fournier MJ. Ribosome performance is enhanced by a rich cluster of pseudouridines in the A-site finger region of the large subunit. J Biol Chem 2008; 283:26026-36. [PMID: 18611858 DOI: 10.1074/jbc.m803049200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large subunit rRNA in eukaryotes contains an unusually dense cluster of 8-10 pseudouridine (Psi) modifications located in a three-helix structure (H37-H39) implicated in several functions. This region is dominated by a long flexible helix (H38) known as the "A-site finger" (ASF). The ASF protrudes from the large subunit just above the A-site of tRNA binding, interacts with 5 S rRNA and tRNA, and through the terminal loop, forms a bridge (B1a) with the small subunit. In yeast, the three-helix domain contains 10 Psis and 6 are concentrated in the ASF helix (3 of the ASF Psis are conserved among eukaryotes). Here, we show by genetic depletion analysis that the Psis in the ASF helix and adjoining helices are not crucial for cell viability; however, their presence notably enhances ribosome fitness. Depleting different combinations of Psis suggest that the modification pattern is important and revealed that loss of multiple Psis negatively influences ribosome performance. The effects observed include slower cell growth (reduced rates up to 23% at 30 degrees C and 40-50% at 37 degrees C and 11 degrees C), reduced level of the large subunit (up to 17%), impaired polysome formation (appearance of half-mers), reduced translation activity (up to 20% at 30 degrees C and 25% at 11 degrees C), and increased sensitivity to ribosome-based drugs. The results indicate that the Psis in the three-helix region improve fitness of a eukaryotic ribosome.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
21
|
Fischer N, Paleskava A, Gromadski KB, Konevega AL, Wahl MC, Stark H, Rodnina MV. Towards understanding selenocysteine incorporation into bacterial proteins. Biol Chem 2008; 388:1061-7. [PMID: 17937620 DOI: 10.1515/bc.2007.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In bacteria, UGA stop codons can be recoded to direct the incorporation of selenocysteine into proteins on the ribosome. Recoding requires a selenocysteine incorporation sequence (SECIS) downstream of the UGA codon, a specialized translation factor SelB, and the non-canonical Sec-tRNASec, which is formed from Ser-tRNASec by selenocysteine synthase, SelA, using selenophosphate as selenium donor. Here we describe a rapid-kinetics approach to study the mechanism of selenocysteine insertion into proteins on the ribosome. Labeling of SelB, Sec-tRNASec and other components of the translational machinery allows direct observation of the formation or dissociation of complexes by monitoring changes in the fluorescence of single dyes or fluorescence resonance energy transfer between two fluorophores. Furthermore, the structure of SelA was studied by electron cryomicroscopy (cryo-EM). We report that intact SelA from the thermophilic bacterium Moorella thermoacetica (mthSelA) can be vitrified for cryo-EM using a controlled-environment vitrification system. Two-dimensional image analysis of vitrified mthSelA images shows that SelA can adopt the wide range of orientations required for high-resolution structure determination by cryo-EM. The results indicate that mthSelA forms a homodecamer that has a ring-like structure with five bilobed wings, similar to the structure of the E. coli complex determined previously.
Collapse
Affiliation(s)
- Niels Fischer
- 3D Electron Cryomicroscopy Group, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Sorzano COS, Jonic S, Núñez-Ramírez R, Boisset N, Carazo JM. Fast, robust, and accurate determination of transmission electron microscopy contrast transfer function. J Struct Biol 2007; 160:249-62. [PMID: 17911028 DOI: 10.1016/j.jsb.2007.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/18/2007] [Accepted: 08/22/2007] [Indexed: 01/24/2023]
Abstract
Transmission electron microscopy, as most imaging devices, introduces optical aberrations that in the case of thin specimens are usually modeled in Fourier space by the so-called contrast transfer function (CTF). Accurate determination of the CTF is crucial for its posterior correction. Furthermore, the CTF estimation must be fast and robust if high-throughput three-dimensional electron microscopy (3DEM) studies are to be carried out. In this paper we present a robust algorithm that fits a theoretical CTF model to the power spectrum density (PSD) measured on a specific micrograph or micrograph area. Our algorithm is capable of estimating the envelope of the CTF which is absolutely needed for the correction of the CTF amplitude changes.
Collapse
Affiliation(s)
- C O S Sorzano
- Unidad de Biocomputación, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma s/n, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
23
|
Jenner L, Rees B, Yusupov M, Yusupova G. Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. EMBO Rep 2007; 8:846-50. [PMID: 17721443 PMCID: PMC1973951 DOI: 10.1038/sj.embor.7401044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/27/2007] [Accepted: 07/03/2007] [Indexed: 01/02/2023] Open
Abstract
A comparison of messenger RNA in X-ray crystal structures of 70S ribosomal complexes in the initiation, post-initiation and elongation states of translation shows distinct conformational differences in the exit (E) codon. Here, we present structural evidence indicating that, after the initiation event, the E codon nucleotides relax and form a classical A-helical conformation. This conformation is similar to that of the P and A codons, and is favourable for establishing Watson-Crick interactions with the anticodon of E-site transfer RNA.
Collapse
Affiliation(s)
- Lasse Jenner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, Illkirch 67404, France
| | - Bernard Rees
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, Illkirch 67404, France
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, Illkirch 67404, France
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, Illkirch 67404, France
| |
Collapse
|
24
|
Sorzano COS, Jonic S, Cottevieille M, Larquet E, Boisset N, Marco S. 3D electron microscopy of biological nanomachines: principles and applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:995-1013. [PMID: 17611751 DOI: 10.1007/s00249-007-0203-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 06/01/2007] [Accepted: 06/11/2007] [Indexed: 11/21/2022]
Abstract
Transmission electron microscopy is a powerful technique for studying the three-dimensional (3D) structure of a wide range of biological specimens. Knowledge of this structure is crucial for fully understanding complex relationships among macromolecular complexes and organelles in living cells. In this paper, we present the principles and main application domains of 3D transmission electron microscopy in structural biology. Moreover, we survey current developments needed in this field, and discuss the close relationship of 3D transmission electron microscopy with other experimental techniques aimed at obtaining structural and dynamical information from the scale of whole living cells to atomic structure of macromolecular complexes.
Collapse
Affiliation(s)
- C O S Sorzano
- Bioengineering Lab, Escuela Politécnica Superior, Univ. San Pablo CEU, Campus Urb, Montepríncipe s/n, 28668, Boadilla del Monte, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Wang L, Bose PS, Sigworth FJ. Using cryo-EM to measure the dipole potential of a lipid membrane. Proc Natl Acad Sci U S A 2006; 103:18528-33. [PMID: 17116859 PMCID: PMC1693696 DOI: 10.1073/pnas.0608714103] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dipole potential of a lipid bilayer membrane accounts for its much larger permeability to anions than cations and affects the conformation and function of membrane proteins. The absolute value of the dipole potential has been very difficult to measure, although its value has been estimated to range from 200 to 1,000 mV from ion translocation rates, the surface potential of lipid monolayers, and molecular dynamics calculations. Here, a point charge probe method was used to investigate the dipole potentials of both ester and ether lipid membranes. The interactions between electrons and lipid molecules were recorded by phase-contrast imaging using cryo-EM. The magnitude and the profile of the dipole potential along the bilayer normal were obtained by subtracting the contribution of the atomic potential from the cryo-EM image intensity. The peak dipole potential was estimated to be 510 and 260 mV for diphytanoylphosphatidylcholine and diphytanylphosphatidylcholine, respectively.
Collapse
Affiliation(s)
- Liguo Wang
- *Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520; and
| | - Pulkit S. Bose
- Department of Chemistry, Fresno Pacific University, 1717 South Chestnut Avenue, Fresno, CA 93702
| | - Fred J. Sigworth
- *Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Komoda T, Sato NS, Phelps SS, Namba N, Joseph S, Suzuki T. The A-site finger in 23 S rRNA acts as a functional attenuator for translocation. J Biol Chem 2006; 281:32303-9. [PMID: 16950778 DOI: 10.1074/jbc.m607058200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helix 38 (H38) in 23 S rRNA, which is known as the "A-site finger (ASF)," is located in the intersubunit space of the ribosomal 50 S subunit and, together with protein S13 in the 30 S subunit, it forms bridge B1a. It is known that throughout the decoding process, ASF interacts directly with the A-site tRNA. Bridge B1a becomes disrupted by the ratchet-like rotation of the 30 S subunit relative to the 50 S subunit. This occurs in association with elongation factor G (EF-G)-catalyzed translocation. To further characterize the functional role(s) of ASF, variants of Escherichia coli ribosomes with a shortened ASF were constructed. The E. coli strain bearing such ASF-shortened ribosomes had a normal growth rate but enhanced +1 frameshift activity. ASF-shortened ribosomes showed normal subunit association but higher activity in poly(U)-dependent polyphenylalanine synthesis than the wild type (WT) ribosome at limited EF-G concentrations. In contrast, other ribosome variants with shortened bridge-forming helices 34 and 68 showed weak subunit association and less efficient translational activity than the WT ribosome. Thus, the higher translational activity of ASF-shortened ribosomes is caused by the disruption of bridge B1a and is not due to weakened subunit association. Single round translocation analyses clearly demonstrated that the ASF-shortened ribosomes have higher translocation activity than the WT ribosome. These observations indicate that the intrinsic translocation activity of ribosomes is greater than that usually observed in the WT ribosome and that ASF is a functional attenuator for translocation that serves to maintain the reading frame.
Collapse
MESH Headings
- Base Sequence
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Frameshifting, Ribosomal/genetics
- GTP Phosphohydrolases/metabolism
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Elongation Factor G/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Translocation, Genetic
- beta-Galactosidase/analysis
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Taeko Komoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Ortiz PA, Ulloque R, Kihara GK, Zheng H, Kinzy TG. Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J Biol Chem 2006; 281:32639-48. [PMID: 16950777 DOI: 10.1074/jbc.m607076200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic elongation factor 2 (eEF2) mediates translocation in protein synthesis. The molecular mimicry model proposes that the tip of domain IV mimics the anticodon loop of tRNA. His-699 in this region is post-translationally modified to diphthamide, the target for Corynebacterium diphtheriae and Pseudomonas aeruginosa toxins. ADP-ribosylation by these toxins inhibits eEF2 function causing cell death. Mutagenesis of the tip of domain IV was used to assess both functions. A H694A mutant strain was non-functional, whereas D696A, I698A, and H699N strains conferred conditional growth defects, sensitivity to translation inhibitors, and decreased total translation in vivo. These mutant strains and those lacking diphthamide modification enzymes showed increased -1 frameshifting. The effects are not due to reduced protein levels, ribosome binding, or GTP hydrolysis. Functional eEF2 forms substituted in domain IV confer dominant diphtheria toxin resistance, which correlates with an in vivo effect on translation-linked phenotypes. These results provide a new mechanism in which the translational machinery maintains the accurate production of proteins, establishes a role for the diphthamide modification, and provides evidence of the ability to suppress the lethal effect of a toxin targeted to eEF2.
Collapse
Affiliation(s)
- Pedro A Ortiz
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
28
|
Mitra K, Frank J. RIBOSOME DYNAMICS: Insights from Atomic Structure Modeling into Cryo-Electron Microscopy Maps. ACTA ACUST UNITED AC 2006; 35:299-317. [PMID: 16689638 DOI: 10.1146/annurev.biophys.35.040405.101950] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) is the method of choice for studying the dynamics of macromolecular machines both at a phenomenological and, increasingly, at the molecular level, with the advent of high-resolution component X-ray structures and of progressively improving fitting algorithms. Cryo-EM has shed light on the structure of the ribosome during the four steps of translation: initiation, elongation, termination, and recycling. Interpretation of cryo-EM reconstructions of the ribosome in quasi-atomic detail reveals a picture in which the ribosome uses RNA not only to catalyze chemical reactions, but also as a means for signal transduction over large distances.
Collapse
Affiliation(s)
- Kakoli Mitra
- Howard Hughes Medical Institute, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA.
| | | |
Collapse
|
29
|
Sergiev PV, Kiparisov SV, Burakovsky DE, Lesnyak DV, Leonov AA, Bogdanov AA, Dontsova OA. The Conserved A-site Finger of the 23S rRNA: Just One of the Intersubunit Bridges or a Part of the Allosteric Communication Pathway? J Mol Biol 2005; 353:116-23. [PMID: 16165153 DOI: 10.1016/j.jmb.2005.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/12/2005] [Accepted: 08/01/2005] [Indexed: 11/17/2022]
Abstract
During the translocation of tRNAs and mRNA relative to the ribosome, the B1a, B1b and B1c bridges undergo the most extensive conformational changes among the bridges between the large and the small ribosomal subunits. The B1a bridge, also called the "A-site finger" (ASF), is formed by the 23S rRNA helix 38, which is located right above the ribosomal A-site. Here, we deleted part of the ASF so that the B1a intersubunit bridge could not be formed (DeltaB1a). The mutation led to a less efficient subunit association. A number of functional activities of the DeltaB1a ribosomes, such as tRNA binding to the P and A-sites, translocation and EF-G-related GTPase reaction were preserved. A moderate decrease in EF-G-related GTPase stimulation by the P-site occupation by deacylated tRNA was observed. This suggests that the B1a bridge is not involved in the most basic steps of the elongation cycle, but rather in the fine-tuning of the ribosomal activity. Chemical probing of ribosomes carrying the ASF truncation revealed structural differences in the 5S rRNA and in the 23S rRNA helices located between the peptidyltransferase center and the binding site of the elongation factors. Interestingly, reactivity changes were found in the P-loop, an important functional region of the 23S rRNA. It is likely that the A-site finger, in addition to its role in subunit association, forms part of the system of allosteric signal exchanges between the small subunit decoding center and the functional centers on the large subunit.
Collapse
Affiliation(s)
- Petr V Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
30
|
Raj VS, Kaji H, Kaji A. Interaction of RRF and EF-G from E. coli and T. thermophilus with ribosomes from both origins--insight into the mechanism of the ribosome recycling step. RNA (NEW YORK, N.Y.) 2005; 11:275-84. [PMID: 15661844 PMCID: PMC1370717 DOI: 10.1261/rna.7201805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 11/30/2004] [Indexed: 05/20/2023]
Abstract
Ribosome recycling factor (RRF), elongation factor-G (EF-G), and ribosomes from Thermus thermophilus (tt-) and Escherichia coli (ec-) were used to study the disassembly mechanism of post-termination ribosomal complexes by these factors. With tt-RRF, ec-EF-G can release bound-tRNA from ec-model post-termination complexes. However, tt-RRF is not released by ec-EF-G from ec-ribosomes. This complex with tt-RRF and ec-ribosomes after the tRNA release by ec-EF-G is regarded as an intermediate of the disassembly reaction. Not only tt-RRF, but also mRNA, cannot be released from ec-ribosomes by tt-RRF and ec-EF-G. These data suggest that the release of RRF from ribosomes is coupled or closely related to the release of mRNA during disassembly of post-termination complexes. With tt-ribosomes, ec-EF-G cannot release ribosome-bound ec-RRF even though they are from the same species, showing that proper interaction of ec-RRF and ec-EF-G does not occur on tt-ribosomes. On the other hand, in contrast to a published report, tt-EF-G functions with ec-RRF to disassemble ec-post-termination complexes. In support of this finding, tt-EF-G translocates peptidyl tRNA on ec-ribosomes and catalyzes ec-ribosome-dependent GTPase, showing that tt-EF-G has in vitro translocation activity with ec-ribosomes. Since tt-EF-G with ec-RRF can release tRNA from ec-post-termination complexes, the data are consistent with the hypothesis that the release of tRNA by RRF and EF-G from post-termination complexes is a result of a translocation-like activity of EF-G on RRF.
Collapse
Affiliation(s)
- V Samuel Raj
- Department of Microbiology, School of Medicine, University of Pennsylvania, Room 203B, Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
31
|
Hennelly SP, Antoun A, Ehrenberg M, Gualerzi CO, Knight W, Lodmell JS, Hill WE. A time-resolved investigation of ribosomal subunit association. J Mol Biol 2005; 346:1243-58. [PMID: 15713478 DOI: 10.1016/j.jmb.2004.12.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/23/2004] [Accepted: 12/29/2004] [Indexed: 11/19/2022]
Abstract
The notion that the ribosome is dynamic has been supported by various biochemical techniques, as well as by differences observed in high-resolution structures of ribosomal complexes frozen in various functional states. Yet, the mechanisms and extent of rRNA dynamics are still largely unknown. We have used a novel, fast chemical-modification technique to provide time-resolved details of 16 S rRNA structural changes that occur as bridges are formed between the ribosomal subunits as they associate. Association of different 16 S rRNA regions was found to be a sequential, multi-step process involving conformational rearrangements within the 30 S subunit. Our results suggest that key regions of 16 S rRNA, necessary for decoding and tRNA A-site binding, are structurally altered in a time-dependent manner by association with the 50 S ribosomal subunits.
Collapse
MESH Headings
- Base Pairing
- Binding Sites
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Scott P Hennelly
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Yonath A, Bashan A. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu Rev Microbiol 2004; 58:233-51. [PMID: 15487937 DOI: 10.1146/annurev.micro.58.030603.123822] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-resolution structures of ribosomal complexes revealed that minute amounts of clinically relevant antibiotics hamper protein biosynthesis by limiting ribosomal mobility or perturbing its elaborate architecture, designed for navigating and controlling peptide bond formation and continuous amino acid polymerization. To accomplish this, the ribosome contributes positional rather than chemical catalysis, provides remote interactions governing accurate substrate alignment within the flexible peptidyl-transferase center (PTC) pocket, and ensures nascent-protein chirality through spatial limitations. Peptide bond formation is concurrent with aminoacylated-tRNA 3' end translocation and is performed by a rotatory motion around the axis of a sizable ribosomal symmetry-related region, which is located around the PTC in all known crystal structures. Guided by ribosomal-RNA scaffold along an exact pattern, the rotatory motion results in stereochemistry that is optimal for peptide bond formation and for nascent protein entrance into the exit tunnel, the main target of antibiotics targeting ribosomes. By connecting the PTC, the decoding center, and the tRNA entrance and exit regions, the symmetry-related region can transfer intraribosomal signals, guaranteeing smooth processivity of amino acid polymerization.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel.
| | | |
Collapse
|
33
|
Zhao Q, Ofverstedt LG, Skoglund U, Isaksson LA. Morphological variation of individual Escherichia coli 50S ribosomal subunits in situ, as revealed by cryo-electron tomography. Exp Cell Res 2004; 300:190-201. [PMID: 15383326 DOI: 10.1016/j.yexcr.2004.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Electron tomography (ET) has been used to reconstruct in situ individual 50S ribosomal subunits in Escherichia coli rifampicin-treated cells. Rifampicin inhibits transcription initiation. As a result, rapid degradation of preformed mRNA and dissociation of 70S ribosomes give accumulation of free subunits. In the 50S subunit, the L1 stalk, the L7/L12 stalk, the central protuberance (CP), and the peptidyl transferase center (PTC) cleft are the most dynamic and flexible parts in the reconstructed structures with clear movements indicated. Different locations of the tunnel in the central cross-sections through the in situ 50S subunits indicate the flexible nature of the pathway inside the large ribosomal subunit. In addition, gross morphological heterogeneity was observed in the reconstructions. Our results demonstrate a considerable structural variability among individual 50S subunits in the intracellular environment.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
Zarivach R, Bashan A, Berisio R, Harms J, Auerbach T, Schluenzen F, Bartels H, Baram D, Pyetan E, Sittner A, Amit M, Hansen HAS, Kessler M, Liebe C, Wolff A, Agmon I, Yonath A. Functional aspects of ribosomal architecture: symmetry, chirality and regulation. J PHYS ORG CHEM 2004. [DOI: 10.1002/poc.831] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raz Zarivach
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Rita Berisio
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Joerg Harms
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Tamar Auerbach
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Frank Schluenzen
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Heike Bartels
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - David Baram
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Erez Pyetan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Assa Sittner
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Maya Amit
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Harly A. S. Hansen
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Maggie Kessler
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Christa Liebe
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Anja Wolff
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| | - Ilana Agmon
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
- Max‐Planck‐Research Unit for Ribosomal Structure, 22603 Hamburg, Germany
| |
Collapse
|
35
|
Jørgensen R, Yates SP, Teal DJ, Nilsson J, Prentice GA, Merrill AR, Andersen GR. Crystal structure of ADP-ribosylated ribosomal translocase from Saccharomyces cerevisiae. J Biol Chem 2004; 279:45919-25. [PMID: 15316019 DOI: 10.1074/jbc.m406218200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of ADP-ribosylated yeast elongation factor 2 in the presence of sordarin and GDP has been determined at 2.6 A resolution. The diphthamide at the tip of domain IV, which is the target for diphtheria toxin and Pseudomonas aeruginosa exotoxin A, contains a covalently attached ADP-ribose that functions as a very potent inhibitor of the factor. We have obtained an electron density map of ADP-ribosylated translation factor 2 revealing both the ADP-ribosylation and the diphthamide. This is the first structure showing the conformation of an ADP-ribosylated residue and confirms the inversion of configuration at the glycosidic linkage. Binding experiments show that the ADP-ribosylation has limited effect on nucleotide binding affinity, on ribosome binding, and on association with exotoxin A. These results provide insight to the inhibitory mechanism and suggest that inhibition may be caused by erroneous interaction of the translation factor with the codon-anticodon area in the P-site of the ribosome.
Collapse
Affiliation(s)
- René Jørgensen
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
36
|
Baranov PV, Gesteland RF, Atkins JF. P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2004; 10:221-30. [PMID: 14730021 PMCID: PMC1370534 DOI: 10.1261/rna.5122604] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 10/09/2003] [Indexed: 05/22/2023]
Abstract
The expression of some genes requires a high proportion of ribosomes to shift at a specific site into one of the two alternative frames. This utilized frameshifting provides a unique tool for studying reading frame control. Peptidyl-tRNA slippage has been invoked to explain many cases of programmed frameshifting. The present work extends this to other cases. When the A-site is unoccupied, the P-site tRNA can be repositioned forward with respect to mRNA (although repositioning in the minus direction is also possible). A kinetic model is presented for the influence of both, the cognate tRNAs competing for overlapping codons in A-site, and the stabilities of P-site tRNA:mRNA complexes in the initial and new frames. When the A-site is occupied, the P-site tRNA can be repositioned backward. Whether frameshifting will happen depends on the ability of the A-site tRNA to subsequently be repositioned to maintain physical proximity of the tRNAs. This model offers an alternative explanation to previously published mechanisms of programmed frameshifting, such as out-of-frame tRNA binding, and a different perspective on simultaneous tandem tRNA slippage.
Collapse
Affiliation(s)
- Pavel V Baranov
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | |
Collapse
|
37
|
Okamoto-Hosoya Y, Hosaka T, Ochi K. An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2004; 149:3299-3309. [PMID: 14600242 DOI: 10.1099/mic.0.26490-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain mutations in the rpsL gene (encoding the ribosomal protein S12) activate or enhance antibiotic production in various bacteria. K88E and P91S rpsL mutants of Streptomyces coelicolor A3(2), with an enhanced actinorhodin production, were found to exhibit an aberrant protein synthesis activity. While a high level of this activity (as determined by the incorporation of labelled leucine) was detected at the late stationary phase in the mutants, it decreased with age of the cells in the wild-type strain. In addition, the aberrant protein synthesis was particularly pronounced when cells were subjected to amino acid shift-down, and was independent of their ability to accumulate ppGpp. Ribosomes of K88E and P91S mutants displayed an increased accuracy in protein synthesis as demonstrated by the poly(U)-directed cell-free translation system, but so did K43N, K43T, K43R and K88R mutants, which were streptomycin resistant but showed no effect on actinorhodin production. This eliminates the possibility that the increased accuracy level is a cause of the antibiotic overproduction in the K88E and P91S mutants. The K88E and P91S mutant ribosomes exhibited an increased stability of the 70S complex under low concentrations of magnesium. The authors propose that the aberrant activation of protein synthesis caused by the increased stability of the ribosome is responsible for the remarkable enhancement of antibiotic production in the K88E and P91S mutants.
Collapse
Affiliation(s)
| | - Takeshi Hosaka
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Kozo Ochi
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
38
|
Sorzano COS, Marabini R, Herman GT, Censor Y, Carazo JM. Transfer function restoration in 3D electron microscopy via iterative data refinement. Phys Med Biol 2004; 49:509-22. [PMID: 15005161 DOI: 10.1088/0031-9155/49/4/003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three-dimensional electron microscopy (3D-EM) is a powerful tool for visualizing complex biological systems. As with any other imaging device, the electron microscope introduces a transfer function (called in this field the contrast transfer function, CTF) into the image acquisition process that modulates the various frequencies of the signal. Thus, the 3D reconstructions performed with these CTF-affected projections are also affected by an implicit 3D transfer function. For high-resolution electron microscopy, the effect of the CTF is quite dramatic and limits severely the achievable resolution. In this work we make use of the iterative data refinement (IDR) technique to ameliorate the effect of the CTF. It is demonstrated that the approach can be successfully applied to noisy data.
Collapse
Affiliation(s)
- C O S Sorzano
- Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb Montepríncipe, s/n, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Abstract
The ribosome crystal structures published in the past two years have revolutionized our understanding of ribonucleoprotein structure, and more specifically, the structural basis of the peptide bonding forming activity of the ribosome. This review concentrates on the crystallographic developments that made it possible to solve these structures. It also discusses the information obtained from these structures about the three-dimensional architecture of the large ribosomal subunit, the mechanism by which it facilitates peptide bond formation, and the way antibiotics inhibit large subunit function. The work reviewed, taken as a whole, proves beyond doubt that the ribosome is an RNA enzyme, as had long been surmised on the basis of less conclusive evidence.
Collapse
Affiliation(s)
- Peter B Moore
- Departments of Molecular Biophysics and Biochemistry, Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
40
|
Abstract
The recently solved X-ray crystal structures of the ribosome have provided opportunities for studying the molecular basis of translation with a variety of methods including cryo-electron microscopy. The recently solved X-ray crystal structures of the ribosome have provided opportunities for studying the molecular basis of translation with a variety of methods including cryo-electron microscopy - where maps give the first glimpses of ribosomal evolution - and fluorescence spectroscopy techniques.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc, at the Wadsworth Center and Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA.
| |
Collapse
|
41
|
Schmeing TM, Moore PB, Steitz TA. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA (NEW YORK, N.Y.) 2003; 9:1345-52. [PMID: 14561884 PMCID: PMC1287056 DOI: 10.1261/rna.5120503] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
During translation, tRNAs cycle through three binding sites on the ribosome: the A, the P, and the E sites. We have determined the structures of complexes between the Haloarcula marismortui large ribosomal subunit and two different E site substrates: a deacylated tRNA acceptor stem minihelix and a CCA-acceptor end. Both of these tRNA mimics contain analogs of adenosine 76, the component responsible for a large proportion of E site binding affinity. They bind in the center of the loop-extension of protein L44e, and make specific contacts with both L44e and 23S rRNA including bases that are conserved in all three kingdoms of life. These contacts are consistent with the footprinting, protection, and cross-linking data that have identified the E site biochemically. These structures explain the specificity of the E site for deacylated tRNAs, as it is too small to accommodate any relevant aminoacyl-tRNA. The orientation of the minihelix suggests that it may mimic the P/E hybrid state. It appears that the E site on the 50S subunit was formed by only RNA in the last common ancestor of the three kingdoms, since the proteins at the E sites of H. marismortui and Deinucoccus radiodurans large subunits are not homologous.
Collapse
Affiliation(s)
- T Martin Schmeing
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
42
|
Bashan A, Zarivach R, Schluenzen F, Agmon I, Harms J, Auerbach T, Baram D, Berisio R, Bartels H, Hansen HAS, Fucini P, Wilson D, Peretz M, Kessler M, Yonath A. Ribosomal crystallography: peptide bond formation and its inhibition. Biopolymers 2003; 70:19-41. [PMID: 12925991 DOI: 10.1002/bip.10412] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ribosomes, the universal cellular organelles catalyzing the translation of genetic code into proteins, are protein/RNA assemblies, of a molecular weight 2.5 mega Daltons or higher. They are built of two subunits that associate for performing protein biosynthesis. The large subunit creates the peptide bond and provides the path for emerging proteins. The small has key roles in initiating the process and controlling its fidelity. Crystallographic studies on complexes of the small and the large eubacterial ribosomal subunits with substrate analogs, antibiotics, and inhibitors confirmed that the ribosomal RNA governs most of its activities, and indicated that the main catalytic contribution of the ribosome is the precise positioning and alignment of its substrates, the tRNA molecules. A symmetry-related region of a significant size, containing about two hundred nucleotides, was revealed in all known structures of the large ribosomal subunit, despite the asymmetric nature of the ribosome. The symmetry rotation axis, identified in the middle of the peptide-bond formation site, coincides with the bond connecting the tRNA double-helical features with its single-stranded 3' end, which is the moiety carrying the amino acids. This thus implies sovereign movements of tRNA features and suggests that tRNA translocation involves a rotatory motion within the ribosomal active site. This motion is guided and anchored by ribosomal nucleotides belonging to the active site walls, and results in geometry suitable for peptide-bond formation with no significant rearrangements. The sole geometrical requirement for this proposed mechanism is that the initial P-site tRNA adopts the flipped orientation. The rotatory motion is the major component of unified machinery for peptide-bond formation, translocation, and nascent protein progression, since its spiral nature ensures the entrance of the nascent peptide into the ribosomal exit tunnel. This tunnel, assumed to be a passive path for the growing chains, was found to be involved dynamically in gating and discrimination.
Collapse
Affiliation(s)
- Anat Bashan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
During the ribosomal translocation, the binding of elongation factor G (EF-G) to the pretranslocational ribosome leads to a ratchet-like rotation of the 30S subunit relative to the 50S subunit in the direction of the mRNA movement. By means of cryo-electron microscopy we observe that this rotation is accompanied by a 20 A movement of the L1 stalk of the 50S subunit, implying that this region is involved in the translocation of deacylated tRNAs from the P to the E site. These ribosomal motions can occur only when the P-site tRNA is deacylated. Prior to peptidyl-transfer to the A-site tRNA or peptide removal, the presence of the charged P-site tRNA locks the ribosome and prohibits both of these motions.
Collapse
Affiliation(s)
- Mikel Valle
- Howard Hughes Medical Institute, and Health Research Incororated at the Wadswoth Center, State University of New York, Albany, 12201, USA
| | | | | | | | | | | |
Collapse
|
44
|
van Heel M. Do single (ribosome) molecules phase themselves? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:77-86. [PMID: 12762010 DOI: 10.1101/sqb.2001.66.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M van Heel
- Imperial College of Science, Technology and Medicine, Department of Biological Sciences, Biochemistry Building, London, SW7 2AY, United Kingdom
| |
Collapse
|
45
|
Kaji A, Kiel MC, Hirokawa G, Muto AR, Inokuchi Y, Kaji H. The fourth step of protein synthesis: disassembly of the posttermination complex is catalyzed by elongation factor G and ribosome recycling factor, a near-perfect mimic of tRNA. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:515-29. [PMID: 12762054 DOI: 10.1101/sqb.2001.66.515] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A Kaji
- Microbiology Department, Medical School, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
46
|
Andersen GR, Nyborg J. Structural studies of eukaryotic elongation factors. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:425-37. [PMID: 12762045 DOI: 10.1101/sqb.2001.66.425] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- G R Andersen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
47
|
Wintermeyer W, Savelsbergh A, Semenkov YP, Katunin VI, Rodnina MV. Mechanism of elongation factor G function in tRNA translocation on the ribosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:449-58. [PMID: 12762047 DOI: 10.1101/sqb.2001.66.449] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- W Wintermeyer
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | | | |
Collapse
|
48
|
Sergiev P, Leonov A, Dokudovskaya S, Shpanchenko O, Dontsova O, Bogdanov A, Rinke-Appel J, Mueller F, Osswald M, von Knoblauch K, Brimacombe R. Correlating the X-ray structures for halo- and thermophilic ribosomal subunits with biochemical data for the Escherichia coli ribosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:87-100. [PMID: 12762011 DOI: 10.1101/sqb.2001.66.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- P Sergiev
- Department of Chemistry of Natural Compounds and Belozersky Institute, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Agmon I, Auerbach T, Baram D, Bartels H, Bashan A, Berisio R, Fucini P, Hansen HAS, Harms J, Kessler M, Peretz M, Schluenzen F, Yonath A, Zarivach R. On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Derived on 20 October 2002 at the 28th FEBS Meeting in Istanbul. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2543-56. [PMID: 12787020 DOI: 10.1046/j.1432-1033.2003.03634.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High-resolution crystal structures of large ribosomal subunits from Deinococcus radiodurans complexed with tRNA-mimics indicate that precise substrate positioning, mandatory for efficient protein biosynthesis with no further conformational rearrangements, is governed by remote interactions of the tRNA helical features. Based on the peptidyl transferase center (PTC) architecture, on the placement of tRNA mimics, and on the existence of a two-fold related region consisting of about 180 nucleotides of the 23S RNA, we proposed a unified mechanism integrating peptide bond formation, A-to-P site translocation, and the entrance of the nascent protein into its exit tunnel. This mechanism implies sovereign, albeit correlated, motions of the tRNA termini and includes a spiral rotation of the A-site tRNA-3' end around a local two-fold rotation axis, identified within the PTC. PTC features, ensuring the precise orientation required for the A-site nucleophilic attack on the P-site carbonyl-carbon, guide these motions. Solvent mediated hydrogen transfer appears to facilitate peptide bond formation in conjunction with the spiral rotation. The detection of similar two-fold symmetry-related regions in all known structures of the large ribosomal subunit, indicate the universality of this mechanism, and emphasizes the significance of the ribosomal template for the precise alignment of the substrates as well as for accurate and efficient translocation. The symmetry-related region may also be involved in regulatory tasks, such as signal transmission between the ribosomal features facilitating the entrance and the release of the tRNA molecules. The protein exit tunnel is an additional feature that has a role in cellular regulation. We showed by crystallographic methods that this tunnel is capable of undergoing conformational oscillations and correlated the tunnel mobility with sequence discrimination, gating and intracellular regulation.
Collapse
Affiliation(s)
- Ilana Agmon
- Department of Structural Biology, The Weizmann Institute, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shaikh TR, Hegerl R, Frank J. An approach to examining model dependence in EM reconstructions using cross-validation. J Struct Biol 2003; 142:301-10. [PMID: 12713958 DOI: 10.1016/s1047-8477(03)00029-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reference bias refers to a common problem in fitting experimental data to an initial model. Given enough free parameters, a good fit of any experimental data to the model can be obtained, even if the experimental data contain only noise. Reference-based alignment methods used in electron microscopy (EM) are subject to this type of bias, in that images containing pure noise can regenerate the reference. Cross-validation is based on the idea that the experimental data used to assess the validity of the fitting should not be the same data as were used to do the fitting. Here we present the application of cross-validation to one form of reference-based alignment: 3D-projection matching in single-particle reconstructions. Our results show that reference bias is indeed present in reconstructions, but that the effect is small for real data compared to that for random noise, and that this difference in behavior is magnified, rather than diminished, during iterative refinement.
Collapse
Affiliation(s)
- Tanvir R Shaikh
- The Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|