1
|
Han D, Li A, Zhu L, Zhuang C, Zhao Q, Zou Y. Peptide inhibitors targeting Ras and Ras-associated protein-protein interactions. Eur J Med Chem 2024; 279:116878. [PMID: 39326269 DOI: 10.1016/j.ejmech.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Peptides represent attractive molecules for targeting protein-protein interactions, and peptide drug development has made great progress during the last decades. Ras protein, the most promising target in cancer therapy, is one of the major growth drivers in various cancers. Although many small molecule inhibitors have been reported to effectively target Ras protein and some inhibitors (such as MRTX849 and AMG 510) have been translated into clinical application, just a few peptide inhibitors have been reported. Here we summarize different types of peptide inhibitors, including monocyclic peptides, bicyclic peptides, stapled peptides, and proteomimetic inhibitors, developed in recent years; emphasize the limits and achievements; and discuss the outlook and challenges associated with future research in peptide inhibitors. This review aims to provide a reference for the discovery of Ras peptide inhibitors.
Collapse
Affiliation(s)
- Dan Han
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Anpeng Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; 92805 Military Hospital, Qingdao, PR China
| | - Lie Zhu
- Department of Burn Plastic Surgery, The Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, PR China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| |
Collapse
|
2
|
Lv L, Yuan K, Li J, Lu J, Zhao Q, Wang H, Chen Q, Dong X, Sheng S, Liu M, Shi Y, Jiang H, Dong Z. PiRNA CFAPIR inhibits cardiac fibrosis by regulating the muscleblind-like protein MBNL2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167456. [PMID: 39122223 DOI: 10.1016/j.bbadis.2024.167456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Myocardial fibroblasts transform into myofibroblasts during the progression of cardiac fibrosis, together with excessive cardiac fibroblast proliferation. Hence, the prevention and treatment of cardiac fibrosis are significant factors for inhibiting the development of heart failure. P-element Induced WImpy testis-interacting RNAs (PiRNA) are widely expressed in the heart, but their involvement in cardiac fibrosis has not yet been confirmed. We identified differentially expressed PiRNAs using Arraystar PiRNA expression profiling in Angiotensin II models of cardiac fibrosis in vivo and in vitro. We then explored cardiac-fibrosis-associated PiRNA-related proteins, RNA-protein interactomes, immunoprecipitation, and pulldown. We detected fibrosis markers and pathway-related proteins using immunofluorescence, qRT-PCR, and Western blot. We uncovered cardiac fibrosis associated PiRNA (CFAPIR) that was obviously dysregulated during cardiac fibrosis, whereas its overexpression reversed fibrosis in vivo and in vitro. Mechanistically, CFAPIR competitively bound muscleblind like protein 2 (MBNL2) and the cyclin-dependent kinase inhibitor P21 to regulate the TGF-β1/SMAD3 signaling pathway.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Experimental Animal Center, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Keying Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiahao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Hongyan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Qiuyu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xinyu Dong
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Siqi Sheng
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Mingyu Liu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yuanqi Shi
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Hongquan Jiang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
3
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Zhong J. Oncogenic mechanisms of COL10A1 in cancer and clinical challenges (Review). Oncol Rep 2024; 52:162. [PMID: 39392043 PMCID: PMC11487528 DOI: 10.3892/or.2024.8821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024] Open
Abstract
Collagen type X α1 chain (COL10A1), a gene encoding the α‑1 chain of type X collagen, serves a key role in conferring tensile strength and structural integrity to tissues. Upregulation of COL10A1 expression has been observed in different malignancies, including lung, gastric and pancreatic cancer, and is associated with poor prognosis. The present review provides an updated synthesis of the evolving biological understanding of COL10A1, with a particular focus on its mechanisms of action and regulatory functions within the context of tumorigenesis. For example, it has been established that increased COL10A1 expression promotes cancer progression by activating multiple signaling pathways, including the TGF‑β1/Smad, MEK/ERK and focal adhesion kinase signaling pathways, thereby inducing proliferation, invasion and migration. Additionally, COL10A1 has been demonstrated to induce epithelial‑mesenchymal transition and reshapes the extracellular matrix within tumor tissues. Furthermore, on the basis of methyltransferase‑like 3‑mediated N6‑methyladenosine methylation, COL10A1 intricately regulates the epitranscriptomic machinery, thereby augmenting its oncogenic role. However, although COL10A1 serves a pivotal role in gene transcription and the orchestration of tumor growth, the question of whether COL10A1 would serve as a viable therapeutic target remains a subject of scientific hypothesis requiring rigorous examination. Variables such as distinct tumor microenvironments and treatment associations necessitate further experimental validation. Therefore, a comprehensive assessment and understanding of the functional and mechanistic roles of COL10A1 in cancer may pave the way for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
4
|
Carvalho MI, Silva-Carvalho R, Prada J, Pinto C, Gregório H, Lobo L, Pires I, Queiroga FL. TGFβ in malignant canine mammary tumors: relation with angiogenesis, immunologic markers and prognostic role. Vet Q 2024; 44:1-12. [PMID: 39165025 PMCID: PMC11340227 DOI: 10.1080/01652176.2024.2390941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Transforming growth factor-β (TGFβ) and FoxP3 regulatory T cells (Treg) are involved in human breast carcinogenesis. This topic is not well documented in canine mammary tumors (CMT). In this work, the tumoral TGFβ expression was assessed by immunohistochemistry in 67 malignant CMT and its correlation to previously determined FoxP3, VEGF, and CD31 markers and other clinicopathologic parameters was evaluated. The high levels of TGFβ were statistically significantly associated with skin ulceration, tumor necrosis, high histological grade of malignancy (HGM), presence of neoplastic intravascular emboli and presence of lymph node metastases. The observed levels of TGFβ were positively correlated with intratumoral FoxP3 (strong correlation), VEGF (weak correlation) and CD31 (moderate correlation). Tumors that presented a concurrent high expression of TGFβ/FoxP3, TGFβ/VEGF, and TGFβ/CD31 markers were statistically significantly associated with parameters of tumor malignancy (high HGM, presence of vascular emboli and nodal metastasis). Additionally, shorter overall survival (OS) time was statistically significantly associated with tumors with an abundant TGFβ expression and with concurrent high expression of TGFβ/FoxP3, TGFβ/VEGF, and TGFβ/CD31. The presence of lymph node metastasis increased 11 times the risk of disease-related death, arising as an independent predictor of poor prognosis in the multivariable analysis. In conclusion, TGFβ and Treg cells seem involved in tumor progression emerging as potential therapeutic targets for future immunotherapy studies.
Collapse
Affiliation(s)
- Maria Isabel Carvalho
- MVET Research in Veterinary Medicine. Faculty of Veterinary Medicine, Lusófona University – Lisbon Centre, Lisboa, Portugal
| | - Ricardo Silva-Carvalho
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Justina Prada
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carla Pinto
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Hugo Gregório
- Anicura Centro Hospitalar Veterinário, Porto, Portugal
| | - Luis Lobo
- MVET Research in Veterinary Medicine. Faculty of Veterinary Medicine, Lusófona University – Lisbon Centre, Lisboa, Portugal
- Onevet Hospital Veterinário do Porto, Porto, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Portugal
| | - Isabel Pires
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina L. Queiroga
- Veterinary and Animal Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Portugal
| |
Collapse
|
5
|
Chia ZJ, Kumarapperuma H, Zhang R, Little PJ, Kamato D. Smad transcription factors as mediators of 7 transmembrane G protein-coupled receptor signalling. Acta Pharmacol Sin 2024:10.1038/s41401-024-01413-6. [PMID: 39506064 DOI: 10.1038/s41401-024-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs. The classic GPCR signalling cascade is further expanded to conditional adoption of the Smad transcription factor under the stimulation of Akt, demonstrating the unique involvement of the Smad transcription factor in GPCR signalling pathways in disease environments. In this review, we provide a summary of the signalling pathways of the Smad transcription factors as an important downstream mediator of GPCRs, presenting exciting opportunities for discovering new therapeutic targets for diseases.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hirushi Kumarapperuma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ruizhi Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
6
|
Rameshrad M, Naraki K, Memariani Z, Hosseinzadeh H. Protective effects of Panax ginseng as a medical food against chemical toxic agents: molecular and cellular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8395-8419. [PMID: 38861010 DOI: 10.1007/s00210-024-03186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Humans are exposed to different types of toxic agents, which may directly induce organ malfunction or indirectly alter gene expression, leading to carcinogenic and teratogenic effects, and eventually death. Ginseng (Panax ginseng) is the most valuable of all medicinal herbs. Nevertheless, specific data on the antidotal mechanisms of this golden herb are currently unavailable. Based on the findings of in vitro, in vivo, and clinical studies, this review focused on the probable protective mechanisms of ginseng and its major components, such as protopanaxadiols, protopanaxatriols, and pentacyclic ginsenosides against various chemical toxic agents. Relevant articles from 2000 to 2023 were gathered from PubMed/Medline, Scopus, and Google Scholar. This literature review shows that P. ginseng and its main components have protective and antidotal effects against the deteriorative effects of pesticides, pharmaceutical agents, including acetaminophen, doxorubicin, isoproterenol, cyclosporine A, tacrolimus, and gentamicin, ethanol, and some chemical agents. These improvements occur through multi-functional mechanisms. They exhibit antioxidant activity, induce anti-inflammatory action, and block intrinsic and extrinsic apoptotic pathways. However, relevant clinical trials are necessary to validate the mentioned effects and translate the knowledge from basic science to human benefit, fulfilling the fundamental goal of all toxicologists.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Lee JH, Sánchez-Rivera FJ, He L, Basnet H, Chen FX, Spina E, Li L, Torner C, Chan JE, Yarlagadda DVK, Park JS, Sussman C, Rudin CM, Lowe SW, Tammela T, Macias MJ, Koche RP, Massagué J. TGF-β and RAS jointly unmask primed enhancers to drive metastasis. Cell 2024; 187:6182-6199.e29. [PMID: 39243762 DOI: 10.1016/j.cell.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor β (TGF-β) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-β and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-β. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-β gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.
Collapse
Affiliation(s)
- Jun Ho Lee
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lan He
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fei Xavier Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elena Spina
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liangji Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carles Torner
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dig Vijay Kumar Yarlagadda
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jin Suk Park
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carleigh Sussman
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria J Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
Jin M, Seed RI, Cai G, Shing T, Wang L, Ito S, Cormier A, Wankowicz SA, Jespersen JM, Baron JL, Carey ND, Campbell MG, Yu Z, Tang PK, Cossio P, Wen W, Lou J, Marks J, Nishimura SL, Cheng Y. Dynamic allostery drives autocrine and paracrine TGF-β signaling. Cell 2024; 187:6200-6219.e23. [PMID: 39288764 PMCID: PMC11531391 DOI: 10.1016/j.cell.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
TGF-β, essential for development and immunity, is expressed as a latent complex (L-TGF-β) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvβ8 activates L-TGF-β1/GARP. The dogma is that mature TGF-β must physically dissociate from L-TGF-β1 for signaling to occur. Our previous studies discovered that αvβ8-mediated TGF-β autocrine signaling can occur without TGF-β1 release from its latent form. Here, we show that mice engineered to express TGF-β1 that cannot release from L-TGF-β1 survive without early lethal tissue inflammation, unlike those with TGF-β1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-β1 signaling without release where αvβ8 binding redistributes the intrinsic flexibility of L-TGF-β1 to expose TGF-β1 to its receptors. Dynamic allostery explains the TGF-β3 latency/activation mechanism and why TGF-β3 functions distinctly from TGF-β1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.
Collapse
Affiliation(s)
- Mingliang Jin
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Robert I Seed
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Guoqing Cai
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Tiffany Shing
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Li Wang
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Saburo Ito
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | | | | | - Jody L Baron
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Nicholas D Carey
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Phu K Tang
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Weihua Wen
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - James Marks
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | | | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA; Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA.
| |
Collapse
|
9
|
Trugilo KP, Cebinelli GCM, Castilha EP, da Silva MR, Berti FCB, de Oliveira KB. The role of transforming growth factor β in cervical carcinogenesis. Cytokine Growth Factor Rev 2024:S1359-6101(24)00086-8. [PMID: 39482191 DOI: 10.1016/j.cytogfr.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Human papillomavirus (HPV) is involved in virtually all cases of cervical cancer. However, HPV alone is not sufficient to cause malignant development. The effects of chronic inflammation and the interaction of immune components with the microenvironment infected with the high-risk HPV type (HR) may contribute to cancer development. Transforming growth factor β (TGFB) appears to play an important role in cervical carcinogenesis. Protein and mRNA levels of this cytokine gradually increase as normal tissue develops into malignant tissue and are closely related to the severity of HPV infection. At the onset of infection, TGFB can inhibit the proliferation of infected cells and viral amplification by inhibiting cell growth and downregulating the transcriptional activity of the long control region (LCR) of HPV, thereby reducing the expression of early genes. When infected cells progress to a malignant phenotype, the response to the cell growth inhibitory effect of TGFB1 is lost and the suppression of E6 and E7 expression decreases. Subsequently, TGFB1 expression is upregulated by high levels of E6 and E7 oncoproteins, leading to an increase in TGFB1 in the tumor microenvironment, where this molecule promotes epithelial-to-mesenchymal transition (EMT), cell motility, angiogenesis, and immunosuppression. This interaction between HPV oncoproteins and TGFB1 is an important mechanism promoting the development and progression of cervical cancer.
Collapse
Affiliation(s)
- Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | - Mariane Ricciardi da Silva
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| |
Collapse
|
10
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Yang S, Humphries F. Emerging roles of ECSIT in immunity and tumorigenesis. Trends Cell Biol 2024:S0962-8924(24)00189-2. [PMID: 39384444 DOI: 10.1016/j.tcb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Mitochondria are signaling hubs that produce immunomodulatory metabolites during the immune response. In addition, mitochondria also facilitate the recruitment and anchoring of immune signaling complexes during infection. Evolutionary conserved signaling intermediate in toll (ECSIT) was initially described as a positive regulator of the transcription factor Nuclear factor kappa-light chain enhancer of activated B cells (NF-κB). More recently, ECSIT has emerged as a regulator of bacterial clearance, mitochondrial reactive oxygen species (mROS), and mitophagy. In addition, ECSIT has been identified as a control point in responding to viral infection and tumorigenesis. Notably, ECSIT loss in different models and cell types has been found to lead to enhanced tumorigenesis. Thus, ECSIT functions as a metabolic tumor suppressor and limits cancer pathogenesis. In this review, we highlight the key functions and crosstalk mechanisms that ECSIT bridges between cell metabolism and immunity and focus then on the antitumor role of ECSIT independent of immunity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Zhang J, Jiang Y, Zhang Z, Li S, Fan H, Gu J, Mao R, Xu X. Repulsive guidance molecules b (RGMb): molecular mechanism, function and role in diseases. Expert Rev Mol Med 2024; 26:e24. [PMID: 39375839 PMCID: PMC11488336 DOI: 10.1017/erm.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 06/11/2024] [Indexed: 10/09/2024]
Abstract
Repulsive guidance molecule b (RGMb), a glycosylphosphatidylinositol-anchored member of the RGM family, is initially identified as a co-receptor of bone morphogenetic protein (BMP) in the nervous system. The expression of RGMb is transcriptionally regulated by dorsal root ganglion 11 (DRG11), which is a transcription factor expressed in embryonic DRG and dorsal horn neurons and plays an important role in the development of sensory circuits. RGMb is involved in important physiological processes such as embryonic development, immune response, intercellular adhesion and tumorigenesis. Furthermore, RGMb is mainly involved in the regulation of RGMb-neogenin-Rho and BMP signalling pathways. The recent discovery of programmed death-ligand 2 (PD-L2)-RGMb binding reveals that the cell signalling network and functional regulation centred on RGMb are extremely complex. The latest report suggests that down-regulation of the PD-L2-RGMb pathway in the gut microbiota promotes an anti-tumour immune response, which defines a potentially effective immune strategy. However, the biological function of RGMb in a variety of human diseases has not been fully determined, and will remain an active research field. This article reviews the properties and functions of RGMb, focusing on its role under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zijian Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Shilin Li
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Haowen Fan
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinhua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Luo X, Ni X, Zhi J, Jiang X, Bai R. Small molecule agents against alopecia: Potential targets and related pathways. Eur J Med Chem 2024; 276:116666. [PMID: 39002436 DOI: 10.1016/j.ejmech.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Alopecia has emerged as a global concern, extending beyond the middle-aged and elderly population and increasingly affecting younger individuals. Despite its growing prevalence, the treatment options and effective drugs for alopecia remain limited due to the incomplete understanding of its underlying mechanisms. Therefore, it is urgent to explore the pathogenesis of alopecia and discover novel and safer therapeutic agents. This review provided an overview of the prevailing clinical disorders of alopecia, and the key pathways and targets involved in hair growth process. Additionally, it discusses FDA-approved drugs and clinical candidates for the treatment of alopecia, and explores small molecule compounds with anti-alopecia potential in the drug discovery phase. These endeavors are expected to provide researchers with valuable scientific insights and practical information for anti-alopecia drug discovery.
Collapse
Affiliation(s)
- Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
14
|
Wang S, Shao D, Gao X, Zhao P, Kong F, Deng J, Yang L, Shang W, Sun Y, Fu Z. TEAD transcription factor family emerges as a promising therapeutic target for oral squamous cell carcinoma. Front Immunol 2024; 15:1480701. [PMID: 39430767 PMCID: PMC11486717 DOI: 10.3389/fimmu.2024.1480701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
The treatment of oral squamous cell carcinoma (OSCC) remains a significant difficulty, as there has been no improvement in survival rates over the past fifty years. Hence, exploration and confirmation of new dependable treatment targets and biomarkers is imperative for OSCC therapy. TEAD transcription factors are crucial for integrating and coordinating multiple signaling pathways that are essential for embryonic development, organ formation, and tissue homeostasis. In addition, by attaching to coactivators, TEAD modifies the expression of genes such as Cyr61, Myc, and connective tissue growth factor, hence facilitating tumor progression. Therefore, TEAD is regarded as an effective predictive biomarker due to its significant connection with clinical parameters in several malignant tumors, including OSCC. The efficacy of existing drugs that specifically target TEAD has demonstrated encouraging outcomes, indicating its potential as an optimal target for OSCC treatment. This review provides an overview of current targeted therapy strategies for OSCC by highlighting the transcription mechanism and involvement of TEAD in oncogenic signaling pathways. Finally, the feasibility of utilizing TEAD as an innovative approach to address OSCC and its potential clinical applications were analyzed and discussed.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Medical College of Qingdao Huanghai University, Qingdao, China
| | - Dan Shao
- Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyan Gao
- Department of Quality Inspection, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Peng Zhao
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Fanzhi Kong
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Jiawei Deng
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Lianzhu Yang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Sun
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People's Liberation Army of China (PLA), Beijing, China
| |
Collapse
|
15
|
Chen S, Hayoun-Neeman D, Nagar M, Pinyan S, Hadad L, Yaacobov L, Alon L, Shachar LE, Swissa T, Kryukov O, Gershoni-Yahalom O, Rosental B, Cohen S, Lichtenstein RG. Terminal α1,2-fucosylation of glycosphingolipids by FUT1 is a key regulator in early cell-fate decisions. EMBO Rep 2024; 25:4433-4464. [PMID: 39256596 PMCID: PMC11467398 DOI: 10.1038/s44319-024-00243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The embryonic cell surface is rich in glycosphingolipids (GSLs), which change during differentiation. The reasons for GSL subgroup variation during early embryogenesis remain elusive. By combining genomic approaches, flow cytometry, confocal imaging, and transcriptomic data analysis, we discovered that α1,2-fucosylated GSLs control the differentiation of human pluripotent cells (hPCs) into germ layer tissues. Overexpression of α1,2-fucosylated GSLs disrupts hPC differentiation into mesodermal lineage and reduces differentiation into cardiomyocytes. Conversely, reducing α1,2-fucosylated groups promotes hPC differentiation and mesoderm commitment in response to external signals. We find that bone morphogenetic protein 4 (BMP4), a mesodermal gene inducer, suppresses α1,2-fucosylated GSL expression. Overexpression of α1,2-fucosylated GSLs impairs SMAD activation despite BMP4 presence, suggesting α-fucosyl end groups as BMP pathway regulators. Additionally, the absence of α1,2-fucosylated GSLs in early/late mesoderm and primitive streak stages in mouse embryos aligns with the hPC results. Thus, α1,2-fucosylated GSLs may regulate early cell-fate decisions and embryo development by modulating cell signaling.
Collapse
Affiliation(s)
- Saray Chen
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Dana Hayoun-Neeman
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Michal Nagar
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sapir Pinyan
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Limor Hadad
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liat Yaacobov
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Lilach Alon
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liraz Efrat Shachar
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Tair Swissa
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Olga Kryukov
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Orly Gershoni-Yahalom
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Benyamin Rosental
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Smadar Cohen
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rachel G Lichtenstein
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
16
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
17
|
Tong J, Chen S, Gu X, Zhang X, Wei F, Xing Y. CD38 and extracellular NAD + regulate the development and maintenance of Hp vaccine-induced CD4 + T RM in the gastric epithelium. Mucosal Immunol 2024; 17:990-1004. [PMID: 38960319 DOI: 10.1016/j.mucimm.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Tissue-resident memory T cells (TRM) can be induced by infection and vaccination, and play a key role in maintaining long-term protective immunity against mucosal pathogens. Our studies explored the key factors and mechanisms affecting the differentiation, maturation, and stable residence of gastric epithelial CD4+ TRM induced by Helicobacter pylori (Hp) vaccine and optimized Hp vaccination to promote the generation and residence of TRM. Cluster of differentiation (CD)38 regulated mitochondrial activity and enhanced transforming growth factor-β signal transduction to promote the differentiation and residence of gastric epithelial CD4+ TRM by mediating the expression of CD105. Extracellular nucleotides influenced the long-term maintenance of TRM in gastric epithelium by the P2X7 receptor (P2RX7). Vitamin D3 and Gram-positive enhancer matrix (GEM) particles as immune adjuvants combined with Hp vaccination promoted the production of CD69+CD103+CD4+ TRM.
Collapse
Affiliation(s)
- Jinzhe Tong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xinyue Gu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xuanqi Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fang Wei
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
18
|
Kim SH, Oh JM, Roh H, Lee KW, Lee JH, Lee WJ. Zinc-Alpha-2-Glycoprotein Peptide Downregulates Type I and III Collagen Expression via Suppression of TGF-β and p-Smad 2/3 Pathway in Keloid Fibroblasts and Rat Incisional Model. Tissue Eng Regen Med 2024; 21:1079-1092. [PMID: 39105875 PMCID: PMC11416446 DOI: 10.1007/s13770-024-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Keloids and hypertrophic scars result from abnormal collagen accumulation and the inhibition of its degradation. Although the pathogenesis remains unclear, excessive accumulation of the extracellular matrix (ECM) is believed to be associated with the TGF-β/SMAD pathway. Zinc-alpha-2-glycoprotein (ZAG) inhibits TGF-β-mediated epithelial-to-mesenchymal transdifferentiation and impacts skin barrier functions. In this study, we investigated the potential of a small ZAG-derived peptide against hypertrophic scars and keloids. METHODS The study examined cell proliferation and mRNA expression of collagen types I and III in human dermal fibroblast (HDF) cell lines and keloid-derived fibroblasts (KF) following ZAG peptide treatment. A rat incisional wound model was used to evaluate the effect of ZAG peptide in scar tissue. RESULTS Significantly lower mRNA levels of collagen types I and III were observed in ZAG-treated fibroblasts, whereas matrix metalloproteinase (MMP)-1 and MMP-3 mRNA levels were significantly increased in HDFs and KFs. Furthermore, ZAG peptide significantly reduced protein expression of collagen type I and III, TGF-β1, and p-Smad2/3 complex in KFs. Rat incisional scar models treated with ZAG peptide presented narrower scar areas and reduced immature collagen deposition, along with decreased expression of collagen type I, α-SMA, and p-Smad2/3. CONCLUSION ZAG peptide effectively suppresses the TGF-β and p-Smad2/3 pathway and inhibits excessive cell proliferation during scar formation, suggesting its potential therapeutic implications against keloids and hypertrophic scars.
Collapse
Affiliation(s)
- Shin Hyun Kim
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jung Min Oh
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Hyun Roh
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Kee-Won Lee
- R&D Center, L&C BIO Co., Ltd, 82, Naruteo-Ro, Seocho-Gu, Seoul, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Kim SM, Jang YJ. Enzymatic activity of fibroblast activation protein-α is essential for TGF-β1-induced fibroblastic differentiation of human periodontal ligament cells. Exp Cell Res 2024; 442:114230. [PMID: 39222867 DOI: 10.1016/j.yexcr.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Human periodontal ligament cells (hPDLCs) contain multipotent postnatal stem cells that can differentiate into PDL fibroblasts, osteoblasts, and cementoblasts. Interaction between the extracellular environment and stem cells is an important factor for differentiation into other progenitor cells. To identify cell surface molecules that induce PDL fibroblastic differentiation, we developed a series of monoclonal antibodies against membrane/ECM molecules. One of these antibodies, an anti-PDL25 antibody, recognizes approximately a 100 kDa protein, and this antigenic molecule accumulates in the periodontal ligament region of tooth roots. By mass spectrometric analysis, we found that the antigenic molecule recognized by the anti-PDL25 antibody is fibroblast activation protein α (FAPα). The expression level of FAPα/PDL25 increased in TGF-β1-induced PDL fibroblasts, and this protein was localized in the cell boundaries and elongated processes of the fibroblastic cells. Ectopic expression of FAPα induced fibroblastic differentiation. In contrast, expression of representative markers for PDL differentiation was decreased by knock down and antibody blocking of FAPα/PDL25. Inhibition of dipeptidyl peptidase activity by a potent FAPα inhibitor dramatically inhibited PDL fibroblastic marker expression but did not affect in cell proliferation and migration.
Collapse
Affiliation(s)
- Seong-Min Kim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
20
|
Guo X, Zhou H, Liu Y, Xu W, Kanwore K, Zhang L. Glial-Cell-Line-Derived Neurotrophic Factor Promotes Glioblastoma Cell Migration and Invasion via the SMAD2/3-SERPINE1-Signaling Axis. Int J Mol Sci 2024; 25:10229. [PMID: 39337713 PMCID: PMC11432670 DOI: 10.3390/ijms251810229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) is highly expressed and is involved in the malignant phenotype in glioblastomas (GBMs). However, uncovering its underlying mechanism for promoting GBM progression is still a challenging work. In this study, we found that serine protease inhibitor family E member 1 (SERPINE1) was a potential downstream gene of GDNF. Further experiments confirmed that SERPINE1 was highly expressed in GBM tissues and cells, and its levels of expression and secretion were enhanced by exogenous GDNF. SERPINE1 knockdown inhibited the migration and invasion of GBM cells promoted by GDNF. Mechanistically, GDNF increased SERPINE1 by promoting the phosphorylation of SMAD2/3. In vivo experiments demonstrated that GDNF facilitated GBM growth and the expressions of proteins related to migration and invasion via SERPINE1. Collectively, our findings revealed that GDNF upregulated SERPINE1 via the SMAD2/3-signaling pathway, thereby accelerating GBM cell migration and invasion. The present work presents a new mechanism of GDNF, supporting GBM development.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China;
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, China; (H.Z.); (Y.L.); (W.X.); (K.K.)
| | - Han Zhou
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, China; (H.Z.); (Y.L.); (W.X.); (K.K.)
| | - Yifang Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, China; (H.Z.); (Y.L.); (W.X.); (K.K.)
| | - Wei Xu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, China; (H.Z.); (Y.L.); (W.X.); (K.K.)
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, China; (H.Z.); (Y.L.); (W.X.); (K.K.)
| | - Lin Zhang
- School of Nursing, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
21
|
Li Y, Jiang Y, Yan H, Qin Z, Peng Y, Lv D, Zhang H. Global isonicotinylome analysis identified SMAD3 isonicotinylation promotes liver cancer cell epithelial-mesenchymal transition and invasion. iScience 2024; 27:110775. [PMID: 39286495 PMCID: PMC11403401 DOI: 10.1016/j.isci.2024.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Histone lysine isonicotinylation (Kinic) induced by isoniazid (INH) was recently identified as a post-translational modification in cells. However, global cellular non-histone proteins Kinic remains unclear. Using proteomic technology, we identified 11,442 Kinic sites across 2,792 proteins and demonstrated that Kinic of non-histone proteins is involved in multiple function pathways. Non-histone proteins Kinic can be regulated by isonicotinyl-transferases, including CBP and Tip60, and deisonicotinylases, including HDAC8 and HDAC6. In particular, the Kinic of poly (ADP-ribose) (PAR) polymerase 1 (PARP1) can be catalyzed by CBP and deisonicotinylation can be catalyzed by HDAC8. Tip60 and HDAC6 are isonicotinyl-transferase and the deisonicotinylase of SMAD3, respectively. Importantly, we found the K378inic of SMAD3 increases its phosphorylation, activates TGFβ pathway, and promotes liver cancer cells migration and invasion. In conclusion, our study demonstrated non-histone proteins Kinic occur extensively in cells and plays an important role in regulation of various cellular functions, including cancer progression.
Collapse
Affiliation(s)
- Yixiao Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuhan Jiang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haoyi Yan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Ziheng Qin
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yidi Peng
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Danyu Lv
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
22
|
Jiang YL, Li X, Tan YW, Fang YJ, Liu KY, Wang YF, Ma T, Ou QJ, Zhang CX. Docosahexaenoic acid inhibits the invasion and migration of colorectal cancer by reversing EMT through the TGF-β1/Smad signaling pathway. Food Funct 2024; 15:9420-9433. [PMID: 39189524 DOI: 10.1039/d4fo02346c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The primary cause of mortality in colorectal cancer (CRC) patients is tumor metastasis. The epithelial-mesenchymal transition (EMT) stands out as a crucial factor promoting the metastasis of CRC. Previous findings suggest a potential inhibitory effect of docosahexaenoic acid (DHA) on CRC metastasis, but the precise mechanism remains unknown, this study aims to explore this issue. We assessed metastasis and recurrence, all-cause mortality, and cancer-related mortality rates according to DHA intake in independent CRC cohorts (n = 367) by survival analysis. The ability of DHA to block CRC cell migration and invasion was tested using transwell and wound-healing assays. The regulation of EMT marker genes in CRC by DHA was detected by quantitative real-time PCR (qPCR) and immunoblotting, and the effect of DHA on the TGF-β1/Smad signaling pathway was further investigated. These cellular findings were validated using a subcutaneous CRC mouse model. Survival analyses showed that lower DHA intake was associated with a higher risk of CRC metastasis and a poorer prognosis. In vitro experiments showed that DHA inhibits the TGF-β1/Smad signaling pathway and regulates downstream transcription factors, thereby reversing the EMT and inhibiting invasion and migration. In the mouse model, dietary DHA supplementation effectively increased blood DHA concentrations and inhibited CRC metastasis. Our study demonstrated that DHA inhibits CRC invasion and metastasis by inhibiting the TGF-β1/Smad signaling pathway. Increased intake of DHA among CRC patients may provide additional benefits to the prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Yi-Ling Jiang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xue Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya-Wen Tan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yu-Jing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai-Yan Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yi-Fan Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ting Ma
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Qing-Jian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
23
|
Li C, Wang X, Xing L, Chen T, Li W, Li X, Wang Y, Yang C, Yang Q. Huaier-induced suppression of cancer-associated fibroblasts confers immunotherapeutic sensitivity in triple-negative breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156051. [PMID: 39299097 DOI: 10.1016/j.phymed.2024.156051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most intractable subgroup of breast neoplasms due to its aggressive nature. In recent years, immune checkpoint inhibitors (ICIs) have exhibited potential efficacy in TNBC treatment. However, only a limited fraction of patients benefit from ICI therapy, primarily because of the suppressive tumor immune microenvironment (TIME). Trametes robiniophila Murr (Huaier) is a traditional Chinese medicine (TCM) with potential immunoregulatory functions. However, the underlying mechanism remains unclear. PURPOSE The present study aimed to investigate the therapeutic role of Huaier in the TIME of TNBC patients. METHODS Single-cell RNA sequencing (scRNA-seq) was used to systematically analyze the influence of Huaier on the TNBC microenvironment for the first time. The mechanisms of the Huaier-induced suppression of cancer-associated fibroblasts (CAFs) were assessed via real-time quantitative polymerase chain reaction (qRT‒PCR) and western blotting. A tumor-bearing mouse model was established to verify the effects of the oral administration of Huaier on immune infiltration. RESULTS Unsupervised clustering of the transcriptional profiles suggested an increase in the number of apoptotic cancer cells in the Huaier group. Treatment with Huaier induced immunological alterations from a "cold" to a "hot" state, which was accompanied by phenotypic changes in CAFs. Mechanistic analysis revealed that Huaier considerably attenuated the formation of myofibroblastic CAFs (myoCAFs) by impairing transforming growth factor-beta (TGF-β)/SMAD signaling. In mouse xenograft models, Huaier dramatically modulated CAF differentiation, thus synergizing with the programmed cell death 1 (PD1) blockade to impede tumor progression. CONCLUSIONS Our findings demonstrate that Huaier regulates cancer immunity in TNBC by suppressing the transition of CAFs to myoCAFs and emphasize the crucial role of Huaier as an effective adjuvant agent in immunotherapy.
Collapse
Affiliation(s)
- Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Luyao Xing
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Wenhao Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xin Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yifei Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Chao Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China; Department of Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China; Research Institute of Breast Cancer, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, China.
| |
Collapse
|
24
|
Urbaniec-Stompór J, Michalak M, Godlewski J. Correlating Ultrastructural Changes in the Invasion Area of Colorectal Cancer with CT and MRI Imaging. Int J Mol Sci 2024; 25:9905. [PMID: 39337393 PMCID: PMC11432200 DOI: 10.3390/ijms25189905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The cancer invasion of the large intestine, a destructive process that begins within the mucous membrane, causes cancer cells to gradually erode specific layers of the intestinal wall. The normal tissues of the intestine are progressively replaced by a tumour mass, leading to the impairment of the large intestine's proper morphology and function. At the ultrastructural level, the disintegration of the extracellular matrix (ECM) by cancer cells triggers the activation of inflammatory cells (macrophages) and connective tissue cells (myofibroblasts) in this area. This accumulation and the functional interactions between these cells form the tumour microenvironment (TM). The constant modulation of cancer cells and cancer-associated fibroblasts (CAFs) creates a specific milieu akin to non-healing wounds, which induces colon cancer cell proliferation and promotes their survival. This review focuses on the processes occurring at the "front of cancer invasion", with a particular focus on the role of the desmoplastic reaction in neoplasm development. It then correlates the findings from the microscopic observation of the cancer's ultrastructure with the potential of modern radiological imaging, such as computer tomography (CT) and magnetic resonance imaging (MRI), which visualizes the tumour, its boundaries, and the tissue reactions in the large intestine.
Collapse
Affiliation(s)
- Joanna Urbaniec-Stompór
- Department of Diagnostic Imaging, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
| | - Maciej Michalak
- Department of Diagnostic Imaging, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
- Department of Oncology, Faculty of Medical Sciences, University of Warmia and Mazury, 10228 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury, 10082 Olsztyn, Poland
- Clinical Surgical Oncology Department, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
| |
Collapse
|
25
|
Lu J, Li Z, Liu X, Xu B, Zhang W. Tiaogan Bushen Xiaoji Formula Enhances the Sensitivity of Estrogen Receptor- Positive Breast Cancer to Tamoxifen by Inhibiting the TGF-β/SMAD Pathway. Cancer Manag Res 2024; 16:1189-1204. [PMID: 39282606 PMCID: PMC11397187 DOI: 10.2147/cmar.s477399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background The resistance to endocrine therapy can lead to recurrence and metastasis of breast cancer (BC), affecting the survival period. Tiaogan Bushen Xiaoji (TGBSXJ) Formula, a traditional Chinese medicine (TCM) decoction, has been widely used in the treatment of estrogen receptor-positive (ER+) BC. However, the underlying mechanism of TGBSXJ Formula in ER+BC treatment has not been totally elucidated. Methods Network pharmacology (NP) and RNA sequencing were used to predict the candidate ingredients and explore the potential targets of TGBSXJ Formula. Then, the results of NP and RNA sequencing were investigated by in vitro experiments. Results Active ingredients of TGBSXJ Formula mainly included Mangiferin, Rutin, Anemarrhena asphodeloides saponin BII, Ganoderic acid A and Acacetin, etc. A protein-protein interaction (PPI) network was created based on the active ingredients of TGBSXJ Formula and target genes of ER+ BC, in which TGF-β, MMP2 and SMAD3 were defined as the hub genes. In vitro experiments showed that TGBSXJ Formula significantly inhibited the viability, colony ability and migration of ER+ BC cells, and significantly increased the sensitivity to TAM. Western blot analysis showed that TGBSXJ Formula significantly downregulated TGF-β, E-cadherin, MMP2, MMP9, N-cadherin, p-Smad2 and p-Smad3 in ER+ BC cells. Conclusion TGBSXJ Formula increases the sensitivity of ER+ BC cells to TAM by inhibiting the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Jiafeng Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xingjing Liu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Bin Xu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Weiyu Zhang
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Chang HH, Wu SB, Tsai CC. A Review of Pathophysiology and Therapeutic Strategies Targeting TGF-β in Graves' Ophthalmopathy. Cells 2024; 13:1493. [PMID: 39273063 PMCID: PMC11393989 DOI: 10.3390/cells13171493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
TGF-β plays a pivotal role in the pathogenesis of GO by promoting orbital tissue remodeling and fibrosis. This process involves the stimulation of orbital fibroblasts, leading to myofibroblast differentiation, increased production of inflammatory mediators, and hyaluronan accumulation. Studies have elucidated TGF-β's role in driving fibrosis and scarring processes through both canonical and non-canonical pathways, particularly resulting in the activation of orbital myofibroblasts and the excessive accumulation of extracellular matrix. Additionally, recent in vitro and in vivo studies have been summarized, highlighting the therapeutic potential of targeting TGF-β signaling pathways, which may offer promising treatment interventions for GO. This review aims to consolidate the current understanding of the multifaceted role of TGF-β in the molecular and cellular pathophysiology in Graves' ophthalmopathy (GO) by exploring its contributions to fibrosis, inflammation, and immune dysregulation. Additionally, the review investigates the therapeutic potential of inhibiting TGF-β signaling pathways as a strategy for treating GO.
Collapse
Affiliation(s)
- Hsin-Ho Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shi-Bei Wu
- Office of Business Development, Technology Commercialization Center, Taipei Medical University, Taipei 110, Taiwan
| | - Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
27
|
Kamikawatoko T, Yotsuya M, Owada A, Ishizuka S, Kasahara M, Yamamoto M, Abe S, Sekine H. Early changes in asporin levels in osteoarthritis of the temporomandibular joint. J Oral Biosci 2024; 66:546-553. [PMID: 38936470 DOI: 10.1016/j.job.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVES The present study aimed to elucidate the pathogenesis of temporomandibular joint (TMJ) osteoarthritis (TMJ-OA) in a mouse model. We investigated morphological and histological changes in the head of mandible cartilage and early immunohistochemical (IHC) changes in transforming growth factor (TGF)-β, phosphorylated Smad-2/3 (p-Smad2/3), a TGF-β signaling molecule, and asporin. METHODS TMJ-OA was induced in a mouse model through unilateral partial discectomy. Micro-computed tomography (micro-CT) and safranin-O staining were performed to morphologically and histologically evaluate the degeneration of the head of mandible caused by TMJ-OA. IHC staining for TGF-β, p-Smad2/3, and asporin was performed to evaluate the changes in protein expression. RESULTS In the experimental group, three-dimensional (3D) morphometry revealed an enlarged head of mandible and safranin-O staining showed degeneration of cartilage tissue in the early stages of TMJ-OA compared to the control group. IHC staining revealed that TGF-β, p-Smad2/3, and asporin expression increased in the head of mandible cartilage before the degeneration of cartilage tissue, and subsequently decreased for a short period. CONCLUSION The findings suggested a negative feedback relationship between the expression of asporin and the TGF-β/Smad transduction pathway, which may be involved in the degeneration of the head of mandible in the early stages of TMJ-OA. Asporin is a potential biomarker of the early stages of TMJ-OA, which ultimately leads to the irreversible degeneration of TMJ tissues.
Collapse
Affiliation(s)
- Toshihiko Kamikawatoko
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Mamoru Yotsuya
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan.
| | - Aoi Owada
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Hideshi Sekine
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
28
|
Wang Y, Stoess C, Holzmann G, Mogler C, Stupakov P, Altmayr F, Schulze S, Wang B, Steffani M, Friess H, Hüser N, Holzmann B, Hartmann D, Laschinger M. Signalling of the neuropeptide calcitonin gene-related peptide (CGRP) through RAMP1 promotes liver fibrosis via TGFβ1/Smad2 and YAP pathways. Exp Cell Res 2024; 442:114193. [PMID: 39103072 DOI: 10.1016/j.yexcr.2024.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The liver is innervated by primary sensory nerve fibres releasing the neuropeptide calcitonin gene-related peptide (CGRP). Elevated plasma levels of CGRP have been found in patients with liver fibrosis or cirrhosis. We hypothesised that signalling of CGRP and its receptors might regulate liver fibrosis and propose a novel potential target for the treatment. In this study, hepatic expression of CGRP and its receptor component, the receptor activity-modifying protein 1 (RAMP1), was dramatically increased in diseased livers of patients. In a murine liver fibrosis model, deficiency of RAMP1 resulted in attenuated fibrogenesis characterized by less collagen deposition and decreased activity of hepatic stellate cells (HSC). Mechanistically, activity of the TGFβ1 signalling core component Smad2 was severely impaired in the absence of RAMP1, and Yes-associated protein (YAP) activity was found to be diminished in RAMP1-deficient liver parenchyma. In vitro, stimulation of the HSC line LX-2 cells with CGRP induces TGFβ1 production and downstream signalling as well as HSC activation documented by increased α-SMA expression and collagen synthesis. We further demonstrate in LX-2 cells that CGRP promotes YAP activation and its nuclear translocation subsequent to TGFβ1/Smad2 signals. These data support a promotive effect of CGRP signalling in liver fibrosis via stimulation of TGFβ1/Smad2 and YAP activity.
Collapse
Affiliation(s)
- Yang Wang
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany; Department of Hepato-Pancreato-Biliary Center, Zhongda Hospital, Southeast University School of Medicine, Dingjia Road 87, 210009, Nanjing, China
| | - Christian Stoess
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Gabriela Holzmann
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Carolin Mogler
- Technical University of Munich, TUM School of Medicine and Health, Institute of Pathology, Trogerstr. 18, 81675, Munich, Germany
| | - Pavel Stupakov
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Felicitas Altmayr
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sarah Schulze
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Baocai Wang
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany; University Hospital of Tübingen, Department of General, Visceral and Transplantation Surgery, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; The M3 Research Center, Eberhard Karls University, Otfried-Müller-Str. 37, 72076 Tübingen, Germany
| | - Marcella Steffani
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Helmut Friess
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Norbert Hüser
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Holzmann
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Hartmann
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany; University Hospital of Tübingen, Department of General, Visceral and Transplantation Surgery, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; The M3 Research Center, Eberhard Karls University, Otfried-Müller-Str. 37, 72076 Tübingen, Germany
| | - Melanie Laschinger
- Technical University of Munich, TUM School of Medicine and Health, Department of Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
29
|
Li L, Lu L, Xiao Z, Lv J, Huang H, Wu B, Zhao T, Li C, Wang W, Wang H. Deamidation enables pathogenic SMAD6 variants to activate the BMP signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1915-1927. [PMID: 38913236 DOI: 10.1007/s11427-023-2532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/23/2024] [Indexed: 06/25/2024]
Abstract
The BMP signaling pathway plays a crucial role in regulating early embryonic development and tissue homeostasis. SMAD6 encodes a negative regulator of BMP, and rare variants of SMAD6 are recurrently found in individuals with birth defects. However, we observed that a subset of rare pathogenic variants of SMAD6 consistently exhibited positive regulatory effects instead of the initial negative effects on the BMP signaling pathway. We sought to determine whether these SMAD6 variants have common pathogenic mechanisms. Here, we showed that pathogenic SMAD6 variants accompanying this functional reversal exhibit similar increases in deamidation. Mechanistically, increased deamidation of SMAD6 variants promotes the accumulation of the BMP receptor BMPR1A and the formation of new complexes, both of which lead to BMP signaling pathway activation. Specifically, two residues, N262 and N404, in SMAD6 were identified as the crucial sites of deamidation, which was catalyzed primarily by glutamine-fructose-6-phosphate transaminase 2 (GFPT2). Additionally, treatment of cells harboring SMAD6 variants with a deamidase inhibitor restored the inhibitory effect of SMAD6 on the BMP signaling pathway. Conversely, when wild-type SMAD6 was manually simulated to mimic the deamidated state, the reversed function of activating BMP signaling was reproduced. Taken together, these findings show that deamidation of SMAD6 plays a crucial role in the functional reversal of BMP signaling activity, which can be induced by a subset of various SMAD6 variants. Our study reveals a common pathogenic mechanism shared by these variants and provides a potential strategy for preventing birth defects through deamidation regulation, which might prevent the off-target effects of gene editing.
Collapse
Affiliation(s)
- Ling Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Lei Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Ziqi Xiao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingyi Lv
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Bo Wu
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Chengtao Li
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weimin Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China.
| |
Collapse
|
30
|
Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH. MicroRNA-455-3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 100:102459. [PMID: 39153602 PMCID: PMC11383742 DOI: 10.1016/j.arr.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others. Interestingly, cerebrospinal fluids (CSF) and the blood of AD patients have altered expressions of many RNAs, which may serve as potential peripheral biomarkers. The intensive investigation from our lab revealed that microRNA-455-3 P (miR-455-3p) is a strong candidate as a potential biomarker and therapeutic target for AD. Several genes implicated in the pathogenesis of AD are directly targeted by miR-455-3p. Several years of our lab research revealed that miR-455-3p regulates important physiological processes associated with AD, such as the processing of the amyloid precursor protein (APP), TGF-β signaling, the regulation of oxidative stress, mitochondrial biogenesis, and synaptic damages. The expression of miR-455-3p in mild cognitive impaired subjects and AD patients pointed out its involvement in AD progression. Recently, our lab generated both transgenic and knockout mice for miR-455-3p. Interestingly miR-455-3p transgenic mice showed superior cognitive learning, improved memory and extended lifespan compared to age matched wild-type mice, whereas miR-455-3-p knockout mice showed cognitive decline and reduced lifespan. Information derived from mouse models further demonstrated the advantageous impact of miR-455-3p on dendritic growth, synaptogenesis, and mitochondrial biogenesis in preventing the onset and progression of AD. The identification of miR-455-3p as a biomarker was suggested by its presence in postmortem AD brains, B-lymphocytes, and fibroblasts. Our hypothesis that miR-455-3p could be a peripheral biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
31
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
32
|
Wofford W, Kim J, Kim D, Janneh AH, Lee HG, Atilgan FC, Oleinik N, Kassir MF, Saatci O, Chakraborty P, Tokat UM, Gencer S, Howley B, Howe P, Mehrotra S, Sahin O, Ogretmen B. Alterations of ceramide synthesis induce PD-L1 internalization and signaling to regulate tumor metastasis and immunotherapy response. Cell Rep 2024; 43:114532. [PMID: 39046874 PMCID: PMC11404065 DOI: 10.1016/j.celrep.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Programmed death ligand 1, PD-L1 (CD274), facilitates immune evasion and exerts pro-survival functions in cancer cells. Here, we report a mechanism whereby internalization of PD-L1 in response to alterations of bioactive lipid/ceramide metabolism by ceramide synthase 4 (CerS4) induces sonic hedgehog (Shh) and transforming growth factor β receptor signaling to enhance tumor metastasis in triple-negative breast cancers (TNBCs), exhibiting immunotherapy resistance. Mechanistically, data showed that internalized PD-L1 interacts with an RNA-binding protein, caprin-1, to stabilize Shh/TGFBR1/Wnt mRNAs to induce β-catenin signaling and TNBC growth/metastasis, consistent with increased infiltration of FoxP3+ regulatory T cells and resistance to immunotherapy. While mammary tumors developed in MMTV-PyMT/CerS4-/- were highly metastatic, targeting the Shh/PD-L1 axis using sonidegib and anti-PD-L1 antibody vastly decreased tumor growth and metastasis, consistent with the inhibition of PD-L1 internalization and Shh/Wnt signaling, restoring anti-tumor immune response. These data, validated in clinical samples and databases, provide a mechanism-based therapeutic strategy to improve immunotherapy responses in metastatic TNBCs.
Collapse
Affiliation(s)
- Wyatt Wofford
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Dosung Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Alhaji H Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - F Cansu Atilgan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Istanbul Medipol University, Health Science and Technologies Research Institute (SABİTA), Cancer Research Center, Istanbul, Turkey
| | - Breege Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
33
|
Zhang Q, Lu B. The mRNA and microRNA Landscape of the Blastema Niche in Regenerating Newt Limbs. Int J Mol Sci 2024; 25:9225. [PMID: 39273174 PMCID: PMC11395517 DOI: 10.3390/ijms25179225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Newts are excellent vertebrate models for investigating tissue regeneration due to their remarkable regenerative capabilities. To investigate the mRNA and microRNAs (miRNAs) profiles within the blastema niche of regenerating newt limbs, we amputated the limbs of Chinese fire belly newts (Cynops orientalis) and conducted comprehensive analyses of the transcriptome and microRNA profiles at five distinct time points post-amputation (0 hours, 1 day, 5 days 10 days and 20 days). We identified 24 significantly differentially expressed (DE) genes and 20 significantly DE miRNAs. Utilizing weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) enrichment analysis, we identified four genes likely to playing crucial roles in the early stages of limb regeneration: Cemip, Rhou, Gpd2 and Pcna. Moreover, mRNA-miRNA integration analysis uncovered seven human miRNAs (miR-19b-1, miR-19b-2, miR-21-5p, miR-127-5p, miR-150-5p, miR-194-5p, and miR-210-5p) may regulate the expression of these four key genes. The temporal expression patterns of these key genes and miRNAs further validated the robustness of the identified mRNA-miRNA landscape. Our study successfully identified candidate key genes and elucidated a portion of the genetic regulatory mechanisms involved in newt limb regeneration. These findings offer valuable insights for further exploration of the intricate processes of tissue regeneration.
Collapse
Affiliation(s)
- Qi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
34
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
35
|
Nakamura A, Mashima T, Lee J, Inaba S, Kawata N, Morino S, Kumagai K, Yamaguchi K, Seimiya H. Intratumor transforming growth factor-β signaling with extracellular matrix-related gene regulation marks chemotherapy-resistant gastric cancer. Biochem Biophys Res Commun 2024; 721:150108. [PMID: 38762931 DOI: 10.1016/j.bbrc.2024.150108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Drug-tolerant persister (DTP) cells remain following chemotherapy and can cause cancer relapse. However, it is unclear when acquired resistance to chemotherapy emerges. Here, we compared the gene expression profiles of gastric cancer patient-derived cells (GC PDCs) and their respective xenograft tumors with different sensitivities to 5-fluorouracil (5-FU) by using immunodeficient female BALB/c-nu mice. RNA sequencing analysis of 5-FU-treated PDCs demonstrated that DNA replication/cell cycle-related genes were transiently induced in the earlier phase of DTP cell emergence, while extracellular matrix (ECM)-related genes were sustainably upregulated during long-term cell survival in 5-FU-resistant residual tumors. NicheNet analysis, which uncovers cell-cell signal interactions, indicated the transforming growth factor-β (TGF-β) pathway as the upstream regulator in response to 5-FU treatment. This induced ECM-related gene expression in the 5-FU-resistant tumor model. In the 5-FU-resistant residual tumors, there was a marked upregulation of cancer cell-derived TGF-β1 expression and increased phosphorylation of SMAD3, a downstream regulator of the TGF-β receptor. By contrast, these responses were not observed in a 5-FU-sensitive tumor model. We further found that TGF-β-related upregulation of ECM genes was preferentially observed in non-responders to chemotherapy with 5-FU and/or oxaliplatin among 22 patient-derived xenograft tumors. These observations suggest that chemotherapy-induced activation of the TGF-β1/SMAD3/ECM-related gene axis is a potential biomarker for the emergence of drug resistance in GCs.
Collapse
Affiliation(s)
- Ayane Nakamura
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Life and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Jin Lee
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Saori Inaba
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naomi Kawata
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shun Morino
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Koshi Kumagai
- Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Upper Gastrointestinal Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Kensei Yamaguchi
- Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Life and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
Ma Z, Sun J, Li Z, Huang S, Li B. AMDHD1 acts as a tumor suppressor and contributes to activation of TGF-β signaling pathway in cholangiocarcinoma. Cell Death Differ 2024:10.1038/s41418-024-01361-y. [PMID: 39143229 DOI: 10.1038/s41418-024-01361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the digestive system, characterized by its aggressive behavior and the absence of effective therapeutic biomarkers. Although recent studies have implicated AMDHD1 in tumor formation, its role in CCA development has been insufficiently explored. We utilized multiple bioinformatic datasets alongside 108 clinical samples to examine AMDHD1 expression in CCA. Then, in vitro and in vivo experiments were conducted to assess its impact on tumor growth and metastasis. Furthermore, proteomic analysis and immunoprecipitation mass spectrometry were employed to identify the downstream effectors of AMDHD1. We discovered that AMDHD1 was down-regulated in CCA and this down-regulation was associated with adverse clinicopathological features and prognosis. We also demonstrated that overexpression of AMDHD1 hindered G1/S progression in the cell cycle and promoted apoptosis, thereby inhibiting tumor growth and metastasis. Mechanistically, we found that AMDHD1 operated in a TGF-β-dependent manner and the inhibition of TGF-β signaling abrogated the effect of AMDHD1 overexpression on CCA cells. Specifically, AMDHD1 inhibited the ubiquitination and degradation of the SMAD4 protein through binding to the MH2 domain and synergistically enhanced SMAD2/3 phosphorylation, which activated of TGF-β signaling pathway and resulted in the suppression of CCA cell proliferation and migration. Our study identifies AMDHD1 as a significant prognostic biomarker and a tumor suppressor in CCA. It underscores the pivotal role of the AMDHD1/TGF-β signaling pathway in the development and progression of CCA.
Collapse
Affiliation(s)
- Zuyi Ma
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jia Sun
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhenchong Li
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Southern Medical University, Guangzhou, China.
| | - Binglu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
37
|
Yu R, Han H, Chu S, Qin L, Du M, Ma Y, Wang Y, Jiang W, Song Y, Zou Y, Wang M, Liu Q, Jiang B, Gong Y, Sun G. Cullin 4B-RING E3 ligase negatively regulates the immunosuppressive capacity of mesenchymal stem cells by suppressing iNOS. Cell Death Differ 2024:10.1038/s41418-024-01359-6. [PMID: 39138375 DOI: 10.1038/s41418-024-01359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that can exert immunomodulatory capacity upon stimulation with pro-inflammatory cytokines. Our previous work has identified Cullin 4B (CUL4B), a scaffold protein in the CUL4B-RING E3 ligase (CRL4B) complex, as a key regulator in the differentiation of MSCs. Here, we demonstrate the critical role of CUL4B in regulating the immunosuppressive function of MSCs. When stimulated with pro-inflammatory cytokines, MSCs lacking CUL4B display enhanced immunosuppressive capacity, which is mediated by the elevated inducible nitric oxide synthase (iNOS). TGF-β signaling can suppress iNOS by inhibiting its transcription as well as promoting its protein degradation. We show that the CRL4B complex cooperates with PRC2 complex and HDACs to repress transcription of Dlx1 and Pmepa1, two inhibitors of TGF-β signaling, leading to decreased expression and accelerated degradation of iNOS. Our study unveils the CRL4B complex as a potential therapeutic target in promoting the immunosuppressive capacity of MSCs.
Collapse
Affiliation(s)
- Ruiqi Yu
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hong Han
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuxian Chu
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Liping Qin
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mengying Du
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yanyan Ma
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yufeng Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wei Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
38
|
Cheng H, Li X, Du J, Dang L, Wang S, Ding L, Zhang F, Sun S, Li Z. Transdermal characteristic study of bovine sialoglycoproteins with anti-skin aging and accelerating skin wound healing. J Cosmet Dermatol 2024. [PMID: 39099002 DOI: 10.1111/jocd.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Sialoglycoproteins play important roles in various biological processes, including cell adhesion, immune response, and cell signaling. Our previous studies indicated that the bovine sialoglycoproteins could be developed as a reagent against skin aging and as a new candidate for accelerating skin wound healing as well as inhibiting scar formation. However, transdermal characteristic of the bovine sialoglycoproteins is still unknown. AIMS This study investigated the transdermal permeation of the bovine sialoglycoproteins through porcine skin using the Franz diffusion cell method. RESULTS Our study showed that the bovine sialoglycoproteins could penetrate through the porcine skin with a linear permeation pattern described by the regression equation N% = 11.49 t-3.858, with a high coefficient of determination (R2 = 0.9903). The histochemical results demonstrated the widespread distribution of the bovine sialoglycoproteins between the epidermal and dermal layers, which suggesting parts of the bovine sialoglycoproteins had ability to traverse the epidermal barrier. The results of the lectin microarrays indicated highly enriched glycopatterns on the bovine sialoglycoproteins, which also appeared in permeated porcine skin. The LC-MS/MS analysis further showed that the bovine sialoglycoproteins were composed of approximately 100 proteins with molecular weight ranging from 748.4 kDa to 10 kDa, and there were 23 specific bovine sialoglycoproteins with molecular weight ranging from 69.2 kDa to 10 kDa to be characterized in permeated porcine skin. CONCLUSIONS Parts of the bovine sialoglycoproteins with molecular weight less than 69.2 kDa had ability to traverse the epidermal barrier. Understanding the permeation characteristics of the bovine sialoglycoproteins for developing innovative formulations with therapeutic benefits, contributing to advancements in cosmetic and dermatological fields.
Collapse
Affiliation(s)
- Hongwei Cheng
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiangbo Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiabao Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Shiyi Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Li Ding
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Shisheng Sun
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
39
|
Michl M, Taverna F, Woischke C, Li P, Klauschen F, Kirchner T, Heinemann V, von Bergwelt-Baildon M, Stahler A, Herold TM, Jurinovic V, Engel J, Kumbrink J, Neumann J. Identification of a gene expression signature associated with brain metastasis in colorectal cancer. Clin Transl Oncol 2024; 26:1886-1895. [PMID: 38558282 PMCID: PMC11249597 DOI: 10.1007/s12094-024-03408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Brain metastasis (BM) in colorectal cancer (CRC) is a rare event with poor prognosis. Apart from (K)RAS status and lung and bone metastasis no biomarkers exist to identify patients at risk. This study aimed to identify a gene expression signature associated with colorectal BM. METHODS Three patient groups were formed: 1. CRC with brain metastasis (BRA), 2. exclusive liver metastasis (HEP) and, 3. non-metastatic disease (M0). RNA was extracted from primary tumors and mRNA expression was measured using a NanoString Panel (770 genes). Expression was confirmed by qPCR in a validation cohort. Statistical analyses including multivariate logistic regression followed by receiver operating characteristic (ROC) analysis were performed. RESULTS EMILIN3, MTA1, SV2B, TMPRSS6, ACVR1C, NFAT5 and SMC3 were differentially expressed in BRA and HEP/M0 groups. In the validation cohort, differential NFAT5, ACVR1C and SMC3 expressions were confirmed. BRA patients showed highest NFAT5 levels compared to HEP/M0 groups (global p = 0.02). High ACVR1C expression was observed more frequently in the BRA group (42.9%) than in HEP (0%) and M0 (7.1%) groups (global p = 0.01). High SMC3 expressions were only detectable in the BRA group (global p = 0.003). Only patients with BM showed a combined high expression of NFAT5, ACVR1C or SMC3 as well as of all three genes. ROC analysis revealed a good prediction of brain metastasis by the three genes (area under the curve (AUC) = 0.78). CONCLUSIONS The NFAT5, ACVR1C and SMC3 gene expression signature is associated with colorectal BM. Future studies should further investigate the importance of this biomarker signature.
Collapse
Affiliation(s)
- Marlies Michl
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Haematology and Oncology, Comprehensive Cancer Center Munich, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Francesco Taverna
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Christine Woischke
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Pan Li
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Frederick Klauschen
- Department of Haematology and Oncology, Comprehensive Cancer Center Munich, Ludwig-Maximilian-University of Munich, Munich, Germany
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Volker Heinemann
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Haematology and Oncology, Comprehensive Cancer Center Munich, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Haematology and Oncology, Comprehensive Cancer Center Munich, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Arndt Stahler
- Department of Hematology, Oncology, and Tumorimmunology, Corporate Member of Freie Universitaet Berlin and Humbolt-Universitaet zu Berlin, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Tobias Marcus Herold
- Department of Medicine III, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Vindi Jurinovic
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Jutta Engel
- Munich Cancer Registry (MCR), Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | - Jens Neumann
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
40
|
Mollinari C, Cardinale A, Lupacchini L, Martire A, Chiodi V, Martinelli A, Rinaldi AM, Fini M, Pazzaglia S, Domenici MR, Garaci E, Merlo D. The DNA repair protein DNA-PKcs modulates synaptic plasticity via PSD-95 phosphorylation and stability. EMBO Rep 2024; 25:3707-3737. [PMID: 39085642 PMCID: PMC11315936 DOI: 10.1038/s44319-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy
| | | | | | - Alberto Martire
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Valentina Chiodi
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Andrea Martinelli
- Istituto Superiore di Sanita', Experimental Animal Welfare Sector, 00161, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123, Rome, Italy
| | - Maria Rosaria Domenici
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Roma, 00163, Rome, Italy
- MEBIC Consortium, 00166, Rome, Italy
| | - Daniela Merlo
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy.
| |
Collapse
|
41
|
Bakrim S, El Hachlafi N, Khalid A, Abdalla AN, El Omari N, Aboulaghras S, Sakran AM, Goh KW, Ming LC, Razi P, Bouyahya A. Recent advances and molecular mechanisms of TGF-β signaling in colorectal cancer, with focus on bioactive compounds targeting. Biomed Pharmacother 2024; 177:116886. [PMID: 38945700 DOI: 10.1016/j.biopha.2024.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-β) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-β inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-β in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-β in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-β in CRC.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, P.O.Box-2002, Imouzzer Road, Fez, Morocco
| | - Asaad Khalid
- Health Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
42
|
Shi SS, Zhang YQ, Zhang LQ, Li YF, Zhou XS, Li RS. Expression and significance of SIRT6 in human peritoneal dialysis effluents and peritoneal mesothelial cells. Int Urol Nephrol 2024; 56:2659-2670. [PMID: 38483736 PMCID: PMC11266209 DOI: 10.1007/s11255-024-03970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/02/2024] [Indexed: 07/25/2024]
Abstract
Sirtuin 6 (SIRT6) can inhibit the fibrosis of many organs. However, the relationship between SIRT6 and peritoneal fibrosis (PF) in peritoneal dialysis (PD) remains unclear. We collected 110 PD patients with a duration of PD for more than 3 months and studied the influence of PD duration and history of peritonitis on SIRT6 levels in PD effluents (PDEs). We also analyzed the relationship between SIRT6 levels in PDEs and transforming growth factor beta 1 (TGF-β1), IL-6, PD duration, peritoneal function, PD ultrafiltration (UF), and glucose exposure. We extracted human peritoneal mesothelial cells (HPMCs) from PDEs and measured the protein and gene expression levels of SIRT6, E-cadherin, vimentin, and TGF-β1 in these cells. Based on the clinical results, we used human peritoneal mesothelial cells lines (HMrSV5) to observe the changes in SIRT6 levels and mesothelial-to-mesenchymal transition (MMT) after intervention with PD fluid. By overexpressing and knocking down SIRT6 expression, we investigated the effect of SIRT6 expression on E-cadherin, vimentin, and TGF-β1 expression to elucidate the role of SIRT6 in mesothelial-to-epithelial transition in PMCs. Results: (1) With the extension of PD duration, the influence of infection on SIRT6 levels in PDEs increased. Patients with the PD duration of more than 5 years and a history of peritonitis had the lowest SIRT6 levels. (2) SIRT6 levels in PDEs were negatively correlated with PD duration, total glucose exposure, TGF-β1, IL-6 levels, and the dialysate-to-plasma ratio of creatinine (Cr4hD/P), but positively correlated with UF. This indicates that SIRT6 has a protective effect on the peritoneum. (3) The short-term group (PD ≤ 1 year) had higher SIRT6 and E-cadherin gene and protein levels than the mid-term group (1 year < PD ≤ 5 years) and long-term group (PD > 5 years) in PMCs, while vimentin and TGF-β1 levels were lower in the mid-term group and long-term group. Patients with a history of peritonitis had lower SIRT6 and E-cadherin levels than those without such a history. (4) After 4.25% PD fluid intervention for HPMCs, longer intervention time resulted in lower SIRT6 levels. (5) Overexpressing SIRT6 can lead to increased E-cadherin expression and decreased vimentin and TGF-β1 expression in HPMCs. Knocking down SIRT6 expression resulted in decreased E-cadherin expression and increased vimentin and TGF-β1 expression in HPMCs. This indicates that SIRT6 expression can inhibit MMT in HPMCs, alleviate PF associated with PD, and have a protective effect on the peritoneum.
Collapse
Affiliation(s)
- Shuai-Shuai Shi
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, Shanxi, China
- Department of Nephrology, Heji Hospital of Changzhi Medical College, Changzhi, 046011, Shanxi, China
| | - Yi-Qiang Zhang
- Department of Biochemistry, Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Lu-Qi Zhang
- First Clinical Department of Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Yun-Feng Li
- First Clinical Department of Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Xiao-Shuang Zhou
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, Shanxi, China
| | - Rong-Shan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, Shanxi, China.
| |
Collapse
|
43
|
Niu B, Tian T, Wang L, Tian Y, Tian T, Guo Y, Zhou H, Zhang Z. CCL9/CCR1 axis-driven chemotactic nanovesicles for attenuating metastasis of SMAD4-deficient colorectal cancer by trapping TGF- β. Acta Pharm Sin B 2024; 14:3711-3729. [PMID: 39220887 PMCID: PMC11365421 DOI: 10.1016/j.apsb.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
SMAD4 deficiency in colorectal cancer (CRC) is highly correlated with liver metastasis and high mortality, yet there are few effective precision therapies available. Here, we show that CCR1+-granulocytic myeloid-derived suppressor cells (G-MDSCs) are highly infiltrated in SMAD4-deficient CRC via CCL15/CCR1 and CCL9/CCR1 axis in clinical specimens and mouse models, respectively. The excessive TGF-β, secreted by tumor-infiltrated CCR1+-G-MDSCs, suppresses the immune response of cytotoxic T lymphocytes (CTLs), thus facilitating metastasis. Hereby, we develop engineered nanovesicles displaying CCR1 and TGFBR2 molecules (C/T-NVs) to chemotactically target the tumor driven by CCL9/CCR1 axis and trap TGF-β through TGF-β-TGFBR2 specific binding. Chemotactic C/T-NVs counteract CCR1+-G-MDSC infiltration through competitive responding CCL9/CCR1 axis. C/T-NVs-induced intratumoral TGF-β exhaustion alleviates the TGF-β-suppressed immune response of CTLs. Collectively, C/T-NVs attenuate liver metastasis of SMAD4-deficient CRC. In further exploration, high expression of programmed cell death ligand-1 (PD-L1) is observed in clinical specimens of SMAD4-deficient CRC. Combining C/T-NVs with anti-PD-L1 antibody (aPD-L1) induces tertiary lymphoid structure formation with sustained activation of CTLs, CXCL13+-CD4+ T, CXCR5+-CD20+ B cells, and enhanced secretion of cytotoxic cytokine interleukin-21 and IFN-γ around tumors, thus eradicating metastatic foci. Our strategy elicits pleiotropic antimetastatic immunity, paving the way for nanovesicle-mediated precision immunotherapy in SMAD4-deficient CRC.
Collapse
Affiliation(s)
- Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen 361102, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
44
|
Zhang Q, Liu H, Liu C, Wang Y, Huang P, Wang X, Ma Y, Ma L, Ge R. Tibetan mesenchymal stem cell-derived exosomes alleviate pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. Stem Cells 2024; 42:720-735. [PMID: 38717187 DOI: 10.1093/stmcls/sxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 08/02/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by progressive pulmonary vasoconstriction, vascular remodeling, and right ventricular hypertrophy, causing right heart failure. This study aimed to investigate the therapeutic effects of exosomes from Tibetan umbilical cord mesenchymal stem cells on HPH via the TGF-β1/Smad2/3 pathway, comparing them with exosomes from Han Chinese individuals. An HPH rat model was established in vivo, and a hypoxia-induced injury in the rat pulmonary artery smooth muscle cells (rPASMCs) was simulated in vitro. Exosomes from human umbilical cord mesenchymal stem cells were administered to HPH model rats or added to cultured rPASMCs. The therapeutic effects of Tibetan-mesenchymal stem cell-derived exosomes (Tibetan-MSC-exo) and Han-mesenchymal stem cell-derived exosomes (Han-MSC-exo) on HPH were investigated through immunohistochemistry, western blotting, EdU, and Transwell assays. The results showed that Tibetan-MSC-exo significantly attenuated pulmonary vascular remodeling and right ventricular hypertrophy in HPH rats compared with Han-MSC-exo. Tibetan-MSC-exo demonstrated better inhibition of hypoxia-induced rPASMCs proliferation and migration. Transcriptome sequencing revealed upregulated genes (Nbl1, Id2, Smad6, and Ltbp1) related to the TGFβ pathway. Nbl1 knockdown enhanced hypoxia-induced rPASMCs proliferation and migration, reversing Tibetan-MSC-exo-induced downregulation of TGFβ1 and p-Smad2/3. Furthermore, TGFβ1 overexpression hindered the therapeutic effects of Tibetan-MSC-exo and Han-MSC-exo on hypoxic injury. These findings suggest that Tibetan-MSC-exo favors HPH treatment better than Han-MSC-exo, possibly through the modulation of the TGFβ1/Smad2/3 pathway via Nbl1.
Collapse
Affiliation(s)
- Qingqing Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining 810001, People's Republic of China
| | - Hong Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Yuxiang Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Pan Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Xiaobo Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Yougang Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
| |
Collapse
|
45
|
Von Benecke JP, Tarsitano E, Zimmermann LMA, Shakesheff KM, Walsh WR, Bae HW. A Narrative Review on Recombinant Human Bone Morphogenetic Protein 2: Where Are We Now? Cureus 2024; 16:e67785. [PMID: 39188335 PMCID: PMC11346822 DOI: 10.7759/cureus.67785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 08/28/2024] Open
Abstract
Spinal fusion is a prevalent surgical intervention for degenerative spinal diseases, with increasing demand driven by ageing populations. The coexistence of multiple chronic conditions, termed multimorbidity, often complicates surgical outcomes, making advanced bone grafts crucial for successful fusions. This paper reviews the development, clinical application, and controversies surrounding the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal fusion surgeries. A comprehensive narrative review was conducted, focusing on literature from January 1980 to January 2024, sourced from PubMed and Google Scholar. Studies included those examining rhBMP-2 specifically in spinal fusion contexts, excluding other bone morphogenetic proteins (BMPs) and non-spinal applications. This review presents an overarching synopsis of rhBMP-2, its development history and clinical efficacy, the emergence of side effects, and evolving patterns of clinical use. As discussed in this review, clinical practice has adjusted usage and dosages to mitigate adverse effects, yet the need for safer delivery mechanisms persists. rhBMP-2 remains a potent osteoinductive agent with comparable fusion success, as measured by radiographic fusion and good clinical outcomes, to autologous grafts but poses unique risks. This review sets out how further research is essential to optimise the delivery of rhBMP-2 to reduce side effects. Enhanced understanding and innovation of spatio-temporal presentation relative to endogenous BMP could significantly improve patient outcomes in spinal fusion surgeries. The review contributes to the growing body of literature on the use of rhBMP-2 in spine surgery and discusses changing patterns of clinical use over time.
Collapse
Affiliation(s)
| | | | | | | | - William R Walsh
- School of Clinical Medicine, Prince of Wales Clinical School, University of New South Wales, Syndey, AUS
| | - Hyun W Bae
- Orthopaedics, Cedars-Sinai Medical Center, Los Angeles, USA
| |
Collapse
|
46
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2024. [PMID: 39083441 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Nima Taefehshokr
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty Academy of Silesia, Faculty of Medicine, Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
47
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
48
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
49
|
Li M, Hu S, Sun J, Zhang Y. The role of vitamin D3 in follicle development. J Ovarian Res 2024; 17:148. [PMID: 39020390 PMCID: PMC11253454 DOI: 10.1186/s13048-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Vitamin D3 plays a crucial role in female reproduction. As research progresses, the mechanisms of action of vitamin D3 on follicular development have been widely discussed. Firstly, key enzymes involved in the synthesis and metabolism of vitamin D3 have been discovered in the ovary, suggesting that vitamin D3 can be synthesized and metabolized locally within the ovary. Additionally, the detection of vitamin D3 receptors (VDR) in follicles suggests that vitamin D3 may exert its effects by binding specifically to these receptors during follicular development. Further research indicates that vitamin D3 promotes follicular growth by enhancing the development of granulosa cells (GCs) and oocytes. Currently, the mechanism of action of vitamin D3 in follicular development is becoming increasingly clear. Vitamin D3 promotes oocyte development by regulating molecules involved in meiotic arrest in oocytes. It also enhances granulosa cell proliferation by stimulating steroid hormone synthesis and cell cycle regulation. Additionally, vitamin D3 exerts anti-inflammatory effects by reducing oxidative stress and advanced glycation end-products (AGEs), mitigating the detrimental effects of inflammation on follicular development. These functions of vitamin D3 have clinical applications, such as in treating polycystic ovary syndrome (PCOS), improving female fertility, and enhancing outcomes in in vitro fertilization (IVF). This review summarizes the research progress on the role and mechanisms of vitamin D3 in follicular development and briefly summarizes its clinical applications.
Collapse
Affiliation(s)
- Mingxia Li
- Obstetrics and Gynecology Hospital, Fudan University, Fangxie Road 419, Shanghai, Huangpu, 200011, China
| | - Shuhui Hu
- Obstetrics and Gynecology Hospital, Fudan University, Fangxie Road 419, Shanghai, Huangpu, 200011, China
| | - Jiaxiang Sun
- Obstetrics and Gynecology Hospital, Fudan University, Fangxie Road 419, Shanghai, Huangpu, 200011, China
| | - Ying Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Fangxie Road 419, Shanghai, Huangpu, 200011, China.
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
50
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|