1
|
Mariano CG, de Oliveira VC, Ambrósio CE. Gene editing in small and large animals for translational medicine: a review. Anim Reprod 2024; 21:e20230089. [PMID: 38628493 PMCID: PMC11019828 DOI: 10.1590/1984-3143-ar2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/16/2024] [Indexed: 04/19/2024] Open
Abstract
The CRISPR/Cas9 system is a simpler and more versatile method compared to other engineered nucleases such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), and since its discovery, the efficiency of CRISPR-based genome editing has increased to the point that multiple and different types of edits can be made simultaneously. These advances in gene editing have revolutionized biotechnology by enabling precise genome editing with greater simplicity and efficacy than ever before. This tool has been successfully applied to a wide range of animal species, including cattle, pigs, dogs, and other small animals. Engineered nucleases cut the genome at specific target positions, triggering the cell's mechanisms to repair the damage and introduce a mutation to a specific genomic site. This review discusses novel genome-based CRISPR/Cas9 editing tools, methods developed to improve efficiency and specificity, the use of gene-editing on animal models and translational medicine, and the main challenges and limitations of CRISPR-based gene-editing approaches.
Collapse
Affiliation(s)
- Clésio Gomes Mariano
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|
2
|
Hossein MS, Son YB, Jeong YW, Jeong YI, Kang MN, Choi EJ, Park KB, Bae YR, Kim DY, Hwang WS. Production of transgenic first filial puppies expressing mutated human amyloid precursor protein gene. Front Vet Sci 2023; 10:1227202. [PMID: 37964915 PMCID: PMC10642565 DOI: 10.3389/fvets.2023.1227202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Propagation of transgenic animals by germline transmission using assisted reproductive technologies such as in vitro fertilization (IVF) is the most efficient way to produce transgenic colonies for biomedical research. The objective of this study was to generate transgenic puppies from a founder dog expressing the mutated human amyloid precursor protein (mhAPP) gene. Experiment I assessed the characteristics of the semen prepared by freshly diluted, swim-up, and Percoll gradient methods using a computer-assisted semen analyzer (CASA). Motile and progressively motile sperm counts were higher in the Percoll gradient samples (p < 0.05) than in the swim-up and freshly diluted samples. In Experiment II, a total of 59, 70, and 65 presumptive zygotes produced by fresh, Percoll gradient, and swim-up methods, respectively, were transferred to surrogates (5 for each group); the Percoll gradient (27.27%) and swim-up samples (14.29%) showed the highest blastocyst formation rates, while fresh diluted semen did not produce any blastocyst. Experiment III examined the full-term developmental ability of embryos. Among the 5 surrogates in the Percoll gradient group, one (20.0%) became pregnant; it had 4 (6.15%) sacs and delivered 4 (6.15%; 2 males and 2 females) live puppies. Among the 4 puppies, 2 (50.0%) were found to transmit the transgene on their nail and toe under GFP fluorescence. Furthermore, the integration and expression of the mhAPP transgene were examined in the umbilical cords of all the IVF-derived puppies, and the presence of the transgene was only observed in the GFP-positive puppies. Thus, semen prepared by the Percoll method could generate transgenic puppies by male germline transmission using the IVF technique. Our result will help propagate transgenic dogs efficiently, which will foster human biomedical research.
Collapse
Affiliation(s)
| | - Young-Bum Son
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeon Woo Jeong
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Companion Animal and Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeon Ik Jeong
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Mi Na Kang
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Eun Ji Choi
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Kang Bae Park
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Yu Ra Bae
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Dae Young Kim
- Department of Life Science, College of Bio-nano Technology, Gachon University, Seongnam, Republic of Korea
| | - Woo Suk Hwang
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Biology, North-Eastern Federal University, Yakutsk, Russia
| |
Collapse
|
3
|
Montoliu L. Transgenesis and Genome Engineering: A Historical Review. Methods Mol Biol 2023; 2631:1-32. [PMID: 36995662 DOI: 10.1007/978-1-0716-2990-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our ability to modify DNA molecules and to introduce them into mammalian cells or embryos almost appears in parallel, starting from the 1970s of the last century. Genetic engineering techniques rapidly developed between 1970 and 1980. In contrast, robust procedures to microinject or introduce DNA constructs into individuals did not take off until 1980 and evolved during the following two decades. For some years, it was only possible to add transgenes, de novo, of different formats, including artificial chromosomes, in a variety of vertebrate species or to introduce specific mutations essentially in mice, thanks to the gene-targeting methods by homologous recombination approaches using mouse embryonic stem (ES) cells. Eventually, genome-editing tools brought the possibility to add or inactivate DNA sequences, at specific sites, at will, irrespective of the animal species involved. Together with a variety of additional techniques, this chapter will summarize the milestones in the transgenesis and genome engineering fields from the 1970s to date.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Montoliu L. Historical DNA Manipulation Overview. Methods Mol Biol 2022; 2495:3-28. [PMID: 35696025 DOI: 10.1007/978-1-0716-2301-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The history of DNA manipulation for the creation of genetically modified animals began in the 1970s, using viruses as the first DNA molecules microinjected into mouse embryos at different preimplantation stages. Subsequently, simple DNA plasmids were used to microinject into the pronuclei of fertilized mouse oocytes and that method became the reference for many years. The isolation of embryonic stem cells together with advances in genetics allowed the generation of gene-specific knockout mice, later on improved with conditional mutations. Cloning procedures expanded the gene inactivation to livestock and other non-model mammalian species. Lentiviruses, artificial chromosomes, and intracytoplasmic sperm injections expanded the toolbox for DNA manipulation. The last chapter of this short but intense history belongs to programmable nucleases, particularly CRISPR-Cas systems, triggering the development of genomic-editing techniques, the current revolution we are living in.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
Singh P, Ali SA. Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals. Vet Sci 2021; 8:122. [PMID: 34209174 PMCID: PMC8309983 DOI: 10.3390/vetsci8070122] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.
Collapse
Affiliation(s)
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India;
| |
Collapse
|
6
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
7
|
Watanabe S, Sakurai T, Nakamura S, Miyoshi K, Sato M. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones. Int J Mol Sci 2018; 19:E1075. [PMID: 29617297 PMCID: PMC5979347 DOI: 10.3390/ijms19041075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA), humanized Cas9 (hCas9) gene, or Clostridium perfringens-derived endo-β-galactosidase C (EndoGalC) gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B₄ lectin (IB4). Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP) for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO) clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO) cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were targeted to be knocked out. Our results indicate that a combination of the CRISPR/Cas9 system and targeted toxin technology using IB4SAP allows efficient enrichment of genome-edited clones, particularly bi-allelic KO clones.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Animal Genome Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan.
| | - Takayuki Sakurai
- Basic Research Division for Next-Generation Disease Models and Fundamental Technology, Research Center for Next Generation Medicine, Shinshu University, Nagano 390-8621, Japan.
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan.
| | - Kazuchika Miyoshi
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan.
| |
Collapse
|
8
|
Polejaeva IA, Rutigliano HM, Wells KD. Livestock in biomedical research: history, current status and future prospective. Reprod Fertil Dev 2017; 28:112-24. [PMID: 27062879 DOI: 10.1071/rd15343] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.
Collapse
Affiliation(s)
- Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Kevin D Wells
- Division of Animal Sciences, Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Pluripotent stem cells and livestock genetic engineering. Transgenic Res 2016; 25:289-306. [PMID: 26894405 DOI: 10.1007/s11248-016-9929-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
Collapse
|
10
|
Loi P, Czernik M, Zacchini F, Iuso D, Scapolo PA, Ptak G. Sheep: the first large animal model in nuclear transfer research. Cell Reprogram 2013; 15:367-73. [PMID: 24033140 DOI: 10.1089/cell.2013.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The scope of this article is not to provide an exhaustive review of nuclear transfer research, because many authoritative reviews exist on the biological issues related to somatic and embryonic cell nuclear transfer. We shall instead provide an overview on the work done specifically on sheep and the value of this work on the greater nuclear transfer landscape.
Collapse
Affiliation(s)
- Pasqualino Loi
- Department of Comparative Biomedical Sciences, University of Teramo , Teramo, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Akagi S, Geshi M, Nagai T. Recent progress in bovine somatic cell nuclear transfer. Anim Sci J 2013; 84:191-9. [PMID: 23480698 DOI: 10.1111/asj.12035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/02/2012] [Indexed: 11/30/2022]
Abstract
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full-term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.
Collapse
Affiliation(s)
- Satoshi Akagi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Japan.
| | | | | |
Collapse
|
12
|
Amiri Yekta A, Dalman A, Eftekhari-Yazdi P, Sanati MH, Shahverdi AH, Fakheri R, Vazirinasab H, Daneshzadeh MT, Vojgani M, Zomorodipour A, Fatemi N, Vahabi Z, Mirshahvaladi S, Ataei F, Bahraminejad E, Masoudi N, Rezazadeh Valojerdi M, Gourabi H. Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Res 2012; 22:131-42. [PMID: 22869287 DOI: 10.1007/s11248-012-9634-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 07/02/2012] [Indexed: 11/24/2022]
Abstract
There are growing numbers of recombinant proteins that have been expressed in milk. Thus one can consider the placement of any gene of interest under the control of the regulatory elements of a milk protein gene in a dairy farm animal. Among the transgene introducing techniques, only nuclear transfer (NT) allows 100 % efficiency and bypasses the mosaicism associated with counterpart techniques. In this study, in an attempt to produce a transgenic goat carrying the human coagulation factor IX (hFIX) transgene, goat fetal fibroblasts were electroporated with a linearized marker-free construct in which the transgene was juxtaposed to β-casein promoter designed to secret the recombinant protein in goat milk. Two different lines of transfected cells were used as donors for NT to enucleated oocytes. Two transgenic goats were liveborn. DNA sequencing of the corresponding transgene locus confirmed authenticity of the cloning procedure and the complementary experiments on the whey demonstrated expression of human factor IX in the milk of transgenic goats. In conclusion, our study has provided the groundwork for a prosperous and promising approach for large-scale production and therapeutic application of hFIX expressed in transgenic goats.
Collapse
Affiliation(s)
- Amir Amiri Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, 12 Hafez St, Banihashem St, Resalat St, PO Box 19395-4644, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Malaver-Ortega LF, Sumer H, Liu J, Verma PJ. The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology 2012; 78:1749-62. [PMID: 22578625 DOI: 10.1016/j.theriogenology.2012.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/21/2022]
Abstract
Since the successful isolation, characterization and long-term culture of embryonic stem cells (ESCs) from mice in the early 1980s and from humans a decade later, considerable effort has been made to establish ESCs lines from livestock. The derivation of validated ESCs lines is a necessary step if the generation of economically relevant transgenic animals is to be achieved. However, this is still elusive, as the isolation of true ESCs lines for livestock has not been accomplished to date. It has been demonstrated that by forced expression of a defined set of transcription factors, it is possible to reprogram somatic cells to cells that closely resemble an ES-like state. These cells were termed induced pluripotent stem cells (iPSCs). We introduce the basic concepts relating to stem cell biology and give an overview of the various attempts to isolate and generate pluripotent stem cells (PSCs) from species relevant to livestock production. Further, we point out the issues to be addressed and hurdles to be overcome to realize the promise of stem cells in agriculture.
Collapse
|
14
|
Wang H, Zhang J, Zhao M, Zhang X, Sun Q, Chen D. Production and health assessment of second-generation cloned Holstein cows derived by somatic cell nuclear transfer. Anim Reprod Sci 2011; 126:11-8. [DOI: 10.1016/j.anireprosci.2011.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
15
|
Gock H, Nottle M, Lew AM, d'Apice AJ, Cowan P. Genetic modification of pigs for solid organ xenotransplantation. Transplant Rev (Orlando) 2011; 25:9-20. [DOI: 10.1016/j.trre.2010.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/13/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
|
16
|
Isolation of Transfected Adult Fibroblast Clones and SCNT Embryo Research*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Laible G, Alonso-González L. Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol J 2009; 4:1278-92. [PMID: 19606430 DOI: 10.1002/biot.200900006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of methods for cell-mediated transgenesis, based on somatic cell nuclear transfer, provides a tremendous opportunity to shape the genetic make-up of livestock animals in a much more directed approach than traditional animal breeding and selection schemes. Progress in the site-directed modulation of livestock genomes is currently limited by the low efficiencies of gene targeting imposed by the low frequency of homologous recombination and limited proliferative capacity of primary somatic cells that are used to produce transgenic animals. Here we review the current state of the art in the field, discuss the crucial aspects of the methodology and provide an overview of emerging approaches to increase the efficiency of gene targeting in somatic cells.
Collapse
Affiliation(s)
- Götz Laible
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand.
| | | |
Collapse
|
18
|
Wang J, Yang P, Tang B, Sun X, Zhang R, Guo C, Gong G, Liu Y, Li R, Zhang L, Dai Y, Li N. Expression and Characterization of Bioactive Recombinant Human α-Lactalbumin in the Milk of Transgenic Cloned Cows. J Dairy Sci 2008; 91:4466-76. [DOI: 10.3168/jds.2008-1189] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Nakayama A, Sato M, Shinohara M, Matsubara S, Yokomine T, Akasaka E, Yoshida M, Takao S. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system. CLONING AND STEM CELLS 2008; 9:523-34. [PMID: 18154513 DOI: 10.1089/clo.2007.0021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Porcine embryonic fibroblasts (PEF) are important as donor cells for nuclear transfer for generation of genetically modified pigs. In this study, we determined an optimal protocol for transfection of PEF with the Amaxa Nucleofection system, which directly transfers DNA into the nucleus of cells, and compared its efficiency with conventional lipofection and electroporation. Cell survival and transfection efficiency were assessed using dye-exclusion assay and a green fluorescent protein (GFP) reporter construct, respectively. Our optimized nucleofection parameters yielded survival rates above 60%. Under these conditions, FACS analysis demonstrated that 79% of surviving cells exhibited transgene expression 48 h after nucleofection when program U23 was used. This efficiency was higher than that of transfection of PEFs with electroporation (ca. 3-53%) or lipofection (ca. 3-8%). Transfected cells could be expanded as stably transgene-expressing clones over a month. When porcine nuclear transfer (NT) was performed using stable transformant expressing GFP as a donor cell, 5-6% of reconstituted embryos developed to blastocysts, from which 30-50% of embryos exhibited NT-embryo-derived green fluorescence. Under the conditions evaluated, nucleofection exhibited higher efficiency than conventional electroporation and lipofection, and may be a useful alternative for generation of genetically engineered pigs through nuclear transfer.
Collapse
Affiliation(s)
- Asuka Nakayama
- Laboratory of Frontier Medicine, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Akagi S, Kaneyama K, Adachi N, Tsuneishi B, Matsukawa K, Watanabe S, Kubo M, Takahashi S. Bovine Nuclear Transfer Using Fresh Cumulus Cell Nuclei andIn Vivo- orIn Vitro-Matured Cytoplasts. CLONING AND STEM CELLS 2008; 10:173-80. [DOI: 10.1089/clo.2007.0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Satoshi Akagi
- Reproductive Biology and Technology Research Team, National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| | - Kanako Kaneyama
- National Livestock Breeding Center, Nishigo-mura, Fukushima 961-8511, Japan
| | - Noritaka Adachi
- Ibaraki Livestock Research Center, Ishioka, Ibaraki 315-0132, Japan
| | - Boutaro Tsuneishi
- Kochi Prefectual Livestock Experiment Station, Takaoka-gun, Kochi 789-1233, Japan
| | - Kazutsugu Matsukawa
- Reproductive Biology and Technology Research Team, National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| | - Shinya Watanabe
- Reproductive Biology and Technology Research Team, National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| | - Masanori Kubo
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Seiya Takahashi
- Reproductive Biology and Technology Research Team, National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
21
|
Melo EO, Canavessi AMO, Franco MM, Rumpf R. Animal transgenesis: state of the art and applications. J Appl Genet 2007; 48:47-61. [PMID: 17272861 DOI: 10.1007/bf03194657] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is a constant expectation for fast improvement of livestock production and human health care products. The advent of DNA recombinant technology and the possibility of gene transfer between organisms of distinct species, or even distinct phylogenic kingdoms, has opened a wide range of possibilities. Nowadays we can produce human insulin in bacteria or human coagulation factors in cattle milk. The recent advances in gene transfer, animal cloning, and assisted reproductive techniques have partly fulfilled the expectation in the field of livestock transgenesis. This paper reviews the recent advances and applications of transgenesis in livestock and their derivative products. At first, the state of art and the techniques that enhance the efficiency of livestock transgenesis are presented. The consequent reduction in the cost and time necessary to reach a final product has enabled the multiplication of transgenic prototypes around the world. We also analyze here some emerging applications of livestock transgenesis in the field of pharmacology, meat and dairy industry, xenotransplantation, and human disease modeling. Finally, some bioethical and commercial concerns raised by the transgenesis applications are discussed.
Collapse
Affiliation(s)
- Eduardo O Melo
- EMBRAPA Genetic Resources and Biotechnology, Av. W/5, Norte Final, PBI, Sala 7B, Brasilia, DF, Brazil, CEP 70770-900.
| | | | | | | |
Collapse
|
22
|
Shen W, Lan G, Yang X, Li L, Min L, Yang Z, Tian L, Wu X, Sun Y, Chen H, Tan J, Deng J, Pan Q. Targeting the exogenoushtPAm gene on goat somatic cellbeta-casein locus for transgenic goat production. Mol Reprod Dev 2007; 74:428-34. [PMID: 16998796 DOI: 10.1002/mrd.20595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Combining gene targeting of animal somatic cells with nuclear transfer technique has provided a powerful method to produce transgenic animal mammary gland bioreactor. The objective of this study is to make an efficient and reproducible gene targeting in goat fetal fibroblasts by inserting the exogenous htPAm cDNA into the beta-casein locus with liposomes or electroporation so that htPAm protein might be produced in gene-targeted goat mammary gland. By gene-targeting technique, the exogenous htPAm gene was inserted to milk goat beta-casein gene sequences. Fetal fibroblasts were isolated from Day 35 fetuses of Guanzhong milk goats, and transfected with linear gene-targeting vector pGBC4htPAm using Lipefectamin-2000 and electoporation, respectively. Forty-eight gene-targeted cell colonies with homologous recombination were obtained, and three cell colonies were verified by DNA sequence analysis within the homologous recombination region. Using gene-targeted cell lines as donor cells for nuclear transfer, a total of 600 reconstructed embryos had been obtained, and 146 developed cloned embryos were transferred to 16 recipient goats, and finally three goats showed pregnancy at Day 90.
Collapse
Affiliation(s)
- Wei Shen
- Department of Animal Sciences, Institute of Animal Reproduction, Development and Genetic Engineering, Laiyang Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu JN, Ma SF, Miao DQ, Tan XW, Liu XY, Lu JH, Tan JH. Effects of Cell Cycle Status on the Efficiency of Liposome-mediated Gene Transfection in Mouse Fetal Fibroblasts. J Reprod Dev 2006; 52:373-82. [PMID: 16518081 DOI: 10.1262/jrd.17097] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methods for cell cycle synchronization of mouse fetal fibroblast cells (MFFCs) were first selected and optimized. When MFFCs were cooled at 5 C for different periods of time, the highest percentage of cells at the G0/G1 phase (75.4+/-2.9%), with 3.5+/-0.3% of apoptotic cells, was achieved after 5 h of treatment. Extended cooling increased the number of apoptotic cells significantly. When MFFCs were treated with different concentrations of roscovitine (ROS) for different periods of time, the highest percentage of G0/G1 cells (83.5+/-1.8%), with 9.2+/-0.6% apoptotic cells, was obtained after exposure to 10 microM ROS for 24 h. When the cells were cooled at 5 C for 5 h followed by incubation in 10 microM ROS for 12 h, 83.6+/-1.9% were synchronized at the G0/G1 stage, with 3.6% undergoing apoptosis. Cell cycle progression was then observed after release of the MFFCs from different synchronization blocks. The highest percentages of S and G2/M cells (81% and 75%) were achieved at 12 and 20 h, respectively, after release of the MFFCs from the cooling plus ROS treatment, and these percentages were significantly higher than those obtained after release from the cooling or ROS alone blocks. Finally, MFFCs were transfected with pEGFP-N1 plasmid at the peak of the G0/G1, S, and G2/M phases, respectively, after release from the different blocks and both the transient and stable transfection efficiencies were determined. The GFP gene expression was greatly enhanced when transfection was performed at the time when most cells were at the G2/M stage after release from cooling, ROS alone, and cooling plus ROS treatments. Statistical analysis revealed a close correlation between the rate of G2/M cells and the transient and stable GFP gene expression efficiencies. Together, the results indicated that (a) the best protocol for cell cycle synchronization of MFFCs was a 5-h cooling at 5 C followed by incubation in 10 microM ROS for 12 h which produced both a high rate of synchronization in the G0/G1 phase with acceptable apoptosis and a high rate of G2/M cells after release; and (b) that the cell cycle status had marked effects on the efficiency of liposome-mediated transfection in MFFCs, with the highest transfection efficiency obtained in cells at the G2/M stage.
Collapse
Affiliation(s)
- Jian-Ning Yu
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Jeon HY, Hyun SH, Lee GS, Kim HS, Kim S, Jeong YW, Kang SK, Lee BC, Han JY, Ahn C, Hwang WS. The analysis of telomere length and telomerase activity in cloned pigs and cows. Mol Reprod Dev 2005; 71:315-20. [PMID: 15806556 DOI: 10.1002/mrd.20279] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inefficiency in the production of cloned animals is most likely due to epigenetic reprogramming errors after somatic cell nuclear transfer (SCNT). In order to investigate whether nuclear reprogramming restores cellular age of donor cells after SCNT, we measured telomere length and telomerase activity in cloned pigs and cattle. In normal pigs and cattle, the mean telomere length was decreased with biological aging. In cloned or transgenic cloned piglets, the mean telomere length was elongated compared to nuclear donor fetal fibroblasts and age-matched normal piglets. In cloned cattle, no increases in mean telomere length were observed compared to nuclear donor adult fibroblasts. In terms of telomerase activity, significant activity was observed in nuclear donor cells and normal tissues from adult or new-born pigs and cattle, with relatively higher activity in the porcine tissues compared to the bovine tissues. Cloned calves and piglets showed the same level of telomerase activity as their respective donor cells. In addition, no difference in telomerase activity was observed between normal and transgenic cloned piglets. However, increased telomerase activity was observed in porcine SCNT blastocysts compared to nuclear donor cells and in vitro fertilization (IVF)-derived blastocysts, suggesting that the elongation of telomere lengths observed in cloned piglets could be due to the presence of higher telomerase activity in SCNT blastocysts. In conclusion, gathering from the comparative studies with cattle, we were able to demonstrate that telomere length in cloned piglets was rebuilt or elongated with the use of cultured donor fetal fibroblasts.
Collapse
Affiliation(s)
- H Y Jeon
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cervera RP, Garcia-Ximénez F. Subzonal Older Adult Fibroblast Insertion in Both In Vivo–Fertilized and Nuclear Transfer Rabbit Zygotes and Embryos: Effects on Further In Vitro Embryo Development. CLONING AND STEM CELLS 2004; 6:315-26. [PMID: 15671676 DOI: 10.1089/clo.2004.6.315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present work, we evaluated the effect on further in vitro embryo development of inserting rabbit adult fibroblasts into in vivo-fertilized rabbit embryos. To this end, we inserted either 4 or 15-20 rabbit adult fibroblasts in two different early embryo stages of development, 1-cell stage and 4-8-cell stage embryos. We observed that fibroblast insertion not only did not negatively affect further embryo development, but also may have exerted a positive effect on development on it. Therefore, in forthcoming works were where we intend to study a possible cell helper role on early embryo development. The early embryo microenvironment may reprogram somatic cell gene expression of fibroblasts inserted within the embryo, making them suitable as nuclear donors.
Collapse
Affiliation(s)
- R P Cervera
- Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Camino de Vera 14, 46071 Valencia, Spain.
| | | |
Collapse
|
26
|
Wang B, Zhou J. Specific genetic modifications of domestic animals by gene targeting and animal cloning. Reprod Biol Endocrinol 2003; 1:103. [PMID: 14614774 PMCID: PMC305327 DOI: 10.1186/1477-7827-1-103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 11/13/2003] [Indexed: 11/10/2022] Open
Abstract
The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.
Collapse
Affiliation(s)
- Bin Wang
- Nexia Biotechnologies Inc., 1000, Ave. St-Charles, Vaudreuil Dorion, Quebec, Canada, J7V 8P5
| | - Jiangfeng Zhou
- Neumain Inc., 170B, Ronald Drive, Montreal West, Quebec, Canada, H4X 1M8
| |
Collapse
|
27
|
Tian XC, Kubota C, Enright B, Yang X. Cloning animals by somatic cell nuclear transfer--biological factors. Reprod Biol Endocrinol 2003; 1:98. [PMID: 14614770 PMCID: PMC521203 DOI: 10.1186/1477-7827-1-98] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 11/13/2003] [Indexed: 01/25/2023] Open
Abstract
Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other species, this review will be focused on somatic cell cloning of cattle.
Collapse
Affiliation(s)
- X Cindy Tian
- Center for Regenerative Biology/Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269-4243, USA
| | - Chikara Kubota
- Kagoshima Prefectural Cattle Breeding and Genetic Institute, Kagoshima, Japan
| | - Brian Enright
- Center for Regenerative Biology/Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269-4243, USA
| | - Xiangzhong Yang
- Center for Regenerative Biology/Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269-4243, USA
- Evergen Biotechnologies, Inc. Incubator Program at the University of Connecticut, 1392 Storrs Road, Storrs, CT06269-USA
| |
Collapse
|
28
|
Hodges CA, Stice SL. Generation of bovine transgenics using somatic cell nuclear transfer. Reprod Biol Endocrinol 2003; 1:81. [PMID: 14613543 PMCID: PMC280725 DOI: 10.1186/1477-7827-1-81] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 11/07/2003] [Indexed: 01/05/2023] Open
Abstract
The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This review summarizes the benefits of using somatic cell nuclear transfer to create bovine transgenics as well as the possible opportunities this method creates for the future.
Collapse
Affiliation(s)
- Craig A Hodges
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Steven L Stice
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
29
|
Hyun S, Lee G, Kim D, Kim H, Lee S, Nam D, Jeong Y, Kim S, Yeom S, Kang S, Han J, Lee B, Hwang W. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol Reprod 2003; 69:1060-8. [PMID: 12773429 DOI: 10.1095/biolreprod.102.014886] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A system for somatic cell nuclear transfer (SCNT) was developed and led to the successful production of GFP-transfected piglets. In experiment 1, two groups of SCNT couplets reconstructed with porcine fetal fibroblasts (PFF) and enucleated sow (S) or gilt oocytes (G): 1). received a simultaneous electrical fusion/activation (S-EFA or G-EFA groups), or 2). were electrically fused followed by activation with ionomycin (S-EFIA or G-EFIA groups), or 3). were subjected to electrical fusion and subsequent activation by ionomycin, followed by 6-dimethylaminopurine treatment (S-EFIAD or G-EFIAD groups). The frequency of blastocyst formation was significantly higher in S-EFA (26%) compared with that observed in the other experimental groups (P < 0.05), but not with S-EFIA (23%). Sow oocytes yielded significantly higher cleavage frequencies (68%-69%) and total cell numbers of blastocysts when compared with gilt oocytes, regardless of fusion/activation methods (P < 0.05). However, the ratio of inner cell mass (ICM)/total cells in G-EFA and S-EFA was significantly lower than in the other groups (P < 0.05). In experiment 2, SCNT couplets reconstructed with PFF cultured in the presence or absence of serum and enucleated sow oocytes were subjected to EFA. There were no effects of serum starvation on cell-cycle synchronization, developmental competence, total cell numbers, and ratio of ICM/total cells. In experiment 3, SCNT couplets reconstructed with PFF transfected with an enhanced green fluorescence protein (EGFP) gene using FuGENE-6 and enucleated sow oocytes were subjected to EFA and cultured for 7 days. Expression frequencies of GFP gene during development were 100%, 78%, 72%, 71%, and 70% in fused, two-cell, four to eight cells, morulae, and blastocysts, respectively. In experiment 4, SCNT embryos derived from different recipient cytoplasts (sows or gilts) and donor karyoplasts (PFF or GFP-transfected) were subjected to EFA and transferred to the oviducts of surrogates. The pregnancy rates in SCNT embryos derived from sow oocytes (66%-69%) were higher than those with gilt oocytes (23%-27%) regardless of donor cell types. One live offspring from GFP-SCNT embryos and two from PFF-SCNT embryos were delivered. Microsatellite analysis confirmed that the clones were genetically identical to the donor cells and polymerase chain reaction (PCR) from genomic DNA of cloned piglets and subsequent southern blot analysis confirmed the integration of EGFP gene into chromosomes.
Collapse
Affiliation(s)
- Sanghwan Hyun
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
OHKOSHI K, TAKAHASHI S, KOYAMA SI, AKAGI S, ADACHI N, FURUSAWA T, FUJIMOTO JI, IZAIKE Y, TOKUNAGA T. Caprine somatic cell nuclear transfer using in vivo matured oocytes collected by laparoscopic follicular aspiration. Anim Sci J 2003. [DOI: 10.1046/j.1344-3941.2003.00116.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Wan QH, Qian KX, Fang SG. A simple DNA extraction and rapid specific identification technique for single cells and early embryos of two breeds of Bos taurus. Anim Reprod Sci 2003; 77:1-9. [PMID: 12654523 DOI: 10.1016/s0378-4320(02)00249-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the process of nuclear transfer (NT), different cytoplasm from a donor cell and a recipient oocyte are mixed. However, it is unclear what effect the donor cytoplasm has upon the dedifferentiation of donor nuclei in enucleated ooplasm and upon subsequent production of live cloned offspring. Mitochondria are component parts of cytoplasm so the detection of mitochondrial DNA is helpful to reveal changes of donor cytoplasm in the NT reconstructed embryos. In this study, the experiments were designed to develop efficient DNA extraction techniques and specific primer pairs for mitochondrial DNA of Holstein and Chinese Yellow breeds in order to identify the changes of donor cytoplasm in early stage embryos. Firstly, by adding Triton X-100 and Taq DNA polymerase reaction buffer to the DNA extraction mixture, DNA was rapidly isolated from single diploid cells, single oocytes, early stage embryos and from single hairs. Secondly, two specific primer pairs for the two breeds were designed to detect the cytoplasmic DNA in a different amount of single cells and in early stage embryos. The results show that two specific fragments were successfully amplified from single somatic cells, single oocytes, parthenogenetic embryos and from NT reconstructed embryos. As a result, the techniques provide a powerful tool for studying the developmental mechanism in NT reconstructed embryos.
Collapse
Affiliation(s)
- Qiu-Hong Wan
- The Key Laboratory of Conservation Genetic and Reproductive Biology for Endangered Wild Animals of the Ministry of Education, Hangzhou 310029, PR China
| | | | | |
Collapse
|
32
|
Grazul-Bilska AT, Choi JT, Bilski JJ, Weigl RM, Kirsch JD, Kraft KC, Reynolds LP, Redmer DA. Effects of epidermal growth factor on early embryonic development after in vitro fertilization of oocytes collected from ewes treated with follicle stimulating hormone. Theriogenology 2003; 59:1449-57. [PMID: 12527091 DOI: 10.1016/s0093-691x(02)01192-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epidermal growth factor (EGF) has been shown to enhance the in vitro rate of blastocyst formation in several species. Follicular development was induced in ewes (n=15) by twice daily administration of FSH-P on Days 13 and 14 of the estrous cycle. Cumulus oocyte complexes (COCs) were collected from all visible follicles (n=25+/-2.4/ewe) on Day 15. COCs from each ewe were cultured separately for 24h in maturation medium (containing 10% serum, LH, FSH and estradiol) with (8.2+/-0.9 per ewe) or without (7.8+/-0.8 per ewe) EGF (10 ng/ml). Oocytes were then denuded by hyaluronidase treatment, and healthy oocytes were cultured in the presence of frozen-thawed semen in synthetic oviductal fluid (SOF) medium containing 2% sheep serum. After 18-20 h, zygotes were transferred to SOF medium without glucose and cultured for about 36 h until they reached the 4-8 cell stage. Embryos were transferred to SOF medium with glucose for further development. Medium was changed every other day until blastocyst formation on Day 8 of culture (Day 1=day of fertilization). The rate of embryonic development was evaluated throughout the culture period. After maturation, cumulus cells were more expanded in the presence than in the absence of EGF. The rates of fertilization (overall 75.7+/-3.9%) and morula formation (overall 40.6+/-7.1%) were similar (P>0.05) for COCs cultured with or without EGF. However, EGF increased (P<0.01) the number of blastocysts (1.4+/-0.1 versus 0.6+/-0.2 per ewe) and tended to increase (P<0.1) the rate of blastocyst formation (21.0+/-6.6% versus 13.4+/-4.3% per ewe). These data demonstrate that EGF increases blastocyst formation in FSH-treated ewes. Therefore, EGF is recommended as a supplement to maturation medium to enhance embryonic development in vitro in FSH-treated sheep.
Collapse
Affiliation(s)
- A T Grazul-Bilska
- Department of Animal and Range Sciences, North Dakota State University, Fargo, ND, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Fertility has many components and stages which require that males and females be functionally capable of carrying out all critical stages if each generational reproductive cycle is to be completed. To accomplish this, the male must produce and ejaculate normal fertile sperm. The female must produce, store and ovulate normal fertilizable oocytes. Furthermore, the female must provide a reproductive system compatible with sperm transport, capacitation, and fertilization of the oocytes, embryo and fetal development, and finally birth of healthy young. Reproductive success or failure at several of these points can be estimated quantitatively on a population basis, and in a few situations on an individual basis. It is important that fertility estimates be determined accurately and with precision to be most useful to researchers and managers of animal enterprises. Many studies have underestimated the biological relationship of fertility to other traits because the estimates lacked precision. Many in vitro manipulations of sperm in artificial insemination, of gametes in various assisted reproductive technologies, and of embryos in embryo transfer are utilized in animal breeding programs. Accurate estimation of reproductive efficiency of these in vitro procedures also is important. Conditions surrounding different sets of fertility estimates almost certainly will be different. These conditions should be described as precisely as possible, and appropriate controls included in all experiments. When possible, experiments should be replicated over time and place to determine the repeatability of the various criteria used to estimate fertility and reproductive efficiency. Advances in genomic information and molecular biology should facilitate characterizing more fully inherent potential fertility of animals at birth. In vitro tests will improve, and automated techniques will facilitate making multiple determinations possible on a large scale. Reliability of fertility estimates will increase, with the potential for enhanced animal reproductive performance through more accurate selection, genetic engineering, and enlightened animal care. Simultaneously, it is important to recognize that prediction of future fertility is more hazardous than estimating fertility, as a completely new set of circumstances may occur which are not predictable. Because fertility estimation may be applied under a myriad of conditions, principles and factors affecting fertility will be emphasized in this review as being more useful than a compilation of numerical examples.
Collapse
Affiliation(s)
- Robert H Foote
- Department of Animal Science, Cornell University, Ithaca, NY 14853-4801, USA.
| |
Collapse
|
34
|
Hyun S, Lee B, Lee G, Lee E, Lim J, Kang S, Hwang W. Recruit of porcine oocytes excluded from nuclear transfer program for the production of embryos following parthenogenetic activation. J Vet Med Sci 2003; 65:51-6. [PMID: 12576704 DOI: 10.1292/jvms.65.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate whether oocytes excluded from somatic cell nuclear transfer (SCNT) could be utilized for embryo production by parthenogenetic activation (PA), porcine oocytes with poor morphology after maturation culture were excluded from SCNT and subsequently used for PA with different stimuli. In the first set of experiment, either electric pulse of different strengths (1.75, 2.0 or 2.25 kV/cm for 30 microsec each) or chemicals with different treatment durations [7% ethanol for 5 min followed by exposure to 6-dimethylaminopurine (6-DMAP) for 0, 2, 3 or 4 hr] was employed. Development to the 8-cell and morula stages was significantly (P<0.05) improved by electric stimulation of 2.0 kV/cm, while blastocyst formation was enhanced by chemical treatment of ethanol and 6-DMAP for 4 hr. Subsequently, oocytes were parthenogenetically activated by one of four stimuli; 1) optimal electric (2.0 kV/cm for 30 microsec), 2) optimal chemical (ethanol followed by 6-DMAP for 4 hr), 3) electric then chemical and 4) vice versa. On the other hand, oocytes with normal morphology were subjected to the same experimental treatments for the control. Regardless of oocyte type, a combination of electric and chemical stimulations did not further stimulate preimplantation development, compared with electric activation only. However, combinational treatment greatly increased the cell number of blastocysts in SCNT-excluded oocytes (21.9 to 22.9 vs. 16.9 cells/blastocyst), while such effect was not found in normal oocytes (22.2 to 23.3 cells/blastocyst). In conclusion, porcine oocytes excluded from SCNT still have a potential to develop blastocysts after PA and this might contribute to increasing the efficiency of SCNT for various purposes. A combined activation by electricity and chemical yielded the best rate of preimplantation development with increasing the quality of blastocyst.
Collapse
Affiliation(s)
- Sanghwan Hyun
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
AKAGI S, TAKAHASHI S, OHKOSHI K, TAKENOUCHI T, SHIMIZU M, GESHI M, ADACHI N, FUCHIMOTO DI, IZAIKE Y, ASO H. Nuclear transfer using a bovine mammary epithelial cell line (BMEC). Anim Sci J 2002. [DOI: 10.1046/j.1344-3941.2002.00064.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Abstract
The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.
Collapse
Affiliation(s)
- D P Wolf
- Division of Reproductive Sciences, Oregon Regional Primate Research Center, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
37
|
Wells T, Carter DA. Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy? J Neurosci Methods 2001; 108:111-30. [PMID: 11478971 DOI: 10.1016/s0165-0270(01)00391-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As mammalian genome projects move towards completion, the attention of molecular neuroscientists is currently moving away from gene identification towards both cell-specific gene expression patterns (neuronal transcriptions) and protein expression/interactions (neuronal proteomics). In the long term, attention will increasingly be directed towards experimental interventions which are able to question neuronal function in a sophisticated manner that is cognisant of both transcriptomic and proteomic organization. Central to this effort will be the application of a new generation of transgenic approaches which are now evolving towards an appropriate level of molecular, temporal and spatial resolution. In this review, we summarize recent developments in transgenesis, and show how they have been applied in the principal model species for neuroscience, namely rats and mice. Current concepts of transgene design are also considered together with an overview of new genetically-encoded tools including both cellular indicators such as fluorescent activity reporters, and cellular regulators such as dominant negative signalling factors. Application of these tools in a whole animal context can be used to question both basic concepts of brain function, and also current concepts of underlying dysfuction in neurological diseases.
Collapse
Affiliation(s)
- T Wells
- School of Biosciences, Cardiff University, PO Box 911, Museum Avenue, Cardiff CF10 3US, UK
| | | |
Collapse
|
38
|
Ohgane J, Wakayama T, Kogo Y, Senda S, Hattori N, Tanaka S, Yanagimachi R, Shiota K. DNA methylation variation in cloned mice. Genesis 2001; 30:45-50. [PMID: 11416862 DOI: 10.1002/gene.1031] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian cloning has been accomplished in several mammalian species by nuclear transfer. However, the production rate of cloned animals is quite low, and many cloned offspring die or show abnormal symptoms. A possible cause of the low success rate of cloning and abnormal symptoms in many cloned animals is the incomplete reestablishment of DNA methylation after nuclear transfer. We first analyzed tissue-specific methylation patterns in the placenta, skin, and kidney of normal B6D2F1 mice. There were seven spots/CpG islands (0.5% of the total CpG islands detected) methylated differently in the three different tissues examined. In the placenta and skin of two cloned fetuses, a total of four CpG islands were aberrantly methylated or unmethylated. Interestingly, three of these four loci corresponded to the tissue-specific loci in the normal control fetuses. The extent of aberrant methylation of genomic DNA varied between the cloned animals. In cloned animals, aberrant methylation occurred mainly at tissue-specific methylated loci. Individual cloned animals have different methylation aberrations. In other words, cloned animals are by no means perfect copies of the original animals as far as the methylation status of genomic DNA is concerned.
Collapse
Affiliation(s)
- J Ohgane
- Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fulka J, Loi P, Ledda S, Moor RM, Fulka J. Nucleus transfer in mammals: how the oocyte cytoplasm modifies the transferred nucleus. Theriogenology 2001; 55:1373-80. [PMID: 11327690 DOI: 10.1016/s0093-691x(01)00488-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Successful development of clones depends on the reprogramming of transferred nuclei in enucleated oocytes. Thus far, oocytes are the only cells that can convert nuclei, which are already differentiated, into undifferentiated stages resembling pronuclei in freshly fertilized zygotes and that can then complete development of the reconstructed embryos. However, we still don't know exactly how the enucleated oocyte (cytoplast) secures this reprogramming. Oocytes exhibit a number of cytoplasmic activities that may be involved reprogramming. We discuss how these activities may be involved in reprogramming of transferred nuclei.
Collapse
Affiliation(s)
- J Fulka
- Institute of Animal Production, ISCARE IVF and Center for Cell Therapy and Tissue Repair, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
40
|
Keefer CL, Baldassarre H, Keyston R, Wang B, Bhatia B, Bilodeau AS, Zhou JF, Leduc M, Downey BR, Lazaris A, Karatzas CN. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol Reprod 2001; 64:849-56. [PMID: 11207200 DOI: 10.1095/biolreprod64.3.849] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The developmental potential of caprine fetal fibroblast nuclei after in vitro transfection and nuclear transfer (NT) into enucleated, in vitro-matured oocytes was evaluated. Fetal fibroblasts were isolated from Day 27 to Day 30 fetuses from a dwarf breed of goat (BELE: breed early lactate early). Cells were transfected with constructs containing the enhanced green fluorescent protein (eGFP) and neomycin resistance genes and were selected with G418. Three eGFP lines and one nontransfected line were used as donor cells in NT. Donor cells were cultured in Dulbecco minimum Eagle medium plus 0.5% fetal calf serum for 4-8 days prior to use in NT. Immature oocytes were recovered by laparoscopic ovum pick-up and matured for 24 h prior to enucleation and NT. Reconstructed embryos were transferred as cleaved embryos into synchronized recipients. A total of 27 embryos derived from transgenic cells and 70 embryos derived from nontransgenic cells were transferred into 13 recipients. Five recipients (38%) were confirmed pregnant at Day 35 by ultrasound. Of these, four recipients delivered five male kids (7.1% of embryos transferred) derived from the nontransfected line. One recipient delivered a female kid derived from an eGFP line (7.7% of embryos transferred for that cell line). Presence of the eGFP transgene was confirmed by polymerase chain reaction, Southern blotting, and fluorescent in situ hybridization analyses. Nuclear transfer derivation from the donor cells was confirmed by single-strand confirmation polymorphism analysis. These results demonstrate that both in vitro-transfected and nontransfected caprine fetal fibroblasts can direct full-term development following NT.
Collapse
Affiliation(s)
- C L Keefer
- Nexia Biotechnologies Inc., Ste Anne de Bellevue, Quebec, Canada H9X 3R2.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
While the technique of homologous recombination, or gene targeting, has led to the generation of transgenic mice of great value to biomedical research, similar approaches are only being developed in other species. With the exception of recent reports on the generation of gene-targeted sheep, the technology in domestic animals is still in its infancy (45). The development of techniques for generating large animals with deleted or modified genes will result in the generation of animals of great value to society. While the technical difficulties to achieve gene targeting in domestic species are significant, they are not insurmountable. Potential applications in both the bovine and porcine species are described with particular emphasis on the generation of cattle resistant to bovine spongiform encephalopathy (BSE) and pigs that can be of use in xenotransplantation.
Collapse
Affiliation(s)
- J A Piedrahita
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station 77843, USA
| |
Collapse
|