1
|
Sivcev S, Constantin S, Smiljanic K, Sokanovic SJ, Fletcher PA, Sherman AS, Zemkova H, Stojilkovic SS. Distribution and calcium signaling function of somatostatin receptor subtypes in rat pituitary. Cell Calcium 2024; 124:102967. [PMID: 39522307 DOI: 10.1016/j.ceca.2024.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed Sstr1, Sstr2, Sstr3, and Sstr5 receptor genes in a cell type-specific manner: Sstr1 and Sstr2 in thyrotrophs, Sstr3 in gonadotrophs and lactotrophs, Sstr2, Sstr3, and Sstr5 in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations. In contrast, lactotrophs and somatotrophs spontaneously fired low-amplitude plateau-bursting action potentials in conjunction with calcium transients, both of which were silenced by SST. Moreover, SST inhibited GPCR-induced voltage-gated calcium signaling and hormone secretion in all cell types expressing SST receptors, but the inhibition was more pronounced in somatotrophs. The pattern of inhibition of electrical activity and calcium signaling was consistent with both direct and indirect inhibition of voltage-gated calcium channels, the latter being driven by cell type-specific hyperpolarization. These results indicate that the action of SST in somatotrophs is enhanced by the expression of several types of SST receptors and their slow desensitization, that SST may play a role in the electrical resynchronization of gonadotrophs, thyrotrophs, and lactotrophs, and that the lack of SST receptors in corticotrophs and melanotrophs keeps them excitable and ready to responses to stress.
Collapse
Affiliation(s)
- Sonja Sivcev
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Srdjan J Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Hana Zemkova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA.
| |
Collapse
|
2
|
Khetchoumian K, Sochodolsky K, Lafont C, Gouhier A, Bemmo A, Kherdjemil Y, Kmita M, Le Tissier P, Mollard P, Christian H, Drouin J. Paracrine FGF1 signaling directs pituitary architecture and size. Proc Natl Acad Sci U S A 2024; 121:e2410269121. [PMID: 39320918 PMCID: PMC11459159 DOI: 10.1073/pnas.2410269121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Organ architecture is established during development through intricate cell-cell communication mechanisms, yet the specific signals mediating these communications often remain elusive. Here, we used the anterior pituitary gland that harbors different interdigitated hormone-secreting homotypic cell networks to dissect cell-cell communication mechanisms operating during late development. We show that blocking differentiation of corticotrope cells leads to pituitary hypoplasia with a major effect on somatotrope cells that directly contact corticotropes. Gene knockout of the corticotrope-restricted transcription factor Tpit results in fewer somatotropes, with less secretory granules and a loss of cell polarity, resulting in systemic growth retardation. Single-cell transcriptomic analyses identified FGF1 as a corticotrope-specific Tpit dosage-dependent target gene responsible for these phenotypes. Consistently, genetic ablation of FGF1 in mice phenocopies pituitary hypoplasia and growth impairment observed in Tpit-deficient mice. These findings reveal FGF1 produced by the corticotrope cell network as an essential paracrine signaling molecule participating in pituitary architecture and size.
Collapse
Affiliation(s)
- Konstantin Khetchoumian
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Kevin Sochodolsky
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Chrystel Lafont
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, MontpellierF-34094, France
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, MontpellierF-34094, France
| | - Arthur Gouhier
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Amandine Bemmo
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Yacine Kherdjemil
- Disease Modeling and Genome Editing platform, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Marie Kmita
- Laboratoire de recherche en génétique et développement, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, EdinburghEH8 9XD, United Kingdom
| | - Patrice Mollard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, MontpellierF-34094, France
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, MontpellierF-34094, France
| | - Helen Christian
- Department of Physiology, Anatomy and Genetics, Oxford University, OxfordOX1 3QX, United Kingdom
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| |
Collapse
|
3
|
Constantin S, Sokanovic SJ, Mochimaru Y, Dams AL, Smiljanic K, Prévide RM, Nessa N, Carmona GN, Stojilkovic SS. Protein Tyrosine Phosphatase Receptors N and N2 Control Pituitary Melanotroph Development and POMC Expression. Endocrinology 2024; 165:bqae076. [PMID: 38923438 PMCID: PMC11242453 DOI: 10.1210/endocr/bqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The neuroendocrine marker genes Ptprn and Ptprn2 encode protein tyrosine phosphatase receptors N and N2, 2 members of protein tyrosine phosphatase receptors void of enzymatic activity, and whose function and mechanism of action have not been elucidated. To explore the role(s) of Ptprn and Ptprn2 on the hypothalamic-pituitary-adrenal axis, we used mice in which both genes were knocked out (DKO). The focus in this study was on corticotrophs and melanotrophs from the anterior and intermediate lobes of the pituitary gland, respectively. In both sexes, DKO caused an increase in the expression of the corticotroph/melanotroph genes Pomc and Tbx19 and the melanotroph-specific gene Pax7. We also found in vivo and in vitro increased synthesis and release of beta-endorphin, alpha-melanocyte-stimulating hormone, and ACTH in DKO mice, which was associated with increased serum corticosterone levels and adrenal mass. DKO also increased the expression of other melanotroph-specific genes, but not corticotroph-specific genes. The dopaminergic pathway in the hypothalamus and dopaminergic receptors in melanotrophs were not affected in DKO mice. However, hyperplasia of the intermediate lobe was observed in DKO females and males, accompanied by increased proopiomelanocortin immunoreactivity per cell. These results indicate that protein tyrosine phosphatase receptor type N contributes to hypothalamic-pituitary-adrenal function by being involved in processes governing postnatal melanotroph development and Pomc expression.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Srdjan J Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuta Mochimaru
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Aloa Lamarca Dams
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Rafael M Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Naseratun Nessa
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Gilberto N Carmona
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Rey RA, Bergadá I, Ballerini MG, Braslavsky D, Chiesa A, Freire A, Grinspon RP, Keselman A, Arcari A. Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients. Rev Endocr Metab Disord 2024; 25:555-573. [PMID: 38112850 DOI: 10.1007/s11154-023-09868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Hypopituitarism, or the failure to secrete hormones produced by the anterior pituitary (adenohypophysis) and/or to release hormones from the posterior pituitary (neurohypophysis), can be congenital or acquired. When more than one pituitary hormone axis is impaired, the condition is known as combined pituitary hormone deficiency (CPHD). The deficiency may be primarily due to a hypothalamic or to a pituitary disorder, or concomitantly both, and has a negative impact on target organ function. This review focuses on the pathophysiology, diagnosis and management of anterior pituitary hormone deficiency in the pediatric age. Congenital hypopituitarism is generally due to genetic disorders and requires early medical attention. Exposure to toxicants or intrauterine infections should also be considered as potential etiologies. The molecular mechanisms underlying the fetal development of the hypothalamus and the pituitary are well characterized, and variants in the genes involved therein may explain the pathophysiology of congenital hypopituitarism: mutations in the genes expressed in the earliest stages are usually associated with syndromic forms whereas variants in genes involved in later stages of pituitary development result in non-syndromic forms with more specific hormone deficiencies. Tumors or lesions of the (peri)sellar region, cranial radiation therapy, traumatic brain injury and, more rarely, other inflammatory or infectious lesions represent the etiologies of acquired hypopituitarism. Hormone replacement is the general strategy, with critical periods of postnatal life requiring specific attention.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina.
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Débora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Analía Freire
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Andrea Arcari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| |
Collapse
|
5
|
Martel-Duguech L, Poirier J, Bourdeau I, Lacroix A. Diagnosis and management of secondary adrenal crisis. Rev Endocr Metab Disord 2024; 25:619-637. [PMID: 38411891 DOI: 10.1007/s11154-024-09877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Adrenal crisis (AC) is a life threatening acute adrenal insufficiency (AI) episode which can occur in patients with primary AI but also secondary AI (SAI), tertiary AI (TAI) and iatrogenic AI (IAI). In SAI, TAI and IAI, AC may develop when the HPA axis is unable to mount an adequate glucocorticoid response to severe stress due to pituitary or hypothalamic disruption. It manifests as an acute deterioration in multi-organ homeostasis that, if untreated, leads to shock and death. Despite the availability of effective preventive strategies, its prevalence is increasing in patients with SAI, TAI and IAI due to more frequent exogenous steroid administration, pituitary immune-related effects of immune checkpoint inhibitors and opioid use in pain management. The delayed diagnosis of acute AI which remains infrequently suspected increases the risk of AC. Its main precipitating factors are infections, emotional distress, surgery, cessation or reduction in GC doses, pituitary infarction or surgical cure of endogenous Cushing's syndrome. In patients not known previously to have SAI/TAI/IAI, recognition of its symptoms, signs, and biochemical abnormalities can be challenging and cause delay in proper diagnosis and therapy. Effective therapy of AC is rapid intravenous administration of hydrocortisone (initial bolus of 100 mg followed by 200 mg/24 h as continuous infusion or bolus of 50 mg every 6 h) and 0.9% saline. In diagnosed patients, preventive education in sick-day rules adjustment of glucocorticoid replacement and hydrocortisone parenteral self-administration must be performed repeatedly by trained health care providers. Strategies to improve the adequate preventive education in patients at risk for secondary AI should be promoted in collaboration with various medical specialist societies and patients support associations.
Collapse
Affiliation(s)
- Luciana Martel-Duguech
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - Jonathan Poirier
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada.
| |
Collapse
|
6
|
Huang QH, Zhao GK, Wang HQ, Wei FH, Zhang JY, Zhang JB, Gao F, Yuan B. Single-Cell Transcriptional Profile Construction of Rat Pituitary Glands before and after Sexual Maturation and Identification of Novel Marker Spp1 in Gonadotropes. Int J Mol Sci 2024; 25:4694. [PMID: 38731915 PMCID: PMC11083676 DOI: 10.3390/ijms25094694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The mammalian pituitary gland drives highly conserved physiological processes such as somatic cell growth, pubertal transformation, fertility, and metabolism by secreting a variety of hormones. Recently, single-cell transcriptomics techniques have been used in pituitary gland research. However, more studies have focused on adult pituitary gland tissues from different species or different sexes, and no research has yet resolved cellular differences in pituitary gland tissue before and after sexual maturation. Here, we identified a total of 15 cell clusters and constructed single-cell transcriptional profiles of rats before and after sexual maturation. Furthermore, focusing on the gonadotrope cluster, 106 genes were found to be differentially expressed before and after sexual maturation. It was verified that Spp1, which is specifically expressed in gonadotrope cells, could serve as a novel marker for this cell cluster and has a promotional effect on the synthesis and secretion of follicle-stimulating hormone. The results provide a new resource for further resolving the regulatory mechanism of pituitary gland development and pituitary hormone synthesis and secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Q.-H.H.); (G.-K.Z.); (H.-Q.W.); (F.-H.W.); (J.-Y.Z.); (J.-B.Z.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Q.-H.H.); (G.-K.Z.); (H.-Q.W.); (F.-H.W.); (J.-Y.Z.); (J.-B.Z.)
| |
Collapse
|
7
|
Cai Y, Liu S, Zhao X, Ren L, Liu X, Gang X, Wang G. Pathogenesis, clinical features, and treatment of plurihormonal pituitary adenoma. Front Neurosci 2024; 17:1323883. [PMID: 38260014 PMCID: PMC10800528 DOI: 10.3389/fnins.2023.1323883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Plurihormonal pituitary adenoma (PPA) is a type of pituitary tumor capable of producing two or more hormones and usually presents as an aggressive, large adenoma. As yet, its pathogenesis remains unclear. This is the first study to systematically summarize the underlying pathogenesis of PPA. The pathogenesis is related to plurihormonal primordial stem cells, co-transcription factors, hormone co-expression, differential gene expression, and cell transdifferentiation. We conducted a literature review of PPA and analyzed its clinical characteristics. We found that the average age of patients with PPA was approximately 40 years, and most showed only one clinical symptom. The most common manifestation was acromegaly. Currently, PPA is treated with surgical resection. However, recent studies suggest that immunotherapy may be a potentially effective treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Yan N, Xie W, Wang D, Fang Q, Guo J, Chen Y, Li X, Gong L, Wang J, Guo W, Zhang X, Zhang Y, Gu J, Li C. Single-cell transcriptomic analysis reveals tumor cell heterogeneity and immune microenvironment features of pituitary neuroendocrine tumors. Genome Med 2024; 16:2. [PMID: 38167466 PMCID: PMC10759356 DOI: 10.1186/s13073-023-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pituitary neuroendocrine tumors (PitNETs) are one of the most common types of intracranial tumors. Currently, the cellular characteristics of normal pituitary and various other types of PitNETs are still not completely understood. METHODS We performed single-cell RNA sequencing (scRNA-seq) on 4 normal samples and 24 PitNET samples for comprehensive bioinformatics analysis. Findings regarding the function of PBK in the aggressive tumor cells were validated by siRNA knockdown, overexpression, and transwell experiments. RESULTS We first constructed a reference cell atlas of the human pituitary. Subsequent scRNA-seq analysis of PitNET samples, representing major tumor subtypes, shed light on the intrinsic cellular heterogeneities of the tumor cells and tumor microenvironment (TME). We found that the expression of hormone-encoding genes defined the major variations of the PIT1-lineage tumor cell transcriptomic heterogeneities. A sub-population of TPIT-lineage tumor cells highly expressing GZMK suggested a novel subtype of corticotroph tumors. In immune cells, we found two clusters of tumor-associated macrophages, which were both highly enriched in PitNETs but with distinct functional characteristics. In PitNETs, the stress response pathway was significantly activated in T cells. While a majority of these tumors are benign, our study unveils a common existence of aggressive tumor cells in the studied samples, which highly express a set of malignant signature genes. The following functional experiments confirmed the oncogenic role of selected up-regulated genes. The over-expression of PBK could promote both tumor cell proliferation and migration, and it was also significantly associated with poor prognosis in PitNET patients. CONCLUSIONS Our data and analysis manifested the basic cell types in the normal pituitary and inherent heterogeneity of PitNETs, identified several features of the tumor immune microenvironments, and found a novel epithelial cell sub-population with aggressive signatures across all the studied cases.
Collapse
Affiliation(s)
- Nan Yan
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Dongfang Wang
- Biomedical Pioneering Innovative Center, Peking University, Beijing, 100871, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yiyuan Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Xinqi Li
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China
| | - Lei Gong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jialin Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Wenbo Guo
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China.
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China.
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
9
|
Nakazato I, Shiomi T, Oyama K, Matsuno A, Inomoto C, Yoshiyuki Osamura R. Immunohistochemical Analyses of Mammalian Target of Rapamycin (mTOR) Expression in Pituitary Neuroendocrine Tumors (PitNETs): mTOR as a Therapeutic Target for Functional PitNETs. Acta Histochem Cytochem 2023; 56:121-126. [PMID: 38318106 PMCID: PMC10838633 DOI: 10.1267/ahc.23-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/13/2023] [Indexed: 02/07/2024] Open
Abstract
Current therapeutic modalities for pituitary neuroendocrine tumors (PitNETs) include medication, surgery, and radiotherapy. Some patients have tumors that are refractory to current modalities. Therefore, novel treatment options are needed for patients with intractable diseases. Consequently, we examined the pathological data of PitNETs to study medical therapies. We retrospectively studied 120 patients with histologically diagnosed PitNETs. We used the data for the histopathological examination of hormones, such as growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone, thyroid stimulating hormone, luteinizing hormone, follicle-stimulating hormone, and α-subunit, together with the immunohistochemical studies of the phospho-mammalian target of rapamycin (mTOR), cytokeratin (CAM5.2), somatostatin receptor (SSTR) type 2 and 5, Pit-1 (POU1F1/GHF-1), steroidogenic factor-1 (SF-1), and Tpit. GH-, PRL-, and SSTR5-immunopositive PitNETs had significantly higher percentage of mTOR-positivity, compared with GH-, PRL-, and SSTR5-immunonegative Pit NETs. Our results show that activation of the AKT/phosphatidylinositol-3-kinase pathway, including mTOR activation, might be related the development of PitNETs, especially GH- and PRL-producing PitNETs. Thus, mTOR is a potential target for treating functional PitNETs.
Collapse
Affiliation(s)
- Ichiro Nakazato
- Basic Medical Sciences, International University of Health and Welfare, Graduate School of Medicine, 4–3 Kozunomori, Narita City, Chiba, Japan
- Department of Neurosurgery, International University of Health and Welfare Mita Hospital, 1–4–3 Mita, Minato-ku, Tokyo, Japan
| | - Takayuki Shiomi
- Department of Pathology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba, Japan
| | - Kenichi Oyama
- Department of Neurosurgery, International University of Health and Welfare Mita Hospital, 1–4–3 Mita, Minato-ku, Tokyo, Japan
| | - Akira Matsuno
- Department of Neurosurgery, International University of Health and Welfare Mita Hospital, 1–4–3 Mita, Minato-ku, Tokyo, Japan
- Department of Neurosurgery, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba, Japan
| | - Chie Inomoto
- Department of Diagnostic Pathology, Tokai University Hospital, 143 Shimokasuya, Isehara City, Kanagawa, Japan
| | - R. Yoshiyuki Osamura
- Department of Diagnostic Pathology, Nippon Koukan Hospital, 1–2–1, Koukan-Dori, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| |
Collapse
|
10
|
Uccella S, Leoni E, Kaiser S, Maragliano R, Valerio A, Libera L, Tanda ML, Volante M, Diviani D, La Rosa S. Heterogeneity of TPIT expression in ACTH-secreting extra-pituitary neuroendocrine tumors (NETs) supports the existence of different cellular programs in pancreatic and pulmonary NETs. Virchows Arch 2023; 483:635-643. [PMID: 37726450 DOI: 10.1007/s00428-023-03642-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Extra-pituitary ACTH secretion is associated with a variety of neoplastic conditions and may cause the so-called ectopic ACTH-dependent Cushing syndrome (CS). The clarification of the mechanisms of extra-pituitary ACTH expression would provide potential therapeutic targets for this complex and severe disease. In the adenohypophysis, the transcription factor TPIT, co-operating with other molecules, induces POMC expression and ACTH production. However, no data are currently available on the presence and role of TPIT expression in extra-pituitary ACTH-producing neoplasms. This study was designed to explore TPIT expression in a series of pulmonary and pancreatic ACTH-producing tumors, either CS-associated or not. Forty-one extra-pituitary ACTH-producing neuroendocrine tumors (NETs) were included in the study, encompassing 32 NETs of the lung (LuNETs), 7 of the pancreas (PanNETs), and 2 pheochromocytomas. Of these, 9 LuNETs, all PanNETs, and the two pheochromocytomas were CS-associated. For comparison, 6 NETs of the pituitary gland (PitNETs; 3 ACTH-secreting and 3 ACTH-negative) and 35 ACTH-negative extra-pituitary NETs (15 Lu-NETs and 20 PanNETs) were analyzed. Immunohistochemistry with specific anti-TPIT antibodies and quantitative real-time PCR (qRT-PCR) were performed using standard protocols. TPIT expression was completely absent (protein and mRNA) in PanNETs, pheochromocytomas, and all ACTH-negative NETs. In contrast, it was expressed in 16/32 LuNETs, although with lower levels than in PitNETs. No definite relationship was found between immunohistochemistry TPIT expression and NET grade or the presence of Cushing syndrome. This study further highlights the clinical and biological heterogeneity of extra-pituitary ACTH secretion and suggests that the differences between ACTH-secreting PanNETs and LuNETs may mirror distinct molecular mechanisms underlying POMC expression. Our results point towards the recognition of a real corticotroph-like phenotype of ACTH-producing LuNETs, that is not a feature of ACTH-producing PanNETs.
Collapse
Affiliation(s)
- Silvia Uccella
- Pathology Unit, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
- Pathology Service, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Eleonora Leoni
- Pathology Service, ASST Valle Olona, Busto Arsizio, Varese, Italy
| | - Simon Kaiser
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | - Laura Libera
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Maria Laura Tanda
- Endocrinology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Orbassano, Italy
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stefano La Rosa
- Pathology Unit, Department of Oncology, ASST Sette Laghi, Varese, Italy
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| |
Collapse
|
11
|
Zhao J, Xu Y. PITX1 plays essential functions in cancer. Front Oncol 2023; 13:1253238. [PMID: 37841446 PMCID: PMC10570508 DOI: 10.3389/fonc.2023.1253238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
PITX1, also known as the pituitary homeobox 1 gene, has emerged as a key regulator in animal growth and development, attracting significant research attention. Recent investigations have revealed the implication of dysregulated PITX1 expression in tumorigenesis, highlighting its involvement in cancer development. Notably, PITX1 interacts with p53 and exerts control over crucial cellular processes including cell cycle progression, apoptosis, and chemotherapy resistance. Its influence extends to various tumors, such as esophageal, colorectal, gastric, and liver cancer, contributing to tumor progression and metastasis. Despite its significance, a comprehensive review examining PITX1's role in oncology remains lacking. This review aims to address this gap by providing a comprehensive overview of PITX1 in different cancer types, with a particular focus on its clinicopathological significance.
Collapse
Affiliation(s)
- Jingpu Zhao
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Weis KE, Thompson LM, Streifer M, Guardado I, Flaws JA, Gore AC, Raetzman LT. Pre- and postnatal developmental exposure to the polychlorinated biphenyl mixture aroclor 1221 alters female rat pituitary gonadotropins and estrogen receptor alpha levels. Reprod Toxicol 2023; 118:108388. [PMID: 37127253 PMCID: PMC10228234 DOI: 10.1016/j.reprotox.2023.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHβ gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHβ expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Madeline Streifer
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Isabella Guardado
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois College of Veterinary Medicine, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States.
| |
Collapse
|
13
|
Helderman N, Lucas M, Blank C. Autoantibodies involved in primary and secondary adrenal insufficiency following treatment with immune checkpoint inhibitors. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 17:100374. [PMID: 36937704 PMCID: PMC10014276 DOI: 10.1016/j.iotech.2023.100374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Primary and secondary adrenal insufficiency (AI) are commonly known immune-related adverse events following treatment with immune checkpoint inhibitors (ICIs), and are clinically relevant due to their morbidity and potential mortality. For this reason, upfront identification of patients susceptible for ICI-induced AI could be a step in improving patient's safety. Multiple studies have focused on the identification of novel biomarkers for ICI-induced AI, including autoantibodies, which may be involved in ICI-induced AI as a result of the T-cell-mediated activation of autoreactive B cells. This review highlights the currently described autoantibodies that may be involved in either primary [e.g. anti-21-hydroxylase, anti-17α-hydroxylase, anti-P450scc, anti-aromatic L-amino acid decarboxylase (AADC), anti-interferon (IFN)α and anti-IFNΩ] or secondary AI [e.g. anti-guanine nucleotide-binding protein G(olf) subunit alpha (GNAL), anti-integral membrane protein 2B (ITM2B), anti-zinc finger CCHC-type containing 8 (ZCCHC8), anti-pro-opiomelanocortin (POMC), anti-TPIT (corticotroph-specific transcription factor), anti-pituitary-specific transcriptional factor-1 (PIT-1) and others], and discusses the current evidence concerning their role as biomarker for ICI-induced AI. Standardized autoantibody measurements in patients (to be) treated with ICIs would be a clinically accessible and patient-friendly screening method to identify the patients at risk, and could change the management of ICI-induced AI.
Collapse
Affiliation(s)
- N.C. Helderman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - M.W. Lucas
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
| | - C.U. Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
- Correspondence to: Prof. Dr Christian U. Blank, Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121 A, 1066 CX, Amsterdam, The Netherlands. Tel: +31-(0)20-512-9111
| |
Collapse
|
14
|
Jiao J, Curley M, Graca FA, Robles-Murguia M, Shirinifard A, Finkelstein D, Xu B, Fan Y, Demontis F. Modulation of protease expression by the transcription factor Ptx1/PITX regulates protein quality control during aging. Cell Rep 2023; 42:111970. [PMID: 36640359 PMCID: PMC9933915 DOI: 10.1016/j.celrep.2022.111970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Protein quality control is important for healthy aging and is dysregulated in age-related diseases. The autophagy-lysosome and ubiquitin-proteasome are key for proteostasis, but it remains largely unknown whether other proteolytic systems also contribute to maintain proteostasis during aging. Here, we find that expression of proteolytic enzymes (proteases/peptidases) distinct from the autophagy-lysosome and ubiquitin-proteasome systems declines during skeletal muscle aging in Drosophila. Age-dependent protease downregulation undermines proteostasis, as demonstrated by the increase in detergent-insoluble poly-ubiquitinated proteins and pathogenic huntingtin-polyQ levels in response to protease knockdown. Computational analyses identify the transcription factor Ptx1 (homologous to human PITX1/2/3) as a regulator of protease expression. Consistent with this model, Ptx1 protein levels increase with aging, and Ptx1 RNAi counteracts the age-associated downregulation of protease expression. Moreover, Ptx1 RNAi improves muscle protein quality control in a protease-dependent manner and extends lifespan. These findings indicate that proteases and their transcriptional modulator Ptx1 ensure proteostasis during aging.
Collapse
Affiliation(s)
- Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Flavia A. Graca
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
15
|
An Overview of Pituitary Neuroendocrine Tumors (PitNET) and Algorithmic Approach to Diagnosis. Adv Anat Pathol 2023; 30:79-83. [PMID: 36069849 DOI: 10.1097/pap.0000000000000367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diagnostic algorithm and nomenclature of pituitary neuroendocrine tumors have evolved over the past decade, beginning with simpler categorical schemes focused on histomorphologic features and moving to a more sophisticated lineage-specific categorization. This contemporary overview highlights a multimodal approach to pituitary neuroendocrine tumors with a focus on changes in nomenclature, classification, and subclassification; including, brief comments on treatment, and new guidelines for genetic screening, particularly for young patients with such neoplasms.
Collapse
|
16
|
Transcriptomic Profiles of Normal Pituitary Cells and Pituitary Neuroendocrine Tumor Cells. Cancers (Basel) 2022; 15:cancers15010110. [PMID: 36612109 PMCID: PMC9817686 DOI: 10.3390/cancers15010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pituitary gland is one of the most cellularly diverse regions of the brain. Recent advancements in transcriptomic biology, such as single-cell RNA sequencing, bring an unprecedented glimpse into the molecular composition of the pituitary, both in its normal physiological state and in disease. Deciphering the normal pituitary transcriptomic signatures provides a better insight into the ontological origin and development of five types of endocrine cells, a process involving complex cascades of transcription factors that are still being established. In parallel with these observations about normal pituitary development, recent transcriptomic findings on pituitary neuroendocrine tumors (PitNETs) demonstrate both preservations and changes in transcription factor expression patterns compared to those seen during gland development. Furthermore, recent studies also identify differentially expressed genes that drive various tumor behaviors, including hormone hypersecretion and tumor aggression. Understanding the comprehensive multiomic profiles of PitNETs is essential in developing molecular profile-based therapies for PitNETs not curable with current treatment modalities and could eventually help align PitNETs with the breakthroughs being made in applying precision medicine to other tumors.
Collapse
|
17
|
Asuzu DT, Alvarez R, Fletcher PA, Mandal D, Johnson K, Wu W, Elkahloun A, Clavijo P, Allen C, Maric D, Ray-Chaudhury A, Rajan S, Abdullaev Z, Nwokoye D, Aldape K, Nieman LK, Stratakis C, Stojilkovic SS, Chittiboina P. Pituitary adenomas evade apoptosis via noxa deregulation in Cushing's disease. Cell Rep 2022; 40:111223. [PMID: 36001971 PMCID: PMC9527711 DOI: 10.1016/j.celrep.2022.111223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Sporadic pituitary adenomas occur in over 10% of the population. Hormone-secreting adenomas, including those causing Cushing’s disease (CD), cause severe morbidity and early mortality. Mechanistic studies of CD are hindered by a lack of in vitro models and control normal human pituitary glands. Here, we surgically annotate adenomas and adjacent normal glands in 25 of 34 patients. Using single-cell RNA sequencing (RNA-seq) analysis of 27594 cells, we identify CD adenoma transcriptomic signatures compared with adjacent normal cells, with validation by bulk RNA-seq, DNA methylation, qRT-PCR, and immunohistochemistry. CD adenoma cells include a subpopulation of proliferating, terminally differentiated corticotrophs. In CD adenomas, we find recurrent promoter hypomethylation and transcriptional upregulation of PMAIP1 (encoding pro-apoptotic BH3-only bcl-2 protein noxa) but paradoxical noxa downregulation. Using primary CD adenoma cell cultures and a corticotroph-enriched mouse cell line, we find that selective proteasomal inhibition with bortezomib stabilizes noxa and induces apoptosis, indicating its utility as an anti-tumor agent. Asuzu et al. perform single-cell transcriptomic profiling in Cushing’s disease (CD) adenomas and find overexpression and DNA hypomethylation of PMAIP1, which encodes the pro-apoptotic protein noxa. Noxa is degraded by the proteasome. Proteasomal inhibition rescues noxa and induces apoptosis in CD.
Collapse
Affiliation(s)
- David T Asuzu
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Reinier Alvarez
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA
| | - Kory Johnson
- DIR Bioinformatics Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Paul Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Clint Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Diana Nwokoye
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Lynnette K Nieman
- Section on Translational Endocrinology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Constantine Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
18
|
Yao H, Xie W, Dai Y, Liu Y, Gu W, Li J, Wu L, Xie J, Rui W, Ren B, Xue L, Cheng Y, Lin S, Li C, Tang H, Wang Y, Lou M, Zhang X, Hu R, Shang H, Huang J, Wu ZB. TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT. Neuro Oncol 2022; 24:1286-1297. [PMID: 35218667 PMCID: PMC9340636 DOI: 10.1093/neuonc/noac053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pituitary neuroendocrine tumors (PitNETs) are common intracranial tumors that are classified into seven histological subtypes, including lactotroph, somatotroph, corticotroph, thyrotroph, gonadotroph, null cell, and plurihormonal PitNETs. However, the molecular characteristics of these types of PitNETs are not completely clear. METHODS A total of 180 consecutive cases of PitNETs were collected to perform RNA sequencing. All subtypes of PitNETs were distinguished by unsupervised clustering analysis. We investigated the regulation of TPIT by TRIM65 and its effects on ACTH production and secretion in ACTH-secreting pituitary cell lines, as well as in murine models using biochemical analyses, confocal microscopy, and luciferase reporter assays. RESULTS A novel subtype of PitNETs derived from TPIT lineage cells was identified as with normal TPIT transcription but with lowered protein expression. Furthermore, for the first time, TRIM65 was identified as the E3 ubiquitin ligase of TPIT. Depending on the RING domain, TRIM65 ubiquitinated and degraded the TPIT protein at multiple Lys sites. In addition, TRIM65-mediated ubiquitination of TPIT inhibited POMC transcription and ACTH production to determine the fate of the novel subtype of PitNETs in vitro and in vivo. CONCLUSION Our studies provided a novel classification of PitNETs and revealed that the TRIM65-TPIT complex controlled the fate of the novel subtype of PitNETs, which provides a potential therapy target for Cushing's disease.
Collapse
Affiliation(s)
- Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqun Xie
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Gu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Rui
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bohan Ren
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Cheng
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changsheng Li
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ronggui Hu
- State Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai,China
| | - Hanbing Shang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Drouin J. The corticotroph cells from early development to tumorigenesis. J Neuroendocrinol 2022; 34:e13147. [PMID: 35524583 DOI: 10.1111/jne.13147] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
During development, highly specialized differentiated cells, such as pituitary secretory cells, acquire their identity and properties through a series of specification events exerted by transcription factors to implement a unique gene expression program and epigenomic state. The investigation of these developmental processes informs us on the unique features of a cell lineage, both to explain these features and also to outline where these processes may fail and cause disease. This review summarizes present knowledge on the developmental origin of pituitary corticotroph and melanotroph cells and on the underlying molecular mechanisms. At the onset, comparison of gene expression programs active in pituitary progenitors compared to those active in differentiated corticotrophs or melanotrophs indicated dramatic differences in the control of, for example, the cell cycle. Tpit is the transcription factor that determines terminal differentiation of pro-opiomelanocortin (POMC) lineages, both corticotrophs and melanotrophs, and its action involves this switch in cell cycle control in parallel with activation of cell-specific gene expression. There is thus far more to making a corticotroph cell than just activating transcription of the POMC gene. Indeed, Tpit also controls implementation of mechanisms for enhanced protein translation capacity and development of extensive secretory organelles. The corticotroph cell identity also includes mechanisms responsible for homotypic cell-cell interactions between corticotrophs and for privileged heterotypic cell interactions with pituitary cells of other lineages. The review also summarizes current knowledge on how a pioneer transcription factor, Pax7, remodels the epigenome such that the same determination transcription factor, Tpit, will implement the melanotroph program of gene expression. Finally, this canvas of regulatory mechanisms implementing POMC lineage identities constitutes the background to understand alterations that characterize corticotroph adenomas of Cushing's disease patients. The integration of all these data into a unified scheme will likely yield a scheme to globally understand pathogenic mechanisms in Cushing's disease.
Collapse
Affiliation(s)
- Jacques Drouin
- Institut de recherches cliniques de Montréal, Laboratoire de génétique moléculaire, Montréal, Québec, Canada
| |
Collapse
|
20
|
Stojilkovic SS, Previde RM, Sherman AS, Fletcher PA. Pituitary corticotroph identity and receptor-mediated signaling: A transcriptomics perspective. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25. [PMID: 36177190 PMCID: PMC9514143 DOI: 10.1016/j.coemr.2022.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent single-cell RNA sequencing has offered an unprecedented view of pituitary cell transcriptomic profiles. In this review, these new data are briefly discussed and compared with the classical literature, focusing on pituitary corticotrophs. These cells are introduced by discussing their marker genes, followed by a review of G protein-coupled receptor gene expression, heterotrimeric G protein genes, and genes encoding signaling pathways downstream of G proteins: adenylate cyclases, phosphodiesterases, phospholipases, and protein kinases. The expression patterns of enzyme-linked plasma membrane and nuclear hormone receptor genes was also analyzed. The overview of these selected groups of genes sheds new light on corticotrophic receptors and their signaling pathways and provides guidance for further basic and clinical research by identifying genes that not been studied so far.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: Stanko S. Stojilkovic ()
| | - Rafael M. Previde
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arthur S. Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
21
|
SASAKI K, HIGUCHI M. Characterization of pituitary stem/progenitor cell populations in spontaneous dwarf rats. J Vet Med Sci 2022; 84:680-688. [PMID: 35387959 PMCID: PMC9177403 DOI: 10.1292/jvms.22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous dwarf rat (SDR) is a primary experimental animal model for the study of pituitary dwarfism with a point mutation in the Gh gene encoding growth hormone (GH). In previous studies, SDR has been reported to be associated with the GH deficiency as well as combined hormone deficiencies, the cause of which is unknown. In this study, we focused on the characteristics of pituitary stem/progenitor cell populations, which are a source of hormone-producing cells, in SDR. Immunofluorescence and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses confirmed the defects in GH-producing cells, the decreased number of prolactin- and thyroid-stimulating hormone-producing cells, and the increased number of adrenocorticotropic hormone- and luteinizing hormone-producing cells. Additionally, qRT-PCR analysis showed increased Prop1 (an embryonic stem/progenitor cell marker) expression and decreased S100b (a putative adult stem/progenitor cell marker) expression in SDRs. In the pituitary stem/progenitor cell niche, the marginal cell layer, the proportion of SOX2/PROP1-double positive cells was higher in adult SDRs than in adult Sprague Dawley (SD) rats but that of SOX2/S100β-double positive cells was much lower. Furthermore, the number of SOX2/PROP1-double positive cells in SD rats significantly decreased with growth; however, the decrease was smaller in SDRs. In contrast, the number of SOX2/S100β-double positive cells in SD rats significantly increased with growth; however, they were few in SDRs. Thus, S100β-positive pituitary stem/progenitor cells failed to settle in pituitary dwarfism with the Gh gene mutation, leading to multiple hypopituitarism including GH deficiency.
Collapse
Affiliation(s)
- Kenta SASAKI
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Masashi HIGUCHI
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
22
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
23
|
T-box transcription factor 19 promotes hepatocellular carcinoma metastasis through upregulating EGFR and RAC1. Oncogene 2022; 41:2225-2238. [PMID: 35217793 DOI: 10.1038/s41388-022-02249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
The effect of targeted therapy for metastatic hepatocellular carcinoma (HCC) is still unsatisfactory. Exploring the underlying mechanism of HCC metastasis is favorable to provide new therapeutic strategies. T-box (TBX) transcription factor family genes, which are crucial regulators in embryo and organ development, are vital for regulating tumor initiation, growth and metastasis. Here we explored the role of TBX19 in HCC metastasis, which is one of the most upregulated TBX family genes in human HCC tissues. TBX19 expression was markedly upregulated in HCC tissues and elevated TBX19 expression predicted poor prognosis. Overexpression of TBX19 enhanced HCC metastasis through upregulating epidermal growth factor receptor (EGFR) and Rac family small GTPase 1 (RAC1) expression. Downregulation of EGFR and RAC1 inhibited TBX19-mediated HCC metastasis, while upregulation of EGFR and RAC1 restored inhibition of HCC metastasis mediated by TBX19 knockdown. Furthermore, epidermal growth factor (EGF)/EGFR signaling upregulated TBX19 expression via the extracellular signal-regulated kinase (ERK)/nuclear factor (NF)-kB axis. Besides, the combined application of EGFR inhibitor Erlotinib and RAC1 inhibitor NSC23766 markedly inhibited TBX19-mediated HCC metastasis. In HCC cohorts, TBX19 expression was positively associated with EGFR and RAC1 expression. Patients with positive coexpression of TBX19/EGFR or TBX19/RAC1 displayed the poorest prognosis. In conclusion, EGF/EGFR signaling upregulated TBX19 expression via ERK/NF-kB pathway and TBX19 fostered HCC metastasis by enhancing EGFR and RAC1 expression, which formed an EGF-TBX19-EGFR positive feedback loop. Targeting this signaling pathway may offer a potential therapeutic strategy to efficiently restrain TBX19-mediated HCC metastasis.
Collapse
|
24
|
Charnay T, Mougel G, Amouroux C, Gueorguieva I, Joubert F, Pertuit M, Reynaud R, Barlier A, Brue T, Saveanu A. A novel TBX19 gene mutation in patients with isolated ACTH deficiency from distinct families with a common geographical origin. Front Endocrinol (Lausanne) 2022; 13:1080649. [PMID: 36890856 PMCID: PMC9987334 DOI: 10.3389/fendo.2022.1080649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 02/22/2023] Open
Abstract
Isolated ACTH deficiency (IAD) is a life-threatening condition, particularly in the neonatal period, while a main consequence of undiagnosed isolated ACTH deficiency in survivors is cognitive impairment. TBX19 is involved in the differentiation and proliferation of corticotropic cells and TBX19 mutations are responsible for more than 60% of neonatal cases of IAD. We describe a new variant of the main TBX19 transcript (NM 005149.3, c.840del (p.(Glu280Asp fs*27)), classified as pathogenic, whose pathogenicity is assumed to be due to nonsense mediated decay leading to non-expression of T-box transcription factor TBX19. Moreover we summarize the TBX19 mutations published as individual cases since our last large cohort. Interestingly, this pathogenic variant was identified in four patients from three apparently unrelated families. Two of these families were consanguineous, and after investigations all of three were discovered to have roots in the same mountainous region of northern Morocco, suggesting a founder effect. Early diagnosis, timely treatment (hydrocortisone therapy) and preventive education allowed normal development, growth and quality of life in all patients.
Collapse
Affiliation(s)
- Théo Charnay
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
- Laboratory of Molecular Biology, Centre Hospitalier Universitaire Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Gregory Mougel
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
- Laboratory of Molecular Biology, Centre Hospitalier Universitaire Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Cyril Amouroux
- Paediatric Department, Endocrinology Unit, Arnaud de Villeneuve Hospital, Montpellier University Hospital, Montpellier, France
| | - Iva Gueorguieva
- Paediatric Department, Endocrinology Unit, Children’s Center, Jeanne-de-Flandre Hospital, Lille University Hospital, Lille, France
| | - Florence Joubert
- Department of Pediatrics, Centre Hospitalier d’Avignon, Avignon, France
| | - Morgane Pertuit
- Laboratory of Molecular Biology, Centre Hospitalier Universitaire Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Rachel Reynaud
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
- Department of Multidisciplinary Peadiatrics, Centre de Référence des Maladies Rares d’origine hypophysaire HYPO, Hôpital Timone-Enfants, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Anne Barlier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
- Laboratory of Molecular Biology, Centre Hospitalier Universitaire Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Thierry Brue
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
- Department of Endocrinology, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Alexandru Saveanu
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
- Laboratory of Molecular Biology, Centre Hospitalier Universitaire Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- *Correspondence: Alexandru Saveanu,
| |
Collapse
|
25
|
Tebani A, Jotanovic J, Hekmati N, Sivertsson Å, Gudjonsson O, Edén Engström B, Wikström J, Uhlèn M, Casar-Borota O, Pontén F. Annotation of pituitary neuroendocrine tumors with genome-wide expression analysis. Acta Neuropathol Commun 2021; 9:181. [PMID: 34758873 PMCID: PMC8579660 DOI: 10.1186/s40478-021-01284-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are common, generally benign tumors with complex clinical characteristics related to hormone hypersecretion and/or growing sellar tumor mass. PitNETs can be classified based on the expression pattern of anterior pituitary hormones and three main transcriptions factors (TF), SF1, PIT1 and TPIT that regulate differentiation of adenohypophysial cells. Here, we have extended this classification based on the global transcriptomics landscape using tumor tissue from a well-defined cohort comprising 51 PitNETs of different clinical and histological types. The molecular profiles were compared with current classification schemes based on immunohistochemistry. Our results identified three main clusters of PitNETs that were aligned with the main pituitary TFs expression patterns. Our analyses enabled further identification of specific genes and expression patterns, including both known and unknown genes, that could distinguish the three different classes of PitNETs. We conclude that the current classification of PitNETs based on the expression of SF1, PIT1 and TPIT reflects three distinct subtypes of PitNETs with different underlying biology and partly independent from the expression of corresponding hormones. The transcriptomic analysis reveals several potentially targetable tumor-driving genes with previously unknown role in pituitary tumorigenesis.
Collapse
|
26
|
Araki T, Tone Y, Yamamoto M, Kameda H, Ben-Shlomo A, Yamada S, Takeshita A, Yamamoto M, Kawakami Y, Tone M, Melmed S. Two Distinctive POMC Promoters Modify Gene Expression in Cushing Disease. J Clin Endocrinol Metab 2021; 106:e3346-e3363. [PMID: 34061962 PMCID: PMC8372657 DOI: 10.1210/clinem/dgab387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Mechanisms underlying pituitary corticotroph adenoma adrenocorticotropin (ACTH) production are poorly understood, yet circulating ACTH levels closely correlate with adenoma phenotype and clinical outcomes. OBJECTIVE We characterized the 5' ends of proopiomelanocortin (POMC) gene transcripts, which encode the precursor polypeptide for ACTH, in order to investigate additional regulatory mechanisms of POMC gene transcription and ACTH production. METHODS We examined 11 normal human pituitary tissues, 32 ACTH-secreting tumors, as well as 6 silent corticotroph adenomas (SCAs) that immunostain for but do not secrete ACTH. RESULTS We identified a novel regulatory region located near the intron 2/exon 3 junction in the human POMC gene, which functions as a second promoter and an enhancer. In vitro experiments demonstrated that CREB binds the second promoter and regulates its transcriptional activity. The second promoter is highly methylated in SCAs, partially demethylated in normal pituitary tissue, and highly demethylated in pituitary and ectopic ACTH-secreting tumors. In contrast, the first promoter is demethylated in all POMC-expressing cells and is highly demethylated only in pituitary ACTH-secreting tumors harboring the ubiquitin-specific protease 8 (USP8) mutation. Demethylation patterns of the second promoter correlate with clinical phenotypes of Cushing disease. CONCLUSION We identified a second POMC promoter regulated by methylation status in ACTH-secreting pituitary tumors. Our findings open new avenues for elucidating subcellular regulation of the hypothalamic-pituitary-adrenal axis and suggest the second POMC promoter may be a target for therapeutic intervention to suppress excess ACTH production.
Collapse
Affiliation(s)
- Takako Araki
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yukiko Tone
- Pacific Heart, Lung, & Blood Institute, Los Angeles, California, USA
| | - Masaaki Yamamoto
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hiraku Kameda
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shozo Yamada
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Akira Takeshita
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masahide Tone
- Pacific Heart, Lung, & Blood Institute, Los Angeles, California, USA
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Correspondence: Shlomo Melmed, MD, Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Plaza North, Room 2015, Los Angeles, CA 90048, USA.
| |
Collapse
|
27
|
SOX2 is required independently in both stem and differentiated cells for pituitary tumorigenesis in p27-null mice. Proc Natl Acad Sci U S A 2021; 118:2017115118. [PMID: 33574062 PMCID: PMC7896314 DOI: 10.1073/pnas.2017115118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor development can depend on cell intrinsic dysfunction, but, in some cases, extrinsic factors are important drivers. Here, we established a genetically tractable model, demonstrating that the same gene is relevant both cell autonomously and noncell autonomously for tumorigenesis. Deletion of p27, down-regulated in many tumors, predominantly leads to development of murine pituitary tumors. SOX2, transcriptionally derepressed in absence of P27, is important for tumorigenesis in this and other models, but little is known about its interaction. Using loss-of-function and lineage tracing approaches, we establish its regulatory interaction in vivo and show that SOX2 is required independently, both in endocrine and stem cells, to orchestrate tumorigenesis in absence of P27, establishing a powerful model to investigate mechanisms of tumor development. P27, a cell cycle inhibitor, is also able to drive repression of Sox2. This interaction plays a crucial role during development of p27−/− pituitary tumors because loss of one copy of Sox2 impairs tumorigenesis [H. Li et al., Cell Stem Cell 11, 845–852 (2012)]. However, SOX2 is expressed in both endocrine and stem cells (SCs), and its contribution to tumorigenesis in either cell type is unknown. We have thus explored the cellular origin and mechanisms underlying endocrine tumorigenesis in p27−/− pituitaries. We found that pituitary hyperplasia is associated with reduced cellular differentiation, in parallel with increased levels of SOX2 in stem and endocrine cells. Using conditional loss-of-function and lineage tracing approaches, we show that SOX2 is required cell autonomously in p27−/− endocrine cells for these to give rise to tumors, and in SCs for promotion of tumorigenesis. This is supported by studies deleting the Sox2 regulatory region 2 (Srr2), the target of P27 repressive action. Single cell transcriptomic analysis further reveals that activation of a SOX2-dependent MAPK pathway in SCs is important for tumorigenesis. Altogether, our data highlight different aspects of the role of SOX2 following loss of p27, according to cellular context, and uncover an unexpected SOX2-dependent tumor-promoting role for SCs. Our results imply that targeting SCs, in addition to tumor cells, may represent an efficient antitumoral strategy in certain contexts.
Collapse
|
28
|
Tamanini JVG, Dal Fabbro M, de Freitas LLL, Vassallo J, de Souza Queiroz L, Rogerio F. Digital analysis of hormonal immunostaining in pituitary adenomas classified according to WHO 2017 criteria and correlation with preoperative laboratory findings. Neurosurg Focus 2021; 48:E12. [PMID: 32480373 DOI: 10.3171/2020.3.focus2039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to evaluate clinical and laboratory data from pituitary adenoma (PA) patients with functioning PA (associated with acromegaly [n = 10] or Cushing disease [n = 10]) or nonfunctioning PA (NFPA; n = 10) that were classified according to 2017 WHO criteria (based on the expression of the transcription factors pituitary-specific positive transcription factor 1 [Pit-1], a transcription factor member of the T-box family [Tpit], and steroidogenic factor 1 [SF-1]) and to assess the immunostaining results for growth hormone (GH) and adrenocorticotropic hormone (ACTH) in the corresponding tumors. METHODS Clinical and laboratory data were collected retrospectively. The percentage of tumoral cells positive for Pit-1, Tpit, or SF-1 was assessed and ImageJ software was used to evaluate immunopositivity in PAs with 2 different antibodies against GH (primary antibody 1 [AbGH-1] and primary antibody 2 [AbGH-2]) and 2 different antibodies against ACTH (primary antibody 1 [AbACTH-1] and primary antibody 2 [AbACTH-2]). RESULTS Cells with positive Pit-1 staining were more frequently observed in lesions from patients with acromegaly (acromegaly group) than in lesions from patients with Cushing disease (Cushing group; p < 0.001) and those from patients with NFPA (NFPA group; p < 0.001). The percentage of Tpit-positive cells was higher in the Cushing group than in the acromegaly (p < 0.001) and NFPA (p < 0.001) groups. No difference was detected regarding SF-1 frequency among all groups (p = 0.855). In acromegalic individuals, GH immunostaining levels varied depending on the antibody employed, and only one of the antibodies (AbGH-2) yielded higher values in comparison with the values for NFPA patients (p < 0.001). For all of the antibodies employed, no significant correlations were detected between GH tissue expression and the laboratory data (serum GH vs AbGH-1, p = 0.933; serum GH vs AbGH-2, p = 0.853; serum insulin-like growth factor-1 [IGF-1] vs AbGH-1, p = 0.407; serum IGF-1 vs AbGH-2, p = 0.881). In the Cushing group data, both antibodies showed similar ACTH tissue expression, which was higher than that obtained in the NFPA group (p < 0.001). There were no significant associations between ACTH immunohistochemical findings and ACTH serum levels (serum ACTH vs AbACTH-1, p = 0.651; serum ACTH vs AbACTH-2, p = 0.987). However, ACTH immunostaining evaluated with AbACTH-1 showed a significant correlation with 24-hour urinary cortisol (24-hour cortisol vs AbACTH-1, p = 0.047; 24-hour cortisol vs AbACTH-2, p = 0.071). CONCLUSIONS Immunostaining for Pit-1 and Tpit accurately identified lesions associated with acromegaly and Cushing disease, respectively. Conversely, SF-1 did not differentiate NFPA from lesions of the other two groups. Regarding hormonal tissue detection, results of the current investigation indicate that different antibodies may lead not only to divergent immunohistochemical results but also to lack of correlation with laboratory findings. Finally, PA classification based on transcription factor expression (Pit-1, Tpit, and SF-1), as proposed by the 2017 WHO classification of pituitary tumors, may avoid the limitations of PA classification based solely on digital immunohistochemical detection of hormones.
Collapse
Affiliation(s)
| | - Mateus Dal Fabbro
- 2Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
29
|
Gualtieri A, Kyprianou N, Gregory LC, Vignola ML, Nicholson JG, Tan R, Inoue SI, Scagliotti V, Casado P, Blackburn J, Abollo-Jimenez F, Marinelli E, Besser REJ, Högler W, Karen Temple I, Davies JH, Gagunashvili A, Robinson ICAF, Camper SA, Davis SW, Cutillas PR, Gevers EF, Aoki Y, Dattani MT, Gaston-Massuet C. Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun 2021; 12:2028. [PMID: 33795686 PMCID: PMC8016902 DOI: 10.1038/s41467-021-21712-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/12/2021] [Indexed: 02/01/2023] Open
Abstract
Germline mutations in BRAF and other components of the MAPK pathway are associated with the congenital syndromes collectively known as RASopathies. Here, we report the association of Septo-Optic Dysplasia (SOD) including hypopituitarism and Cardio-Facio-Cutaneous (CFC) syndrome in patients harbouring mutations in BRAF. Phosphoproteomic analyses demonstrate that these genetic variants are gain-of-function mutations leading to activation of the MAPK pathway. Activation of the MAPK pathway by conditional expression of the BrafV600E/+ allele, or the knock-in BrafQ241R/+ allele (corresponding to the most frequent human CFC-causing mutation, BRAF p.Q257R), leads to abnormal cell lineage determination and terminal differentiation of hormone-producing cells, causing hypopituitarism. Expression of the BrafV600E/+ allele in embryonic pituitary progenitors leads to an increased expression of cell cycle inhibitors, cell growth arrest and apoptosis, but not tumour formation. Our findings show a critical role of BRAF in hypothalamo-pituitary-axis development both in mouse and human and implicate mutations found in RASopathies as a cause of endocrine deficiencies in humans.
Collapse
Affiliation(s)
- Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nikolina Kyprianou
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL, Great Ormond Street Institute of Child Health, London, UK
| | - Maria Lillina Vignola
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James G Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rachael Tan
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shin-Ichi Inoue
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pedro Casado
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - James Blackburn
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fernando Abollo-Jimenez
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eugenia Marinelli
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rachael E J Besser
- Genetics and Genomic Medicine Research and Teaching Department, UCL, Great Ormond Street Institute of Child Health, London, UK
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - I Karen Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Justin H Davies
- Child Health Directorate, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine University of Southampton and Wessex Clinical Genetics Service, Southampton, UK
| | - Andrey Gagunashvili
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, Children NHS Foundation Trust and UCL, London, UK
| | | | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Pedro R Cutillas
- Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Evelien F Gevers
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Mehul T Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL, Great Ormond Street Institute of Child Health, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
30
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
31
|
Ozaki H, Suga H, Arima H. Hypothalamic-pituitary organoid generation through the recapitulation of organogenesis. Dev Growth Differ 2021; 63:154-165. [PMID: 33662152 DOI: 10.1111/dgd.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/26/2022]
Abstract
This paper overviews the development and differentiation of the hypothalamus and pituitary gland from embryonic stem (ES) and induced pluripotent stem (iPS) cells. It is important to replicate the developmental process in vivo to create specific cells/organoids from ES/iPS cells. We also introduce the latest findings and discuss future issues for clinical application. Neuroectodermal progenitors are induced from pluripotent stem cells by strictly removing exogenous patterning factors during the early differentiation period. The induced progenitors differentiate into rostral hypothalamic neurons, in particular magnocellular vasopressin+ neurons. In three-dimensional cultures, ES/iPS cells differentiate into hypothalamic neuroectoderm and nonneural head ectoderm adjacently. Rathke's pouch-like structures self-organize at the interface between the two layers and generate various endocrine cells, including corticotrophs and somatotrophs. Our next objective is to sophisticate our stepwise methodology to establish a novel transplantation treatment for hypopituitarism and apply it to developmental disease models.
Collapse
Affiliation(s)
- Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
32
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
33
|
Oleari R, André V, Lettieri A, Tahir S, Roth L, Paganoni A, Eberini I, Parravicini C, Scagliotti V, Cotellessa L, Bedogni F, De Martini LB, Corridori MV, Gulli S, Augustin HG, Gaston-Massuet C, Hussain K, Cariboni A. A Novel SEMA3G Mutation in Two Siblings Affected by Syndromic GnRH Deficiency. Neuroendocrinology 2021; 111:421-441. [PMID: 32365351 DOI: 10.1159/000508375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/01/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Gonadotropin-releasing hormone (GnRH) deficiency causes hypogonadotropic hypogonadism (HH), a rare genetic disorder that impairs sexual reproduction. HH can be due to defective GnRH-secreting neuron development or function and may be associated with other clinical signs in overlapping genetic syndromes. With most of the cases being idiopathic, genetics underlying HH is still largely unknown. OBJECTIVE To assess the contribution of mutated Semaphorin 3G (SEMA3G) in the onset of a syndromic form of HH, characterized by intellectual disability and facial dysmorphic features. METHOD By combining homozygosity mapping with exome sequencing, we identified a novel variant in the SEMA3G gene. We then applied mouse as a model organism to examine SEMA3Gexpression and its functional requirement in vivo. Further, we applied homology modelling in silico and cell culture assays in vitro to validate the pathogenicity of the identified gene variant. RESULTS We found that (i) SEMA3G is expressed along the migratory route of GnRH neurons and in the developing pituitary, (ii) SEMA3G affects GnRH neuron development, but is redundant in the adult hypothalamic-pituitary-gonadal axis, and (iii) mutated SEMA3G alters binding properties in silico and in vitro to its PlexinA receptors and attenuates its effect on the migration of immortalized GnRH neurons. CONCLUSION In silico, in vitro, and in vivo models revealed that SEMA3G regulates GnRH neuron migration and that its mutation affecting receptor selectivity may be responsible for the HH-related defects.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valentina André
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sophia Tahir
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lise Roth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ludovica Cotellessa
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- IRCCS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research, Milan, Italy
| | - Francesco Bedogni
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Neuroscience and Mental Health Research Institute (NMHRI), Division of Neuroscience, School of Biosciences, Cardiff, United Kingdom
| | | | | | - Simona Gulli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Khalid Hussain
- Sidra Medical & Research Center, Division of Endocrinology OPC, Department of Pediatric Medicine, Doha, Qatar
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy,
| |
Collapse
|
34
|
Zhang S, Cui Y, Ma X, Yong J, Yan L, Yang M, Ren J, Tang F, Wen L, Qiao J. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat Commun 2020; 11:5275. [PMID: 33077725 PMCID: PMC7572359 DOI: 10.1038/s41467-020-19012-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/23/2020] [Indexed: 12/01/2022] Open
Abstract
The anterior pituitary gland plays a central role in regulating various physiological processes, including body growth, reproduction, metabolism and stress response. Here, we perform single-cell RNA-sequencing (scRNA-seq) of 4113 individual cells from human fetal pituitaries. We characterize divergent developmental trajectories with distinct transitional intermediate states in five hormone-producing cell lineages. Corticotropes exhibit an early intermediate state prior to full differentiation. Three cell types of the PIT-1 lineage (somatotropes, lactotropes and thyrotropes) segregate from a common progenitor coexpressing lineage-specific transcription factors of different sublineages. Gonadotropes experience two multistep developmental trajectories. Furthermore, we identify a fetal gonadotrope cell subtype expressing the primate-specific hormone chorionic gonadotropin. We also characterize the cellular heterogeneity of pituitary stem cells and identify a hybrid epithelial/mesenchymal state and an early-to-late state transition. Here, our results provide insights into the transcriptional landscape of human pituitary development, defining distinct cell substates and subtypes and illustrating transcription factor dynamics during cell fate commitment. Editor’s summary_NCOMMS-19-41732B The anterior pituitary gland controls body growth and reproduction but how early development is dynamically regulated is unclear. Here, the authors use scRNA-seq of human fetal pituitaries to identify different developmental routes and state transitions of five hormone-producing cell lineages, and a hybrid epithelial/mesenchymal state of pituitary stem cells.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
| | - Yueli Cui
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
| | - Xinyi Ma
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Jun Yong
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Ming Yang
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jie Ren
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
| | - Fuchou Tang
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lu Wen
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China. .,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China.
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China. .,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
35
|
Ho Y, Hu P, Peel MT, Chen S, Camara PG, Epstein DJ, Wu H, Liebhaber SA. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity. Protein Cell 2020; 11:565-583. [PMID: 32193873 PMCID: PMC7381518 DOI: 10.1007/s13238-020-00705-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
The anterior pituitary gland drives highly conserved physiologic processes in mammalian species. These hormonally controlled processes are central to somatic growth, pubertal transformation, fertility, lactation, and metabolism. Current cellular models of mammalian anteiror pituitary, largely built on candidate gene based immuno-histochemical and mRNA analyses, suggest that each of the seven hormones synthesized by the pituitary is produced by a specific and exclusive cell lineage. However, emerging evidence suggests more complex relationship between hormone specificity and cell plasticity. Here we have applied massively parallel single-cell RNA sequencing (scRNA-seq), in conjunction with complementary imaging-based single-cell analyses of mRNAs and proteins, to systematically map both cell-type diversity and functional state heterogeneity in adult male and female mouse pituitaries at single-cell resolution and in the context of major physiologic demands. These quantitative single-cell analyses reveal sex-specific cell-type composition under normal pituitary homeostasis, identify an array of cells associated with complex complements of hormone-enrichment, and undercover non-hormone producing interstitial and supporting cell-types. Interestingly, we also identified a Pou1f1-expressing cell population that is characterized by a unique multi-hormone gene expression profile. In response to two well-defined physiologic stresses, dynamic shifts in cellular diversity and transcriptome profiles were observed for major hormone producing and the putative multi-hormone cells. These studies reveal unanticipated cellular complexity and plasticity in adult pituitary, and provide a rich resource for further validating and expanding our molecular understanding of pituitary gene expression programs and hormone production.
Collapse
Affiliation(s)
- Yugong Ho
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Peng Hu
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael T Peel
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sixing Chen
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas J Epstein
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hao Wu
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Stephen A Liebhaber
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
36
|
Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab 2020; 105:5614788. [PMID: 31702014 DOI: 10.1210/clinem/dgz184] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Congenital hypopituitarism (CH) is characterized by the presence of deficiencies in one or more of the 6 anterior pituitary (AP) hormones secreted from the 5 different specialized cell types of the AP. During human embryogenesis, hypothalamo-pituitary (HP) development is controlled by a complex spatio-temporal genetic cascade of transcription factors and signaling molecules within the hypothalamus and Rathke's pouch, the primordium of the AP. EVIDENCE ACQUISITION This mini-review discusses the genes and pathways involved in HP development and how mutations of these give rise to CH. This may present in the neonatal period or later on in childhood and may be associated with craniofacial midline structural abnormalities such as cleft lip/palate, visual impairment due to eye abnormalities such as optic nerve hypoplasia (ONH) and microphthalmia or anophthalmia, or midline forebrain neuroradiological defects including agenesis of the septum pellucidum or corpus callosum or the more severe holoprosencephaly. EVIDENCE SYNTHESIS Mutations give rise to an array of highly variable disorders ranging in severity. There are many known causative genes in HP developmental pathways that are routinely screened in CH patients; however, over the last 5 years this list has rapidly increased due to the identification of variants in new genes and pathways of interest by next-generation sequencing. CONCLUSION The majority of patients with these disorders do not have an identified molecular basis, often making management challenging. This mini-review aims to guide clinicians in making a genetic diagnosis based on patient phenotype, which in turn may impact on clinical management.
Collapse
Affiliation(s)
- Louise Cheryl Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
37
|
Nuclear Receptors as Regulators of Pituitary Corticotroph Pro-Opiomelanocortin Transcription. Cells 2020; 9:cells9040900. [PMID: 32272677 PMCID: PMC7226830 DOI: 10.3390/cells9040900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis plays a critical role in adaptive stress responses and maintaining organism homeostasis. The pituitary corticotroph is the central player in the HPA axis and is regulated by a plethora of hormonal and stress related factors that synergistically interact to activate and temper pro-opiomelanocortin (POMC) transcription, to either increase or decrease adrenocorticotropic hormone (ACTH) production and secretion as needed. Nuclear receptors are a family of highly conserved transcription factors that can also be induced by various physiologic signals, and they mediate their responses via multiple targets to regulate metabolism and homeostasis. In this review, we summarize the modulatory roles of nuclear receptors on pituitary corticotroph cell POMC transcription, describe the unique and complex role these factors play in hypothalamic–pituitary–adrenal axis (HPA) regulation and discuss potential therapeutic targets in disease states.
Collapse
|
38
|
Hibara A, Yamaguchi T, Kojima M, Yamano Y, Higuchi M. Nicotine inhibits expression of Prrx1 in pituitary stem/progenitor cells through epigenetic regulation, leading to a delayed supply of growth-hormone-producing cells. Growth Horm IGF Res 2020; 51:65-74. [PMID: 32146343 DOI: 10.1016/j.ghir.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/27/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Nicotine, a toxic component of smoking, adversely affects animal growth and reproduction by decreasing secretion of anterior pituitary hormones. However, it has not been clarified whether nicotine inhibits the supply of endocrine cells in the pituitary gland. The present study investigated short- and long-term effects of persistent nicotine exposure on the pituitary glands of young animals. DESIGN Three-week-old male Wistar rats were exposed to nicotine (1 mg/kg body weight/day) for 7 days, and gene expression, cell numbers, and DNA methylation status were analyzed on the following day and 4 weeks after final treatments. RESULTS The expression level of the stem cell marker Sox2 was not changed by nicotine exposure throughout the experiment. On the other hand, nicotine inhibited expression of a progenitor cell marker, Prrx1, and growth hormone (Gh). Immunohistochemical analysis showed that the SOX2-positive cells positive for PRRX1 in nicotine-treated groups decreased to 61% (4-week-old) and 70% (8-week-old) of the saline-treated controls. In addition, the proportion of GH-positive cells in nicotine-treated group was 14% lower than that of saline-treated controls. Furthermore, first intron hypermethylation of Prrx1 was detected by a bisulfite sequence of genomic DNA from the anterior lobe of the rat pituitary gland. CONCLUSIONS We show that persistent nicotine exposure in young animals inhibits expression of Prrx1 in pituitary stem/progenitor cells through epigenetic regulation, leading to a delayed supply of GH-producing cells.
Collapse
Affiliation(s)
- Ayaka Hibara
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Takahiro Yamaguchi
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Miki Kojima
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Yoshiaki Yamano
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Masashi Higuchi
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan.
| |
Collapse
|
39
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
40
|
Liu J, He Y, Zhang X, Yan X, Huang Y. Clinicopathological analysis of 250 cases of pituitary adenoma under the new WHO classification. Oncol Lett 2020; 19:1890-1898. [PMID: 32194684 PMCID: PMC7039149 DOI: 10.3892/ol.2020.11263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Pituitary adenomas (PAs) are a common subtype of intracranial tumors. The aim of the present study was to analyse the clinical and pathological features of different types of pituitary adenomas (PAs) according to the 2017 World Health Organisation Endocrine Organ Tumor Classification guidelines. The clinical data of 250 patients with PAs were collected and analysed. Differences in the incidence of invasion, recurrence and apoplexy in patients between high- and low-risk PAs were compared, as were differences in the Ki-67 index between invasive and non-invasive PAs and between recurrent PAs and non-recurrent PAs. Of the 250 cases, 45 cases were diagnosed as somatotroph adenomas, 26 cases as lactotroph adenomas, 1 case as thyrotroph adenoma, 61 cases as corticotroph adenomas, 93 cases as gonadotropin adenomas, 15 cases as null cell adenomas and 9 cases as plurihormonal adenomas. There were 5 types of high-risk pituitary adenoma identified: 17 cases of sparsely granulated somatotroph adenoma, 11 cases of lactotroph adenoma in men, 3 cases of plurihormonal PIT-1 positive adenoma and 42 cases of silent corticotroph adenoma. Crooke's cell adenoma was not identified. High-risk PAs had significantly higher rates of invasion, recurrence and apoplexy compared with that in low-risk types (P<0.001). Invasive PAs had a significantly higher Ki-67 index compared with that in non-invasive PAs (3.5±1.8 vs. 2.8±1.3; P<0.01). Recurrent PAs had a significantly higher Ki-67 index compared with that in non-recurrent PAs (3.9±1.9 vs. 2.8±1.3; P<0.001). According to the 2017 classification criteria, patients most frequently had gonadotrophin cell adenomas, followed by corticotroph adenomas and the proportion of null cell adenomas was reduced. Differences were noted in the proliferation, recurrence and apoplexy characteristics of high-risk PAs and low-risk PAs. The invasion and recurrence of PAs were found to be related to the Ki-67 index.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300000, P.R. China.,Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yuhao He
- Department of Neurosurgery, Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, P.R. China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin 300000, P.R. China
| | - Xiaoling Yan
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin 300000, P.R. China
| | - Ying Huang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300000, P.R. China
| |
Collapse
|
41
|
Torregrosa-Quesada ME, García-Martínez A, Silva-Ortega S, Martínez-López S, Cámara R, Fajardo C, Lamas C, Aranda I, Picó A. How Valuable Is the RT-qPCR of Pituitary-Specific Transcription Factors for Identifying Pituitary Neuroendocrine Tumor Subtypes According to the New WHO 2017 Criteria? Cancers (Basel) 2019; 11:cancers11121990. [PMID: 31835737 PMCID: PMC6966694 DOI: 10.3390/cancers11121990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
The classification of pituitary neuroendocrine tumors (PitNETs) subtypes continues generating interest. In 2017, the World Health Organization (WHO) proposed considering the immunohistochemical (IHC) analysis of pituitary-specific transcription factors (TF) for their typification. The present study targeted the quantification of pituitary-specific TF (TPIT, PIT-1, SF-1, GATA2, ESR1) gene expression by RT-qPCR to overcome the shortcomings of IHC and to complement it. We analyzed 251 tumors from our collection of PitNETs and performed additional IHC studies in a subset of 56 samples to analyze the concordance between gene and protein expression of the TF. The molecular and IHC studies allowed us to significantly reduce the percentage of null cell tumors in our series, most of which were reclassified as gonadotroph tumors. The concordance between the molecular and the immunohistochemical studies was good for tumors coming from the corticotroph and Pit-1 lineages but worsened for the rest of the tumors. Indeed, the RT-qPCR helped to improve the typification of plurihormonal Pit-1 and unusual tumors. Overall, our results suggest that the RT-qPCR of pituitary-specific TF and hormone genes could help pathologists, endocrinologists, and neurosurgeons to improve the management of patients with pituitary tumors.
Collapse
Affiliation(s)
| | - Araceli García-Martínez
- Research Laboratory, Hospital General Universitario de Alicante -ISABIAL, 03010 Alicante, Spain; (A.G.-M.); (S.M.-L.)
| | - Sandra Silva-Ortega
- Pathology Department, Hospital General Universitario de Alicante, 03010 Alicante, Spain; (S.S.-O.); (I.A.)
| | - Sebastián Martínez-López
- Research Laboratory, Hospital General Universitario de Alicante -ISABIAL, 03010 Alicante, Spain; (A.G.-M.); (S.M.-L.)
| | - Rosa Cámara
- Endocrinology Department, Hospital Universitario Politécnico La Fe, 46026 Valencia, Spain;
| | - Carmen Fajardo
- Endocrinology Department, Hospital Universitario La Ribera, Alzira, 46600 Valencia, Spain;
| | - Cristina Lamas
- Endocrinology Department, Complejo Universitario de Albacete, 02006 Albacete, Spain;
| | - Ignacio Aranda
- Pathology Department, Hospital General Universitario de Alicante, 03010 Alicante, Spain; (S.S.-O.); (I.A.)
| | - Antonio Picó
- Endocrinology Department, Hospital General Universitario de Alicante -ISABIAL, Miguel Hernández University, 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-659467594
| |
Collapse
|
42
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
43
|
Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Front Endocrinol (Lausanne) 2019; 10:623. [PMID: 31620083 PMCID: PMC6760010 DOI: 10.3389/fendo.2019.00623] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. Also identified were endothelial and blood cells from the pituitary capillary network. The expression of numerous developmental and neuroendocrine marker genes in both folliculostellate and hormone-producing cells supports that they have a common origin. For several genes, the validity of transcriptome analysis was confirmed by qRT-PCR and single cell immunocytochemistry. Folliculostellate cells exhibit impressive transcriptome diversity, indicating their major roles in production of endogenous ligands and detoxification enzymes, and organization of extracellular matrix. Transcriptome profiles of hormone-producing cells also indicate contributions toward those functions, while also clearly demonstrating their endocrine function. This survey highlights many novel genetic markers contributing to pituitary cell type identity, sexual dimorphism, and function, and points to relationships between hormone-producing and folliculostellate cells.
Collapse
Affiliation(s)
- Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Milos B. Rokic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven L. Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
44
|
Edwards W, Raetzman LT. Complex integration of intrinsic and peripheral signaling is required for pituitary gland development. Biol Reprod 2019; 99:504-513. [PMID: 29757344 DOI: 10.1093/biolre/ioy081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
45
|
Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2. Nat Commun 2019; 10:3960. [PMID: 31481663 PMCID: PMC6722061 DOI: 10.1038/s41467-019-11894-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Translation is a basic cellular process and its capacity is adapted to cell function. In particular, secretory cells achieve high protein synthesis levels without triggering the protein stress response. It is unknown how and when translation capacity is increased during differentiation. Here, we show that the transcription factor Creb3l2 is a scaling factor for translation capacity in pituitary secretory cells and that it directly binds ~75% of regulatory and effector genes for translation. In parallel with this cell-autonomous mechanism, implementation of the physiological UPR pathway prevents triggering the protein stress response. Knockout mice for Tpit, a pituitary differentiation factor, show that Creb3l2 expression and its downstream regulatory network are dependent on Tpit. Further, Creb3l2 acts by direct targeting of translation effector genes in parallel with signaling pathways that otherwise regulate protein synthesis. Expression of Creb3l2 may be a useful means to enhance production of therapeutic proteins.
Collapse
|
46
|
Mayran A, Sochodolsky K, Khetchoumian K, Harris J, Gauthier Y, Bemmo A, Balsalobre A, Drouin J. Pioneer and nonpioneer factor cooperation drives lineage specific chromatin opening. Nat Commun 2019; 10:3807. [PMID: 31444346 PMCID: PMC6707328 DOI: 10.1038/s41467-019-11791-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pioneer transcription factors are characterized by having the unique property of enabling the opening of closed chromatin sites, for implementation of cell fates. We previously found that the pioneer Pax7 specifies melanotrope cells through deployment of an enhancer repertoire, which allows binding of Tpit, a nonpioneer factor that determines the related lineages of melanotropes and corticotropes. Here, we investigate the relation between these two factors in the pioneer mechanism. Cell-specific gene expression and chromatin landscapes are defined by scRNAseq and chromatin accessibility profiling. We find that in vivo deployment of the melanotrope enhancer repertoire and chromatin opening requires both Pax7 and Tpit. In cells, binding of heterochromatin targets by Pax7 is independent of Tpit but Pax7-dependent chromatin opening requires Tpit. The present work shows that pioneer core properties are limited to the ability to recognize heterochromatin targets and facilitate nonpioneer binding. Chromatin opening per se may be provided through cooperation with nonpioneer factors.
Collapse
Affiliation(s)
- Alexandre Mayran
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Kevin Sochodolsky
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Konstantin Khetchoumian
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Juliette Harris
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Yves Gauthier
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Amandine Bemmo
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Aurelio Balsalobre
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Département de Biochimie, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
47
|
Manojlovic-Gacic E, Bollerslev J, Casar-Borota O. Invited Review: Pathology of pituitary neuroendocrine tumours: present status, modern diagnostic approach, controversies and future perspectives from a neuropathological and clinical standpoint. Neuropathol Appl Neurobiol 2019; 46:89-110. [PMID: 31112312 DOI: 10.1111/nan.12568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Abstract
Neuroendocrine tumours of the adenohypophysis have traditionally been designated as pituitary adenomas to underline their usually indolent growth and lack of metastatic potential. However, they may demonstrate a huge spectrum of growth patterns and endocrine disturbances, some of them significantly affecting health and quality of life. To predict tumour growth, risk of postoperative recurrence and response to medical therapy in patients with pituitary neuroendocrine tumours is challenging. A thorough histopathological and immunohistochemical diagnostic work-up is an obligatory part of a multidisciplinary effort to precisely define the tumour type and assess prognostic and predictive factors on an individual basis. In this review, we have summarized the current status in the pathology in pituitary neuroendocrine tumours based on the selection of references from the PubMed database. We have presented possible diagnostic approaches according to the current pituitary cell lineage-based classification. The importance of recognizing histological subtypes with potentially aggressive behaviour and identification of prognostic and predictive tissue biomarkers have been highlighted. Controversies related to particular subtypes of pituitary tumours and a still limited prognostic impact of the current classification indicate the need for further refinement. Multidisciplinary approach including clinical, pathological and molecular genetic characterization will be essential for improved personalized therapy and the search for novel therapeutic targets in patients with pituitary neuroendocrine tumours.
Collapse
Affiliation(s)
- E Manojlovic-Gacic
- Institute of Pathology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - J Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - O Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
48
|
Abali ZY, Yesil G, Kirkgoz T, Kaygusuz SB, Eltan M, Turan S, Bereket A, Guran T. Evaluation of growth and puberty in a child with a novel TBX19 gene mutation and review of the literature. Hormones (Athens) 2019; 18:229-236. [PMID: 30747411 DOI: 10.1007/s42000-019-00096-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Biallelic mutations in the TBX19 gene cause severe early-onset adrenal failure due to isolated ACTH deficiency (IAD). This rare disease is characterized by low plasma ACTH and cortisol levels, with normal secretion of other pituitary hormones. Herein, we report a patient with IAD due to a novel TBX19 gene mutation, who is also of tall stature. CASE REPORT A 48/12-year-old girl was presented with loss of consciousness due to hypoglycemia. The patient was born at term with a birth weight of 3800 g. Her parents were first-degree cousins. She had a history of several hospitalizations for recurrent seizures, abdominal pain, and vomiting. At presentation, her weight and height were + 1.8 and + 2.2 SDS, respectively. Serum glucose was 25 mg/dl (1.4 mmol/L), with normal sodium, potassium, and insulin concentrations. The child was hypocortisolemic (0.1 μg/dl), and ACTH levels were extremely low (< 5.0 pg/ml). A diagnosis of IAD was made and hydrocortisone treatment was started. Hypoglycemic episodes, seizures, and recurrent gastrointestinal complaints disappeared after hydrocortisone replacement. Magnetic resonance imaging of the pituitary was normal. Whole exome sequencing revealed a novel homozygous c.302G > A (W101*) mutation in the TBX19 gene. CONCLUSION We report a new mutation in the TBX19 gene in a patient with isolated ACTH deficiency. While overgrowth is a known feature of some types of adrenal insufficiencies, including MC2R gene defects and POMC deficiency, it may be a novel feature for TPIT deficiency, as in our patient.
Collapse
Affiliation(s)
- Zehra Yavas Abali
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Gozde Yesil
- Department of Medical Genetics, Bezmialem Vakıf University School of Medicine, Istanbul, Turkey
| | - Tarik Kirkgoz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Sare Betul Kaygusuz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
49
|
Kano M, Suga H, Kasai T, Ozone C, Arima H. Functional Pituitary Tissue Generation from Human Embryonic Stem Cells. ACTA ACUST UNITED AC 2019; 83:e48. [PMID: 30040229 DOI: 10.1002/cpns.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The anterior pituitary gland produces several hormones essential for regulation of the somatic endocrine system. Deficiency of these hormones can cause life-threatening diseases, including adrenal crisis. Pituitary tissue generated from human pluripotent stem cells is expected to provide better treatment than current hormone replacement therapy. During early mammalian development, the pituitary anlage (Rathke's pouch) develops from non-neural ectoderm adjacent to the developing ventral hypothalamus. The close interaction between these two tissues is crucial for Rathke's pouch development and involves several signaling molecules. Early exposure of human embryonic stem cells in 3D floating culture to sonic hedgehog and bone morphogenetic protein 4 promoted the cells' differentiation into oral ectoderm and, subsequently, hormone-producing cells such as corticotrophs (adrenocorticotropic hormone-producing cells). The differentiation approach described herein, which induces the formation of pituitary tissue in contact with hypothalamic neural tissue, mimics mammalian pituitary development. The differentiated corticotrophs are functional, responding normally to both release and feedback signals. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Mayuko Kano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takatoshi Kasai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chikafumi Ozone
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
50
|
Mete O, Kefeli M, Çalışkan S, Asa SL. GATA3 immunoreactivity expands the transcription factor profile of pituitary neuroendocrine tumors. Mod Pathol 2019; 32:484-489. [PMID: 30390035 DOI: 10.1038/s41379-018-0167-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 01/21/2023]
Abstract
The modern classification of pituitary neuroendocrine tumors relies mainly on immunohistochemistry for pituitary transcription factors, hormones, and other biomarkers, including low molecular weight cytokeratins. The transcription factor GATA2 is required for development of gonadotrophs and thyrotrophs but has not been used for classification of pituitary tumors. Because of genomic paralogy of GATA2 and GATA3, we postulated that GATA3 immunohistochemistry may detect GATA2 in the adenohypophysis. We examined 151 tumors originating from Ondokuz Mayis University, Turkey (n = 83) and University Health Network, Canada (n = 68). Initially, 83 tumors (26 gonadotroph, 24 somatotroph, 17 corticotroph, 12 lactotroph, 2 poorly differentiated Pit-1 lineage tumors that expressed TSH and 2 null cell tumors) from Ondokuz Mayis University were investigated with the GATA3 monoclonal antibody L50-823. Retrospective review of the files of University Health Network identified 68 tumors (43 gonadotroph, 3 somatotroph, 2 lactotroph, 1 mammosomatotroph, 9 corticotroph, 7 poorly differentiated Pit-1 lineage tumors with TSH expression, 2 plurihormonal tumors with TSH expression and 1 null cell tumor) that were examined with the same GATA3 antibody and served as a validation cohort. All somatotroph, lactotroph and mammosomatotroph tumors and the null cell tumors were negative for GATA3. Sixty-eight (98.5%) gonadotroph tumors were positive for GATA3; 64 had diffuse reactivity. Two plurihormonal tumors with TSH expression and eight (88.8%) poorly differentiated Pit-1 lineage tumors with variable TSH expression were positive for GATA3. One of 26 (3.8%) corticotroph tumors was diffusely positive for GATA3. This study shows that GATA3 immunoreactivity is characteristic of pituitary gonadotroph and TSH-producing tumors. This finding expands the pattern of transcription factors that are used to classify adenohypophysial tumors and is important in the differential diagnosis of sellar tumors, as GATA3 expression is also a feature of primary sellar paragangliomas as well as carcinomas that may metastasize to the sella.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Mehmet Kefeli
- Department of Pathology, Ondokuz Mayis University, Samsun, Turkey
| | - Sultan Çalışkan
- Department of Pathology, Ondokuz Mayis University, Samsun, Turkey
| | - Sylvia L Asa
- Department of Pathology, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|