1
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
2
|
Good HJ, Larsen F, Shin AE, Zhang L, Derouet M, Meriwether D, Worthley D, Reddy ST, Wang TC, Asfaha S. Prostaglandin E 2 and Akt Promote Stemness in Apc Mutant Dclk1+ Cells to Give Rise to Colitis-associated Cancer. Cell Mol Gastroenterol Hepatol 2025:101469. [PMID: 39884575 DOI: 10.1016/j.jcmgh.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND & AIMS Loss of the tumor suppressor gene Apc in Lgr5+ intestinal stem cells results in aberrant Wnt signaling and colonic tumorigenesis. In the setting of injury, however, we and others have also shown that non-stem cells can also give rise to colonic tumors. The mechanism by which inflammation leads to cellular plasticity and cancer, however, remains largely unknown. METHODS RNA expression analysis of Wnt, COX, and Akt signaling was assessed in patients with quiescent or active ulcerative colitis (UC) and patients with UC-associated neoplasia using available datasets. The role of COX signaling in colonic tumorigenesis was examined using epithelial and doublecortin-like kinase 1 (Dclk1)+ cell-specific conditional COX-1 knockout mice and pharmacologic treatment with different nonsteroidal anti-inflammatory drugs. RESULTS In this study, we show that prostaglandins and phospho-Akt are key inflammatory mediators that promote stemness in Apc mutant Dclk1+ cells that give rise to colorectal cancer. Moreover, prostaglandin E2 (PGE2) and Akt are increased in colitis in both mice and humans, leading to inflammation-associated dysplasia upon activation of Wnt signaling. Importantly, inhibition of epithelial-derived COX-1 by aspirin or conditional knockout in Dclk1+ cells reduced PGE2 levels and prevented the development of inflammation-associated colorectal cancer. CONCLUSIONS Our data shows that epithelial and Dclk1+ cell-derived COX-1 plays an important role in inflammation-associated tumorigenesis. Importantly, low-dose aspirin was effective in chemo-prevention through inhibition of COX-1 that reduced colitis-associated cancer.
Collapse
Affiliation(s)
- Hayley J Good
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Frederikke Larsen
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Alice E Shin
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Liyue Zhang
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Mathieu Derouet
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - David Meriwether
- Department of Medicine, Division of Cardiology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Daniel Worthley
- South Australian Health Medical Research Institute, North Terrace Adelaide, Australia
| | - Srinivasa T Reddy
- Department of Medicine, Division of Cardiology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York
| | - Samuel Asfaha
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
3
|
Nakayama M, Saito H, Murakami K, Oshima H, Oshima M. Missense Mutant p53 Transactivates Wnt/β-Catenin Signaling in Neighboring p53-Destabilized Cells through the COX-2/PGE2 Pathway. CANCER RESEARCH COMMUNICATIONS 2025; 5:13-23. [PMID: 39641656 PMCID: PMC11695814 DOI: 10.1158/2767-9764.crc-24-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
SIGNIFICANCE There is intratumor heterogeneity in the stabilization of missense mutant p53, and it has been thought that only cells with nuclear accumulation of mutant p53 have oncogenic function. However, using mouse intestinal tumor-derived organoids, we show that mutant p53-stabilized cells transactivate Wnt/β-catenin signaling in neighboring p53-destabilized cells through activating the COX-2/PGE2 pathway. These results suggest that both p53-stabilized cells and p53-destabilized cells contribute to malignant progression through interaction within the intratumor microenvironment.
Collapse
Affiliation(s)
- Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiroshi Saito
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Murakami
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Hartal-Benishay LH, Tal S, Elkader AA, Ehsainieh O, Srouji-Eid R, Lavy T, Kleifeld O, Mikl M, Barki-Harrington L. Activity-dependent COX-2 proteolysis modulates aerobic respiration and proliferation in a prostaglandin-independent manner. iScience 2024; 27:111403. [PMID: 39687029 PMCID: PMC11647142 DOI: 10.1016/j.isci.2024.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Cyclooxygenase-2 (COX-2) catalyzes the oxidation of arachidonic acid (AA) into a single product that is the source of all prostaglandins (PGs), ligands of multiple pro-inflammatory pathways. AA catalysis results in suicide inactivation, rendering the enzyme catalytically inactive. Here, we report that catalytic activity also leads to controlled cleavage of COX-2, an event that is differentially regulated by fatty acids, and blocked by COX inhibitors. We also find COX-2 fragments in human colon tumors. Using mass spectrometry, we identified two adjacent cleavage points within the catalytic domain, which give rise to COX-2 fragments that are catalytically inactive and localize to different cellular compartments. Expression of one of these fragments in cells significantly reduced mitochondrial function, increased lactate production, and enhanced proliferation. We propose that in addition to its role in generating PGs, COX-2 has PG-independent cellular functions that may account for its complex role in proliferative diseases and chronic inflammation.
Collapse
Affiliation(s)
| | - Sharon Tal
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301 Israel
| | - Amal Abd Elkader
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301 Israel
| | - Omar Ehsainieh
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301 Israel
| | - Ranin Srouji-Eid
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301 Israel
| | - Tali Lavy
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Martin Mikl
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301 Israel
| | - Liza Barki-Harrington
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301 Israel
| |
Collapse
|
5
|
Afrifa J, Ofori EG, Opoku YK, Asare KK, Sorkpor RD, Naveh-Fio IW, Armah R, Ofori S, Ephraim RKD. Oxidative Stress and Cancer Risk in Schistosomiasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9701021. [PMID: 39720557 PMCID: PMC11668550 DOI: 10.1155/omcl/9701021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Background: Schistosomiasis is considered one of the most devastating parasitic diseases globally, coming second only to malaria in terms of morbidity. The disease-causing parasite can inhabit the body for over a decade, leading to imbalances in the host's metabolic systems. The flukes and their eggs can illicit various immunological and metabolic complications resulting in the generation of reactive oxygen species (ROS). These are known to have several devastating effects on the host through increased oxidative stress, DNA mutation, and gene modifications, which can lead to fibrosis and cancer. Main Body: Here, we discuss oxidative stress and cancer risk in Schistosoma infection. The concept of ROS generation and the complex antioxidant systems that enable the parasite to evade oxidant insults and prolong its life span in the host are explored. Further, the various roles of ROS during the initiation and progression of schistosomiasis and its influence on the host are discussed. Finally, mechanisms linked to the risk of bladder cancer in Schistosoma haematobium (S. haematobium) infections are elucidated. Conclusion: Finally, we provide an opinion on how some of these mechanisms could give directions for future studies as well as provide a springboard for diagnostics and drug targeting in schistosomiasis.
Collapse
Affiliation(s)
- Justice Afrifa
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Gyamerah Ofori
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Kwame Kumi Asare
- Infectious and Non-Communicable Diseases, Biomedical and Clinical Research Centre, University of Cape Coast, Cape Coast, Ghana
| | - Rosemary Doe Sorkpor
- Inspectorate Directorate, Food and Drugs Authority, Cape Coast P.O. Box CC13733, Ghana
| | - Ibrahim W. Naveh-Fio
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Richard Armah
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sandra Ofori
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Richard K. D. Ephraim
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
6
|
Majima M, Matsuda Y, Watanabe SI, Ohtaki Y, Hosono K, Ito Y, Amano H. Prostanoids Regulate Angiogenesis and Lymphangiogenesis in Pathological Conditions. Cold Spring Harb Perspect Med 2024; 14:a041182. [PMID: 38565267 PMCID: PMC11610754 DOI: 10.1101/cshperspect.a041182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Angiogenesis, the formation of new blood vessels from the preexistent microvasculature, is an essential component of wound repair and tumor growth. Nonsteroidal anti-inflammatory drugs that suppress prostanoid biosynthesis are known to suppress the incidence and progression of malignancies including colorectal cancers, and also to delay the wound healing. However, the precise mechanisms are not fully elucidated. Accumulated results obtained from prostanoid receptor knockout mice indicate that a prostaglandin E-type receptor signaling EP3 in the host microenvironment is critical in tumor angiogenesis inducing vascular endothelial growth factor A (VEGF-A). Further, lymphangiogenesis was also enhanced by EP signaling via VEGF-C/D inductions in pathological settings. These indicate the importance of EP receptor to facilitate angiogenesis and lymphangiogenesis in vivo. Prostanoids act beyond their commonly understood activities in smooth muscle contraction and vasoactivity, both of which are quick responses elicited within several seconds on stimulations. Prostanoid receptor signaling will be a potential therapeutic target for disease conditions related to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Yasuaki Ohtaki
- Department of Human Sensing, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
7
|
Chun KS, Kim EH, Kim DH, Song NY, Kim W, Na HK, Surh YJ. Targeting cyclooxygenase-2 for chemoprevention of inflammation-associated intestinal carcinogenesis: An update. Biochem Pharmacol 2024; 228:116259. [PMID: 38705538 DOI: 10.1016/j.bcp.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, South Korea
| | - Na-Young Song
- Department of Oral Biology, BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, South Korea
| | - Wonki Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
8
|
Drew DA, Kim AE, Lin Y, Qu C, Morrison J, Lewinger JP, Kawaguchi E, Wang J, Fu Y, Zemlianskaia N, Díez-Obrero V, Bien SA, Dimou N, Albanes D, Baurley JW, Wu AH, Buchanan DD, Potter JD, Prentice RL, Harlid S, Arndt V, Barry EL, Berndt SI, Bouras E, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Chang-Claude J, Conti DV, Devall MA, Figueiredo JC, Gruber SB, Gsur A, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Kundaje A, Le Marchand L, Li L, Lynch BM, Murphy N, Nassir R, Newcomb PA, Newton CC, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Stern MC, Su YR, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, Um CY, van Duijnhoven FJ, Van Guelpen B, White E, Hsu L, Moreno V, Peters U, Chan AT, Gauderman WJ. Two genome-wide interaction loci modify the association of nonsteroidal anti-inflammatory drugs with colorectal cancer. SCIENCE ADVANCES 2024; 10:eadk3121. [PMID: 38809988 PMCID: PMC11135391 DOI: 10.1126/sciadv.adk3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Regular, long-term aspirin use may act synergistically with genetic variants, particularly those in mechanistically relevant pathways, to confer a protective effect on colorectal cancer (CRC) risk. We leveraged pooled data from 52 clinical trial, cohort, and case-control studies that included 30,806 CRC cases and 41,861 controls of European ancestry to conduct a genome-wide interaction scan between regular aspirin/nonsteroidal anti-inflammatory drug (NSAID) use and imputed genetic variants. After adjusting for multiple comparisons, we identified statistically significant interactions between regular aspirin/NSAID use and variants in 6q24.1 (top hit rs72833769), which has evidence of influencing expression of TBC1D7 (a subunit of the TSC1-TSC2 complex, a key regulator of MTOR activity), and variants in 5p13.1 (top hit rs350047), which is associated with expression of PTGER4 (codes a cell surface receptor directly involved in the mode of action of aspirin). Genetic variants with functional impact may modulate the chemopreventive effect of regular aspirin use, and our study identifies putative previously unidentified targets for additional mechanistic interrogation.
Collapse
Affiliation(s)
- David A. Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andre E. Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yubo Fu
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natalia Zemlianskaia
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L. Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmanouil Bouras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V. Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew A.M. Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jane C. Figueiredo
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen B. Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrea Gsur
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina M. Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Brigid M. Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura’a University, Mecca, Saudi Arabia
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J. Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R. Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Peter C. Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariana C. Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Duncan C. Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Andrew T. Chan
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W. James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Geisert RD, Bazer FW, Lucas CG, Pfeiffer CA, Meyer AE, Sullivan R, Johns DN, Sponchiado M, Prather RS. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim Reprod Sci 2024; 264:107452. [PMID: 38522133 DOI: 10.1016/j.anireprosci.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Riley Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Yuan S, Almagro J, Fuchs E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer 2024; 24:274-286. [PMID: 38347101 PMCID: PMC11077468 DOI: 10.1038/s41568-023-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
Cancer has long been viewed as a genetic disease of cumulative mutations. This notion is fuelled by studies showing that ageing tissues are often riddled with clones of complex oncogenic backgrounds coexisting in seeming harmony with their normal tissue counterparts. Equally puzzling, however, is how cancer cells harbouring high mutational burden contribute to normal, tumour-free mice when allowed to develop within the confines of healthy embryos. Conversely, recent evidence suggests that adult tissue cells expressing only one or a few oncogenes can, in some contexts, generate tumours exhibiting many of the features of a malignant, invasive cancer. These disparate observations are difficult to reconcile without invoking environmental cues triggering epigenetic changes that can either dampen or drive malignant transformation. In this Review, we focus on how certain oncogenes can launch a two-way dialogue of miscommunication between a stem cell and its environment that can rewire downstream events non-genetically and skew the morphogenetic course of the tissue. We review the cells and molecules of and the physical forces acting in the resulting tumour microenvironments that can profoundly affect the behaviours of transformed cells. Finally, we discuss possible explanations for the remarkable diversity in the relative importance of mutational burden versus tumour microenvironment and its clinical relevance.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
11
|
Rodrigues P, Bangali H, Hammoud A, Mustafa YF, Al-Hetty HRAK, Alkhafaji AT, Deorari MM, Al-Taee MM, Zabibah RS, Alsalamy A. COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers. Med Oncol 2024; 41:41. [PMID: 38165473 DOI: 10.1007/s12032-023-02256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Cyclooxygenase (COX) enzymes are pivotal in inflammation and cancer development. COX-2, in particular, has been implicated in tumor growth, angiogenesis, and immune evasion. Recently, COX-2 inhibitors have arisen as potential therapeutic agents in cancer treatment. In addition, combining COX inhibitors with other treatment modalities has demonstrated the potential to improve therapeutic efficacy. This review aims to investigate the effects of COX inhibition, both alone and in combination with other methods, on signaling pathways and carcinogenesis in various cancers. In this study, a literature search of all major academic databases was conducted (PubMed, Scholar google), including the leading research on the mechanisms of COX-2, COX-2 inhibitors, monotherapy with COX-2 inhibitors, and combining COX-2-inhibitors with chemotherapeutic agents in tumors. The study encompasses preclinical and clinical evidence, highlighting the positive findings and the potential implications for clinical practice. According to preclinical studies, multiple signaling pathways implicated in tumor cell proliferation, survival, invasion, and metastasis can be suppressed by inhibiting COX. In addition, combining COX inhibitors with chemotherapy drugs, targeted therapies, immunotherapies, and miRNA-based approaches has enhanced anti-tumor activity. These results suggest that combination therapy has the potential to overcome resistance mechanisms and improve treatment outcomes. However, caution must be exercised when selecting and administering combination regimens. Not all combinations of COX-2 inhibitors with other drugs result in synergistic effects; some may even have unfavorable interactions. Therefore, personalized approaches that consider the specific characteristics of the cancer and the medications involved are crucial for optimizing therapeutic strategies. In conclusion, as monotherapy or combined with other methods, COX inhibition bears promise in modulating signaling pathways and inhibiting carcinogenesis in various cancers. Additional studies and well-designed clinical trials are required to completely elucidate the efficacy of COX inhibition and combination therapy in enhancing cancer treatment outcomes. This narrative review study provides a detailed summary of COX-2 monotherapy and combination targeted therapy in cancer treatment.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia.
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Mubarak Al-Abdullah, Kuwait.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Rahman S Zabibah
- College of Medical Technique, the Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
12
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
13
|
Stone JK, Mehta NA, Singh H, El-Matary W, Bernstein CN. Endoscopic and chemopreventive management of familial adenomatous polyposis syndrome. Fam Cancer 2023; 22:413-422. [PMID: 37119510 DOI: 10.1007/s10689-023-00334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Familial adenomatous polyposis (FAP) is an autosomal dominant syndrome predisposing affected individuals to gastrointestinal (GI) cancers through a high burden of polyposis. Colorectal cancer rates reach 100% by the age of 45, making early colectomy a mainstay of treatment. While most patients undergo colectomy at an early age, ongoing screening and surveillance of the upper gastrointestinal tract and rectal pouch must continue throughout adulthood. Endoscopic therapy of gastric, duodenal, ampullary and rectal pouch polyps is critical to reduce morbidity and cancer related mortality. Management of these lesions is not uniform, and is dependent on their location, size, histology, and risk of malignant potential. Medical therapies targeting pathways that reduce the malignant progression of pre-cancerous lesions have been studied for many years. While studies on the use of aspirin and non-steroidal anti-inflammatories (NSAIDs) in chemoprevention have shown encouraging results in Lynch syndrome and primary colorectal cancer, the potential benefits of these medications have not been duplicated in FAP cohorts. While data remains limited on chemoprevention in FAP, a number of randomized trials are currently underway examining targeted therapies with the potential to slow the progression of the disease. This review aims to provide an in-depth review of the literature on current endoscopic options and chemopreventive therapies targeting FAP. While the endoscopic management has robust data for its use, chemoprevention in FAP is still in its infancy. The complementary use of chemopreventive agents and endoscopic therapy for FAP patients is quickly becoming a growing and exciting area of research.
Collapse
Affiliation(s)
- J K Stone
- Section of Gastroenterology, Department of Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - N A Mehta
- Center for Interventional and Therapeutic Endoscopy, Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - H Singh
- Section of Gastroenterology, Department of Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
| | - W El-Matary
- Section of Pediatric Gastroenterology, Department of Pediatrics, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - C N Bernstein
- Section of Gastroenterology, Department of Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Cherkasova V, Ilnytskyy Y, Kovalchuk O, Kovalchuk I. Transcriptome Analysis of Cisplatin, Cannabidiol, and Intermittent Serum Starvation Alone and in Various Combinations on Colorectal Cancer Cells. Int J Mol Sci 2023; 24:14743. [PMID: 37834191 PMCID: PMC10572413 DOI: 10.3390/ijms241914743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Platinum-derived chemotherapy medications are often combined with other conventional therapies for treating different tumors, including colorectal cancer. However, the development of drug resistance and multiple adverse effects remain common in clinical settings. Thus, there is a necessity to find novel treatments and drug combinations that could effectively target colorectal cancer cells and lower the probability of disease relapse. To find potential synergistic interaction, we designed multiple different combinations between cisplatin, cannabidiol, and intermittent serum starvation on colorectal cancer cell lines. Based on the cell viability assay, we found that combinations between cannabidiol and intermittent serum starvation, cisplatin and intermittent serum starvation, as well as cisplatin, cannabidiol, and intermittent serum starvation can work in a synergistic fashion on different colorectal cancer cell lines. Furthermore, we analyzed differentially expressed genes and affected pathways in colorectal cancer cell lines to understand further the potential molecular mechanisms behind the treatments and their interactions. We found that synergistic interaction between cannabidiol and intermittent serum starvation can be related to changes in the transcription of genes responsible for cell metabolism and cancer's stress pathways. Moreover, when we added cisplatin to the treatments, there was a strong enrichment of genes taking part in G2/M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| |
Collapse
|
15
|
Kok SY, Nakayama M, Morita A, Oshima H, Oshima M. Genetic and nongenetic mechanisms for colorectal cancer evolution. Cancer Sci 2023; 114:3478-3486. [PMID: 37357016 PMCID: PMC10475778 DOI: 10.1111/cas.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023] Open
Abstract
The stepwise accumulation of key driver mutations is responsible for the development and malignant progression of colorectal cancer in primary sites. Genetic mouse model studies have revealed combinations of driver gene mutations that induce phenotypic changes in tumors toward malignancy. However, cancer evolution is regulated by not only genetic alterations but also nongenetic mechanisms. For example, certain populations of metastatic cancer cells show a loss of malignant characteristics even after the accumulation of driver mutations, and such cells are eliminated in a negative selection manner. Furthermore, a polyclonal metastasis model has recently been proposed, in which cell clusters consisting of genetically heterogeneous cells break off from the primary site, disseminate to distant organs, and develop into heterogenous metastatic tumors. Such nongenetic mechanisms for malignant progression have been elucidated using genetically engineered mouse models as well as organoid transplantation experiments. In this review article, we discuss the role of genetic alterations in the malignant progression of primary intestinal tumors and nongenetic mechanisms for negative selection and polyclonal metastasis, which we learned from model studies.
Collapse
Affiliation(s)
- Sau Yee Kok
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Mizuho Nakayama
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Atsuya Morita
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Hiroko Oshima
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Masanobu Oshima
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa UniversityKanazawaJapan
| |
Collapse
|
16
|
Kyriakidis F, Kogias D, Venou TM, Karlafti E, Paramythiotis D. Updated Perspectives on the Diagnosis and Management of Familial Adenomatous Polyposis. Appl Clin Genet 2023; 16:139-153. [PMID: 37600856 PMCID: PMC10439286 DOI: 10.2147/tacg.s372241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
Familial adenomatous polyposis (FAP) is an autosomal dominant cancer predisposition syndrome marked by extensive colorectal polyposis and a high risk of colorectal cancer (CRC). Having access to screening and enrollment programs can improve survival for patients with FAP by enabling them to undergo surgery before the development of colorectal cancer. Provided that there are a variety of surgical options available to treat colorectal polyps in patients with adenomatous polyposis, the appropriate surgical option for each patient should be considered. The gold-standard treatment to reduce this risk is prophylactic colectomy, typically by the age of 40. However, colectomy is linked to morbidity and constitutes an ineffective way at preventing extra-colonic disease manifestations, such as desmoid disease, thyroid malignancy, duodenal polyposis, and cancer. Moreover, extensive studies have been conducted into the use of chemopreventive agents to prevent disease progression and delay the necessity for a colectomy as well as the onset of extracolonic disease. The ideal chemoprevention agent should demonstrate a biologically plausible mechanism of action and provide safety, easy tolerance over an extended period of time and a lasting and clinically meaningful effect. Although many pharmaceutical and non-pharmaceutical products have been tested through the years, there has not yet been a chemoprevention agent that meets these criteria. Thus, it is necessary to develop new FAP agents that target novel pathways, such as the mTOR pathway. The aim of this article is to review the prior literature on FAP in order to concentrate the current and future perspectives of diagnosis and treatment. In conclusion, we will provide an update on the diagnostic and therapeutic options, surgical or pharmaceutical, while focusing on the potential treatment strategies that could further reduce the risk of CRC.
Collapse
Affiliation(s)
- Filippos Kyriakidis
- Second Chemotherapy Department, Theagenio Cancer Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dionysios Kogias
- First Department of Internal Medicine, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Theodora Maria Venou
- Second Chemotherapy Department, Theagenio Cancer Hospital of Thessaloniki, Thessaloniki, Greece
| | - Eleni Karlafti
- Emergency Department, AHEPA General University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- First Propaedeutic Department of Internal Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Paramythiotis
- First Propaedeutic Surgery Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Abstract
Mouse models of colorectal cancer (CRC) have been crucial in the identification of the role of genes responsible for the full range of pathology of the human disease and have proved to be dependable for testing anti-cancer drugs. Recent research points toward the relevance of tumor, angiogenic, and immune microenvironments in CRC progression to late-stage disease, as well as the treatment of it. This study examines important mouse models in CRC, discussing inherent strengths and weaknesses disclosed during their construction. It endeavors to provide both a synopsis of previous work covering how investigators have defined various models and to evaluate critically how researchers are most likely to use them in the future. Accumulated evidence regarding the metastatic process and the hope of using checkpoint inhibitors and immunological inhibitor therapies points to the need for a genetically engineered mouse model that is both immunocompetent and autochthonous.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Farooq U, El Alayli A, Duvvuri A, Mansour R, Pasam RT, Malireddy S, Mustafa RA, Bansal A. Nonsteroidal Anti-inflammatory Drugs for Chemoprevention in Patients With Familial Adenomatous Polyposis: A Systematic Review and Meta-Analysis. GASTRO HEP ADVANCES 2023; 2:1005-1013. [PMID: 39130765 PMCID: PMC11308826 DOI: 10.1016/j.gastha.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/12/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Published literature shows mixed reports of the benefits of nonsteroidal anti-inflammatory drugs (NSAIDs) on reducing colorectal polyps in patients with familial adenomatous polyposis (FAP). We conducted a systematic review and performed a meta-analysis to assess the impact of NSAIDs on colorectal polyp burden in patients with FAP. Methods We searched PubMed, EMBASE, and Cochrane for randomized controlled trials (RCTs) comparing the effect of NSAIDs vs placebo on the percent change in polyp number and polyp size in patients with FAP. Mean differences between the 2 study arms were pooled using RevMan. The risk of bias (RoB) was assessed using the Cochrane Risk of Bias tool for RCTs, and certainty in the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation methodology. Results The search strategy identified 1021 studies, out of which we included 8 RCTs with a total of 279 patients. Treatment for 6.4 ± 2.2 months with NSAIDs reduced polyp numbers by -17.4% (95% confidence interval -26.41%, -8.29%) (low certainty [I2 89%] due to imprecision and issues with RoB) and polyp size by -15.9% (95% confidence interval -24.98%, -6.73%) (very low certainty (I2 84%) due to imprecision, inconsistency, and issues with RoB). The most common gastrointestinal adverse events reported were stomatitis, diarrhea, and abdominal pain. Side effects leading to drug discontinuation were gastroenteritis and drug allergy. Conclusion Short-term use of NSAIDs reduced polyp number and polyp size but with low to very low certainty of evidence. Further large multicenter studies are needed to further explore NSAIDs as a chemopreventive measure in patients with FAP.
Collapse
Affiliation(s)
- Umer Farooq
- Department of Internal Medicine, Loyola Medicine/MacNeal Hospital, Berwyn, Illinois
| | - Abdallah El Alayli
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri
| | - Abhiram Duvvuri
- Division of Gastroenterology and Hepatology, the University of Kansas Medical Center, Kansas City, Kansas
| | - Razan Mansour
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ravi Teja Pasam
- Department of Internal Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | | | - Reem A. Mustafa
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
- Department of Internal Medicine, Outcomes and Implementation Unit, University of Kansas Medical Center, Kansas City, Kansas
| | - Ajay Bansal
- Division of Gastroenterology and Hepatology, the University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
19
|
Lanas A, Tacconelli S, Contursi A, Piazuelo E, Bruno A, Ronci M, Marcone S, Dovizio M, Sopeña F, Falcone L, Milillo C, Mucci M, Ballerini P, Patrignani P. Biomarkers of Response to Low-Dose Aspirin in Familial Adenomatous Polyposis Patients. Cancers (Basel) 2023; 15:cancers15092457. [PMID: 37173923 PMCID: PMC10177499 DOI: 10.3390/cancers15092457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The results of Aspirin prevention of colorectal adenomas in patients with familial adenomatous polyposis (FAP) are controversial. METHODS We conducted a biomarker-based clinical study in eight FAP patients treated with enteric-coated low-dose Aspirin (100 mg daily for three months) to explore whether the drug targets mainly platelet cyclooxygenase (COX)-1 or affects extraplatelet cellular sources expressing COX-isozymes and/or off-target effects in colorectal adenomas. RESULTS In FAP patients, low-dose Aspirin-acetylated platelet COX-1 at Serine529 (>70%) was associated with an almost complete inhibition of platelet thromboxane (TX) B2 generation ex vivo (serum TXB2). However, enhanced residual urinary 11-dehydro-TXB2 and urinary PGEM, primary metabolites of TXA2 and prostaglandin (PG)E2, respectively, were detected in association with incomplete acetylation of COX-1 in normal colorectal biopsies and adenomas. Proteomics of adenomas showed that Aspirin significantly modulated only eight proteins. The upregulation of vimentin and downregulation of HBB (hemoglobin subunit beta) distinguished two groups with high vs. low residual 11-dehydro-TXB2 levels, possibly identifying the nonresponders and responders to Aspirin. CONCLUSIONS Although low-dose Aspirin appropriately inhibited the platelet, persistently high systemic TXA2 and PGE2 biosynthesis were found, plausibly for a marginal inhibitory effect on prostanoid biosynthesis in the colorectum. Novel chemotherapeutic strategies in FAP can involve blocking the effects of TXA2 and PGE2 signaling with receptor antagonists.
Collapse
Affiliation(s)
- Angel Lanas
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, 50009 Zaragoza, Spain
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Elena Piazuelo
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Simone Marcone
- Trinity Translational Medicine Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Federico Sopeña
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, 50009 Zaragoza, Spain
| | - Lorenza Falcone
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Matteo Mucci
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| |
Collapse
|
20
|
Tang C, Sun H, Kadoki M, Han W, Ye X, Makusheva Y, Deng J, Feng B, Qiu D, Tan Y, Wang X, Guo Z, Huang C, Peng S, Chen M, Adachi Y, Ohno N, Trombetta S, Iwakura Y. Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nat Commun 2023; 14:1493. [PMID: 36932082 PMCID: PMC10023663 DOI: 10.1038/s41467-023-37229-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Dectin-1 (gene Clec7a), a receptor for β-glucans, plays important roles in the host defense against fungi and immune homeostasis of the intestine. Although this molecule is also suggested to be involved in the regulation of tumorigenesis, the role in intestinal tumor development remains to be elucidated. In this study, we find that azoxymethane-dextran-sodium-sulfate-induced and ApcMin-induced intestinal tumorigenesis are suppressed in Clec7a-/- mice independently from commensal microbiota. Dectin-1 is preferentially expressed on myeloid-derived suppressor cells (MDSCs). In the Clec7a-/- mouse colon, the proportion of MDSCs and MDSC-derived prostaglandin E2 (PGE2) levels are reduced, while the expression of IL-22 binding protein (IL-22BP; gene Il22ra2) is upregulated. Dectin-1 signaling induces PGE2-synthesizing enzymes and PGE2 suppresses Il22ra2 expression in vitro and in vivo. Administration of short chain β-glucan laminarin, an antagonist of Dectin-1, suppresses the development of mouse colorectal tumors. Furthermore, in patients with colorectal cancer (CRC), the expression of CLEC7A is also observed in MDSCs and correlated with the death rate and tumor severity. Dectin-1 signaling upregulates PGE2-synthesizing enzyme expression and PGE2 suppresses IL22RA2 expression in human CRC-infiltrating cells. These observations indicate a role of the Dectin-1-PGE2-IL-22BP axis in regulating intestinal tumorigenesis, suggesting Dectin-1 as a potential target for CRC therapy.
Collapse
Affiliation(s)
- Ce Tang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China.
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan.
| | - Haiyang Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Motohiko Kadoki
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Wei Han
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Xiaoqi Ye
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Yulia Makusheva
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan
| | - Jianping Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Bingbing Feng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Ding Qiu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Ying Tan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Xinying Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Zehao Guo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Chanyan Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, Guangdong Province, China
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Sergio Trombetta
- Boehringer Ingelheim USA, 900 Ridgebury Rd, Ridgefield, CT, 06877, USA
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba, 278-0022, Japan.
| |
Collapse
|
21
|
Sun HL, Ma QY, Bian HG, Meng XM, Jin J. Novel insight on GRP/GRPR axis in diseases. Biomed Pharmacother 2023; 161:114497. [PMID: 36933382 DOI: 10.1016/j.biopha.2023.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptors (GPCRs), binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. GRP/GRPR signalling is involved in the pathophysiological processes of many diseases, including inflammatory diseases, cardiovascular diseases, neurological diseases, and various cancers. In the immune system, the unique function of GRP/GRPR in neutrophil chemotaxis suggests that GRPR can be directly stimulated through GRP-mediated neutrophils to activate selective signalling pathways, such as PI3K, PKC, and MAPK, and participate in the occurrence and development of inflammation-related diseases. In the cardiovascular system, GRP increases intercellular adhesion molecule 1 (ICAM-1) and induces vascular cell adhesion molecule-1 (VCAM-1). GRP activates ERK1/2, MAPK, and AKT, leading to cardiovascular diseases, including myocardial infarction. Central nervous system signal transduction mediated by the GRP/GRPR axis plays a vital role in emotional responses, social interaction, and memory. The GRP/GRPR axis is elevated in various cancers, including lung, cervical, colorectal, renal cell, and head and neck squamous cell carcinomas. GRP is a mitogen in a variety of tumour cell lines. Its precursor, pro-gastrin-releasing peptide (ProGRP), may play an important role as an emerging tumour marker in early tumour diagnosis. GPCRs serve as therapeutic targets for drug development, but their function in each disease remains unclear, and their involvement in disease progression has not been well explored or summarised. This review lays out the above mentioned pathophysiological processes based on previous research conclusions. The GRP/GRPR axis may be a potential target for treating multiple diseases, and the study of this signalling axis is particularly important.
Collapse
Affiliation(s)
- Hao-Lu Sun
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Qiu-Ying Ma
- Department of pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei, Anhui, 230012, China
| | - He-Ge Bian
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China.
| |
Collapse
|
22
|
De S, Paul S, Manna A, Majumder C, Pal K, Casarcia N, Mondal A, Banerjee S, Nelson VK, Ghosh S, Hazra J, Bhattacharjee A, Mandal SC, Pal M, Bishayee A. Phenolic Phytochemicals for Prevention and Treatment of Colorectal Cancer: A Critical Evaluation of In Vivo Studies. Cancers (Basel) 2023; 15:993. [PMID: 36765950 PMCID: PMC9913554 DOI: 10.3390/cancers15030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samhita De
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Sourav Paul
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | - Anirban Manna
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | | | - Koustav Pal
- Jawaharlal Institute Post Graduate Medical Education and Research, Puducherry 605 006, India
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Vinod Kumar Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Anantapur 515 721, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology, Chennai 600 036, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
23
|
Pant S, Dragovich T, Lieu C, Jimeno A, Kundranda M, Menter D, Tchaparian E, Chen YC, Kopetz S. Phase 1 study of the safety, pharmacokinetics, and preliminary efficacy of CA102N as monotherapy and in combination with trifluridine-tipiracil in patients with locally advanced or metastatic solid tumors. Invest New Drugs 2023; 41:25-34. [PMID: 36331676 DOI: 10.1007/s10637-022-01308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
CA102N is a covalently bound conjugate of modified nimesulide (Nim) and NaHA, the sodium salt of hyaluronic acid (HA). HA is a natural ligand of cluster of differentiation 44 (CD44), which is over-expressed in colorectal cancer (CRC). CA102N is designed to deliver nimesulide directly to the tumor via the interaction of HA and CD44. A Phase 1, 2-part (dose escalation, dose expansion), non-randomized, open-label, first-in-human study of CA102N, as monotherapy and in combination with trifluridine-tipiracil, was conducted in patients with locally advanced or metastatic solid tumors. The CA102N doses evaluated were 0.36 mg/kg, 0.54 mg/kg, and 0.72 mg/kg Nim equivalent. The primary endpoints were dose-limiting toxicities (DLTs) in Cycle 1 as well as serious adverse events (SAEs) and treatment-emergent adverse events (TEAEs) throughout the study; secondary endpoints were pharmacodynamics parameters, objective tumor response, and urinary pharmacodynamics markers of target inhibition. Between April 2019 and October 2021, 37 patients were enrolled in 3 US centers. No DLTs were observed in Part 1, and 0.72 mg/kg Nim equivalent was the dose selected for Part 2. In total, 52 TEAEs in 18 patients were CA102N-related; 4 (in 3 patients) were ≥ Grade 3. Exploratory analysis in the dose expansion cohort revealed a median progression-free survival of 3.7 (1.0, 6.77) months. Based on this study, CA102N as monotherapy or in combination with trifluridine-tipiracil, was safe and well-tolerated at the recommended Phase 2 dose of 0.72 mg/kg Nim equivalent in patients with locally advanced or metastatic solid tumors. Preliminary evidence of antitumor activity in CRC warrants further clinical development. (ClinicalTrials.gov registration number: NCT03616574. Registration date: August 6, 2018).
Collapse
Affiliation(s)
- Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe BLVD, Houston, TX, 77030, USA.
| | - Tomislav Dragovich
- Division of Cancer Medicine, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Christopher Lieu
- Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus and University of Colorado Cancer Center, Aurora, CO, USA
| | - Antonio Jimeno
- Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus and University of Colorado Cancer Center, Aurora, CO, USA
| | - Madappa Kundranda
- Division of Cancer Medicine, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe BLVD, Houston, TX, 77030, USA
| | | | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe BLVD, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Menter DG, Bresalier RS. An Aspirin a Day: New Pharmacological Developments and Cancer Chemoprevention. Annu Rev Pharmacol Toxicol 2023; 63:165-186. [PMID: 36202092 DOI: 10.1146/annurev-pharmtox-052020-023107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
25
|
Ferrara CR, Bai JDK, McNally EM, Putzel GG, Zhou XK, Wang H, Lang A, Nagle D, Denoya P, Krumsiek J, Dannenberg AJ, Montrose DC. Microbes Contribute to Chemopreventive Efficacy, Intestinal Tumorigenesis, and the Metabolome. Cancer Prev Res (Phila) 2022; 15:803-814. [PMID: 36049217 DOI: 10.1158/1940-6207.capr-22-0244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 01/31/2023]
Abstract
Bacteria are believed to play an important role in intestinal tumorigenesis and contribute to both gut luminal and circulating metabolites. Celecoxib, a selective cyclooxygenase-2 inhibitor, alters gut bacteria and metabolites in association with suppressing the development of intestinal polyps in mice. The current study sought to evaluate whether celecoxib exerts its chemopreventive effects, in part, through intestinal bacteria and metabolomic alterations. Using ApcMin/+ mice, we demonstrated that treatment with broad-spectrum antibiotics (ABx) reduced abundance of gut bacteria and attenuated the ability of celecoxib to suppress intestinal tumorigenesis. Use of ABx also impaired celecoxib's ability to shift microbial populations and gut luminal and circulating metabolites. Treatment with ABx alone markedly reduced tumor number and size in ApcMin/+ mice, in conjunction with profoundly altering the metabolite profiles of the intestinal lumen and blood. Many of the metabolite changes in the gut and circulation overlapped and included shifts in microbially derived metabolites. To complement these findings in mice, we evaluated the effects of ABx on circulating metabolites in patients with colon cancer. This showed that ABx treatment led to a shift in blood metabolites, including several that were of bacterial origin. Importantly, changes in metabolites in patients given ABx overlapped with alterations found in mice that also received ABx. Taken together, these findings suggest a potential role for bacterial metabolites in mediating both the chemopreventive effects of celecoxib and intestinal tumor growth. PREVENTION RELEVANCE This study demonstrates novel mechanisms by which chemopreventive agents exert their effects and gut microbiota impact intestinal tumor development. These findings have the potential to lead to improved cancer prevention strategies by modulating microbes and their metabolites.
Collapse
Affiliation(s)
- Carmen R Ferrara
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Ji Dong K Bai
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Erin M McNally
- Departments of Medicine, Weill Cornell Medical College, New York, New York
| | - Gregory G Putzel
- Departments of Medicine, Weill Cornell Medical College, New York, New York
| | - Xi Kathy Zhou
- Healthcare Policy and Research, Weill Cornell Medical College, New York, New York
| | - Hanhan Wang
- Healthcare Policy and Research, Weill Cornell Medical College, New York, New York
| | - Alan Lang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Deborah Nagle
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Paula Denoya
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York.,Sandra and Edward Meyer Cancer Center, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| | - Andrew J Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, New York
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.,Stony Brook Cancer Center, Stony Brook, New York
| |
Collapse
|
26
|
The Effect of Low Doses of Acetylsalicylic Acid on the Occurrence of Rectal Aberrant Crypt Foci. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121767. [PMID: 36556972 PMCID: PMC9788241 DOI: 10.3390/medicina58121767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Background and Objectives: Aberrant crypt foci (ACF) are one of the earliest putative preneoplastic and, in some cases, neoplastic lesions in human colons. Many studies have confirmed the reduction of ACFs and colorectal adenomas after treatment with acetylsalicylic acid (ASA) commonly referred to as ASA; however, the minimum effective dose of ASA and the duration of use has not been fully elucidated. The objective of our study was to assess the significance of low dose ASA (75-mg internally once daily) to study the chemopreventive effect of ASA in ACF and adenomas development in patients taking this drug for a minimum period of 10 years. Materials and Methods: Colonoscopy, combined with rectal mucosa staining with 0.25% methylene blue, was performed on 131 patients. The number of rectal ACF in the colon was divided into three groups: ACF < 5; ACF 5−10; and ACF > 10. Patients were divided into two groups: the “With ASA” group (the study group subjects taking ASA 75-mg daily for 10 years); and “Without ASA” group (control group subjects not taking ASA chronically). The incidence of different types of rectal ACF and colorectal polyps in both groups of subjects was analysed and ascertained. Results: Normal ACF was found in 12.3% in the study group vs. 87.7% control group, hyperplastic 22.4% vs. 77.6%, dysplastic 25% vs. 75%, mixed 0% vs. 100%. Treatment with ASA affects the occurrence of colorectal adenomas. The amount of dysplastic ACFs was lower in the study group than in the control group. The increase in dysplastic ACFs decreases with age in both groups, with the increase greater in those not taking ASA. Conclusions: Patients who take persistent, chronic (>10 years) low doses of ASA have a lower total number of all types of rectal ACFs and adenomas compared to the control group.
Collapse
|
27
|
Bruno A, Contursi A, Tacconelli S, Sacco A, Hofling U, Mucci M, Lamolinara A, Del Pizzo F, Ballerini P, Di Gregorio P, Yu Y, Patrignani P. The specific deletion of cyclooxygenase-1 in megakaryocytes/platelets reduces intestinal polyposis in Apc Min/+ mice. Pharmacol Res 2022; 185:106506. [PMID: 36241001 DOI: 10.1016/j.phrs.2022.106506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
Abstract
Clinical and experimental evidence sustain the role of cyclooxygenase (COX)-1 in intestinal tumorigenesis. However, the cell type expressing the enzyme involved and molecular mechanism(s) have not been clarified yet. We aimed to elucidate the role of platelet COX-1 (the target of low-dose aspirin in humans) in intestinal tumorigenesis of ApcMin/+ mice, considered a clinically relevant model. To realize this objective, we generated an ApcMin/+ mouse with a specific deletion of Ptgs1(COX-1 gene name) in megakaryocytes/platelets (ApcMin/+;pPtgs1-/-mice) characterized by profound inhibition of thromboxane(TX)A2 biosynthesis ex vivo (serum TXB2; by 99%) and in vivo [urinary 2,3-dinor-TXB2(TXM), by 79%]. ApcMin/+ mice with the deletion of platelet COX-1 showed a significantly reduced number (67%) and size (32%) of tumors in the small intestine. The intestinal adenomas of these mice had decreased proliferative index associated with reduced COX-2 expression and systemic prostaglandin(PG)E2 biosynthesis (urinary PGEM) vs. ApcMin/+mice. Extravasated platelets were detected in the intestine of ApcMin/+mice. Thus, we explored their contribution to COX-2 induction in fibroblasts, considered the primary polyp cell type expressing the protein. In the coculture of human platelets and myofibroblasts, platelet-derived TXA2 was involved in the induction of COX-2-dependent PGE2 in myofibroblasts since it was prevented by the selective inhibition of platelet COX-1 by aspirin or by a specific antagonist of TXA2 receptors. In conclusion, our results support the platelet hypothesis of intestinal tumorigenesis and provide experimental evidence that selective inhibition of platelet COX-1 can mitigate early events of intestinal tumorigenesis by restraining COX-2 induction.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Angela Sacco
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Ulrika Hofling
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Matteo Mucci
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Francesco Del Pizzo
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Patrizia Di Gregorio
- Institute of Transfusion Medicine, "Ss. Annunziata" Hospital, 66100 Chieti, Italy
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy.
| |
Collapse
|
28
|
Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol 2022; 15:143. [PMID: 36209184 PMCID: PMC9548212 DOI: 10.1186/s13045-022-01362-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as therapeutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future.
Collapse
Affiliation(s)
- Qing Wu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Wei Qian
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Xiaoli Sun
- Department of Radiation Oncology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
29
|
Kotas ME, Moore CM, Gurrola JG, Pletcher SD, Goldberg AN, Alvarez R, Yamato S, Bratcher PE, Shaughnessy CA, Zeitlin PL, Zhang IH, Li Y, Montgomery MT, Lee K, Cope EK, Locksley RM, Seibold MA, Gordon ED. IL-13-programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function. JCI Insight 2022; 7:e159832. [PMID: 35608904 PMCID: PMC9310525 DOI: 10.1172/jci.insight.159832] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.
Collapse
Affiliation(s)
- Maya E. Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Camille M. Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado, Aurora, Colorado, USA
| | - Jose G. Gurrola
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Steven D. Pletcher
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
- Surgical Service, ENT Section, San Francisco VA Medical Center, San Francisco, California, USA
| | - Andrew N. Goldberg
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Raquel Alvarez
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sheyla Yamato
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | | | - Pamela L. Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Irene H. Zhang
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Yingchun Li
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Michael T. Montgomery
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Keehoon Lee
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Richard M. Locksley
- Howard Hughes Medical Institute and
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Max A. Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Erin D. Gordon
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Shailes H, Tse WY, Freitas MO, Silver A, Martin SA. Statin Treatment as a Targeted Therapy for APC-Mutated Colorectal Cancer. Front Oncol 2022; 12:880552. [PMID: 35712511 PMCID: PMC9197185 DOI: 10.3389/fonc.2022.880552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mutations in the tumor suppressor gene Adenomatous Polyposis Coli (APC) are found in 80% of sporadic colorectal cancer (CRC) tumors and are also responsible for the inherited form of CRC, Familial adenomatous polyposis (FAP). Methods To identify novel therapeutic strategies for the treatment of APC mutated CRC, we generated a drug screening platform that incorporates a human cellular model of APC mutant CRC using CRISPR-cas9 gene editing and performed an FDA-approved drug screen targeting over 1000 compounds. Results We have identified the group of HMG-CoA Reductase (HMGCR) inhibitors known as statins, which cause a significantly greater loss in cell viability in the APC mutated cell lines and in in vivo APC mutated patient derived xenograft (PDX) models, compared to wild-type APC cells. Mechanistically, our data reveals this new synthetic lethal relationship is a consequence of decreased Wnt signalling and, ultimately, a reduction in the level of expression of the anti-apoptotic protein Survivin, upon statin treatment in the APC-mutant cells only. This mechanism acts via a Rac1 mediated control of beta-catenin. Conclusion Significantly, we have identified a novel synthetic lethal dependence between APC mutations and statin treatment, which could potentially be exploited for the treatment of APC mutated cancers.
Collapse
Affiliation(s)
- Hannah Shailes
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Wai Yiu Tse
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marta O. Freitas
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sarah A. Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Sarah A. Martin,
| |
Collapse
|
31
|
Nakayama M, Wang D, Kok SY, Oshima H, Oshima M. Genetic Alterations and Microenvironment that Drive Malignant Progression of Colorectal Cancer: Lessons from Mouse and Organoid Models. J Cancer Prev 2022; 27:1-6. [PMID: 35419304 PMCID: PMC8984654 DOI: 10.15430/jcp.2022.27.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/07/2022] Open
Abstract
Comprehensive genome analyses have identified frequently mutated genes in human colorectal cancers (CRC). These include APC, KRAS, SMAD4, TP53, and FBXW7. The biological functions of the respective gene products in cell proliferation and homeostasis have been intensively examined by in vitro experiments. However, how each gene mutation or combinations of specific mutations drive malignant progression of CRC in vivo has not been fully understood. Based on the genomic information, we generated mouse models that carry multiple mutations of CRC driver genes in various combinations, and we performed comprehensive histological analyses to link genetic alteration(s) and tumor phenotypes, including liver metastasis. In this review article, we summarize the phenotypes of the respective genetic models carrying major driver mutations and discuss a possible mechanism of mutations underlying malignant progression.
Collapse
Affiliation(s)
- Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Dong Wang
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Sau Yee Kok
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Cancer Immunology and Immunotherapy Unit, Cancer Research Malaysia, Selangor, Malaysia
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Aelvoet AS, Buttitta F, Ricciardiello L, Dekker E. Management of familial adenomatous polyposis and MUTYH-associated polyposis; new insights. Best Pract Res Clin Gastroenterol 2022; 58-59:101793. [PMID: 35988966 DOI: 10.1016/j.bpg.2022.101793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) are rare inherited polyposis syndromes with a high colorectal cancer (CRC) risk. Therefore, frequent endoscopic surveillance including polypectomy of relevant premalignant lesions from a young age is warranted in patients. In FAP and less often in MAP, prophylactic colectomy is indicated followed by lifelong endoscopic surveillance of the retained rectum after (sub)total colectomy and ileal pouch after proctocolectomy to prevent CRC. No consensus is reached on the right type and timing of colectomy. As patients with FAP and MAP nowadays have an almost normal life-expectancy due to adequate treatment of colorectal polyposis, challenges in the management of FAP and MAP have shifted towards the treatment of duodenal and gastric adenomas as well as desmoid treatment in FAP. Whereas up until recently upper gastrointestinal surveillance was mostly diagnostic and patients were referred for surgery once duodenal or gastric polyposis was advanced, nowadays endoscopic treatment of premalignant lesions is widely performed. Aiming to reduce polyp burden in the colorectum as well as in the upper gastrointestinal tract, several chemopreventive agents are currently being studied.
Collapse
Affiliation(s)
- Arthur S Aelvoet
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Francesco Buttitta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
34
|
Upmacis RK, Becker WL, Rattendi DM, Bell RS, Jordan KD, Saniei S, Mejia E. Analysis of Sex-Specific Prostanoid Production Using a Mouse Model of Selective Cyclooxygenase-2 Inhibition. Biomark Insights 2022; 17:11772719221142151. [DOI: 10.1177/11772719221142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Prostanoids are a family of lipid mediators formed from arachidonic acid by cyclooxygenase enzymes and serve as biomarkers of vascular function. Prostanoid production may be different in males and females indicating that different therapeutic approaches may be required during disease. Objectives: We examined sex-dependent differences in COX-related metabolites in genetically modified mice that produce a cyclooxygenase-2 (COX2) enzyme containing a tyrosine 385 to phenylalanine (Y385F) mutation. This mutation renders the COX2 enzyme unable to form a key intermediate radical required for complete arachidonic acid metabolism and provides a model of selective COX2 inhibition. Design and Methods: Mice heterozygous for the Y385F mutation in COX2 were mated to produce cohorts of wild-type, heterozygous, and COX2 mutant mice. We investigated whether the genotype distribution followed Mendelian genetics and studied whether sex-specific differences could be found in certain prostanoid levels measured in peritoneal macrophages and in urinary samples. Results: The inheritance of the COX2 mutation displayed a significant deviation with respect to Mendel’s laws of genetics, with a lower-than-expected progeny of weaned COX2 mutant pups. In macrophages, prostaglandin E2 (PGE2) production following lipopolysaccharide (LPS) and interferon gamma (IFNγ) stimulation was COX2-dependent in both males and females, and data indicated that crosstalk between the nitric oxide (NO) and COX2 pathways may be sex specific. We observed significant differences in urinary PGE2 production by male and female COX2 mutant mice, with the loss of COX2 activity in male mice decreasing their ability to produce urinary PGE2. Finally, female mice across all 3 genotypes produced similar levels of urinary thromboxane (measured as 11-dehydro TxB2) at significantly higher levels than males, indicating a sex-related difference that is likely COX1-derived. Conclusions: Our findings clearly demonstrate that sex-related differences in COX-derived metabolites can be observed, and that other pathways (such as the NO pathway) are affected.
Collapse
Affiliation(s)
- Rita K Upmacis
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Wendy L Becker
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Donna M Rattendi
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Raven S Bell
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Kelsey D Jordan
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Shayan Saniei
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| | - Elena Mejia
- The Haskins Laboratory, Department of Chemistry & Physical Sciences, Pace University, New York, NY, USA
| |
Collapse
|
35
|
Wang D, Cabalag CS, Clemons NJ, DuBois RN. Cyclooxygenases and Prostaglandins in Tumor Immunology and Microenvironment of Gastrointestinal Cancer. Gastroenterology 2021; 161:1813-1829. [PMID: 34606846 DOI: 10.1053/j.gastro.2021.09.059] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Chronic inflammation is a known risk factor for gastrointestinal cancer. The evidence that nonsteroidal anti-inflammatory drugs suppress the incidence, growth, and metastasis of gastrointestinal cancer supports the concept that a nonsteroidal anti-inflammatory drug target, cyclooxygenase, and its downstream bioactive lipid products may provide one of the links between inflammation and cancer. Preclinical studies have demonstrated that the cyclooxygenase-2-prostaglandin E2 pathway can promote gastrointestinal cancer development. Although the role of this pathway in cancer has been investigated extensively for 2 decades, only recent studies have described its effects on host defenses against transformed epithelial cells. Overcoming tumor-immune evasion remains one of the major challenges in cancer immunotherapy. This review summarizes the impacts of the cyclooxygenase-2-prostaglandin E2 pathway on gastrointestinal cancer development. Our focus was to highlight recent advances in our understanding of how this pathway induces tumor immune evasion.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Carlos S Cabalag
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Clemons
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
36
|
Alausa A, Victor UC, Celestine UO, Eweje IA, Balogun TA, Adeyemi R, Olatinwo M, Ogunlana AT, Oladipo O, Olaleke B. Phytochemical based sestrin2 pharmacological modulators in the treatment of adenocarcinomas. PHYTOMEDICINE PLUS 2021; 1:100133. [DOI: 10.1016/j.phyplu.2021.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Suman S, Kumar S, Moon BH, Angdisen J, Kallakury BVS, Datta K, Fornace AJ. Effects of dietary aspirin on high-LET radiation-induced prostaglandin E2 levels and gastrointestinal tumorigenesis in Apc 1638N/+ mice. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:85-91. [PMID: 34689954 PMCID: PMC9808916 DOI: 10.1016/j.lssr.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 05/21/2023]
Abstract
Inevitable exposure to high-LET ionizing radiation (IR) present in galactic cosmic radiation (GCR) could enhance gastrointestinal (GI) cancer incidence among astronauts undertaking deep space exploration and GI-cancer mortality has been predicted to far exceed NASA's limit of < 3% REID (Radiation exposure-induced death) from cancer. Therefore, the development of countermeasure agents against high-LET radiation-induced GI cancer is needed to safeguard astronauts during and after an outer space mission. The cyclooxygenase-2/prostaglandin E2 (COX2/PGE2) mediated activation of pro-inflammatory and oncogenic signaling has been reported to play an important role in persistent inflammation and GI-tumorigenesis after high-LET radiation exposure. Therefore, aspirin, a well-known inhibitor of the COX/PGE2 pathway, was evaluated as a potential countermeasure against 28Si-induced PGE2 and tumorigenesis in Apc1638N/+, a murine model of human GI-cancer. Animals were fed either standard or aspirin supplemented diet (75, 150, or 300 mg/day of human equivalent dose) starting at the age of 4 weeks and continued till the end of the study, while mice were exposed to 28Si-ions (300 MeV/n; 69 keV/μm) at the age of 8 weeks. Serum PGE2 level, GI tumor size (>2mm2), number, and cluster (>5 adjoining tumors) were analyzed at 150 days post-exposure. Aspirin led to a significant reduction in PGE2 in a dose-dependent manner but did not reduce 28Si-induced GI tumorigenesis even at the highest (300 mg/day) dose. In summary, this study suggests that aspirin could reduce high-LET IR-induced pro-inflammatory PGE2 levels, however, lacks the ability to reduce high-LET IR-induced GI tumorigenesis in Apc1638N/+ mice.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
38
|
Li M, Cai Q, Gao YT, Franke AA, Zhang X, Zhao Y, Wen W, Lan Q, Rothman N, Shyr Y, Shu XO, Zheng W, Yang G. Phytoestrogens and lung cancer risk: a nested case-control study in never-smoking Chinese women. Am J Clin Nutr 2021; 115:643-651. [PMID: 34673927 PMCID: PMC8895217 DOI: 10.1093/ajcn/nqab358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Since several lines of evidence suggest that estrogens may be involved in lung carcinogenesis, it has been hypothesized that intake of phytoestrogens, similar in molecular structure to mammalian estrogens, may be associated with lung cancer development. OBJECTIVE The aim was to prospectively evaluate the association between phytoestrogen exposure and lung cancer risk in never-smoking women. METHODS We conducted a nested case-control study within a population-based prospective cohort study of women. A total of 478 incident lung cancer cases and their individually matched controls were identified among never-smoking women after a mean follow-up of 15.6 years. Habitual intake of and internal exposure to phytoestrogens were assessed by repeated dietary surveys and urinary biomarkers, respectively. ORs and 95% CIs for lung cancer were estimated in conditional logistic regression models. RESULTS After adjustment for potential confounders, a moderate intake of dietary isoflavones was inversely associated with lung cancer risk in never-smoking women, with the OR for the second quartile vs. the lowest quartile of intake being 0.52 (95% CI: 0.35, 0.76). Further increasing intake did not convey additional benefits, with ORs (95% CI) for the third and fourth quartiles of 0.53 (0.36, 0.78) and 0.47 (0.31, 0.72), respectively (P-overall < 0.001 and P-nonlinearity = 0.006). A similar association was seen when exposure to isoflavones was assessed by urinary biomarkers. ORs (95% CI) for the second, third, and fourth quartiles compared with the lowest quartile of urinary isoflavone excretion were 0.57 (0.39, 0.83), 0.64 (0.44, 0.92), and 0.60 (0.41, 0.86), respectively. The inverse association reached a plateau beyond the second quartile, with P-overall = 0.04 and P-nonlinearity = 0.15. Urinary excretion of gut-microbiota-derived metabolites of lignans was not related to lung cancer risk. CONCLUSIONS This study suggests that moderately increasing intake of isoflavone-rich foods is associated with lower risk of lung cancer in never-smoking women.
Collapse
Affiliation(s)
- Mengjie Li
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yu-Tang Gao
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Adrian A Franke
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Yingya Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Gong Yang
- Address correspondence to GY (E-mail: )
| |
Collapse
|
39
|
Chudy-Onwugaje K, Huang WY, Su LJ, Purdue MP, Johnson CC, Wang L, Katki HA, Barry KH, Berndt SI. Aspirin, ibuprofen, and reduced risk of advanced colorectal adenoma incidence and recurrence and colorectal cancer in the PLCO Cancer Screening Trial. Cancer 2021; 127:3145-3155. [PMID: 33974712 PMCID: PMC8355096 DOI: 10.1002/cncr.33623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Studying the differential impact of aspirin and other nonsteroidal anti-inflammatory drugs across the stages of colorectal neoplasia from early adenoma to cancer is critical for understanding the benefits of these widely used drugs. METHODS With 13 years of follow-up, the authors prospectively evaluated the association between aspirin and ibuprofen use and incident distal adenoma (1221 cases), recurrent adenoma (862 cases), and incident colorectal cancer (CRC; 2826 cases) among men and women in the population-based Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. With multivariable-adjusted models, odds ratio (ORs) and 95% confidence intervals (CIs) for adenoma incidence and recurrence and hazard ratios (HRs) and 95% CIs for incident CRC were determined. RESULTS The authors observed a significantly reduced risk of incident adenoma with ibuprofen use (≥30 vs <4 pills per month: OR, 0.76 [95% CI, 0.60-0.95]; Ptrend = .04), particularly advanced adenoma (OR, 0.48 [95% CI, 0.28-0.83]; Ptrend = .005). Among those with a previous adenoma detected through screening, aspirin use was associated with a decreased risk of advanced recurrent adenoma (≥30 vs <4 pills per month: OR, 0.56 [95% CI, 0.36-0.87]; Ptrend = 0.006). Both aspirin (HR, 0.88 [95% CI, 0.81-0.96]; Ptrend <.0001) and ibuprofen use (HR, 0.81 [95% CI, 0.70-0.93); Ptrend = 0.003) ≥30 versus <4 pills per month were significantly associated with reduced CRC risk. CONCLUSIONS In this large prospective study with long-term follow-up, a beneficial role for not only aspirin, but also ibuprofen, in preventing advanced adenoma and curbing progression to recurrence and cancer among older adults was observed.
Collapse
Affiliation(s)
- Kenechukwu Chudy-Onwugaje
- Division of Gastroenterology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - L. Joseph Su
- Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christine C. Johnson
- Department of Public Health Sciences, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI
| | - Lingxiao Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hormuzd A. Katki
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kathryn Hughes Barry
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
- Program in Oncology, University of Maryland Marlene and Stewart Greenbaum Comprehensive Cancer Center, Baltimore, MD
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer. Cancers (Basel) 2021; 13:4353. [PMID: 34503163 PMCID: PMC8430689 DOI: 10.3390/cancers13174353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world's disease and mortality rates. The development of novel therapy is in critical need, and based on recent experimental data, cannabinoids could become excellent candidates. This review covered known experimental studies regarding the effects of cannabinoids on intestinal inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and treatment depends on the type of the disease, its etiology, driver mutations, and the expression levels of cannabinoid receptors. In this review, we describe the molecular changes of the endocannabinoid system in the pathologies of the large intestine, focusing on inflammation and cancer.
Collapse
Affiliation(s)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| |
Collapse
|
41
|
Ezenkwa US, Okolo CA, Ogun GO, Akere A, Ogunbiyi OJ. Cyclooxygenase-2 expression in colorectal carcinoma, adenomatous polyps and non-tumour bearing margins of resection tissues in a cohort of black Africans. PLoS One 2021; 16:e0255235. [PMID: 34314467 PMCID: PMC8315556 DOI: 10.1371/journal.pone.0255235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
Background Emerging data suggest a negative role of cyclooxygenase-2 (COX-2) in colorectal carcinomas (CRC). Investigating this in developing communities such as ours helps to contribute to existing understanding of these lesions. Methods and findings Formalin-fixed paraffin-embedded CRC colectomy tissues and their corresponding non-tumour margins of resected tissues were sectioned and stained with COX-2 antibody. Adenomatous polyp tissues from non-cancer bearing individuals were similarly processed for comparison. COX-2 expression was scored for percentage (< 5% = 0; 6%-25% = 1; 26%-50% = 2; 51%-75% = 3; 76%-100% = 4) and intensity (no staining = 0; yellow = 2; yellowish-brown = 3, brown = 4). Total immunoscore (percentage + intensity score) ≥ 2 was regarded as positive COX-2 expression. Outcome was statistically evaluated with clinicopathological data to determine COX-2 expression-associated and predictor variables. Ninety-five CRC cases and 27 matched non-tumour tissues as well as 31 adenomatous polyps met the inclusion criteria. Individuals with CRC had a mean age of 56.1 ± 12.6 years while those with adenomatous polyps had a median age of 65 years (range 43–88). COX-2 was differentially overexpressed in CRCs (69/95; 72.6%) and in adenomatous polyps (17/31; 54.8%) than in non-tumour tissues 5/27 (18.5%); p < 0.001). The difference in COX-2 expression between CRC and polyps was non-significant (p > 0.065). Tumour grade, advanced pT-stage, tumour-infiltrating lymphocytes, and dirty necrosis were also significantly associated with COX-2 expression (p < 0.035; 0.043, 0.035 and 0.004, respectively). Only dirty necrosis and Crohns-like lymphocytic aggregates predicted COX-2 expression (p < 0.05). Conclusion This study showed a progressive increase in COX-2 expression from normal to adenomatous polyp and CRC tissues, this being associated with poorer prognostic indicators. Although COX-2 appears early in CRC, it may play a secondary role in promoting tumour growth and invasiveness.
Collapse
Affiliation(s)
| | - Clement Abu Okolo
- Department of Pathology, University College Hospital, Ibadan, Nigeria
| | | | - Adegboyega Akere
- Gastroenterology Unit, Department of Internal Medicine, University College Hospital Ibadan, Nigeria
| | | |
Collapse
|
42
|
Zhang Z, Ghosh A, Connolly PJ, King P, Wilde T, Wang J, Dong Y, Li X, Liao D, Chen H, Tian G, Suarez J, Bonnette WG, Pande V, Diloreto KA, Shi Y, Patel S, Pietrak B, Szewczuk L, Sensenhauser C, Dallas S, Edwards JP, Bachman KE, Evans DC. Gut-Restricted Selective Cyclooxygenase-2 (COX-2) Inhibitors for Chemoprevention of Colorectal Cancer. J Med Chem 2021; 64:11570-11596. [PMID: 34279934 DOI: 10.1021/acs.jmedchem.1c00890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective cyclooxygenase (COX)-2 inhibitors have been extensively studied for colorectal cancer (CRC) chemoprevention. Celecoxib has been reported to reduce the incidence of colorectal adenomas and CRC but is also associated with an increased risk of cardiovascular events. Here, we report a series of gut-restricted, selective COX-2 inhibitors characterized by high colonic exposure and minimized systemic exposure. By establishing acute ex vivo 18F-FDG uptake attenuation as an efficacy proxy, we identified a subset of analogues that demonstrated statistically significant in vivo dose-dependent inhibition of adenoma progression and survival extension in an APCmin/+ mouse model. However, in vitro-in vivo correlation analysis showed their chemoprotective effects were driven by residual systemic COX-2 inhibition, rationalizing their less than expected efficacies and highlighting the challenges associated with COX-2-mediated CRC disease chemoprevention.
Collapse
Affiliation(s)
- Zhuming Zhang
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Avijit Ghosh
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter J Connolly
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter King
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Thomas Wilde
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Jianyao Wang
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Yawei Dong
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Xueliang Li
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Daohong Liao
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Hao Chen
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Gaochao Tian
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Javier Suarez
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - William G Bonnette
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Vineet Pande
- Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Karen A Diloreto
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Yifan Shi
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Shefali Patel
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Beth Pietrak
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Lawrence Szewczuk
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Carlo Sensenhauser
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Shannon Dallas
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - James P Edwards
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Kurtis E Bachman
- Oncology Discovery, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - David C Evans
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
43
|
Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front Oncol 2021; 11:665534. [PMID: 34322381 PMCID: PMC8311658 DOI: 10.3389/fonc.2021.665534] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Although platelets are critically involved in thrombosis and hemostasis, experimental and clinical evidence indicate that platelets promote tumor progression and metastasis through a wide range of physical and functional interactions between platelets and cancer cells. Thrombotic and thromboembolic events are frequent complications in patients with solid tumors. Hence, cancer modulates platelet function by directly inducing platelet-tumor aggregates and triggering platelet granule release and altering platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial cell function and recruiting immune cells to primary and metastatic tumor sites. In this review, we summarize current knowledge on the complex interactions between platelets and tumor cells and the host microenvironment. We also critically discuss the potential of anti-platelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
44
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
45
|
Cui J, Jia J. Natural COX-2 Inhibitors as Promising Anti-inflammatory Agents: An Update. Curr Med Chem 2021; 28:3622-3646. [PMID: 32942970 DOI: 10.2174/0929867327999200917150939] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
COX-2, a key enzyme that catalyzed the rate-limiting steps in the conversion of arachidonic acid to prostaglandins, played a pivotal role in the inflammatory process. Different from other family members, COX-2 was barely detectable in normal physiological conditions and highly inducible during the acute inflammatory response of human bodies to injuries or infections. Therefore, the therapeutic utilization of selective COX-2 inhibitors has already been considered as an effective approach for the treatment of inflammation with diminished side effects. Currently, both traditional and newer NSAIDs are the commonly prescribed medications that treat inflammatory diseases by targeting COX-2. However, due to the cardiovascular side-effects of the NSAIDs, finding reasonable alternatives for these frequently prescribed medicines are a hot spot in medicinal chemistry research. Naturallyoccurring compounds have been reported to inhibit COX-2, thereby possessing beneficial effects against inflammation and certain cell injury. The review mainly concentrated on recently identified natural products and derivatives as COX-2 inhibitors, the characteristics of their structural core scaffolds, their anti-inflammatory effects, molecular mechanisms for enzymatic inhibition, and related structure-activity relationships. According to the structural features, the natural COX-2 inhibitors were mainly divided into the following categories: natural phenols, flavonoids, stilbenes, terpenoids, quinones, and alkaloids. Apart from the anti-inflammatory activities, a few dietary COX-2 inhibitors from nature origin also exhibited chemopreventive effects by targeting COX-2-mediated carcinogenesis. The utilization of these natural remedies in future cancer prevention was also discussed. In all, the survey on the characterized COX-2 inhibitors from natural sources paves the way for the further development of more potent and selective COX-2 inhibitors in the future.
Collapse
Affiliation(s)
- Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
46
|
Cyclooxygenase-2 induces neoplastic transformation by inhibiting p53-dependent oncogene-induced senescence. Sci Rep 2021; 11:9853. [PMID: 33972599 PMCID: PMC8110573 DOI: 10.1038/s41598-021-89220-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Much in vivo evidence indicates that cyclooxygenase-2 (COX-2) is deeply involved in tumorigenesis. Although it has been proposed that COX-2-derived pro-inflammatory prostanoids mediate the tumorigenic activity of COX-2, the tumorigenic mechanisms of COX-2 are not yet fully understood. Here, we investigated the mechanism by which COX-2 causes transformation from normal cells to malignant cells by using normal murine or human cells. We found that COX-2 inhibits the pro-senescent function of p53 under oncogenic RAS activation, by which it prevents oncogene-induced senescence (OIS) and induces neoplastic transformation. We also found that COX-2 physically interacts with p53 in the nucleus under oncogenic RAS activation, and that this COX-2-p53 interaction rather than the catalytic activity is involved in the COX-2-mediated inhibition of the pro-senescent function of p53 and OIS, and induction of neoplastic transformation. These findings strongly suggest that the oncogenic property of COX-2 is closely related to its ability to inactivate p53 under strong mitogenic signals, and that aberrant activation of the COX-2/a mitogenic oncogene combination can be a potent driving force for tumorigenesis. This study might contribute to our understanding of the molecular basis for the tumorigenic activity of COX-2 and the development of novel anti-tumor drugs targeting COX-2-p53 interactions.
Collapse
|
47
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
48
|
Ternet C, Kiel C. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun Signal 2021; 19:31. [PMID: 33691728 PMCID: PMC7945333 DOI: 10.1186/s12964-021-00712-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer. Video Abstract
Collapse
Affiliation(s)
- Camille Ternet
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
49
|
Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13050942. [PMID: 33668160 PMCID: PMC7956318 DOI: 10.3390/cancers13050942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
Collapse
|
50
|
MYD88 signals induce tumour-initiating cell generation through the NF-κB-HIF-1α activation cascade. Sci Rep 2021; 11:3991. [PMID: 33597599 PMCID: PMC7890054 DOI: 10.1038/s41598-021-83603-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Tumour-promoting inflammation is a hallmark of cancer, and chronic inflammatory disease increases the risk of cancer. In this context, MYD88, a downstream signalling molecule of Toll-like receptors that initiates inflammatory signalling cascades, has a critical role in tumour development in mice and its gene mutation was found in human cancers. In inflammation-induced colon cancer, tumour suppressor p53 mutations have also been detected with high frequency as early events. However, the molecular mechanism of MYD88-induced cancer development is poorly understood. Here, we demonstrated that MYD88 induced the protein accumulation of the transcription factor HIF-1α through NF-κB in p53-deficient cells. HIF-1α accumulation was not caused by enhanced protein stability but by NF-κB-mediated transcriptional activation, the enhanced translation of HIF-1α and JNK activation. In contrast, MYD88-induced mRNA expressions of HIF-1α and HIF-1-target genes were attenuated in the presence of p53. Furthermore, constitutively active forms of MYD88 induced tumour-initiating cell (TIC) generation in p53-deficient cells, as determined by tumour xenografts in nude mice. TIC generating activity was diminished by the suppression of NF-κB or HIF-1α. These results indicate that MYD88 signals induce the generation of TICs through the NF-κB-HIF-1α activation cascade in p53-deficient cells and suggest this molecular mechanism underlies inflammation-induced cancer development.
Collapse
|