1
|
Li C, Cui J, Lu X, Shi M, Xu J, Yu W. Function of DNA methylation in fruits: A review. Int J Biol Macromol 2024; 282:137086. [PMID: 39500431 DOI: 10.1016/j.ijbiomac.2024.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/14/2024]
Abstract
Advances in the detection and mapping of DNA methylation redefine our understanding of the modifications as epigenetic regulation. In plants, the most prevalent DNA methylation plays crucial and dynamic roles in a wide variety of processes, such as stress responses, seedlings growth, fruit ripening and so on. Here, we discuss firstly the changes of DNA methylation (CG, CHG, and CHH) dynamic in plants. Second, we review the latest research progress on DNA methylation in the pigment accumulation of fruits including apple, grape, pear, kiwifruit, sweet orange, peach, cucumber, and tomato. Thirdly, the roles of DNA methylation in fruit development and ripening also are summarized. Moreover, DNA methylation is also associates with disease resistance, and flavor and nutritional quality in fruits. Lastly, we also provide some perspectives on future research of the unknown DNA methylation in fruits.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meimei Shi
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 PMCID: PMC11560745 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
4
|
Silva GCB, Camillo LR, Santos DB, Amorim MS, Gonçalves LP, Barbosa ACO, Rocha Junior DS, Alcântara GM, Costa MGC. Identification of DEMETER-like DNA demethylase gene family in citrus and their role in drought stress-adaptive responses. Comput Biol Chem 2024; 112:108128. [PMID: 38905900 DOI: 10.1016/j.compbiolchem.2024.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
DEMETER-Like DNA demethylases (DMLs) are epigenetic regulators of many developmental and biological processes in plants. No comprehensive information about the DML gene family in citrus is available to date. Here, a total of three DML genes in the genomes of Citrus sinensis (named CsDML1-3) and C. clementina (named CcDML1-3) were identified and analyzed. They encode hydrophilic and relatively large proteins, with prediction of nuclear localization, containing the conserved domains and motifs typical of plant DMLs. Protein interaction network analysis suggested that they interact primarily with proteins related to the maintenance of DNA methylation and remodeling of chromatin. Analysis of their promoter regions led to the identification of several cis-acting regulatory elements involved in stress response, including drought, heat and cold stresses. The presence of several miRNA targets and potential phosphorylation sites suggest that their expression is also regulated at post-transcriptional and post-translational levels. RNA-Seq data and quantitative real-time PCR analysis showed a low and drought-regulated gene expression of the citrus DMLs in different plant tissues. CsDML1 and CsDML3 were also differentially regulated by deficit irrigation in fruits at different developmental stages, with a positive and significant correlation found between CsDML1 and PHYTOENE SYNTHASE (PSY) and between CsDML3 and ATP CITRATE LYASEs (ACLs) and ZETA-CAROTENE DESATURASE (ZDS) gene expression. These results indicate that the citrus DMLs are potentially functional enzymes involved in developmental processes and drought stress-adaptive responses, providing a useful reference for further investigation of their functions and applications on the citrus improvement.
Collapse
Affiliation(s)
- Gláucia C B Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil
| | - Luciana R Camillo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil
| | - Dalma B Santos
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil
| | - Maurício S Amorim
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil
| | - Luana P Gonçalves
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil
| | - Ana C O Barbosa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil
| | - Dílson S Rocha Junior
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil
| | - Grazielle M Alcântara
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil
| | - Marcio G C Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil.
| |
Collapse
|
5
|
Khouider S, Gehring M. Parental dialectic: Epigenetic conversations in endosperm. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102591. [PMID: 38944896 PMCID: PMC11392645 DOI: 10.1016/j.pbi.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.
Collapse
Affiliation(s)
- Souraya Khouider
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| |
Collapse
|
6
|
Frost JM, Rhee JH, Choi Y. Dynamics of DNA methylation and its impact on plant embryogenesis. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102593. [PMID: 38941722 DOI: 10.1016/j.pbi.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.
Collapse
Affiliation(s)
- Jennifer M Frost
- Medical and Molecular Genetics, King's College London, St Thomas' Street, London SE1 9RT, UK.
| | - Ji Hoon Rhee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Zeng Y, Somers J, Bell HS, Vejlupkova Z, Kelly Dawe R, Fowler JE, Nelms B, Gent JI. Potent pollen gene regulation by DNA glycosylases in maize. Nat Commun 2024; 15:8352. [PMID: 39333110 PMCID: PMC11436724 DOI: 10.1038/s41467-024-52620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs, MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen-segregating mutations in both genes, we identify 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in other tissues. They are unusual in their tendency to lack introns but even more so in their TE-like methylation (teM) in coding DNA. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with the potential for extremely high expression in pollen but constitutive silencing elsewhere.
Collapse
Affiliation(s)
- Yibing Zeng
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Julian Somers
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Harrison S Bell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Brad Nelms
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Labella-Ortega M, Martín C, Valledor L, Castiglione S, Castillejo MÁ, Jorrín-Novo JV, Rey MD. Unravelling DNA methylation dynamics during developmental stages in Quercus ilex subsp. ballota [Desf.] Samp. BMC PLANT BIOLOGY 2024; 24:823. [PMID: 39223458 PMCID: PMC11370289 DOI: 10.1186/s12870-024-05553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND DNA methylation is a critical factor influencing plant growth, adaptability, and phenotypic plasticity. While extensively studied in model and crop species, it remains relatively unexplored in holm oak and other non-domesticated forest trees. This study conducts a comprehensive in-silico mining of DNA methyltransferase and demethylase genes within the holm oak genome to enhance our understanding of this essential process in these understudied species. The expression levels of these genes in adult and seedling leaves, as well as embryos, were analysed using quantitative real-time PCR (qRT-PCR). Global DNA methylation patterns were assessed through methylation-sensitive amplified polymorphism (MSAP) techniques. Furthermore, specific methylated genomic sequences were identified via MSAP sequencing (MSAP-Seq). RESULT A total of 13 DNA methyltransferase and three demethylase genes were revealed in the holm oak genome. Expression levels of these genes varied significantly between organs and developmental stages. MSAP analyses revealed a predominance of epigenetic over genetic variation among organs and developmental stages, with significantly higher global DNA methylation levels observed in adult leaves. Embryos exhibited frequent demethylation events, while de novo methylation was prevalent in seedling leaves. Approximately 35% of the genomic sequences identified by MSAP-Seq were methylated, predominantly affecting nuclear genes and intergenic regions, as opposed to repetitive sequences and chloroplast genes. Methylation was found to be more pronounced in the exonic regions of nuclear genes compared to their promoter and intronic regions. The methylated genes were predominantly associated with crucial biological processes such as photosynthesis, ATP synthesis-coupled electron transport, and defence response. CONCLUSION This study opens a new research direction in analysing variability in holm oak by evaluating the epigenetic events and mechanisms based on DNA methylation. It sheds light on the enzymatic machinery governing DNA (de)methylation, and the changes in the expression levels of methylases and demethylases in different organs along the developmental stages. The expression level was correlated with the DNA methylation pattern observed, showing the prevalence of de novo methylation and demethylation events in seedlings and embryos, respectively. Several methylated genes involved in the regulation of transposable element silencing, lipid biosynthesis, growth and development, and response to biotic and abiotic stresses are highlighted. MSAP-seq integrated with whole genome bisulphite sequencing and advanced sequencing technologies, such as PacBio or Nanopore, will bring light on epigenetic mechanisms regulating the expression of specific genes and its correlation with the phenotypic variability and the differences in the response to environmental cues, especially those related to climate change.
Collapse
Affiliation(s)
- Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| | - Carmen Martín
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - Luis Valledor
- Plant Physiology Lab, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Cat. Rodrigo Uría s/n, Oviedo, 33006, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - María-Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús V Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| |
Collapse
|
9
|
Zhang Q, Zhong W, Zhu G, Cheng L, Yin C, Deng L, Yang Y, Zhang Z, Shen J, Fu T, Zhu JK, Zhao L. aChIP is an efficient and sensitive ChIP-seq technique for economically important plant organs. NATURE PLANTS 2024; 10:1317-1329. [PMID: 39179701 DOI: 10.1038/s41477-024-01743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/19/2024] [Indexed: 08/26/2024]
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is crucial for profiling histone modifications and transcription factor binding throughout the genome. However, its application in economically important plant organs (EIPOs) such as seeds, fruits and flowers is challenging due to their sturdy cell walls and complex constituents. Here we present advanced ChIP (aChIP), an optimized method that efficiently isolates chromatin from plant tissues while simultaneously removing cell walls and cellular constituents. aChIP precisely profiles histone modifications in all 14 tested EIPOs and identifies transcription factor and chromatin-modifying enzyme binding sites. In addition, aChIP enhances ChIP efficiency, revealing numerous novel modified sites compared with previous methods in vegetative tissues. aChIP reveals the histone modification landscape for rapeseed dry seeds, highlighting the intricate roles of chromatin dynamics during seed dormancy and germination. Altogether, aChIP is a powerful, efficient and sensitive approach for comprehensive chromatin profiling in virtually all plant tissues, especially in EIPOs.
Collapse
Affiliation(s)
- Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenying Zhong
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guangfeng Zhu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lulu Cheng
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Caijun Yin
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
10
|
Del Toro-De León G, van Boven J, Santos-González J, Jiao WB, Peng H, Schneeberger K, Köhler C. Epigenetic and transcriptional consequences in the endosperm of chemically induced transposon mobilization in Arabidopsis. Nucleic Acids Res 2024; 52:8833-8848. [PMID: 38967011 PMCID: PMC11347142 DOI: 10.1093/nar/gkae572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana. Through the combination of chemical TE mobilization and doubled haploid induction, we generated a line with 40 new ONSEN copies. Our findings reveal a preferential targeting of maternally expressed genes (MEGs) for transposition, aligning with the colocalization of H2A.Z and H3K27me3 in MEGs-both previously identified as promoters of ONSEN insertions. Additionally, we demonstrate that chemically-induced DNA hypomethylation induces global transcriptional deregulation in the endosperm, leading to the breakdown of MEG imprinting. This study provides insights into the consequences of chemically induced TE remobilization in the endosperm, revealing that chemically-induced epigenome changes can have long-term consequences on imprinted gene expression.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Joram van Boven
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Peng
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Faculty for Biology, LMU Munich, Planegg-Martinsried 82152, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
11
|
Yang K, Tang Y, Li Y, Guo W, Hu Z, Wang X, Berger F, Li J. Two imprinted genes primed by DEMETER in the central cell and activated by WRKY10 in the endosperm. J Genet Genomics 2024; 51:855-865. [PMID: 38599515 DOI: 10.1016/j.jgg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring. This process is believed to be evolutionarily associated with genomic imprinting, resulting in parentally biased allelic gene expression. Beyond FertilizationIndependentSeed (FIS) genes, the number of imprinted genes involved in early endosperm development and seed size determination remains limited. This study introduces early endosperm-expressed HAIKU (IKU) downstream Candidate F-box 1 (ICF1) and ICF2 as maternally expressed imprinted genes (MEGs) in Arabidopsis thaliana. Although these genes are also demethylated by DEMETER (DME) in the central cell, their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes. Instead, ICF maternal alleles carry pre-established hypomethylation in their promoters, priming them for activation by the WRKY10 transcription factor in the endosperm. On the contrary, paternal alleles are predominantly suppressed by CG methylation. Furthermore, we find that ICF genes partially contribute to the small seed size observed in iku mutants. Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes, which was previously not fully recognized. Therefore, the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.
Collapse
Affiliation(s)
- Ke Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yuling Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yue Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenbin Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhengdao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuanpeng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
12
|
Mao S, Xiao J, Zhao Y, Hou J, Li L. Genome-Wide Analysis of DNA Demethylases in Land Plants and Their Expression Pattern in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2068. [PMID: 39124186 PMCID: PMC11314353 DOI: 10.3390/plants13152068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
DNA demethylation is a very important biochemical pathway regulating a group of biological processes, such as embryo development, fruit ripening, and response to stress. Despite the essential role of DNA demethylases, their evolutionary relationship and detailed biological functions in different land plants remain unclear. In this study, 48 DNA demethylases in 12 land plants were identified and classified. A phylogenetic tree was constructed to demonstrate the evolutionary relationships among these DNA demethylases, indicating how they are related across different species. Conserved domain, protein motif, and gene structure analysis showed that these 48 DNA demethylases fell into the presently identified four classes of DNA demethylases. Amino acid alignment revealed conserved catalytic sites and a previously less-studied protein region (referred to as domain A) within the DNA demethylases. An analysis showed a conserved pattern of gene duplication for DNA demethylases throughout their evolutionary history, suggesting that these genes had been maintained due to their importance. The examination of promoter cis-elements displayed potential signaling and regulating pathways of DNA demethylases. Furthermore, the expression profile was analyzed to investigate the physiological role of rice DNA demethylase in different developmental stages, in tissues, and in response to stress and various phytohormone signals. The findings offer a deeper insight into the functional regions of DNA demethylases and their evolutionary relationships, which can guide future research directions. Understanding the role of DNA demethylases can lead to improved plant stress resistance and contribute to the development of better crop and fruit varieties.
Collapse
Affiliation(s)
| | | | | | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.M.); (J.X.)
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.M.); (J.X.)
| |
Collapse
|
13
|
Zeng Y, Somers J, Bell HS, Vejlupkova Z, Dawe RK, Fowler JE, Nelms B, Gent JI. Potent pollen gene regulation by DNA glycosylases in maize. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580204. [PMID: 38405940 PMCID: PMC10888782 DOI: 10.1101/2024.02.13.580204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Activity of either one of two DNGs, MDR1 or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen segregating mutations in both genes, we identified 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in the plant body (sporophyte). They are unusual in their tendency to lack introns but even more so in their having TE-like methylation in their CDS. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with potential for extremely high expression in pollen but constitutive silencing elsewhere.
Collapse
|
14
|
Guo W, Wu W, Wen Y, Gao Y, Zhuang S, Meng C, Chen H, Zhao Z, Hu K, Wu B. Structural insights into the catalytic mechanism of the AP endonuclease AtARP. Structure 2024; 32:780-794.e5. [PMID: 38503293 DOI: 10.1016/j.str.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Base excision repair (BER) is a critical genome defense pathway that copes with a broad range of DNA lesions induced by endogenous or exogenous genotoxic agents. AP endonucleases in the BER pathway are responsible for removing the damaged bases and nicking the abasic sites. In plants, the BER pathway plays a critical role in the active demethylation of 5-methylcytosine (5mC) DNA modification. Here, we have determined the crystal structures of Arabidopsis AP endonuclease AtARP in complex with the double-stranded DNA containing tetrahydrofuran (THF) that mimics the abasic site. We identified the critical residues in AtARP for binding and removing the abasic site and the unique residues for interacting with the orphan base. Additionally, we investigated the differences among the three plant AP endonucleases and evaluated the general DNA repair capacity of AtARP in a mammalian cell line. Our studies provide further mechanistic insights into the BER pathway in plants.
Collapse
Affiliation(s)
- Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuan Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shuting Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhipeng Zhao
- Department of Basic Medical Sciences, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Kerckhofs E, Schubert D. Conserved functions of chromatin regulators in basal Archaeplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1301-1311. [PMID: 37680033 DOI: 10.1111/tpj.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.
Collapse
Affiliation(s)
- Elise Kerckhofs
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Shi Z, Zhao W, Li C, Tan W, Zhu Y, Han Y, Ai P, Li Z, Wang Z. Overexpression of the Chrysanthemum lavandulifolium ROS1 gene promotes flowering in Arabidopsis thaliana by reducing the methylation level of CONSTANS. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112019. [PMID: 38346563 DOI: 10.1016/j.plantsci.2024.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
DNA demethylation is involved in the regulation of flowering in plants, yet the underlying molecular mechanisms remain largely unexplored. The RELEASE OF SILENCING 1 (ROS1) gene, encoding a DNA demethyltransferase, plays key roles in many developmental processes. In this study, the ROS1 gene was isolated from Chrysanthemum lavandulifolium, where it was strongly expressed in the leaves, buds and flowers. Overexpression of the ClROS1 gene caused an early flowering phenotype in Arabidopsis thaliana. RNA-seq analysis of the transgenic plants revealed that differentially expressed genes (DEGs) were significantly enriched in the circadian rhythm pathway and that the positive regulator of flowering, CONSTANS (CO), was up-regulated. Additionally, whole-genome bisulphite sequencing (WGBS), PCR following methylation-dependent digestion with the enzyme McrBC, and bisulfite sequencing PCR (BSP) confirmed that the methylation level of the AtCO promoter was reduced, specifically in CG context. Overall, our results demonstrated that ClROS1 accelerates flowering by reducing the methylation level of the AtCO promoter. These findings clarify the epigenetic mechanism by which ClROS1-mediated DNA demethylation regulates flowering.
Collapse
Affiliation(s)
- Zhongya Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Chenran Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Wenchao Tan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Yifei Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Yanchao Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China.
| |
Collapse
|
17
|
Bente H, Köhler C. Molecular basis and evolutionary drivers of endosperm-based hybridization barriers. PLANT PHYSIOLOGY 2024; 195:155-169. [PMID: 38298124 PMCID: PMC11060687 DOI: 10.1093/plphys/kiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.
Collapse
Affiliation(s)
- Heinrich Bente
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
18
|
Sun Y, Wang X, Di Y, Li J, Li K, Wei H, Zhang F, Su Z. Systematic Analysis of DNA Demethylase Gene Families in Foxtail Millet ( Setaria italica L.) and Their Expression Variations after Abiotic Stresses. Int J Mol Sci 2024; 25:4464. [PMID: 38674049 PMCID: PMC11050331 DOI: 10.3390/ijms25084464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. DNA demethylase (DNA-deMTase) genes have been identified in some plant species; however, there are no reports on the identification and analysis of DNA-deMTase genes in Foxtail millet (Setaria italica L.). In this study, seven DNA-deMTases were identified in S. italica. These DNA-deMTase genes were divided into four subfamilies (DML5, DML4, DML3, and ROS1) by phylogenetic and gene structure analysis. Further analysis shows that the physical and chemical properties of these DNA-deMTases proteins are similar, contain the typical conserved domains of ENCO3c and are located in the nucleus. Furthermore, multiple cis-acting elements were observed in DNA-deMTases, including light responsiveness, phytohormone responsiveness, stress responsiveness, and elements related to plant growth and development. The DNA-deMTase genes are expressed in all tissues detected with certain tissue specificity. Then, we investigated the abundance of DNA-deMTase transcripts under abiotic stresses (cold, drought, salt, ABA, and MeJA). The results showed that different genes of DNA-deMTases were involved in the regulation of different abiotic stresses. In total, our findings will provide a basis for the roles of DNA-deMTase in response to abiotic stress.
Collapse
Affiliation(s)
- Yingying Sun
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Xin Wang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Yunfei Di
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Jinxiu Li
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Keyu Li
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Huanhuan Wei
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Fan Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Zhenxia Su
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| |
Collapse
|
19
|
Lee S, Park YS, Rhee JH, Chu H, Frost JM, Choi Y. Insights into plant regeneration: cellular pathways and DNA methylation dynamics. PLANT CELL REPORTS 2024; 43:120. [PMID: 38634973 PMCID: PMC11026228 DOI: 10.1007/s00299-024-03216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Plants, known for their immobility, employ various mechanisms against stress and damage. A prominent feature is the formation of callus tissue-a cellular growth phenomenon that remains insufficiently explored, despite its distinctive cellular plasticity compared to vertebrates. Callus formation involves dedifferentiated cells, with a subset attaining pluripotency. Calluses exhibit an extraordinary capacity to reinitiate cellular division and undergo structural transformations, generating de novo shoots and roots, thereby developing into regenerated plants-a testament to the heightened developmental plasticity inherent in plants. In this way, plant regeneration through clonal propagation is a widely employed technique for vegetative reproduction. Thus, exploration of the biological components involved in regaining pluripotency contributes to the foundation upon which methods of somatic plant propagation can be advanced. This review provides an overview of the cellular pathway involved in callus and subsequent de novo shoot formation from already differentiated plant tissue, highlighting key genes critical to this process. In addition, it explores the intricate realm of epigenetic regulatory processes, emphasizing the nuanced dynamics of DNA methylation that contribute to plant regeneration. Finally, we briefly discuss somaclonal variation, examining its relation to DNA methylation, and investigating the heritability of epigenomic changes in crops.
Collapse
Affiliation(s)
- Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Young Seo Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ji Hoon Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Hyojeong Chu
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
- The Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Jennifer M Frost
- Genomics and Child Health, The Blizard Institute, Queen Mary University of London, London, UK
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
20
|
Liu J, Zhong X. Population epigenetics: DNA methylation in the plant omics era. PLANT PHYSIOLOGY 2024; 194:2039-2048. [PMID: 38366882 PMCID: PMC10980424 DOI: 10.1093/plphys/kiae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
DNA methylation plays an important role in many biological processes. The mechanisms underlying the establishment and maintenance of DNA methylation are well understood thanks to decades of research using DNA methylation mutants, primarily in Arabidopsis (Arabidopsis thaliana) accession Col-0. Recent genome-wide association studies (GWASs) using the methylomes of natural accessions have uncovered a complex and distinct genetic basis of variation in DNA methylation at the population level. Sequencing following bisulfite treatment has served as an excellent method for quantifying DNA methylation. Unlike studies focusing on specific accessions with reference genomes, population-scale methylome research often requires an additional round of sequencing beyond obtaining genome assemblies or genetic variations from whole-genome sequencing data, which can be cost prohibitive. Here, we provide an overview of recently developed bisulfite-free methods for quantifying methylation and cost-effective approaches for the simultaneous detection of genetic and epigenetic information. We also discuss the plasticity of DNA methylation in a specific Arabidopsis accession, the contribution of DNA methylation to plant adaptation, and the genetic determinants of variation in DNA methylation in natural populations. The recently developed technology and knowledge will greatly benefit future studies in population epigenomes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
21
|
Rajabhoj MP, Sankar S, Bondada R, Shanmukhan AP, Prasad K, Maruthachalam R. Gametophytic epigenetic regulators, MEDEA and DEMETER, synergistically suppress ectopic shoot formation in Arabidopsis. PLANT CELL REPORTS 2024; 43:68. [PMID: 38341844 DOI: 10.1007/s00299-024-03159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
KEY MESSAGE The gametophytic epigenetic regulators, MEA and DME, extend their synergistic role to the sporophytic development by regulating the meristematic activity via restricting the gene expression in the shoot apex. The gametophyte-to-sporophyte transition facilitates the alternation of generations in a plant life cycle. The epigenetic regulators DEMETER (DME) and MEDEA (MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte-to-sporophyte transition in Arabidopsis. Mutant alleles of DME and MEA are female gametophyte lethal, eluding the recovery of recessive homozygotes to examine their role in the sporophyte. Here, we exploited the paternal transmission of these mutant alleles coupled with CENH3-haploid inducer to generate mea-1;dme-2 sporophytes. Strikingly, the simultaneous loss of function of MEA and DME leads to the emergence of ectopic shoot meristems at the apical pole of the plant body axis. DME and MEA are expressed in the developing shoot apex and regulate the expression of various shoot-promoting factors. Chromatin immunoprecipitation (ChIP), DNA methylation, and gene expression analysis revealed several shoot regulators as potential targets of MEA and DME. RNA interference-mediated transcriptional downregulation of shoot-promoting factors STM, CUC2, and PLT5 rescued the twin-plant phenotype to WT in 9-23% of mea-1-/-;dme-2-/- plants. Our findings reveal a previously unrecognized synergistic role of MEA and DME in restricting the meristematic activity at the shoot apex during sporophytic development.
Collapse
Affiliation(s)
- Mohit P Rajabhoj
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | - Sudev Sankar
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ramesh Bondada
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | | | - Kalika Prasad
- Department of Biology, IISER Pune, Pune, Maharashtra, 411008, India.
| | - Ravi Maruthachalam
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
22
|
Montgomery SA, Berger F. Paternal imprinting in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1000-1006. [PMID: 37936346 DOI: 10.1111/nph.19377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
We are becoming aware of a growing number of organisms that do not express genetic information equally from both parents as a result of an epigenetic phenomenon called genomic imprinting. Recently, it was shown that the entire paternal genome is repressed during the diploid phase of the life cycle of the liverwort Marchantia polymorpha. The deposition of the repressive epigenetic mark H3K27me3 on the male pronucleus is responsible for the imprinted state, which is reset by the end of meiosis. Here, we put these recent reports in perspective of other forms of imprinting and discuss the potential mechanisms of imprinting in bryophytes and the causes of its evolution.
Collapse
Affiliation(s)
- Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), C/ del Dr Aiguader, 88, 08003, Barcelona, Spain
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
23
|
Cong W, Li N, Miao Y, Huang Y, Zhao W, Kang Y, Zhang B, Wang J, Zhang J, Lv Y, Li J, Zhang J, Gong L, Liu B, Ou X. DNA hypomethylation-associated transcriptional rewiring enables resistance to heavy metal mercury (Hg) stress in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132649. [PMID: 37783144 DOI: 10.1016/j.jhazmat.2023.132649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/17/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Mercury (Hg) is an important hazardous pollutant that can cause phytotoxicity and harm human health through the food chain. Recently, rice (Oryza sativa L.) has been confirmed as a potential Hg bioaccumulator. Although the genetic and molecular mechanisms involved in heavy metal absorption and translocation in rice have been investigated for several heavy metals, Hg is largely neglected. Here, we analyzed one Hg-resistant line in rice (RHg) derived from a DNA methyltransferase-coding gene, OsMET1-2 heterozygous mutant. Compared with its isogenic wild-type (WT), RHg exhibited a significantly higher survival rate after Hg treatment, ameliorated oxidative damage, and lower Hg uptake and translocation. RNAseq-based comparative transcriptomic analysis identified 34 potential Hg resistance-related genes involved in phytohormone signaling, abiotic stress response, and zinc (Zn) transport. Importantly, the elevated expression of Hg resistance-related genes in RHg was highly correlated with DNA hypomethylation in their putative promoter regions. An ionomic analysis unraveled a negative correlation between Zn and Hg in roots. Moreover, Hg concentration was effectively decreased by exogenous application of Zn in Hg-stressed rice plants. Our findings indicate an epigenetic basis of Hg resistance and reveal an antagonistic relationship between Hg and Zn, providing new hints towards Hg detoxification in plants. ENVIRONMENTAL IMPLICATION: Mercury (Hg) as an important hazardous pollutant adversely impacts the environment and jeopardizes human health, due to its chronicity, transferability, persistence, bioaccumulation and toxicity. In this paper, we identified 34 potential genes that may significantly contribute to Hg resistance in rice. We find the expression of Hg resistance-related genes was highly correlated with DNA hypomethylation in their putative promoter regions. Our results also revealed an antagonistic relationship between Hg and Zinc (Zn), providing new hints towards Hg detoxification in plants. Together, findings of this study extend our current understanding of Hg tolerance in rice and are informative to breed seed non-accumulating rice cultivars.
Collapse
Affiliation(s)
- Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yiling Miao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Yuxi Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Wenhao Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Kang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jiayu Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yinhe Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jiamo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
24
|
Han B, Li Y, Wu D, Li DZ, Liu A, Xu W. Dynamics of imprinted genes and their epigenetic mechanisms in castor bean seed with persistent endosperm. THE NEW PHYTOLOGIST 2023; 240:1868-1882. [PMID: 37717216 DOI: 10.1111/nph.19265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yelan Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
25
|
Frost JM, Lee J, Hsieh PH, Lin SJH, Min Y, Bauer M, Runkel AM, Cho HT, Hsieh TF, Fischer RL, Choi Y. H2A.X promotes endosperm-specific DNA methylation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2023; 23:585. [PMID: 37993808 PMCID: PMC10664615 DOI: 10.1186/s12870-023-04596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. RESULTS H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant endosperm. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. CONCLUSIONS Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.
Collapse
Affiliation(s)
- Jennifer M Frost
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Present Address: Genomics and Child Health, Queen Mary University of London, London, UK.
| | - Jaehoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Present Address: DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Samuel J H Lin
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yunsook Min
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Matthew Bauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
26
|
Bonnet DMV, Tirot L, Grob S, Jullien PE. Methylome Response to Proteasome Inhibition by Pseudomonas syringae Virulence Factor Syringolin A. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:693-704. [PMID: 37414416 DOI: 10.1094/mpmi-06-23-0080-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
DNA methylation is an important epigenetic mark required for proper gene expression and silencing of transposable elements. DNA methylation patterns can be modified by environmental factors such as pathogen infection, in which modification of DNA methylation can be associated with plant resistance. To counter the plant defense pathways, pathogens produce effector molecules, several of which act as proteasome inhibitors. Here, we investigated the effect of proteasome inhibition by the bacterial virulence factor syringolin A (SylA) on genome-wide DNA methylation. We show that SylA treatment results in an increase of DNA methylation at centromeric and pericentromeric regions of Arabidopsis chromosomes. We identify several CHH differentially methylated regions (DMRs) that are enriched in the proximity of transcriptional start sites. SylA treatment does not result in significant changes in small RNA composition. However, significant changes in genome transcriptional activity can be observed, including a strong upregulation of resistance genes that are located on chromosomal arms. We hypothesize that DNA methylation changes could be linked to the upregulation of some atypical members of the de novo DNA methylation pathway, namely AGO3, AGO9, and DRM1. Our data suggests that modification of genome-wide DNA methylation resulting from an inhibition of the proteasome by bacterial effectors could be part of an epi-genomic arms race against pathogens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Louis Tirot
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
27
|
Zhang Y, Huang D, Miao Y. Epigenetic control of plant senescence and cell death and its application in crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1258487. [PMID: 37965008 PMCID: PMC10642554 DOI: 10.3389/fpls.2023.1258487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Plant senescence is the last stage of plant development and a type of programmed cell death, occurring at a predictable time and cell. It involves the functional conversion from nutrient assimilation to nutrient remobilization, which substantially impacts plant architecture and plant biomass, crop quality, and horticultural ornamental traits. In past two decades, DNA damage was believed to be a main reason for cell senescence. Increasing evidence suggests that the alteration of epigenetic information is a contributing factor to cell senescence in organisms. In this review, we summarize the current research progresses of epigenetic and epitranscriptional mechanism involved in cell senescence of plant, at the regulatory level of DNA methylation, histone methylation and acetylation, chromatin remodeling, non-coding RNAs and RNA methylation. Furthermore, we discuss their molecular genetic manipulation and potential application in agriculture for crop improvement. Finally we point out the prospects of future research topics.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Williams CJ, Dai D, Tran KA, Monroe JG, Williams BP. Dynamic DNA methylation turnover in gene bodies is associated with enhanced gene expression plasticity in plants. Genome Biol 2023; 24:227. [PMID: 37828516 PMCID: PMC10571256 DOI: 10.1186/s13059-023-03059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND In several eukaryotes, DNA methylation occurs within the coding regions of many genes, termed gene body methylation (GbM). Whereas the role of DNA methylation on the silencing of transposons and repetitive DNA is well understood, gene body methylation is not associated with transcriptional repression, and its biological importance remains unclear. RESULTS We report a newly discovered type of GbM in plants, which is under constitutive addition and removal by dynamic methylation modifiers in all cells, including the germline. Methylation at Dynamic GbM genes is removed by the DRDD demethylation pathway and added by an unknown source of de novo methylation, most likely the maintenance methyltransferase MET1. We show that the Dynamic GbM state is present at homologous genes across divergent lineages spanning over 100 million years, indicating evolutionary conservation. We demonstrate that Dynamic GbM is tightly associated with the presence of a promoter or regulatory chromatin state within the gene body, in contrast to other gene body methylated genes. We find Dynamic GbM is associated with enhanced gene expression plasticity across development and diverse physiological conditions, whereas stably methylated GbM genes exhibit reduced plasticity. Dynamic GbM genes exhibit reduced dynamic range in drdd mutants, indicating a causal link between DNA demethylation and enhanced gene expression plasticity. CONCLUSIONS We propose a new model for GbM in regulating gene expression plasticity, including a novel type of GbM in which increased gene expression plasticity is associated with the activity of DNA methylation writers and erasers and the enrichment of a regulatory chromatin state.
Collapse
Affiliation(s)
- Clara J Williams
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - Dawei Dai
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - Kevin A Tran
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, USA
| | - Ben P Williams
- Department of Plant & Microbial Biology, University of California, Berkeley, USA.
| |
Collapse
|
29
|
Liu B, Zhao M. How transposable elements are recognized and epigenetically silenced in plants? CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102428. [PMID: 37481986 DOI: 10.1016/j.pbi.2023.102428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Plant genomes are littered with transposable elements (TEs). Because TEs are potentially highly mutagenic, host organisms have evolved a set of defense mechanisms to recognize and epigenetically silence them. Although the maintenance of TE silencing is well studied, our understanding of the initiation of TE silencing is limited, but it clearly involves small RNAs and DNA methylation. Once TEs are silent, the silent state can be maintained to subsequent generations. However, under some circumstances, such inheritance is unstable, leading to the escape of TEs to the silencing machinery, resulting in the transcriptional activation of TEs. Epigenetic control of TEs has been found to be closely linked to many other epigenetic phenomena, such as genomic imprinting, and is known to contribute to regulation of genes, especially those near TEs. Here we review and discuss the current models of TE silencing, its unstable inheritance after hybridization, and the effects of epigenetic regulation of TEs on genomic imprinting.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
30
|
Shi M, Wang C, Wang P, Yun F, Liu Z, Ye F, Wei L, Liao W. Role of methylation in vernalization and photoperiod pathway: a potential flowering regulator? HORTICULTURE RESEARCH 2023; 10:uhad174. [PMID: 37841501 PMCID: PMC10569243 DOI: 10.1093/hr/uhad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023]
Abstract
Recognized as a pivotal developmental transition, flowering marks the continuation of a plant's life cycle. Vernalization and photoperiod are two major flowering pathways orchestrating numerous florigenic signals. Methylation, including histone, DNA and RNA methylation, is one of the recent foci in plant development. Considerable studies reveal that methylation seems to show an increasing potential regulatory role in plant flowering via altering relevant gene expression without altering the genetic basis. However, little has been reviewed about whether and how methylation acts on vernalization- and photoperiod-induced flowering before and after FLOWERING LOCUS C (FLC) reactivation, what role RNA methylation plays in vernalization- and photoperiod-induced flowering, how methylation participates simultaneously in both vernalization- and photoperiod-induced flowering, the heritability of methylation memory under the vernalization/photoperiod pathway, and whether and how methylation replaces vernalization/photoinduction to regulate flowering. Our review provides insight about the crosstalk among the genetic control of the flowering gene network, methylation (methyltransferases/demethylases) and external signals (cold, light, sRNA and phytohormones) in vernalization and photoperiod pathways. The existing evidence that RNA methylation may play a potential regulatory role in vernalization- and photoperiod-induced flowering has been gathered and represented for the first time. This review speculates about and discusses the possibility of substituting methylation for vernalization and photoinduction to promote flowering. Current evidence is utilized to discuss the possibility of future methylation reagents becoming flowering regulators at the molecular level.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- Vegetable and Flower Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fahong Yun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Fujin Ye
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
31
|
Liu P, Liu R, Xu Y, Zhang C, Niu Q, Lang Z. DNA cytosine methylation dynamics and functional roles in horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhad170. [PMID: 38025976 PMCID: PMC10660380 DOI: 10.1093/hr/uhad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/20/2023] [Indexed: 12/01/2023]
Abstract
Methylation of cytosine is a conserved epigenetic modification that maintains the dynamic balance of methylation in plants under the regulation of methyltransferases and demethylases. In recent years, the study of DNA methylation in regulating the growth and development of plants and animals has become a key area of research. This review describes the regulatory mechanisms of DNA cytosine methylation in plants. It summarizes studies on epigenetic modifications of DNA methylation in fruit ripening, development, senescence, plant height, organ size, and under biotic and abiotic stresses in horticultural crops. The review provides a theoretical basis for understanding the mechanisms of DNA methylation and their relevance to breeding, genetic improvement, research, innovation, and exploitation of new cultivars of horticultural crops.
Collapse
Affiliation(s)
- Peipei Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ruie Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaping Xu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
33
|
Rehman S, Ahmad Z, Ramakrishnan M, Kalendar R, Zhuge Q. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Funct Integr Genomics 2023; 23:298. [PMID: 37700098 DOI: 10.1007/s10142-023-01219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions. DNA methylation and post-translational modifications of histone proteins influence gene expression during plant developmental stages and under stress conditions, including cold and heat stress. While short-term modifications are common, some modifications may persist and result in stress memory that can be inherited by subsequent generations. Understanding the mechanisms of epigenomes responding to stress and the factors that trigger stress memory is crucial for developing climate-resilient agriculture, but such an integrated view is currently limited. This review focuses on the plant epigenetic stress memory during cold and heat stress. It also discusses the potential of machine learning to modify stress memory through epigenetics to develop climate-resilient crops.
Collapse
Affiliation(s)
- Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland.
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China.
| |
Collapse
|
34
|
Roychowdhury R, Das SP, Gupta A, Parihar P, Chandrasekhar K, Sarker U, Kumar A, Ramrao DP, Sudhakar C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses. Genes (Basel) 2023; 14:1281. [PMID: 37372461 PMCID: PMC10298225 DOI: 10.3390/genes14061281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The present day's ongoing global warming and climate change adversely affect plants through imposing environmental (abiotic) stresses and disease pressure. The major abiotic factors such as drought, heat, cold, salinity, etc., hamper a plant's innate growth and development, resulting in reduced yield and quality, with the possibility of undesired traits. In the 21st century, the advent of high-throughput sequencing tools, state-of-the-art biotechnological techniques and bioinformatic analyzing pipelines led to the easy characterization of plant traits for abiotic stress response and tolerance mechanisms by applying the 'omics' toolbox. Panomics pipeline including genomics, transcriptomics, proteomics, metabolomics, epigenomics, proteogenomics, interactomics, ionomics, phenomics, etc., have become very handy nowadays. This is important to produce climate-smart future crops with a proper understanding of the molecular mechanisms of abiotic stress responses by the plant's genes, transcripts, proteins, epigenome, cellular metabolic circuits and resultant phenotype. Instead of mono-omics, two or more (hence 'multi-omics') integrated-omics approaches can decipher the plant's abiotic stress tolerance response very well. Multi-omics-characterized plants can be used as potent genetic resources to incorporate into the future breeding program. For the practical utility of crop improvement, multi-omics approaches for particular abiotic stress tolerance can be combined with genome-assisted breeding (GAB) by being pyramided with improved crop yield, food quality and associated agronomic traits and can open a new era of omics-assisted breeding. Thus, multi-omics pipelines together are able to decipher molecular processes, biomarkers, targets for genetic engineering, regulatory networks and precision agriculture solutions for a crop's variable abiotic stress tolerance to ensure food security under changing environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Soumya Prakash Das
- School of Bioscience, Seacom Skills University, Bolpur 731236, West Bengal, India
| | - Amber Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Parul Parihar
- Department of Biotechnology and Bioscience, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kottakota Chandrasekhar
- Department of Plant Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur 522034, Andhra Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Ajay Kumar
- Department of Botany, Maharshi Vishwamitra (M.V.) College, Buxar 802102, Bihar, India
| | - Devade Pandurang Ramrao
- Department of Biotechnology, Mizoram University, Pachhunga University College Campus, Aizawl 796001, Mizoram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
| |
Collapse
|
35
|
Frost JM, Lee J, Hsieh PH, Lin SJH, Min Y, Bauer M, Runkel AM, Cho HT, Hsieh TF, Fischer RL, Choi Y. H2A.X promotes endosperm-specific DNA methylation in Arabidopsis thaliana. RESEARCH SQUARE 2023:rs.3.rs-2974671. [PMID: 37333181 PMCID: PMC10275051 DOI: 10.21203/rs.3.rs-2974671/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. Results H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant seeds. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. Conclusions Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Alternatively, H2A.X may be involved in recruiting methyltransferases to those sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.
Collapse
Affiliation(s)
- Jennifer M Frost
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Jaehoon Lee
- Department of Biological Sciences, Seoul National University
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Samuel J H Lin
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Yunsook Min
- Department of Biological Sciences, Seoul National University
| | - Matthew Bauer
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University
| |
Collapse
|
36
|
Lu Y, Bu Q, Chuan M, Cui X, Zhao Y, Zhou DX. Metabolic regulation of the plant epigenome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1001-1013. [PMID: 36705504 DOI: 10.1111/tpj.16122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Chromatin modifications shape the epigenome and are essential for gene expression reprogramming during plant development and adaptation to the changing environment. Chromatin modification enzymes require primary metabolic intermediates such as S-adenosyl-methionine, acetyl-CoA, alpha-ketoglutarate, and NAD+ as substrates or cofactors. The availability of the metabolites depends on cellular nutrients, energy and reduction/oxidation (redox) states, and affects the activity of chromatin regulators and the epigenomic landscape. The changes in the plant epigenome and the activity of epigenetic regulators in turn control cellular metabolism through transcriptional and post-translational regulation of metabolic enzymes. The interplay between metabolism and the epigenome constitutes a basis for metabolic control of plant growth and response to environmental changes. This review summarizes recent advances regarding the metabolic control of plant chromatin regulators and epigenomes, which are involved in plant adaption to environmental stresses.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qing Bu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Cui
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
37
|
Wang Q, Qu Y, Yu Y, Mao X, Fu X. Genome-wide identification and comparative analysis of DNA methyltransferase and demethylase gene families in two ploidy Cyclocarya paliurus and their potential function in heterodichogamy. BMC Genomics 2023; 24:287. [PMID: 37248459 DOI: 10.1186/s12864-023-09383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND DNA methylation is one of the most abundant epigenetic modifications, which plays important roles in flower development, sex differentiation, and regulation of flowering time. Its pattern is affected by cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase). At present, there are no reports on C5-MTase and dMTase genes in heterodichogamous Cyclocarya paliurus. RESULTS In this study, 6 CpC5-MTase and 3 CpdMTase genes were identified in diploid (2n = 2 × = 32) C. paliurus, while 20 CpC5-MTase and 13 CpdMTase genes were identified in autotetraploid (2n = 4 × = 64). 80% of identified genes maintained relatively fixed positions on chromosomes during polyploidization. In addition, we found that some DRM subfamily members didn't contain the UBA domain. The transcript abundance of CpC5-MTase and CpdMTase in male and female flowers of two morphs (protandry and protogyny) from diploidy was analyzed. Results showed that all genes were significantly up-regulated at the stage of floral bud break (S2), but significantly down-regulated at the stage of flower maturation (S4). At S2, some CpC5-MTase genes showed higher expression levels in PG-M than in PG-F, whereas some CpdMTase genes showed higher expression levels in PA-M than in PA-F. In addition, these genes were significantly associated with gibberellin synthesis-related genes (e.g. DELLA and GID1), suggesting that DNA methylation may play a role in the asynchronous floral development process through gibberellin signal. CONCLUSIONS These results broaden our understanding of the CpC5-MTase and CpdMTase genes in diploid and autotetraploid C. paliurus, and provide a novel insight into regulatory mechanisms of DNA methylation in heterodichogamy.
Collapse
Affiliation(s)
- Qian Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yinquan Qu
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Yanhao Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xia Mao
- Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
| | - Xiangxiang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
38
|
Jiang Y, Zhang S, Chen K, Xia X, Tao B, Kong W. Impacts of DNA methylases and demethylases on the methylation and expression of Arabidopsis ethylene signal pathway genes. Funct Integr Genomics 2023; 23:143. [PMID: 37127698 DOI: 10.1007/s10142-023-01069-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Arabidopsis ethylene (ET) signal pathway plays important roles in various aspects. Cytosine DNA methylation is significant in controlling gene expression in plants. Here, we analyzed the bisulfite sequencing and mRNA sequencing data from Arabidopsis (de)methylase mutants met1, cmt3, drm1/2, ddm1, ros1-4, and rdd to investigate how DNA (de)methylases influence the DNA methylation and expression of Arabidopsis ET pathway genes. At least 32 genes are found to involved in Arabidopsis ET pathway by text mining. Among them, 14 genes are unmethylated or methylated with very low levels. ACS6 and ACS9 are conspicuously methylated within their upstream regions. The other 16 genes are predominantly methylated at the CG sites within gene body regions in wild-type plants, and mutation of MET1 resulted in almost entire elimination of the CG methylations. In addition, CG methylations within some genes are jointly maintained by MET1 and other (de)methylases. Analyses of mRNA-seq data indicated that some ET pathway genes were differentially expressed between wild-type and diverse mutants. PDF1.2, the marker gene of ET signal pathway, was found being regulated indirectly by the methylases. Eighty-two transposable elements (TEs) were identified to be associated to 15 ET pathway genes. ACS11 is found located in a heterochromatin region that contains 57 TEs, indicating its specific expression and regulation. Together, our results suggest that DNA (de)methylases are implicated in the regulation of CG methylation within gene body regions and transcriptional activity of some ET pathway genes and that maintenance of normal CG methylation is essential for ET pathway in Arabidopsis.
Collapse
Affiliation(s)
- Yan Jiang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shengwei Zhang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kun Chen
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xue Xia
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bingqing Tao
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weiwen Kong
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
39
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
40
|
Ando A, Kirkbride RC, Qiao H, Chen ZJ. Endosperm and Maternal-specific expression of EIN2 in the endosperm affects endosperm cellularization and seed size in Arabidopsis. Genetics 2023; 223:iyac161. [PMID: 36282525 PMCID: PMC9910398 DOI: 10.1093/genetics/iyac161] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size is related to plant evolution and crop yield and is affected by genetic mutations, imprinting, and genome dosage. Imprinting is a widespread epigenetic phenomenon in mammals and flowering plants. ETHYLENE INSENSITIVE2 (EIN2) encodes a membrane protein that links the ethylene perception to transcriptional regulation. Interestingly, during seed development EIN2 is maternally expressed in Arabidopsis and maize, but the role of EIN2 in seed development is unknown. Here, we show that EIN2 is expressed specifically in the endosperm, and the maternal-specific EIN2 expression affects temporal regulation of endosperm cellularization. As a result, seed size increases in the genetic cross using the ein2 mutant as the maternal parent or in the ein2 mutant. The maternal-specific expression of EIN2 in the endosperm is controlled by DNA methylation but not by H3K27me3 or by ethylene and several ethylene pathway genes tested. RNA-seq analysis in the endosperm isolated by laser-capture microdissection show upregulation of many endosperm-expressed genes such as AGAMOUS-LIKEs (AGLs) in the ein2 mutant or when the maternal EIN2 allele is not expressed. EIN2 does not interact with DNA and may act through ETHYLENE INSENSITIVE3 (EIN3), a DNA-binding protein present in sporophytic tissues, to activate target genes like AGLs, which in turn mediate temporal regulation of endosperm cellularization and seed size. These results provide mechanistic insights into endosperm and maternal-specific expression of EIN2 on endosperm cellularization and seed development, which could help improve seed production in plants and crops.
Collapse
Affiliation(s)
- Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ryan C Kirkbride
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
41
|
Du X, Yang Z, Xie G, Wang C, Zhang L, Yan K, Yang M, Li S, Zhu JK, Du J. Molecular basis of the plant ROS1-mediated active DNA demethylation. NATURE PLANTS 2023; 9:271-279. [PMID: 36624257 DOI: 10.1038/s41477-022-01322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Active DNA demethylation plays a crucial role in eukaryotic gene imprinting and antagonizing DNA methylation. The plant-specific REPRESSOR OF SILENCING 1/DEMETER (ROS1/DME) family of enzymes directly excise 5-methyl-cytosine (5mC), representing an efficient DNA demethylation pathway distinct from that of animals. Here, we report the cryo-electron microscopy structures of an Arabidopsis ROS1 catalytic fragment in complex with substrate DNA, mismatch DNA and reaction intermediate, respectively. The substrate 5mC is flipped-out from the DNA duplex and subsequently recognized by the ROS1 base-binding pocket through hydrophobic and hydrogen-bonding interactions towards the 5-methyl group and Watson-Crick edge respectively, while the different protonation states of the bases determine the substrate preference for 5mC over T:G mismatch. Together with the structure of the reaction intermediate complex, our structural and biochemical studies revealed the molecular basis for substrate specificity, as well as the reaction mechanism underlying 5mC demethylation by the ROS1/DME family of plant-specific DNA demethylases.
Collapse
Affiliation(s)
- Xuan Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Guohui Xie
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Changshi Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Kaige Yan
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Sisi Li
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Jian-Kang Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
42
|
Jiang K, Guo H, Zhai J. Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:381-398. [PMID: 36223083 DOI: 10.1111/jipb.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Both phytohormone signaling and epigenetic mechanisms have long been known to play crucial roles in plant development and plasticity in response to ambient stimuli. Indeed, diverse signaling pathways mediated by phytohormones and epigenetic processes integrate multiple upstream signals to regulate various plant traits. Emerging evidence indicates that phytohormones and epigenetic processes interact at multiple levels. In this review, we summarize the current knowledge of the interplay between phytohormones and epigenetic processes from the perspective of phytohormone biology. We also review chemical regulators used in epigenetic studies and propose strategies for developing novel regulators using multidisciplinary approaches.
Collapse
Affiliation(s)
- Kai Jiang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
43
|
Bennett M, Hawk TE, Lopes-Caitar VS, Adams N, Rice JH, Hewezi T. Establishment and maintenance of DNA methylation in nematode feeding sites. FRONTIERS IN PLANT SCIENCE 2023; 13:1111623. [PMID: 36704169 PMCID: PMC9873351 DOI: 10.3389/fpls.2022.1111623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
A growing body of evidence indicates that epigenetic mechanisms, particularly DNA methylation, play key regulatory roles in plant-nematode interactions. Nevertheless, the transcriptional activity of key genes mediating DNA methylation and active demethylation in the nematode feeding sites remains largely unknown. Here, we profiled the promoter activity of 12 genes involved in maintenance and de novo establishment of DNA methylation and active demethylation in the syncytia and galls induced respectively by the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita in Arabidopsis roots. The promoter activity assays revealed that expression of the CG-context methyltransferases is restricted to feeding site formation and development stages. Chromomethylase1 (CMT1), CMT2, and CMT3 and Domains Rearranged Methyltransferase2 (DRM2) and DRM3, which mediate non-CG methylation, showed similar and distinct expression patterns in the syncytia and galls at various time points. Notably, the promoters of various DNA demethylases were more active in galls as compared with the syncytia, particularly during the early stage of infection. Mutants impaired in CG or CHH methylation similarly enhanced plant susceptibility to H. schachtii and M. incognita, whereas mutants impaired in CHG methylation reduced plant susceptibility only to M. incognita. Interestingly, hypermethylated mutants defective in active DNA demethylation exhibited contrasting responses to infection by H. schachtii and M. incognita, a finding most likely associated with differential regulation of defense-related genes in these mutants upon nematode infection. Our results point to methylation-dependent mechanisms regulating plant responses to infection by cyst and root-knot nematodes.
Collapse
|
44
|
Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo Mutator insertion alleles are imprinted in maize. PLANT PHYSIOLOGY 2023; 191:299-316. [PMID: 36173333 PMCID: PMC9806621 DOI: 10.1093/plphys/kiac459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 05/20/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.
Collapse
Affiliation(s)
- Tong Li
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Liangwei Yin
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Claire E Stoll
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
45
|
Han Q, Hung YH, Zhang C, Bartels A, Rea M, Yang H, Park C, Zhang XQ, Fischer RL, Xiao W, Hsieh TF. Loss of linker histone H1 in the maternal genome influences DEMETER-mediated demethylation and affects the endosperm DNA methylation landscape. FRONTIERS IN PLANT SCIENCE 2022; 13:1070397. [PMID: 36618671 PMCID: PMC9813442 DOI: 10.3389/fpls.2022.1070397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis DEMETER (DME) DNA glycosylase demethylates the central cell genome prior to fertilization. This epigenetic reconfiguration of the female gamete companion cell establishes gene imprinting in the endosperm and is essential for seed viability. DME demethylates small and genic-flanking transposons as well as intergenic and heterochromatin sequences, but how DME is recruited to these loci remains unknown. H1.2 was identified as a DME-interacting protein in a yeast two-hybrid screen, and maternal genome H1 loss affects DNA methylation and expression of selected imprinted genes in the endosperm. Yet, the extent to which H1 influences DME demethylation and gene imprinting in the Arabidopsis endosperm has not been investigated. Here, we showed that without the maternal linker histones, DME-mediated demethylation is facilitated, particularly in the heterochromatin regions, indicating that H1-bound heterochromatins are barriers for DME demethylation. Loss of H1 in the maternal genome has a very limited effect on gene transcription or gene imprinting regulation in the endosperm; however, it variably influences euchromatin TE methylation and causes a slight hypermethylation and a reduced expression in selected imprinted genes. We conclude that loss of maternal H1 indirectly influences DME-mediated demethylation and endosperm DNA methylation landscape but does not appear to affect endosperm gene transcription and overall imprinting regulation.
Collapse
Affiliation(s)
- Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Yu-Hung Hung
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Changqing Zhang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Matthew Rea
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Hanwen Yang
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Christine Park
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Xiang-Qian Zhang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- College of Food Science and Engineering, Foshan University, Foshan, China
| | - Robert L. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
46
|
Shang JY, Cai XW, Su YN, Zhang ZC, Wang X, Zhao N, He XJ. Arabidopsis Trithorax histone methyltransferases are redundant in regulating development and DNA methylation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2438-2454. [PMID: 36354145 DOI: 10.1111/jipb.13406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.
Collapse
Affiliation(s)
- Ji-Yun Shang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Nan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
48
|
He S, Feng X. DNA methylation dynamics during germline development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2240-2251. [PMID: 36478632 PMCID: PMC10108260 DOI: 10.1111/jipb.13422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoqi Feng
- John Innes Centre, Colney LaneNorwichNR4 7UHUK
| |
Collapse
|
49
|
Pereira Neto LG, Rossini BC, Marino CL, Toorop PE, Silva EAA. Comparative Seeds Storage Transcriptome Analysis of Astronium fraxinifolium Schott, a Threatened Tree Species from Brazil. Int J Mol Sci 2022; 23:ijms232213852. [PMID: 36430327 PMCID: PMC9696909 DOI: 10.3390/ijms232213852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Astronium fraxinifolium Schott (Anacardiaceae), also known as a 'gonçalo-alves', is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and in the Amazon biomes. In support of ex situ conservation, this work aimed to study two accessions with different longevity (p50) of A. fraxinifolium collected from two different geographic regions, and to evaluate the transcriptome during aging of the seeds in order to identify genes related to seed longevity. Artificial ageing was performed at a constant temperature of 45 °C and 60% relative humidity. RNA was extracted from 100 embryonic axes exposed to control and aging conditions for 21 days. The transcriptome analysis revealed differentially expressed genes such as Late Embryogenesis Abundant (LEA) genes, genes involved in the photosystem, glycine rich protein (GRP) genes, and several transcription factors associated with embryo development and ubiquitin-conjugating enzymes. Thus, these results contribute to understanding which genes play a role in seed ageing, and may serve as a basis for future functional characterization of the seed aging process in A. fraxinifolium.
Collapse
Affiliation(s)
| | - Bruno Cesar Rossini
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Correspondence:
| | - Celso Luis Marino
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Departament of Biological and Chemical Sciences, Biosciences Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18618-689, Brazil
| | - Peter E. Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Edvaldo Aparecido Amaral Silva
- Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, Brazil
| |
Collapse
|
50
|
Xue Y, Zou C, Zhang C, Yu H, Chen B, Wang H. Dynamic DNA methylation changes reveal tissue-specific gene expression in sugarcane. FRONTIERS IN PLANT SCIENCE 2022; 13:1036764. [PMID: 36311126 PMCID: PMC9606695 DOI: 10.3389/fpls.2022.1036764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation is an important mechanism for the dynamic regulation of gene expression and silencing of transposons during plant developmental processes. Here, we analyzed genome-wide methylation patterns in sugarcane (Saccharum officinarum) leaves, roots, rinds, and piths at single-base resolution. DNA methylation patterns were similar among the different sugarcane tissues, whereas DNA methylation levels differed. We also found that DNA methylation in different genic regions or sequence contexts plays different roles in gene expression. Differences in methylation among tissues resulted in many differentially methylated regions (DMRs) between tissues, particularly CHH DMRs. Genes overlapping with DMRs tended to be differentially expressed (DEGs) between tissues, and these DMR-associated DEGs were enriched in biological pathways related to tissue function, such as photosynthesis, sucrose synthesis, stress response, transport, and metabolism. Moreover, we observed many DNA methylation valleys (DMVs), which always overlapped with transcription factors (TFs) and sucrose-related genes, such as WRKY, bZIP, WOX, SPS, and FBPase. Collectively, these findings provide significant insights into the complicated interplay between DNA methylation and gene expression and shed light on the epigenetic regulation of sucrose-related genes in sugarcane.
Collapse
Affiliation(s)
- Yajie Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Chao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| |
Collapse
|