1
|
Sun X, Dong Y, Liu Y, Song N, Li F, Yang D. Self-assembly of artificial architectures in living cells — design and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomater 2016; 41:1-16. [PMID: 27265153 DOI: 10.1016/j.actbio.2016.06.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Nanoparticles (NPs) are playing a progressively more significant role in multimodal and multifunctional molecular imaging. The agents like Superparamagnetic iron oxide (SPIO), manganese oxide (MnO), gold NPs/nanorods and quantum dots (QDs) possess specific properties like paramagnetism, superparamagnetism, surface plasmon resonance (SPR) and photoluminescence respectively. These specific properties make them able for single/multi-modal and single/multi-functional molecular imaging. NPs generally have nanomolar or micromolar sensitivity range and can be detected via imaging instrumentation. The distinctive characteristics of these NPs make them suitable for imaging, therapy and delivery of drugs. Multifunctional nanoparticles (MNPs) can be produced through either modification of shell or surface or by attaching an affinity ligand to the nanoparticles. They are utilized for targeted imaging by magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), photo acoustic imaging (PAI), two photon or fluorescent imaging and ultra sound etc. Toxicity factor of NPs is also a very important concern and toxic effect should be eliminated. First generation NPs have been designed, developed and tested in living subjects and few of them are already in clinical use. In near future, molecular imaging will get advanced with multimodality and multifunctionality to detect diseases like cancer, neurodegenerative diseases, cardiac diseases, inflammation, stroke, atherosclerosis and many others in their early stages. In the current review, we discussed single/multifunctional nanoparticles along with molecular imaging modalities. STATEMENT OF SIGNIFICANCE The present article intends to reveal recent avenues for nanomaterials in multimodal and multifunctional molecular imaging through a review of pertinent literatures. The topic emphasises on the distinctive characteristics of nanomaterial which makes them, suitable for biomedical imaging, therapy and delivery of drugs. This review is more informative of indicative technologies which will be helpful in a way to plan, understand and lead the nanotechnology related work.
Collapse
|
3
|
Key concepts in MR spectroscopy and practical approaches to gaining biochemical information in children. Pediatr Radiol 2016; 46:941-51. [PMID: 27233787 DOI: 10.1007/s00247-014-3204-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 10/21/2022]
Abstract
Magnetic resonance spectroscopy (MRS) provides independent biochemical information and has become an invaluable adjunct to MRI and other imaging modalities. This review introduces key concepts and presents basic methodological steps regarding the acquisition and the interpretation of proton MRS. We review major brain metabolites and discuss MRS dependence on age, location, echo time and field strength.
Collapse
|
4
|
Patel NR, McPhail MJW, Shariff MIF, Keun HC, Taylor-Robinson SD. Biofluid metabonomics using (1)H NMR spectroscopy: the road to biomarker discovery in gastroenterology and hepatology. Expert Rev Gastroenterol Hepatol 2012; 6:239-51. [PMID: 22375528 DOI: 10.1586/egh.12.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic profiling or 'metabonomics' is an investigatory method that allows metabolic changes associated with the presence of an underlying pathological process to be investigated. Various biofluids can be utilized in the process but urine, serum and fecal extract are most pertinent to the investigation of gastrointestinal and hepatological disease. Nuclear magnetic resonance spectroscopy-based metabonomic research has the potential to generate novel noninvasive diagnostic tests, based on biomarkers of disease, which are simple and cost effective yet retain high sensitivity and specificity characteristics. The process involves a number of key steps, including sample collection, data acquisition, chemometric techniques and, finally, validation. This technique-driven review aims to demystify the metabonomics pathway, while also illustrating the potential of this technique with recent examples of its application in hepato-gastroenterological disease.
Collapse
Affiliation(s)
- Neeral R Patel
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, 10th Floor, QEQM Wing, St Mary's Hospital Campus, Imperial College London, South Wharf Street, London, W2 1NY, UK
| | | | | | | | | |
Collapse
|
5
|
Arami H, Stephen Z, Veiseh O, Zhang M. Chitosan-Coated Iron Oxide Nanoparticles for Molecular Imaging and Drug Delivery. ADVANCES IN POLYMER SCIENCE 2011. [DOI: 10.1007/12_2011_121] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Chitosan-based systems for molecular imaging. Adv Drug Deliv Rev 2010; 62:42-58. [PMID: 19861142 DOI: 10.1016/j.addr.2009.09.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/18/2009] [Accepted: 09/29/2009] [Indexed: 11/24/2022]
Abstract
Molecular imaging enables the non-invasive assessment of biological and biochemical processes in living subjects. Such technologies therefore have the potential to enhance our understanding of disease and drug activity during preclinical and clinical drug development. Molecular imaging allows a repetitive and non-invasive study of the same living subject using identical or alternative biological imaging assays at different time points, thus harnessing the statistical power of longitudinal studies, and reducing the number of animals required and cost. Chitosan is a hydrophilic and non-antigenic biopolymer and has a low toxicity toward mammalian cells. Hence, it has great potential as a biomaterial because of its excellent biocompatibility. Conjugated to additional materials, chitosan composites result in a new class of biomaterials that possess mechanical, physicochemical and functional properties, which have potential for use in advanced biomedical imaging applications. The present review will discuss the strengths, limitations and challenges of molecular imaging as well as applications of chitosan nanoparticles in the field of molecular imaging.
Collapse
|
7
|
Kuhnt LA, Jennings RN, Brawner WR, Hathcock JT, Carreno AD, Johnson CM. Magnetic resonance imaging of radiation-induced thymic atrophy as a model for pathologic changes in acute feline immunodeficiency virus infection. J Feline Med Surg 2009; 11:977-84. [PMID: 19540785 PMCID: PMC11318762 DOI: 10.1016/j.jfms.2009.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2009] [Indexed: 01/26/2023]
Abstract
The development of a protocol to reproducibly induce thymic atrophy, as occurs in feline immunodeficiency virus (FIV) infection and other immunosuppressive diseases, and to consistently estimate thymic volume, provides a valuable tool in the search of innovative and novel therapeutic strategies. Magnetic resonance imaging (MRI) using the short tau inversion recovery (STIR) technique, with fat suppression properties, was determined to provide an optimized means of locating, defining, and quantitatively estimating thymus volume in young cats. Thymic atrophy was induced in four, 8-10-week-old kittens with a single, directed 500 cGy dose of 6 MV X-rays from a clinical linear accelerator, and sequential MR images of the cranial mediastinum were collected at 2, 7, 14, and 21 days post irradiation (PI). Irradiation induced a severe reduction in thymic volume, which was decreased, on average, to 47% that of normal, by 7 days PI. Histopathology confirmed marked, diffuse thymic atrophy, characterized by reduced thymic volume, decreased overall cellularity, increased apoptosis, histiocytosis, and reduced distinction of the corticomedullary junction, comparable to that seen in acute FIV infection. Beginning on day 7 PI, thymic volumes rebounded slightly and continued to increase over the following 14 days, regaining 3-35% of original volume. These findings demonstrate the feasibility and advantages of using this non-invasive, in vivo imaging technique to measure and evaluate changes in thymic volume in physiologic and experimental situations. All experimental protocols in this study were approved by the Institutional Animal Care and Use Committee (IACUC) at Auburn University.
Collapse
Affiliation(s)
- Leah A Kuhnt
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Mietchen D, Manz B, Volke F, Storey K. In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy. PLoS One 2008; 3:e3826. [PMID: 19057644 PMCID: PMC2586655 DOI: 10.1371/journal.pone.0003826] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/04/2008] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. METHODOLOGY Given that non-destructive techniques like (1)H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems--the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. RESULTS In vivo MR images were acquired from autumn-collected larvae at temperatures between 0 degrees C and about -70 degrees C and at spatial resolutions down to 27 microm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. CONCLUSIONS These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo.
Collapse
Affiliation(s)
- Daniel Mietchen
- Magnetic Resonance Group, Fraunhofer Institute for Biomedical Engineering, IBMT, St Ingbert, Germany.
| | | | | | | |
Collapse
|
9
|
Boesch C, Machann J, Vermathen P, Schick F. Role of proton MR for the study of muscle lipid metabolism. NMR IN BIOMEDICINE 2006; 19:968-88. [PMID: 17075965 DOI: 10.1002/nbm.1096] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
1H-MR spectroscopy (MRS) of intramyocellular lipids (IMCL) became particularly important when it was recognized that IMCL levels are related to insulin sensitivity. While this relation is rather complex and depends on the training status of the subjects, various other influences such as exercise and diet also influence IMCL concentrations. This may open insight into many metabolic interactions; however, it also requires careful planning of studies in order to control all these confounding influences. This review summarizes various historical, methodological, and practical aspects of 1H-MR spectroscopy (MRS) of muscular lipids. That includes a differentiation of bulk magnetic susceptibility effects and residual dipolar coupling that can both be observed in MRS of skeletal muscle, yet affecting different metabolites in a specific way. Fitting of the intra- (IMCL) and extramyocellular (EMCL) signals with complex line shapes and the transformation into absolute concentrations is discussed. Since the determination of IMCL in muscle groups with oblique fiber orientation or in obese subjects is still difficult, potential improvement with high-resolution spectroscopic imaging or at higher field strength is considered. Fat selective imaging is presented as a possible alternative to MRS and the potential of multinuclear MRS is discussed. 1H-MRS of muscle lipids allows non-invasive and repeated studies of muscle metabolism that lead to highly relevant findings in clinics and patho-physiology.
Collapse
Affiliation(s)
- Chris Boesch
- Department of Clinical Research (AMSM), University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
10
|
BOESCH CHRIS, KREIS ROLAND. Observation of Intramyocellular Lipids by1H-Magnetic Resonance Spectroscopy. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2000.tb06417.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Boesch C. Nobel Prizes for nuclear magnetic resonance: 2003 and historical perspectives. J Magn Reson Imaging 2004; 20:177-9. [PMID: 15269938 DOI: 10.1002/jmri.20120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
12
|
|
13
|
Beckmann N, Tigani B, Mazzoni L, Fozard JR. Techniques: Magnetic resonance imaging of the lung provides potential for non-invasive preclinical evaluation of drugs. Trends Pharmacol Sci 2003; 24:550-4. [PMID: 14559408 DOI: 10.1016/j.tips.2003.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies Center, Novartis Institutes for BioMedical Research, Lichtstrasse 35, WSJ-386.2.09, CH-4002 Basel, Switzerland.
| | | | | | | |
Collapse
|
14
|
van Duynhoven JPM, van Kempen GMP, van Sluis R, Rieger B, Weegels P, van Vliet LJ, Nicolay K. Quantitative Assessment of Gas Cell Development During the Proofing of Dough by Magnetic Resonance Imaging and Image Analysis. Cereal Chem 2003. [DOI: 10.1094/cchem.2003.80.4.390] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- John P. M. van Duynhoven
- Unilever R&D Vlaardingen, P.O. Box 114, 3130 AC Vlaardingen, The Netherlands
- Corresponding author. E-mail:
| | | | | | - Bernd Rieger
- Pattern Recognition Group, Delft University of Technology, The Netherlands
| | - Peter Weegels
- Unilever R&D Vlaardingen, P.O. Box 114, 3130 AC Vlaardingen, The Netherlands
| | - Lucas J. van Vliet
- Pattern Recognition Group, Delft University of Technology, The Netherlands
| | - Klaas Nicolay
- Image Sciences Institute, University Utrecht, The Netherlands
| |
Collapse
|
15
|
Boesch C, Ith M, Jung B, Bruegger K, Erban S, Diamantis I, Kreis R, Bär A. Effect of oral D-tagatose on liver volume and hepatic glycogen accumulation in healthy male volunteers. Regul Toxicol Pharmacol 2001; 33:257-67. [PMID: 11350207 DOI: 10.1006/rtph.2001.1470] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid.
Collapse
Affiliation(s)
- C Boesch
- Department of Clinical Research, MR-Spectroscopy & Methodology, University & Inselspital Bern, CH-3010 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Boesch C, Kreis R. Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle. NMR IN BIOMEDICINE 2001; 14:140-148. [PMID: 11320539 DOI: 10.1002/nbm.684] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Skeletal muscle is a biological structure with a high degree of organization at different spatial levels. This order influences magnetic resonance (MR) in vivo-in particular 1H-spectra-by a series of effects that have very distinct physical sources and biomedical applications: (a) bulk fat (extramyocellular lipids, EMCL) along fasciae forms macroscopic plates, changing the susceptibility within these structures compared to the spherical droplets that contain intra-myocellular lipids (IMCL); this effect leads to a separation of the signals from EMCL and IMCL; (b) dipolar coupling effects due to anisotropic motional averaging have been shown for 1H-resonances of creatine, taurine, and lactate; (c) aromatic protons of carnosine show orientation-dependent effects that can be explained by dipolar coupling, chemical shift anisotropy or by relaxation anisotropy; (d) limited rotational freedom and/or compartmentation may explain differences of 1H-MR-visibility of the creatine/phosphocreatine resonances; (e) lactate 1H-MR resonances are reported to reveal information on tissue compartmentation; (f) transverse relaxation of water and metabolites show multiple components, indicative of intra-, extracellular and/or macromolecular-bound pools, and in addition dipolar or J-coupling lead to a modulation of the signal decay, hindering straightforward interpretation; (g) diffusion weighted 31P-MRS has shown restricted diffusion of phosphocreatine; (h) magnetization transfer (MT) indicates that there is a motionally restricted proton pool in spin-exchange with free creatine; reduced availability or restricted motion of creatine is particularly important for an estimation of ADP from 31P-MR spectra, and in addition MT effects may alter the signal intensity of creatine 1H-resonances following water-suppression pulses; (i) transcytolemmal water-exchange can be studied in 1H-MRS by contrast-agents applied to the extracellular space; (k) transport of glucose across the cell membrane has been studied in diabetes patients using a combination of 13C- and 31P-MRS; and l residual quadrupolar interaction in 23Na MR spectra from human skeletal muscle suggest that sodium ions are bound to ordered muscular structures.
Collapse
Affiliation(s)
- C Boesch
- Department of Clinical Research, MR Spectroscopy and Methodology, University of Bern, Switzerland.
| | | |
Collapse
|
17
|
Kooy RF, Verhoye M, Lemmon V, Van Der Linden A. Brain studies of mouse models for neurogenetic disorders using in vivo magnetic resonance imaging (MRI). Eur J Hum Genet 2001; 9:153-9. [PMID: 11313752 DOI: 10.1038/sj.ejhg.5200606] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Accepted: 11/16/2000] [Indexed: 11/08/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a technique commonly used to detect neural abnormalities in routine clinical practice. It is perhaps less well known that the technique can be adapted to measure various anatomical and physiological features of small laboratory rodents. This review focuses on the potential of the MRI technique to image the brain of (transgenic) mouse models for neurological diseases, and aims to introduce these exciting new technological developments to the non-specialist reader.
Collapse
Affiliation(s)
- R F Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|