1
|
Shi J, Zhang Y, Zhang B, Wu Z, Gupta A, Wang J, Sun Q, Li S, Dong M, Wang L. Loop-Neurorrhaphy Technique for Preventing Bone Resorption and Preserving Sensation in Mandibular Reconstruction. Plast Reconstr Surg 2024; 154:1004e-1014e. [PMID: 38507517 DOI: 10.1097/prs.0000000000011416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND The aim of this study was to investigate whether using an innervated vascularized iliac bone flap could effectively prevent bone resorption and maintain sensory function in the lower lip. METHODS In the innervated group, the deep circumflex iliac artery and recipient vessels were anastomosed, with simultaneous microanastomosis of ilioinguinal nerve, mental nerve, and inferior alveolar nerve. Conversely, the control group underwent solely vascular anastomosis. Computed tomography was used to assess bone quality. Sensory recovery of the lower lip was recorded using 2-point discrimination and current perception threshold testing. RESULTS The study comprised a total of 40 subjects, with each group accounting for 20 participants, equally distributed in terms of gender. Hounsfield unit loss was significantly lower in the innervated group (13.26% ± 8.65%) as compared with the control group (37.98% ± 8.60%) ( P < 0.001). Moreover, 2-point discrimination values were lower in the innervated group (15.11 ± 8.39 mm) when compared with the control group (21.44 ± 7.24 mm) ( P = 0.02). The current perception threshold values for the innervated group were 176.19 ± 31.89, 64.21 ± 19.23, and 42.29 ± 18.96 at 2 kHz, 250 Hz, and 5 Hz, respectively, whereas in the control group, the current perception threshold values were 204.47 ± 36.99, 82.26 ± 27.29, and 58.89 ± 25.38 at 2 kHz, 250 Hz, and 5 Hz ( P = 0.02, P = 0.02, and P = 0.03, respectively). CONCLUSION The innervated vascularized iliac bone flap represents a safe and effective novel approach to preserving lower lip sensation and preventing bone resorption through functional mandibular reconstruction. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, I.
Collapse
Affiliation(s)
- Jingcun Shi
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Yuhan Zhang
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Bingqing Zhang
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Ziqian Wu
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Anand Gupta
- Department of Dentistry, Government Medical College and Hospital
| | - Jieyu Wang
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Qi Sun
- Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Siyi Li
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
| | - Minjun Dong
- Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Lei Wang
- From the Departments of Oral and Maxillofacial Surgery-Head and Neck Oncology and
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Department of Stomatology, Fengcheng Hospital
| |
Collapse
|
2
|
Wagner J, Bayer L, Loger K, Acil Y, Kurz S, Spille J, Ahlhelm M, Ingwersen LC, Jonitz-Heincke A, Sedaghat S, Wiltfang J, Naujokat H. In vivo endocultivation of CAD/CAM hybrid scaffolds in the omentum majus in miniature pigs. J Craniomaxillofac Surg 2024:S1010-5182(24)00162-8. [PMID: 39198129 DOI: 10.1016/j.jcms.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE Correction of bony mandibular defects is a challenge in oral and maxillofacial surgery due to aesthetic and functional requirements. This study investigated the potential of a novel hybrid scaffold for bone regeneration and degradation assessment of the ceramic within the omentum majus over 6 months and the extent to which rhBMP-2 as a growth factor, alone or combined with a hydrogel, affects regeneration. MATERIALS AND METHODS In this animal study, 10 Göttingen minipigs each had one scaffold implanted in the greater omentum. Five animals had scaffolds loaded with a collagen hydrogel and rhBMP-2, and the other five animals (control group) had scaffolds loaded with rhBMP-2 only. Fluorochrome injections and computed tomography (CT) were performed regularly. After 6 months, the animals were euthanized, and samples were collected for microCT and histological evaluations. RESULTS Fluorescent and light microscopic and a CT morphological density evaluation showed continuous bone growth until week 16 in both groups. Regarding the ratio of bone attachment to the Zr02 support struts, the rhBMP-2 loaded collagen hydrogel group showed with 63% a significantly higher attachment (p > 0.001) than the rhBMP-2 control group (49%). CONCLUSION In this study, bone growth was induced in all omentum majus specimens until post-operative week 16. Furthermore, hydrogel and rhBMP-2 together resulted in better bone-scaffold integration than rhBMP-2 alone. Further studies should investigate whether implantation of the scaffolds in the jaw after an appropriate period of bone regeneration leads to a stable situation and the desired results.
Collapse
Affiliation(s)
- Juliane Wagner
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Cluster of Excellence, Precision Medicine in Inflammation, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Lennart Bayer
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Klaas Loger
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Yahya Acil
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Kurz
- ZESBO - Center for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany
| | - Johannes Spille
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Dresden, Germany
| | - Lena-Christin Ingwersen
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
3
|
Maria OM, Heram A, Tran SD. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent J 2024; 36:955-962. [PMID: 39035556 PMCID: PMC11255950 DOI: 10.1016/j.sdentj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. However, the success depends on countless factors such as: donor and recipient sites conditions, patient's medical history, surgeon's experience, restricted availability of high-quality autogenous tissues or stem cells, and increased surgical cost and time. Materials and Methods Lately, teaming researchers, scientists, surgeons, and engineers, to address these limitations, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. Results Over the past few years, biomedical engineering has been evolving from the laboratory to clinical applications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. Conclusions This review provides an outlook on the content, benefits, recent advances, limitations, and future expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ola M. Maria
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ashraf Heram
- Grand Strand Facial and Jaw Surgery, Myrtle Beach, SC, United States
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
5
|
Dai K, Wang J, Liu C. Biomaterial-assisted therapeutic cell production and modification in vivo. Exp Hematol 2024; 133:104192. [PMID: 38432427 DOI: 10.1016/j.exphem.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Hematopoietic stem cell transplantation remains the preferred treatment for a variety of hematopoietic function disorders. To address the issue of limited numbers of hematopoietic stem/progenitor cells (HSPCs), significant progress has been made in the technology for ex vivo expansion of HSPCs. In addition, biomaterial-assisted in vivo production technology for therapeutic cells, including HSPCs, is gradually gaining attention. With the aid of specifically functional biomaterials, researchers can construct bone-like tissues exhibiting typical bone marrow-like structures (termed in vivo osteo-organoids in this article) for the production of therapeutic cells. These in vivo osteo-organoids mimic the native bone marrow niche and provide a microenvironment conducive to the expansion and differentiation of HSPCs. In this perspective article, we systematically summarize the history of in vivo osteo-organoids as a model for studying hematopoiesis and cancer metastasis and propose the challenges faced by the in vivo osteo-organoid production platform for therapeutic cells in terms of clinical translation. Ultimately, we hope to achieve functional customization of in vivo osteo-organoid-derived cells through continuously developed material design methods, so as to meet the treatment needs of different types of diseases and bring hope for life to more people.
Collapse
Affiliation(s)
- Kai Dai
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China; Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China; Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Wagner J, Luck S, Loger K, Açil Y, Spille JH, Kurz S, Ahlhelm M, Schwarzer-Fischer E, Ingwersen LC, Jonitz-Heincke A, Sedaghat S, Wiltfang J, Naujokat H. Bone regeneration in critical-size defects of the mandible using biomechanically adapted CAD/CAM hybrid scaffolds: An in vivo study in miniature pigs. J Craniomaxillofac Surg 2024; 52:127-135. [PMID: 38129185 DOI: 10.1016/j.jcms.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The study aimed to analyze bone regeneration in critical-size defects using hybrid scaffolds biomechanically adapted to the specific defect and adding the growth factor rhBMP-2. For this animal study, ten minipigs underwent bilateral defects in the corpus mandibulae and were subsequently treated with novel cylindrical hybrid scaffolds. These scaffolds were designed digitally to suit the biomechanical requirements of the mandibular defect, utilizing finite element analysis. The scaffolds comprised zirconium dioxide-tricalcium phosphate (ZrO2-TCP) support struts and TCP foam ceramics. One scaffold in each animal was loaded with rhBMP-2 (100 μg/cm³), while the other served as an unloaded negative control. Fluorescent dyes were administered every 2 weeks, and computed tomography (CT) scans were conducted every 4 weeks. Euthanasia was performed after 3 months, and samples were collected for examination using micro-CT and histological evaluation of both hard and soft tissue. Intravital CT examinations revealed minor changes in radiographic density from 4 to 12 weeks postoperatively. In the group treated with rhBMP-2, radiographic density shifted from 2513 ± 128 (mean ± SD) to 2606 ± 115 Hounsfield units (HU), while the group without rhBMP-2 showed a change from 2430 ± 131 to 2601 ± 67 HU. Prior to implantation, the radiological density of samples measured 1508 ± 30 mg HA/cm³, whereas post-mortem densities were 1346 ± 71 mg HA/cm³ in the rhBMP-2 group and 1282 ± 91 mg HA/cm³ in the control group (p = 0.045), as indicated by micro-CT measurements. The histological assessment demonstrated successful ossification in all specimens. The newly formed bone area proportion was significantly greater in the rhBMP-2 group (48 ± 10%) compared with the control group without rhBMP-2 (42 ± 9%, p = 0.03). The mean area proportion of remaining TCP foam was 23 ± 8% with rhBMP-2 and 24 ± 10% without rhBMP-2. Successful bone regeneration was accomplished by implanting hybrid scaffolds into critical-size mandibular defects. Loading these scaffolds with rhBMP-2 led to enhanced bone regeneration and a uniform distribution of new bone formation within the hybrid scaffolds. Further studies are required to determine the adaptability of hybrid scaffolds for larger and potentially segmental defects in the maxillofacial region.
Collapse
Affiliation(s)
- Juliane Wagner
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Cluster of Excellence, Precision Medicine in Inflammation, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Sascha Luck
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Klaas Loger
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johannes H Spille
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Kurz
- ZESBO - Center for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Dresden, Germany
| | | | - Lena-Christin Ingwersen
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
7
|
Slavin BV, Nayak VV, Boczar D, Bergamo ET, Slavin BR, Yarholar LM, Torroni A, Coelho PG, Witek L. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair. J Craniofac Surg 2024; 35:261-267. [PMID: 37622526 PMCID: PMC10836599 DOI: 10.1097/scs.0000000000009635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Computer-aided design/computer-aided manufacturing and 3-dimensional (3D) printing techniques have revolutionized the approach to bone tissue engineering for the repair of craniomaxillofacial skeletal defects. Ample research has been performed to gain a fundamental understanding of the optimal 3D-printed scaffold design and composition to facilitate appropriate bone formation and healing. Benchtop and preclinical, small animal model testing of 3D-printed bioactive ceramic scaffolds augmented with pharmacological/biological agents have yielded promising results given their potential combined osteogenic and osteoinductive capacity. However, other factors must be evaluated before newly developed constructs may be considered analogous alternatives to the "gold standard" autologous graft for defect repair. More specifically, the 3D-printed bioactive ceramic scaffold's long-term safety profile, biocompatibility, and resorption kinetics must be studied. The ultimate goal is to successfully regenerate bone that is comparable in volume, density, histologic composition, and mechanical strength to that of native bone. In vivo studies of these newly developed bone tissue engineering in translational animal models continue to make strides toward addressing regulatory and clinically relevant topics. These include the use of skeletally immature animal models to address the challenges posed by craniomaxillofacial defect repair in pediatric patients. This manuscript reviews the most recent preclinical animal studies seeking to assess 3D-printed ceramic scaffolds for improved repair of critical-sized craniofacial bony defects.
Collapse
Affiliation(s)
| | - Vasudev V Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Daniel Boczar
- Department of Surgery, University of Washington, Seattle, WA
| | - Edmara Tp Bergamo
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil
- Biomaterials Division, NYU College of Dentistry, New York, NY
| | - Benjamin R Slavin
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lauren M Yarholar
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY
| |
Collapse
|
8
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
9
|
Karyagina AS, Orlova PA, Zhulina AV, Krivozubov MS, Grunina TM, Strukova NV, Nikitin KE, Manskikh VN, Senatov FS, Gromov AV. Hybrid Implants Based on Calcium-Magnesium Silicate Ceramic Diopside as a Carrier of Recombinant BMP-2 and Demineralized Bone Matrix as a Scaffold: Ectopic Osteogenesis in Intramuscular Implantation in Mice. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1116-1125. [PMID: 37758311 DOI: 10.1134/s0006297923080060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023]
Abstract
High efficiency of hybrid implants based on calcium-magnesium silicate ceramic, diopside, as a carrier of recombinant BMP-2 and xenogenic demineralized bone matrix (DBM) as a scaffold for bone tissue regeneration was demonstrated previously using the model of critical size cranial defects in mice. In order to investigate the possibility of using these implants for growing autologous bone tissue using in vivo bioreactor principle in the patient's own body, effectiveness of ectopic osteogenesis induced by them in intramuscular implantation in mice was studied. At the dose of 7 μg of BMP-2 per implant, dense agglomeration of cells, probably skeletal muscle satellite precursor cells, was observed one week after implantation with areas of intense chondrogenesis, initial stage of indirect osteogenesis, around the implants. After 12 weeks, a dense bone capsule of trabecular structure was formed covered with periosteum and mature bone marrow located in the spaces between the trabeculae. The capsule volume was about 8-10 times the volume of the original implant. There were practically no signs of inflammation and foreign body reaction. Microcomputed tomography data showed significant increase of the relative bone volume, number of trabeculae, and bone tissue density in the group of mice with BMP-2-containing implant in comparison with the group without BMP-2. Considering that DBM can be obtained in practically unlimited quantities with required size and shape, and that BMP-2 is obtained by synthesis in E. coli cells and is relatively inexpensive, further development of the in vivo bioreactor model based on the hybrid implants constructed from BMP-2, diopside, and xenogenic DBM seems promising.
Collapse
Affiliation(s)
- Anna S Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - Polina A Orlova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Anna V Zhulina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana M Grunina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - Natalia V Strukova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Kirill E Nikitin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Vasily N Manskikh
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Fedor S Senatov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.
| |
Collapse
|
10
|
Li Y, Liu H, Wang C, Yan R, Xiang L, Mu X, Zheng L, Liu C, Hu M. 3D printing titanium grid scaffold facilitates osteogenesis in mandibular segmental defects. NPJ Regen Med 2023; 8:38. [PMID: 37488125 PMCID: PMC10366137 DOI: 10.1038/s41536-023-00308-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Bone fusion of defect broken ends is the basis of the functional reconstruction of critical maxillofacial segmental bone defects. However, the currently available treatments do not easily achieve this goal. Therefore, this study aimed to fabricate 3D-printing titanium grid scaffolds, which possess sufficient pores and basic biomechanical strength to facilitate osteogenesis in order to accomplish bone fusion in mandibular segmental bone defects. The clinical trial was approved and supervised by the Medical Ethics Committee of the Chinese PLA General Hospital on March 28th, 2019 (Beijing, China. approval No. S2019-065-01), and registered in the clinical trials registry platform (registration number: ChiCTR2300072209). Titanium grid scaffolds were manufactured using selective laser melting and implanted in 20 beagle dogs with mandibular segmental defects. Half of the animals were treated with autologous bone chips and bone substances incorporated into the scaffolds; no additional filling was used for the rest of the animals. After 18 months of observation, radiological scanning and histological analysis in canine models revealed that the pores of regenerated bone were filled with titanium grid scaffolds and bone broken ends were integrated. Furthermore, three patients were treated with similar titanium grid scaffold implants in mandibular segmental defects; no mechanical complications were observed, and similar bone regeneration was observed in the reconstructed patients' mandibles in the clinic. These results demonstrated that 3D-printing titanium grid scaffolds with sufficient pores and basic biomechanical strength could facilitate bone regeneration in large-segment mandibular bone defects.
Collapse
Affiliation(s)
- Yongfeng Li
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Huawei Liu
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Chao Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Rongzeng Yan
- Nanchang University Fuzhou Medical College, Fuzhou, 344000, China
| | - Lei Xiang
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Lingling Zheng
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Changkui Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, China
| | - Min Hu
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Knabe C, Stiller M, Kampschulte M, Wilbig J, Peleska B, Günster J, Gildenhaar R, Berger G, Rack A, Linow U, Heiland M, Rendenbach C, Koerdt S, Steffen C, Houshmand A, Xiang-Tischhauser L, Adel-Khattab D. A tissue engineered 3D printed calcium alkali phosphate bioceramic bone graft enables vascularization and regeneration of critical-size discontinuity bony defects in vivo. Front Bioeng Biotechnol 2023; 11:1221314. [PMID: 37397960 PMCID: PMC10311449 DOI: 10.3389/fbioe.2023.1221314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Recently, efforts towards the development of patient-specific 3D printed scaffolds for bone tissue engineering from bioactive ceramics have continuously intensified. For reconstruction of segmental defects after subtotal mandibulectomy a suitable tissue engineered bioceramic bone graft needs to be endowed with homogenously distributed osteoblasts in order to mimic the advantageous features of vascularized autologous fibula grafts, which represent the standard of care, contain osteogenic cells and are transplanted with the respective blood vessel. Consequently, inducing vascularization early on is pivotal for bone tissue engineering. The current study explored an advanced bone tissue engineering approach combining an advanced 3D printing technique for bioactive resorbable ceramic scaffolds with a perfusion cell culture technique for pre-colonization with mesenchymal stem cells, and with an intrinsic angiogenesis technique for regenerating critical size, segmental discontinuity defects in vivo applying a rat model. To this end, the effect of differing Si-CAOP (silica containing calcium alkali orthophosphate) scaffold microarchitecture arising from 3D powder bed printing (RP) or the Schwarzwalder Somers (SSM) replica fabrication technique on vascularization and bone regeneration was analyzed in vivo. In 80 rats 6-mm segmental discontinuity defects were created in the left femur. Methods: Embryonic mesenchymal stem cells were cultured on RP and SSM scaffolds for 7d under perfusion to create Si-CAOP grafts with terminally differentiated osteoblasts and mineralizing bone matrix. These scaffolds were implanted into the segmental defects in combination with an arteriovenous bundle (AVB). Native scaffolds without cells or AVB served as controls. After 3 and 6 months, femurs were processed for angio-µCT or hard tissue histology, histomorphometric and immunohistochemical analysis of angiogenic and osteogenic marker expression. Results: At 3 and 6 months, defects reconstructed with RP scaffolds, cells and AVB displayed a statistically significant higher bone area fraction, blood vessel volume%, blood vessel surface/volume, blood vessel thickness, density and linear density than defects treated with the other scaffold configurations. Discussion: Taken together, this study demonstrated that the AVB technique is well suited for inducing adequate vascularization of the tissue engineered scaffold graft in segmental defects after 3 and 6 months, and that our tissue engineering approach employing 3D powder bed printed scaffolds facilitated segmental defect repair.
Collapse
Affiliation(s)
- Christine Knabe
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Marburg, Germany
| | - Michael Stiller
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Marburg, Germany
- Department of Prosthodontics, Philipps University Marburg, Marburg, Germany
| | - Marian Kampschulte
- Department of Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Janka Wilbig
- Department of Biomaterials and Multimodal Processing, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Barbara Peleska
- Department of Prosthodontics, Philipps University Marburg, Marburg, Germany
| | - Jens Günster
- Department of Biomaterials and Multimodal Processing, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Renate Gildenhaar
- Department of Biomaterials and Multimodal Processing, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Georg Berger
- Department of Biomaterials and Multimodal Processing, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Alexander Rack
- Structure of Materials Group, ESRF (European Synchroton Radiation Facility), Grenoble, France
| | - Ulf Linow
- Department of Biomaterials and Multimodal Processing, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité University Medical Center Berlin (Charité-Universitätsmedizin Berlin), Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité University Medical Center Berlin (Charité-Universitätsmedizin Berlin), Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Charité University Medical Center Berlin (Charité-Universitätsmedizin Berlin), Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité University Medical Center Berlin (Charité-Universitätsmedizin Berlin), Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alireza Houshmand
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Marburg, Germany
| | - Li Xiang-Tischhauser
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Marburg, Germany
| | - Doaa Adel-Khattab
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Marburg, Germany
- Department of Periodontology, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Zhang Y, Xu H, Wang J, Fan X, Tian F, Wang Z, Lu B, Wu W, Liu Y, Ai Y, Wang X, Zhu L, Jia S, Hao D. Incorporation of synthetic water-soluble curcumin polymeric drug within calcium phosphate cements for bone defect repairing. Mater Today Bio 2023; 20:100630. [PMID: 37114092 PMCID: PMC10127129 DOI: 10.1016/j.mtbio.2023.100630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Modified macroporous structures and active osteogenic substances are necessary to overcome the limited bone regeneration capacity and low degradability of self-curing calcium phosphate cement (CPC). Curcumin (CUR), which possesses strong osteogenic activity and poor aqueous solubility/bioavailability, esterifies the side chains in hyaluronic acid (HA) to form a water-soluble CUR-HA macromolecule. In this study, we incorporated the CUR-HA and glucose microparticles (GMPs) into the CPC powder to fabricate the CUR-HA/GMP/CPC composite, which not only retained the good injectability and mechanical strength of bone cements, but also significantly increased the cement porosity and sustained release property of CUR-HA in vitro. CUR-HA incorporation greatly improved the differentiation ability of bone marrow mesenchymal stem cells (BMSCs) to osteoblasts by activating the RUNX family transcription factor 2/fibroblast growth factor 18 (RUNX2/FGF18) signaling pathway, increasing the expression of osteocalcin and enhancing the alkaline phosphatase activity. In addition, in vivo implantation of CUR-HA/GMP/CPC into femoral condyle defects dramatically accelerated the degradation rate of cement and boosted local vascularization and osteopontin protein expression, and consequently promoted rapid bone regeneration. Therefore, macroporous CPC based composite cement with CUR-HA shows a remarkable ability to repair bone defects and is a promising translational application of modified CPC in clinical practice.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Jing Wang
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an, China
| | - Xiaochen Fan
- Department of Chinese Medicine and Rehabilitation, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Tian
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Yixiang Ai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Xiaohui Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
- Corresponding author. Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China.
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
- Corresponding author. Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
- Corresponding author. Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Sparks DS, Savi FM, Dlaska CE, Saifzadeh S, Brierly G, Ren E, Cipitria A, Reichert JC, Wille ML, Schuetz MA, Ward N, Wagels M, Hutmacher DW. Convergence of scaffold-guided bone regeneration principles and microvascular tissue transfer surgery. SCIENCE ADVANCES 2023; 9:eadd6071. [PMID: 37146134 PMCID: PMC10162672 DOI: 10.1126/sciadv.add6071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A preclinical evaluation using a regenerative medicine methodology comprising an additively manufactured medical-grade ε-polycaprolactone β-tricalcium phosphate (mPCL-TCP) scaffold with a corticoperiosteal flap was undertaken in eight sheep with a tibial critical-size segmental bone defect (9.5 cm3, M size) using the regenerative matching axial vascularization (RMAV) approach. Biomechanical, radiological, histological, and immunohistochemical analysis confirmed functional bone regeneration comparable to a clinical gold standard control (autologous bone graft) and was superior to a scaffold control group (mPCL-TCP only). Affirmative bone regeneration results from a pilot study using an XL size defect volume (19 cm3) subsequently supported clinical translation. A 27-year-old adult male underwent reconstruction of a 36-cm near-total intercalary tibial defect secondary to osteomyelitis using the RMAV approach. Robust bone regeneration led to complete independent weight bearing within 24 months. This article demonstrates the widely advocated and seldomly accomplished concept of "bench-to-bedside" research and has weighty implications for reconstructive surgery and regenerative medicine more generally.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia M Savi
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Constantin E Dlaska
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Gary Brierly
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Edward Ren
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Johannes C Reichert
- Department of Orthopaedics and Orthopaedic Surgery, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Marie-Luise Wille
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael A Schuetz
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Nicola Ward
- Department of Orthopaedics, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Michael Wagels
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
- Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Additive Biomanufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
14
|
Sparks DS, Wiper J, Lloyd T, Wille ML, Sehu M, Savi FM, Ward N, Hutmacher DW, Wagels M. Protocol for the BONE-RECON trial: a single-arm feasibility trial for critical sized lower limb BONE defect RECONstruction using the mPCL-TCP scaffold system with autologous vascularised corticoperiosteal tissue transfer. BMJ Open 2023; 13:e056440. [PMID: 37137563 PMCID: PMC10163528 DOI: 10.1136/bmjopen-2021-056440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Reconstruction of critical bone defects is challenging. In a substantial subgroup of patients, conventional reconstructive techniques are insufficient. Biodegradable scaffolds have emerged as a novel tissue engineering strategy for critical-sized bone defect reconstruction. A corticoperiosteal flap integrates the hosts' ability to regenerate bone and permits the creation of a vascular axis for scaffold neo-vascularisation (regenerative matching axial vascularisation-RMAV). This phase IIa study evaluates the application of the RMAV approach alongside a custom medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffold (Osteopore) to regenerate bone sufficient to heal critical size defects in lower limb defects. METHODS AND ANALYSIS This open-label, single-arm feasibility trial will be jointly coordinated by the Complex Lower Limb Clinic (CLLC) at the Princess Alexandra Hospital in Woolloongabba (Queensland, Australia), the Australian Centre for Complex Integrated Surgical Solutions (Queensland, Australia) and the Faculty of Engineering, Queensland University of Technology in Kelvin Grove (Queensland, Australia). Aiming for limb salvage, the study population (n=10) includes any patient referred to the CLLC with a critical-sized bone defect not amenable to conventional reconstructive approaches, after discussion by the interdisciplinary team. All patients will receive treatment using the RMAV approach using a custom mPCL-TCP implant. The primary study endpoint will be safety and tolerability of the reconstruction. Secondary end points include time to bone union and weight-bearing status on the treated limb. Results of this trial will help shape the role of scaffold-guided bone regenerative approaches in complex lower limb reconstruction where current options remain limited. ETHICS AND DISSEMINATION Approval was obtained from the Human Research Ethics Committee at the participating centre. Results will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ACTRN12620001007921.
Collapse
Affiliation(s)
- David S Sparks
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- The University of Queensland PA Southside Clinical School, Woolloongabba, Queensland, Australia
| | - Jay Wiper
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Thomas Lloyd
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Department of Radiology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Marie-Luise Wille
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Marjoree Sehu
- Department of Infectious Diseases, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Flavia M Savi
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicola Ward
- Department of Orthopaedics, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Dietmar W Hutmacher
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Siences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Translational Research Institute Australia Ghrelin Research Group, South Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Watson E, Mikos AG. Advances in In Vitro and In Vivo Bioreactor-Based Bone Generation for Craniofacial Tissue Engineering. BME FRONTIERS 2023; 4:0004. [PMID: 37849672 PMCID: PMC10521661 DOI: 10.34133/bmef.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 10/19/2023] Open
Abstract
Craniofacial reconstruction requires robust bone of specified geometry for the repair to be both functional and aesthetic. While native bone from elsewhere in the body can be harvested, shaped, and implanted within a defect, using either an in vitro or in vivo bioreactors eliminates donor site morbidity while increasing the customizability of the generated tissue. In vitro bioreactors utilize cells harvested from the patient, a scaffold, and a device to increase mass transfer of nutrients, oxygen, and waste, allowing for generation of larger viable tissues. In vivo bioreactors utilize the patient's own body as a source of cells and of nutrient transfer and involve the implantation of a scaffold with or without growth factors adjacent to vasculature, followed by the eventual transfer of vascularized, mineralized tissue to the defect site. Several different models of in vitro bioreactors exist, and several different implantation sites have been successfully utilized for in vivo tissue generation and defect repair in humans. In this review, we discuss the specifics of each bioreactor strategy, as well as the advantages and disadvantages of each and the future directions for the engineering of bony tissues for craniofacial defect repair.
Collapse
Affiliation(s)
- Emma Watson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
16
|
Yu BF, Wang Z, Chen XX, Zeng Q, Dai CC, Wei J. Continuous dynamic identification of key genes and molecular signaling pathways of periosteum in guided bone self-generation in swine model. J Orthop Surg Res 2023; 18:53. [PMID: 36653843 PMCID: PMC9847205 DOI: 10.1186/s13018-023-03524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Guided bone self-generation with periosteum-preserved has successfully regenerated mandibular, temporomandibular and interphalangeal joint. The aim of this study was to investigate the dynamic changes of gene expression of periosteum which was involved in the guided bone self-generation. METHODS Rib defects of critical size were created in mature swine with periosteum-preserved. The periosteum was sutured into a sealed sheath that closed the bone defect. The periosteum of trauma and control sites were harvested at postoperative 9 time points, and total RNA was extracted. Microarray analysis was conducted to identify the differences in the transcriptome of different time points between two groups. RESULTS The differentially expressed genes (DEGs) between control and trauma group were different at postoperative different time points. The dynamic changes of the number of DEGs fluctuated a lot. There were 3 volatility peaks, and we chose 3 time points of DEG number peak (1 week, 5 weeks and 6 months) to study the functions of DEGs. Oxidoreductase activity, oxidation-reduction process and mitochondrion are the most enriched terms of Go analysis. The major signaling pathways of DEGs enrichment include oxidative phosphorylation, PI3K-Akt signaling pathway, osteoclast differentiation pathway and Wnt signaling. CONCLUSIONS The oxidoreductase reaction was activated during this bone regeneration process. The oxidative phosphorylation, PI3K-Akt signaling pathway, osteoclast differentiation pathway and Wnt signaling may play important roles in the guided bone self-generation with periosteum-preserved. This study can provide a reference for how to improve the application of this concept of bone regeneration.
Collapse
Affiliation(s)
- Bao-Fu Yu
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Zi Wang
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Xiao-Xue Chen
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Qi Zeng
- grid.415002.20000 0004 1757 8108Department of Plastic Surgery, Jiangxi Province People’s Hospital, Nanchang, China
| | - Chuan-Chang Dai
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Jiao Wei
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| |
Collapse
|
17
|
Gonzalez Matheus I, Hutmacher DW, Olson S, Redmond M, Sutherland A, Wagels M. A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial. JMIR Res Protoc 2022; 11:e36111. [PMID: 36227628 PMCID: PMC9614622 DOI: 10.2196/36111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Large skull defects present a reconstructive challenge. Conventional cranioplasty options include autologous bone grafts, vascularized bone, metals, synthetic ceramics, and polymers. Autologous options are affected by resorption and residual contour deformities. Synthetic materials may be customized via digital planning and 3D printing, but they all carry a risk of implant exposure, failure, and infection, which increases when the defect is large. These complications can be a threat to life. Without reconstruction, patients with cranial defects may experience headaches and stigmatization. The protection of the brain necessitates lifelong helmet use, which is also stigmatizing. Objective Our clinical trial will formally study a hybridized technique's capacity to reconstruct large calvarial defects. Methods A hybridized technique that draws on the benefits of autologous and synthetic materials has been developed by the research team. This involves wrapping a biodegradable, ultrastructured, 3D-printed scaffold made of medical-grade polycaprolactone and tricalcium phosphate in a vascularized, autotransplanted periosteum to exploit the capacity of vascularized periostea to regenerate bone. In vitro, the scaffold system supports cell attachment, migration, and proliferation with slow but sustained degradation to permit host tissue regeneration and the replacement of the scaffold. The in vivo compatibility of this scaffold system is robust—the base material has been used clinically as a resorbable suture material for decades. The importance of scaffold vascularization, which is inextricably linked to bone regeneration, is underappreciated. A variety of methods have been described to address this, including scaffold prelamination and axial vascularization via arteriovenous loops and autotransplanted flaps. However, none of these directly promote bone regeneration. Results We expect to have results before the end of 2023. As of December 2020, we have enrolled 3 participants for the study. Conclusions The regenerative matching axial vascularization technique may be an alternative method of reconstruction for large calvarial defects. It involves performing a vascularized free tissue transfer and using a bioresorbable, 3D-printed scaffold to promote and support bone regeneration (termed the regenerative matching axial vascularization technique). This technique may be used to reconstruct skull bone defects that were previously thought to be unreconstructable, reduce the risk of implant-related complications, and achieve consistent outcomes in cranioplasty. This must now be tested in prospective clinical trials. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12620001171909; https://tinyurl.com/4rakccb3 International Registered Report Identifier (IRRID) DERR1-10.2196/36111
Collapse
Affiliation(s)
- Isabel Gonzalez Matheus
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Queenland, Australia.,Herston Biofabrication Institute, Herston, Australia.,The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Dietmar W Hutmacher
- Regenerative Medicine Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Sarah Olson
- Department of Neurosurgery, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Michael Redmond
- Herston Biofabrication Institute, Herston, Australia.,Department of Neurosurgery, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Allison Sutherland
- The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Queenland, Australia.,Herston Biofabrication Institute, Herston, Australia.,The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
19
|
Wagner T, Hummelink S, Ulrich D. Past, present and future in plastic flap surgery: From surgeon to bioengineer driven progress. A personal view. J Tissue Viability 2022; 31:800-803. [DOI: 10.1016/j.jtv.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
20
|
Hurley CM, McConn Walsh R, Shine NP, O'Neill JP, Martin F, O'Sullivan JB. Current trends in craniofacial reconstruction. Surgeon 2022; 21:e118-e125. [PMID: 35525818 DOI: 10.1016/j.surge.2022.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Reconstruction of the head and neck continues to pose a variety of difficult functional and aesthetic challenges to the plastic surgeon. While the surgical treatment for midfacial and skull base tumours continues to advance, the three-dimensional reconstruction predicaments continue to increase in complexity. Reconstructive strategies of the head and neck require the restoration of intricate skeletal architecture and large volumes of both internal and external soft tissue envelopes that can withstand adjuvant therapies. Vascularized bone grafts in combination with microsurgical techniques is the current trend of most reconstruction and has replaced local and pedicle flaps as the preferred modality for large defects. This article will focus on concise areas of difficulty in craniofacial reconstruction, including mandibular, midfacial, scalp and base of skull reconstruction. As our goals now move from flap survival to refinement, more complex and innovative reconstructions are executed. The problems with each modality are examined, and the frontiers of head and neck reconstruction are explored. With the potential combination of virtual surgery and tissue engineered biotechnology, we may someday be able to expand our reconstructive capabilities beyond free tissue transfer.
Collapse
Affiliation(s)
- C M Hurley
- Department of Plastic & Reconstructive Surgery, Beaumont Hospital, Dublin, Ireland.
| | - R McConn Walsh
- Department of Otolaryngology, Head and Neck Surgery, Beaumont Hospital, Dublin, Ireland
| | - N P Shine
- Department of Otolaryngology, Head and Neck Surgery, Beaumont Hospital, Dublin, Ireland
| | - J P O'Neill
- Department of Otolaryngology, Head and Neck Surgery, Beaumont Hospital, Dublin, Ireland
| | - F Martin
- Department of Plastic & Reconstructive Surgery, Beaumont Hospital, Dublin, Ireland
| | - J B O'Sullivan
- Department of Plastic & Reconstructive Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
21
|
Anatomical journals as publication platforms for dental research. Ann Anat 2022; 244:151960. [DOI: 10.1016/j.aanat.2022.151960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022]
|
22
|
Sparks DS, Medeiros Savi F, Saifzadeh S, Wille ML, Wagels M, Hutmacher DW. Bone Regeneration Exploiting Corticoperiosteal Tissue Transfer for Scaffold-Guided Bone Regeneration. Tissue Eng Part C Methods 2022; 28:202-213. [PMID: 35262425 DOI: 10.1089/ten.tec.2022.0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Contemporary reconstructive approaches for critical size bone defects carry significant disadvantages. As a result, clinically driven research has focused on the development and translation of alternative therapeutic concepts. Scaffold-guided tissue regeneration (SGTR) is an emerging technique to heal critical size bone defects. However, issues synchronizing scaffold vascularization with bone-specific regenerative processes currently limit bone regeneration for extra large (XL, 19 cm3) critical bone defects. To address this issue, we developed a large animal model that incorporates a corticoperiosteal flap (CPF) for sustained scaffold neovascularization and bone regeneration. In 10 sheep, we demonstrated the efficacy of this approach for healing medium (M, 9 cm3) size critical bone defects as demonstrated on plain radiography, microcomputed tomography, and histology. Furthermore, in two sheep, we demonstrate how this approach can be safely extended to heal XL critical size defects. This article presents an original CPF technique in a well-described preclinical model, which can be used in conjunction with the SGTR concept, to address challenging critical size bone defects in vivo. Impact statement This article describes a novel scaffold-guided tissue engineering approach utilizing a corticoperiosteal flap for bone healing in critical size long bone defects. This approach will be of use for tissue engineers and surgeons exploring vascularized tissue transfer as an option to regenerate large volumes of bone for extensive critical size bone defects both in vivo and in the clinical arena.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, Australia
| | - Flavia Medeiros Savi
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
| | - Siamak Saifzadeh
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, Australia
| | - Marie-Luise Wille
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, Australia.,Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Princess Alexandra Hospital, Woolloongabba, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.,ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
23
|
Elshohna M, Tsouklidis N. Top 50 Cited Bone Graft Orthopedic Papers. Cureus 2022; 14:e23419. [PMID: 35481294 PMCID: PMC9033642 DOI: 10.7759/cureus.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this research is to recognize the highest 50 most-mentioned articles in the literature concentrating on bone grafts. That has been accomplished with the use of the Scopus database and the search slogan "bone grafts," and we inquired for the 50 most-cited articles on bone grafting. The study was completed in September 2020. We investigated the articles issued between 1970 and 2020. The articles were organized and classified based on the total number of citations. We appraised the following information relating to each article: first author, year of publication, journal, and title. A total of 1,580 studies matched our search standards, of which the 50 most-cited extended between 1,862 and 403 citations. Seven articles were cited more than 1,000 times. The article by Marx et al. was the maximum-cited article, with 1,862 citations, followed by Younger et al.'s with 1,461 and Giannoudis et al.'s with 1,245. The majority of the studies originated from the United States (n = 30) and were published in the 2000s. Biomaterials was the most regular destination journal (n = 8), followed by the Journal of Bone and Joint Surgery American series (n = 7). A maximum of the articles focused on the different types of bone grafts and their alternatives including bone tissue engineering (n=29). Our investigation of the highest 50 articles linking to bone grafting has emphasized the most significant papers in the field. These cover a wide-ranging variety of topics including types, management, and mechanism of action of bone grafts. To recognize the present treatment guidelines and how the use of bone grafting has grown, it is vital to know the most-cited articles relating to this grafting.
Collapse
|
24
|
Nokhbatolfoghahaei H, Bastami F, Farzad-Mohajeri S, Rezai Rad M, Dehghan MM, Bohlouli M, Farajpour H, Nadjmi N, Khojasteh A. Prefabrication technique by preserving a muscular pedicle from masseter muscle as an in vivo bioreactor for reconstruction of mandibular critical-sized bone defects in canine models. J Biomed Mater Res B Appl Biomater 2022; 110:1675-1686. [PMID: 35167181 DOI: 10.1002/jbm.b.35028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 11/08/2022]
Abstract
In vivo bioreactors serve as regenerative niches that improve vascularization and regeneration of bone grafts. This study has evaluated the masseter muscle as a natural bioreactor for βTCP or PCL/βTCP scaffolds, in terms of bone regeneration. The effect of pedicle preservation, along with sole, or MSC- or rhBMP2-combined application of scaffolds, has also been studied. Twenty-four mongrel dogs were randomly placed in six groups, including βTCP, βTCP/rhBMP2, βTCP/MSCs, PCL/βTCP, PCL/βTCP/rhBMP2, and PCL/βTCP/MSCs. During the first surgery, the scaffolds were implanted into the masseter muscle for being prefabricated. After 2 months, each group was divided into two subgroups prior to mandibular bone defect reconstruction; one with a preserved vascularized pedicle and one without. After 12 weeks, animals were euthanized, and new bone formation was evaluated using histological analysis. Histological analysis showed that all β-TCP scaffold groups had resulted in significantly greater rates of new bone formation, either with a pedicle surgical approach or non-pedicle surgical approach, comparing to their parallel groups of βTCP/PCL scaffolds (p ≤ .05). Pedicled β-TCP scaffold groups that were treated with either rhBMP2 (48.443% ± 0.250%) or MSCs (46.577% ± 0.601%) demonstrated the highest rates of new bone formation (p ≤ .05). Therefore, masseter muscle can be used as a local in vivo bioreactor with potential clinical advantages in reconstruction of human mandibular defects. In addition, scaffold composition, pedicle preservation, and treatment with MSCs or rhBMP2, influence new bone formation and scaffold degradation rates in the prefabrication technique.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hekmat Farajpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Nadjmi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Arash Khojasteh
- Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Liu X, Zhan Y, Xu W, Liu L, Liu X, Da J, Zhang K, Zhang X, Wang J, Liu Z, Jin H, Zhang B, Li Y. Characterization of transcriptional landscape in bone marrow-derived mesenchymal stromal cells treated with aspirin by RNA-seq. PeerJ 2022; 10:e12819. [PMID: 35127290 PMCID: PMC8793730 DOI: 10.7717/peerj.12819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Aspirin is a common antipyretic, analgesic, and anti-inflammatory drug, which has been reported to extend life in animal models and application in the treatment of aging-related diseases. However, it remains unclear about the effects of aspirin on bone marrow-derived mesenchymal stromal cells (BM-MSCs). Here, we aimed to analyze the influence of aspirin on senescence and young BM-MSCs. METHODS BM-MSCs were serially passaged to construct a replicative senescence model. SA-β-gal staining, PCR, western blot, and RNA-sequencing were performed on BM-MSCs with or without aspirin treatment, to examine aspirin's impact on bone marrow-derived mesenchymal stem cells. RESULTS SA-β-gal staining, PCR, and western blot revealed that aspirin could alleviate the cellular expression of senescence-related indicators of BM-MSCs, including a decrease of SA-β-gal-positive cells and staining intensity, and downregulation of p16, p21, and p53 expression after aspirin treatment. RNA-sequencing results shown in the biological processes related to aging, aspirin could influence cellular immune response and lipid metabolism. CONCLUSION The efficacy of aspirin for retarding senescence of BM-MSCs was demonstrated. Our study indicated that the mechanisms of this delay might involve influencing immune response and lipid metabolism.
Collapse
Affiliation(s)
- Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,The Second Affiliated Hospital of Harbin Medical University, Department of Periodontology and Oral Mucosa, Harbin, China
| | - Wenxia Xu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyao Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinjian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziqi Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
A Critical Review of the Design, Manufacture, and Evaluation of Bone Joint Replacements for Bone Repair. MATERIALS 2021; 15:ma15010153. [PMID: 35009299 PMCID: PMC8746215 DOI: 10.3390/ma15010153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
With the change of people’s living habits, bone trauma has become a common clinical disease. A large number of bone joint replacements is performed every year around the world. Bone joint replacement is a major approach for restoring the functionalities of human joints caused by bone traumas or some chronic bone diseases. However, the current bone joint replacement products still cannot meet the increasing demands and there is still room to increase the performance of the current products. The structural design of the implant is crucial because the performance of the implant relies heavily on its geometry and microarchitecture. Bionic design learning from the natural structure is widely used. With the progress of technology, machine learning can be used to optimize the structure of bone implants, which may become the focus of research in the future. In addition, the optimization of the microstructure of bone implants also has an important impact on its performance. The widely used design algorithm for the optimization of bone joint replacements is reviewed in the present study. Regarding the manufacturing of the implant, the emerging additive manufacturing technique provides more room for the design of complex microstructures. The additive manufacturing technique has enabled the production of bone joint replacements with more complex internal structures, which makes the design process more convenient. Numerical modeling plays an important role in the evaluation of the performance of an implant. For example, theoretical and numerical analysis can be carried out by establishing a musculoskeletal model to prepare for the practical use of bone implants. Besides, the in vitro and in vivo testing can provide mechanical properties of bone implants that are more in line with the implant recipient’s situation. In the present study, the progress of the design, manufacture, and evaluation of the orthopedic implant, especially the joint replacement, is critically reviewed.
Collapse
|
27
|
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Scherberich A, Schaefer DJ, Martin I. Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft. Front Oncol 2021; 11:775136. [PMID: 34938659 PMCID: PMC8685218 DOI: 10.3389/fonc.2021.775136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
The reconstruction of complex midface defects is a challenging clinical scenario considering the high anatomical, functional, and aesthetic requirements. In this study, we proposed a surgical treatment to achieve improved oral rehabilitation and anatomical and functional reconstruction of a complex defect of the maxilla with a vascularized, engineered composite graft. The patient was a 39-year-old female, postoperative after left hemimaxillectomy for ameloblastic carcinoma in 2010 and tumor-free at the 5-year oncological follow-up. The left hemimaxillary defect was restored in a two-step approach. First, a composite graft was ectopically engineered using autologous stromal vascular fraction (SVF) cells seeded on an allogenic devitalized bone matrix. The resulting construct was further loaded with bone morphogenic protein-2 (BMP-2), wrapped within the latissimus dorsi muscle, and pedicled with an arteriovenous (AV) bundle. Subsequently, the prefabricated graft was orthotopically transferred into the defect site and revascularized through microvascular surgical techniques. The prefabricated graft contained vascularized bone tissue embedded within muscular tissue. Despite unexpected resorption, its orthotopic transfer enabled restoration of the orbital floor, separation of the oral and nasal cavities, and midface symmetry and allowed the patient to return to normal diet as well as to restore normal speech and swallowing function. These results remained stable for the entire follow-up period of 2 years. This clinical case demonstrates the safety and the feasibility of composite graft engineering for the treatment of complex maxillary defects. As compared to the current gold standard of autologous tissue transfer, this patient’s benefits included decreased donor site morbidity and improved oral rehabilitation. Bone resorption of the construct at the ectopic prefabrication site still needs to be further addressed to preserve the designed graft size and shape.
Collapse
Affiliation(s)
- Tarek Ismail
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander Haumer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander Lunger
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Rik Osinga
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Center for Musculoskeletal Infections, University Hospital Basel, Basel, Switzerland
| | - Alexandre Kaempfen
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Franziska Saxer
- Department of Orthopedic Surgery, University Hospital Basel, Basel, Switzerland
| | - Anke Wixmerten
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sylvie Miot
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Florian Thieringer
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Joerg Beinemann
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Christoph Kunz
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Claude Jaquiéry
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Thomas Weikert
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Felix Kaul
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Center for Musculoskeletal Infections, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Cao SS, Li SY, Geng YM, Kapat K, Liu SB, Perera FH, Li Q, Terheyden H, Wu G, Che YJ, Miranda P, Zhou M. Prefabricated 3D-Printed Tissue-Engineered Bone for Mandibular Reconstruction: A Preclinical Translational Study in Primate. ACS Biomater Sci Eng 2021; 7:5727-5738. [PMID: 34808042 PMCID: PMC8672350 DOI: 10.1021/acsbiomaterials.1c00509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
advent of three dimensionally (3D) printed customized bone
grafts using different biomaterials has enabled repairs of complex
bone defects in various in vivo models. However, studies related to
their clinical translations are truly limited. Herein, 3D printed
poly(lactic-co-glycolic acid)/β-tricalcium
phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant
bone morphogenetic protein −2 (rhBMP-2) coating were utilized
to repair primate’s large-volume mandibular defects and compared
efficacy of prefabricated tissue-engineered bone (PTEB) over direct
implantation (without prefabrication). 18F-FDG PET/CT was
explored for real-time monitoring of bone regeneration and vascularization.
After 3-month’s prefabrication, the original 3D-architecture
of the PLGA/TCP-BMP scaffold was found to be completely lost, while
it was properly maintained in TCP-BMP scaffolds. Besides, there was
a remarkable decrease in the PLGA/TCP-BMP scaffold density and increase
in TCP-BMP scaffolds density during ectopic (within latissimus dorsi
muscle) and orthotopic (within mandibular defect) implantation, indicating
regular bone formation with TCP-BMP scaffolds. Notably, PTEB based
on TCP-BMP scaffold was successfully fabricated with pronounced effects
on bone regeneration and vascularization based on radiographic, 18F-FDG PET/CT, and histological evaluation, suggesting a promising
approach toward clinical translation.
Collapse
Affiliation(s)
- Shuai-Shuai Cao
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shu-Yi Li
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, de Boelelaan, Vrije Universiteit Amsterdam 1117, Amsterdam, The Netherlands
| | - Yuan-Ming Geng
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kausik Kapat
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shang-Bin Liu
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Fidel Hugo Perera
- Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Industrial Engineering School, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Qian Li
- Hangzhou Jiuyuan Gene Engineering Co., Ltd., Hangzhou 3100018, China
| | - Hendrik Terheyden
- Department of Oral and Maxillofacial Surgery, Red Cross Hospital, Kassel 34117, Germany
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam 1117, The Netherlands
| | - Yue-Juan Che
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Pedro Miranda
- Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Industrial Engineering School, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Miao Zhou
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
29
|
Guo B, Feng X, Wang Y, Wang X, He Y. Biomimetic and immunomodulatory baicalin-loaded graphene oxide-demineralized bone matrix scaffold for in vivo bone regeneration. J Mater Chem B 2021; 9:9720-9733. [PMID: 34787627 DOI: 10.1039/d1tb00618e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of an artificial bone substitute is a potential strategy for repairing bone defects; however, the inadequate consideration of repair-immune system interactions, resulting in significant pathological changes in the microenvironment, is a major barrier to achieving effective regenerative outcomes. Here, we evaluated a biomimetic baicalin (BAI)-incorporating graphene oxide-demineralized bone matrix (GO-BAI/DBM) hybrid scaffold, which was beneficial for bone regeneration. First, by considering that bone is a kind of organic-inorganic composite, a biomimetic GO/DBM bone substitute with enhanced physiochemical and osteoinductive properties was fabricated. Furthermore, inherently therapeutic GO was also used as a drug delivery carrier to achieve the sustained and prolonged release of BAI. Notably, a series of experiments showed that the GO-BAI nanocomposites could transform inflammatory M1 macrophages into pro-healing M2 macrophages, which was beneficial for in vitro angiogenesis and osteogenesis. By using a rat subcutaneous model, it was revealed that the GO-BAI nanocomposites proactively ameliorated the inflammatory response, which was coupled with decreased fibrous encapsulation. Notably, obvious in situ calvarial bone regeneration was achieved using the GO-BAI/DBM hybrid scaffold. These findings demonstrated that the bifunctional GO-BAI/DBM scaffold, by enhancing beneficial cross-talk among bone cells and inflammatory cells, might be utilized as an effective strategy for bone regeneration.
Collapse
Affiliation(s)
- Bing Guo
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xiaodong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Yun Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yue He
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
30
|
Chu CF, Mao SH, Shyu VBH, Chen CH, Chen CT. Allogeneic Bone-Marrow Mesenchymal Stem Cell with Moldable Cryogel for Craniofacial Bone Regeneration. J Pers Med 2021; 11:jpm11121326. [PMID: 34945798 PMCID: PMC8704672 DOI: 10.3390/jpm11121326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
Allogeneic bone-marrow mesenchymal stem cells (BMSCs) can promote bone regeneration and substitute for autologous BMSCs if autologous sources are unavailable, but the efficacy of bone regeneration by allogeneic BMSCs is still inconsistent. A Lewis rat cranium defect model was used to investigate the efficacy of bone regeneration between autologous and allogeneic BMSCs in gelatin-nanohydroxyapatite cryogel scaffolds. BMSCs from Wistar rats served as the allogeneic cell lineage. The full-thickness cranium defects were treated by either blank control, cryogel only, allogeneic BMSC-seeded cryogel, or autologous BMSC-seeded cryogel (n = 5). Bone regeneration was monitored by micro-computed tomography and examined histologically at week 12. In addition, we assessed the immune responses in vitro by mixed lymphocyte reaction (MLR) assay and CD4+ immunochemistry staining ex vivo. The MLR showed that allogeneic BSMCs elicited a weak immune response on day 14 that progressively attenuated by day 28. In vivo, the bone regeneration in allogeneic BMSCs was inferior at week 4, but progressively matched the autologous BMSCs by week 12. Our results suggest that allogeneic BMSCs can serve as an alternative source for bone regeneration.
Collapse
Affiliation(s)
- Cheng-Feng Chu
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-F.C.); (V.B.-H.S.); (C.-H.C.)
| | - Shih-Hsuan Mao
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chang Gung University, Linkou Chang Gung Memorial Hospital, Craniofacial Research Center, Taoyuan 333, Taiwan;
| | - Victor Bong-Hang Shyu
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-F.C.); (V.B.-H.S.); (C.-H.C.)
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-F.C.); (V.B.-H.S.); (C.-H.C.)
| | - Chien-Tzung Chen
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chang Gung University, Linkou Chang Gung Memorial Hospital, Craniofacial Research Center, Taoyuan 333, Taiwan;
- Correspondence: ; Fax: +886-3328-7200
| |
Collapse
|
31
|
Dalisson B, Charbonnier B, Aoude A, Gilardino M, Harvey E, Makhoul N, Barralet J. Skeletal regeneration for segmental bone loss: Vascularised grafts, analogues and surrogates. Acta Biomater 2021; 136:37-55. [PMID: 34626818 DOI: 10.1016/j.actbio.2021.09.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Massive segmental bone defects (SBD) are mostly treated by removing the fibula and transplanting it complete with blood supply. While revolutionary 50 years ago, this remains the standard treatment. This review considers different strategies to repair SBD and emerging potential replacements for this highly invasive procedure. Prior to the technical breakthrough of microsurgery, researchers in the 1960s and 1970s had begun to make considerable progress in developing non autologous routes to repairing SBD. While the breaktthrough of vascularised bone transplantation solved the immediate problem of a lack of reliable repair strategies, much of their prior work is still relevant today. We challenge the assumption that mimicry is necessary or likely to be successful and instead point to the utility of quite crude (from a materials technology perspective), approaches. Together there are quite compelling indications that the body can regenerate entire bone segments with few or no exogenous factors. This is important, as there is a limit to how expensive a bone repair can be and still be widely available to all patients since cost restraints within healthcare systems are not likely to diminish in the near future. STATEMENT OF SIGNIFICANCE: This review is significant because it is a multidisciplinary view of several surgeons and scientists as to what is driving improvement in segmental bone defect repair, why many approaches to date have not succeeded and why some quite basic approaches can be as effective as they are. While there are many reviews of the literature of grafting and bone repair the relative lack of substantial improvement and slow rate of progress in clinical translation is often overlooked and we seek to challenge the reader to consider the issue more broadly.
Collapse
|
32
|
McGue CM, Mañón VA, Viet CT. Advances in Tissue Engineering and Implications for Oral and Maxillofacial Reconstruction. JOURNAL OF THE CALIFORNIA DENTAL ASSOCIATION 2021; 49:685-694. [PMID: 34887651 PMCID: PMC8653764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Reconstructive surgery in the oral and maxillofacial region poses many challenges due to the complexity of the facial skeleton and the presence of composite defects involving soft tissue, bone and nerve defects. METHODS Current methods of reconstruction include autologous grafting techniques with local or regional rotational flaps or microvascular free flaps, allografts, xenografts and prosthetic devices. RESULTS Tissue engineering therapies utilizing stem cells provide promise for enhancing the current reconstructive options. CONCLUSIONS This article is a review on tissue engineering strategies applicable to specialists who treat oral and maxillofacial defects. PRACTICAL IMPLICATIONS We review advancements in hard tissue regeneration for dental rehabilitation, soft tissue engineering, nerve regeneration and innovative strategies for reconstruction of major defects.
Collapse
Affiliation(s)
- Caitlyn M McGue
- Department of oral and maxillofacial surgery at the Loma Linda University School of Dentistry
| | - Victoria A Mañón
- Department of oral and maxillofacial surgery at the University of Texas Health Science Center at Houston School of Dentistry
| | - Chi T Viet
- Department of oral and maxillofacial surgery at the Loma Linda University School of Dentistry
| |
Collapse
|
33
|
Yun S, Choi D, Choi DJ, Jin S, Yun WS, Huh JB, Shim JH. Bone Fracture-Treatment Method: Fixing 3D-Printed Polycaprolactone Scaffolds with Hydrogel Type Bone-Derived Extracellular Matrix and β-Tricalcium Phosphate as an Osteogenic Promoter. Int J Mol Sci 2021; 22:ijms22169084. [PMID: 34445788 PMCID: PMC8396563 DOI: 10.3390/ijms22169084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Bone formation and growth are crucial for treating bone fractures. Improving bone-reconstruction methods using autologous bone and synthetic implants can reduce the recovery time. Here, we investigated three treatments using two different materials, a bone-derived decellularized extracellular matrix (bdECM) and β-tricalcium phosphate (β-TCP), individually and in combination, as osteogenic promoter between bone and 3D-printed polycaprolactone scaffold (6-mm diameter) in rat calvarial defects (8-mm critical diameter). The materials were tested with a human pre-osteoblast cell line (MG63) to determine the effects of the osteogenic promoter on bone formation in vitro. A polycaprolactone (PCL) scaffold with a porous structure was placed at the center of the in vivo rat calvarial defects. The gap between the defective bone and PCL scaffold was filled with each material. Animals were sacrificed four weeks post-implantation, and skull samples were preserved for analysis. The preserved samples were scanned by micro-computed tomography and analyzed histologically to examine the clinical benefits of the materials. The bdECM–β-TCP mixture showed faster bone formation and a lower inflammatory response in the rats. Therefore, our results imply that a bdECM–β-TCP mixture is an ideal osteogenic promoter for treating fractures.
Collapse
Affiliation(s)
- Seokhwan Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
| | - Dami Choi
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
| | - Dong-Jin Choi
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
| | - Songwan Jin
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| |
Collapse
|
34
|
Kengelbach-Weigand A, Thielen C, Bäuerle T, Götzl R, Gerber T, Körner C, Beier JP, Horch RE, Boos AM. Personalized medicine for reconstruction of critical-size bone defects - a translational approach with customizable vascularized bone tissue. NPJ Regen Med 2021; 6:49. [PMID: 34413320 PMCID: PMC8377075 DOI: 10.1038/s41536-021-00158-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Tissue engineering principles allow the generation of functional tissues for biomedical applications. Reconstruction of large-scale bone defects with tissue-engineered bone has still not entered the clinical routine. In the present study, a bone substitute in combination with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) with or without growth factors BMP-2 and VEGF-A was prevascularized by an arteriovenous (AV) loop and transplanted into a critical-size tibia defect in the sheep model. With 3D imaging and immunohistochemistry, we could show that this approach is a feasible and simple alternative to the current clinical therapeutic option. This study serves as proof of concept for using large-scale transplantable, vascularized, and customizable bone, generated in a living organism for the reconstruction of load-bearing bone defects, individually tailored to the patient's needs. With this approach in personalized medicine for the reconstruction of critical-size bone defects, regeneration of parts of the human body will become possible in the near future.
Collapse
Affiliation(s)
- Annika Kengelbach-Weigand
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carolina Thielen
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- grid.5330.50000 0001 2107 3311Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rebekka Götzl
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.412301.50000 0000 8653 1507Present Address: Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Thomas Gerber
- grid.10493.3f0000000121858338Institute of Physics, University of Rostock, Rostock, Germany
| | - Carolin Körner
- grid.5330.50000 0001 2107 3311Department of Materials Science and Engineering, Institute of Science and Technology of Metals, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Justus P. Beier
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.412301.50000 0000 8653 1507Present Address: Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Raymund E. Horch
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja M. Boos
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.412301.50000 0000 8653 1507Present Address: Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
35
|
Vascularization Strategies in Bone Tissue Engineering. Cells 2021; 10:cells10071749. [PMID: 34359919 PMCID: PMC8306064 DOI: 10.3390/cells10071749] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a highly vascularized tissue, and its development, maturation, remodeling, and regeneration are dependent on a tight regulation of blood vessel supply. This condition also has to be taken into consideration in the context of the development of artificial tissue substitutes. In classic tissue engineering, bone-forming cells such as primary osteoblasts or mesenchymal stem cells are introduced into suitable scaffolds and implanted in order to treat critical-size bone defects. However, such tissue substitutes are initially avascular. Because of the occurrence of hypoxic conditions, especially in larger tissue substitutes, this leads to the death of the implanted cells. Therefore, it is necessary to devise vascularization strategies aiming at fast and efficient vascularization of implanted artificial tissues. In this review article, we present and discuss the current vascularization strategies in bone tissue engineering. These are based on the use of angiogenic growth factors, the co-implantation of blood vessel forming cells, the ex vivo microfabrication of blood vessels by means of bioprinting, and surgical methods for creating surgically transferable composite tissues.
Collapse
|
36
|
Yang YP, Gadomski BC, Bruyas A, Easley J, Labus KM, Nelson B, Palmer RH, Stewart H, McGilvray K, Puttlitz CM, Regan D, Stahl A, Lui E, Li J, Moeinzadeh S, Kim S, Maloney W, Gardner MJ. Investigation of a Prevascularized Bone Graft for Large Defects in the Ovine Tibia. Tissue Eng Part A 2021; 27:1458-1469. [PMID: 33858216 DOI: 10.1089/ten.tea.2020.0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo bioreactors are a promising approach for engineering vascularized autologous bone grafts to repair large bone defects. In this pilot parametric study, we first developed a three-dimensional (3D) printed scaffold uniquely designed to accommodate inclusion of a vascular bundle and facilitate growth factor delivery for accelerated vascular invasion and ectopic bone formation. Second, we established a new sheep deep circumflex iliac artery (DCIA) model as an in vivo bioreactor for engineering a vascularized bone graft and evaluated the effect of implantation duration on ectopic bone formation. Third, after 8 weeks of implantation around the DCIA, we transplanted the prevascularized bone graft to a 5 cm segmental bone defect in the sheep tibia, using the custom 3D printed bone morphogenic protein 2 (BMP-2) loaded scaffold without prior in vivo bioreactor maturation as a control. Analysis by micro-computed tomography and histomorphometry found ectopic bone formation in BMP-2 loaded scaffolds implanted for 8 and 12 weeks in the iliac pouch, with greater bone formation occurring after 12 weeks. Grafts transplanted to the tibial defect supported bone growth, mainly on the periphery of the graft, but greater bone growth and less soft tissue invasion was observed in the avascular BMP-2 loaded scaffold implanted directly into the tibia without prior in vivo maturation. Histopathological evaluation noted considerably greater vascularity in the bone grafts that underwent in vivo maturation with an inserted vascular bundle compared with the avascular BMP-2 loaded graft. Our findings indicate that the use of an initial DCIA in vivo bioreactor maturation step is a promising approach to developing vascularized autologous bone grafts, although scaffolds with greater osteoinductivity should be further studied. Impact statement This translational pilot study aims at combining a tissue engineering scaffold strategy, in vivo prevascularization, and a modified transplantation technique to accelerate large segmental bone defect repair. First, we three-dimensional (3D) printed a 5 cm scaffold with a unique design to facilitate vascular bundle inclusion and osteoinductive growth factor delivery. Second, we established a new sheep deep circumflex iliac artery model as an in vivo bioreactor for prevascularizing the novel 3D printed osteoinductive scaffold. Subsequently, we transplanted the prevascularized bone graft to a clinically relevant 5 cm segmental bone defect in the sheep tibia for bone regeneration.
Collapse
Affiliation(s)
- Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Material Science and Engineering, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Benjamin C Gadomski
- Department of Mechanical Engineering and School of Biomedical Engineering, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Arnaud Bruyas
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Jeremiah Easley
- Department of Clinical Sciences, and Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kevin M Labus
- Department of Mechanical Engineering and School of Biomedical Engineering, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brad Nelson
- Department of Clinical Sciences, and Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Ross H Palmer
- Department of Clinical Sciences, and Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Holly Stewart
- Department of Clinical Sciences, and Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering and School of Biomedical Engineering, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Christian M Puttlitz
- Department of Mechanical Engineering and School of Biomedical Engineering, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Dan Regan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexander Stahl
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Chemistry and Stanford University, Stanford, California, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Jiannan Li
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - William Maloney
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
37
|
Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release 2021; 333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
|
38
|
Mahfouzi SH, Amoabediny G, Safiabadi Tali SH. Advances in bioreactors for lung bioengineering: From scalable cell culture to tissue growth monitoring. Biotechnol Bioeng 2021; 118:2142-2167. [PMID: 33629350 DOI: 10.1002/bit.27728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Lung bioengineering has emerged to resolve the current lung transplantation limitations and risks, including the shortage of donor organs and the high rejection rate of transplanted lungs. One of the most critical elements of lung bioengineering is bioreactors. Bioreactors with different applications have been developed in the last decade for lung bioengineering approaches, aiming to produce functional reproducible tissue constructs. Here, the current status and advances made in the development and application of bioreactors for bioengineering lungs are comprehensively reviewed. First, bioreactor design criteria are explained, followed by a discussion on using bioreactors as a culture system for scalable expansion and proliferation of lung cells, such as producing epithelial cells from induced pluripotent stem cells (iPSCs). Next, bioreactor systems facilitating and improving decellularization and recellularization of lung tissues are discussed, highlighting the studies that developed bioreactors for producing engineered human-sized lungs. Then, monitoring bioreactors are reviewed, showing their ability to evaluate and optimize the culture conditions for maturing engineered lung tissues, followed by an explanation on the ability of ex vivo lung perfusion systems for reconditioning the lungs before transplantation. After that, lung cancer studies simplified by bioreactors are discussed, showing the potentials of bioreactors in lung disease modeling. Finally, other platforms with the potential of facilitating lung bioengineering are described, including the in vivo bioreactors and lung-on-a-chip models. In the end, concluding remarks and future directions are put forward to accelerate lung bioengineering using bioreactors.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
39
|
Bioengineering for head and neck reconstruction: the role of customized flaps. Curr Opin Otolaryngol Head Neck Surg 2021; 29:156-160. [PMID: 33664198 DOI: 10.1097/moo.0000000000000705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide the reader with an overview of the present and future applications of bioengineering for head and neck reconstruction, ranging from the application of Computed Assisted Surgery (CAS) to the most recent advances in 3D printing and tissue engineering. RECENT FINDINGS The use of CAS in head and neck reconstruction has been demonstrated to provide shorter surgical times, improved reconstructive accuracy of bone reconstruction, and achieves better alignment of bone segments in osteotomized reconstructions. Beyond its classical application in bone reconstructions, CAS has demonstrated reliability in the planning and harvesting of soft tissue flaps. To date, literature regarding bioengineering for head and neck reconstruction is mainly focused on in-vitro and animal model experiments; however, some pioneering reports on human patients suggest the potential feasibility of this technology. SUMMARY Bioengineering is anticipated to play a key role in the future development of customized flaps for head and neck reconstruction. These technologies are particularly appealing as a new technology to address certain unsolved challenges in head and neck reconstruction.
Collapse
|
40
|
Zheng Z, Chen Y, Hong H, Shen Y, Wang Y, Sun J, Wang X. The "Yin and Yang" of Immunomodulatory Magnesium-Enriched Graphene Oxide Nanoscrolls Decorated Biomimetic Scaffolds in Promoting Bone Regeneration. Adv Healthc Mater 2021; 10:e2000631. [PMID: 33166076 DOI: 10.1002/adhm.202000631] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Indexed: 01/23/2023]
Abstract
Tissue regeneration driven by immunomodulatory agents has emerged as a potential solution for repairing bone defects. However, the therapeutic benefits are compromised by disturbances in the pro- and anti-inflammatory balance. Here, using magnesium nanoparticles (MgNPs) as a template, magnesium-enriched graphene oxide nanoscrolls (MgNPs@GNSs) designed for combinational modulation of the inflammatory response are reported. First, the different effects of graphene oxide (GO) and magnesium ions (Mg2+ ) on Raw264.7 macrophage phenotype transformation are screened. The results reveal that GO activates inflammatory M1 macrophages, and that Mg2+ facilitates repolarization of M1 macrophages to the pro-healing M2 phenotype. With sustained release of Mg2+ , the MgNPs@GNS nanoplatform can orchestrate harmonious type 1 and type 2 inflammatory responses. Mg2+ decrease the internalization of GO and downregulate the nuclear factor kappa-B pathway, which is profoundly involved in the inflammatory process. A series of experiments show that the ordered inflammatory response induced by MgNPs@GNSs stimulates in vitro angiogenesis and osteogenesis through chemotactic, mitogenic, and morphogenic actions. Obvious vascularized bone regeneration is achieved in a rat cranial bone defect model via MgNPs@GNS deposited decellularized bone matrix scaffold. Therefore, the potential of using inherently therapeutic nanomedicine to modulate biomaterial-induced immune responses and thus enhance bone regeneration is demonstrated.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Oral and Maxillofacial Head & Neck Oncology Shanghai Key Laboratory Stomatology Shanghai Research Institute of Stomatology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Yahong Chen
- Department of Plastic and Reconstructive Surgery Shanghai Key Laboratory of Tissue Engineering Ninth People's Hospital Shanghai Jiao Tong University School of Medicine National Tissue Engineering Center of China 639 Zhizaoju Road Shanghai 200011 China
| | - Hao Hong
- Medical School of Nanjing University 22 Hankou Road Nanjing Jiangsu 210093 China
| | - Yi Shen
- Department of Oral and Maxillofacial Head & Neck Oncology Shanghai Key Laboratory Stomatology Shanghai Research Institute of Stomatology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Yun Wang
- Department of Plastic and Reconstructive Surgery Shanghai Key Laboratory of Tissue Engineering Ninth People's Hospital Shanghai Jiao Tong University School of Medicine National Tissue Engineering Center of China 639 Zhizaoju Road Shanghai 200011 China
| | - Jian Sun
- Department of Oral and Maxillofacial Head & Neck Oncology Shanghai Key Laboratory Stomatology Shanghai Research Institute of Stomatology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery Shanghai Key Laboratory of Tissue Engineering Ninth People's Hospital Shanghai Jiao Tong University School of Medicine National Tissue Engineering Center of China 639 Zhizaoju Road Shanghai 200011 China
| |
Collapse
|
41
|
Naujokat H, Loger K, Schulz J, Açil Y, Wiltfang J. Bone tissue engineering in the greater omentum with computer-aided design/computer-aided manufacturing scaffolds is enhanced by a periosteum transplant. Regen Med 2020; 15:2297-2309. [PMID: 33355523 DOI: 10.2217/rme-2020-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: This study aimed to evaluate two different vascularized bone flap scaffolds and the impact of two barrier membranes for the reconstruction of critical-size bone defects. Materials & methods: 3D-printed scaffolds of biodegradable calcium phosphate and bioinert titanium were loaded with rhBMP-2 bone marrow aspirate, wrapped by a collagen membrane or a periosteum transplant and implanted into the greater omentum of miniature pigs. Results: Histological evaluation demonstrated significant bone formation within the first 8 weeks in both scaffolds. The periosteum transplant led to enhanced bone formation and a homogenous distribution in the scaffolds. The omentum tissue grew out a robust vascular supply. Conclusion: Endocultivation using 3D-printed scaffolds in the greater omentum is a very promising approach in defect-specific bone tissue regeneration.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Klaas Loger
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Juliane Schulz
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
42
|
Sekine H, Okano T. Capillary Networks for Bio-Artificial Three-Dimensional Tissues Fabricated Using Cell Sheet Based Tissue Engineering. Int J Mol Sci 2020; 22:ijms22010092. [PMID: 33374875 PMCID: PMC7795136 DOI: 10.3390/ijms22010092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
One of the most important challenges facing researchers in the field of regenerative medicine is to develop methods to introduce vascular networks into bioengineered tissues. Although cell scaffolds that slowly release angiogenic factors can promote post-transplantation angiogenesis, they cannot be used to construct thick tissues because of the time required for sufficient vascular network formation. Recently, the co-culture of graft tissue with vascular cells before transplantation has attracted attention as a way of promoting capillary angiogenesis. Although the co-cultured vascular cells can directly contribute to blood vessel formation within the tissue, a key objective that needs to be met is the construction of a continuous circulatory structure. Previously described strategies to reconstruct blood vessels include the culture of endothelial cells in a scaffold that contains microchannels or within the original vascular framework after decellularization of an entire organ. The technique, as developed by authors, involves the progressive stacking of three-layered cell sheets onto a vascular bed to induce the formation of a capillary network within the cell sheets. This approach enables the construction of thick, functional tissue of high cell density that can be transplanted by anastomosing its artery and vein (provided by the vascular bed) with host blood vessels.
Collapse
Affiliation(s)
- Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence: ; Tel.: +81-3-3353-8111
| | - Teruo Okano
- Center for Advanced Medical and Life Science, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics & Pharmaceutical Chemistry, School of Medicine and College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
43
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
44
|
Reconstruction of Oromandibular Defect After Tumor Resection by Sternomastoid-clavicular Flap. J Craniofac Surg 2020; 32:1845-1849. [PMID: 33196613 DOI: 10.1097/scs.0000000000007231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT The study aims to evaluate sternocleidomastoid-clavicular osteo-myocutaneous flap (SCM-OMCF) for reconstruction of mandibular defects after tumor resection. In the period between 2010 and 2018, thirteen patients with primary mandibular tumors underwent mandibular resection and reconstruction with SCM-OMCF. Patients were followed up for 10 to 66 months. Hospital was 13 ± 4 days. All patients started fluid in the 2nd day. The mean time to start oral fluid was 7.5 ± 0.8 day. Four (30.8%) patients suffered from complications (infection and salivary leak in 1 case due to partial flap loss, donor wound dehiscence in 1 case, deep venous thrombosis in 1 case and chest infection in 1 case). None of our cases experienced motor disability. Two cases (15.9%) underwent reoperations. The overall aesthetic outcome was found excellent in 5 cases, satisfactory in 5 cases and fair in 3 cases. The functional outcomes were satisfactory. Tumor recurrences were detected in 2 (15.9%) patients. Two patients died during follow up within 2 years after 1st surgery due to local and distant recurrences. SCM-OMCF is a versatile, safe and simple technique for reconstructing mandibular defects less than 11 cm.
Collapse
|
45
|
Pourlak T, Pourlak T, Ghodrati M, Mortazavi A, Dolati S, Yousefi M. Usage of stem cells in oral and maxillofacial region. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 122:441-452. [PMID: 33099018 DOI: 10.1016/j.jormas.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/07/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Malformations of the maxillofacial region has disturbing psychosocial effects and causes enormous socioeconomic concerns. The management of maxillofacial defects caused by congenital anomalies, trauma, osteoporotic fractures, periodontitis, or cancer treatment is challenging for oral and maxillofacial surgeons. Numerous approaches have been recommended for the managing of these deficiencies. The traditional treatment for maxillofacial defects or their repair is an intricate process by autologous bone grafts from the scapula, ribs, fibula, or iliac crest origins. Regenerative medicine is well thought-out as a perfect substitute approach for autologous bone grafts to renovate bone deficiencies. The use of stem cells has improved results and offered a technique to reconstruct craniofacial bone defects. The field of tissue engineering for the regeneration of maxillofacial needs integration of biochemical and biomaterial engineering aspects with cell transplantation to generate better-quality biomimetic scaffolds, prevascularize three-dimensional (3D) tissue structures, and engineer the composite interface of diverse facial tissues. In this review, we have discussed the application of different adult stem cells to repair oral and maxillofacial defects in animal models and clinical trials.
Collapse
Affiliation(s)
- T Pourlak
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - T Pourlak
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Ghodrati
- Department of Endodontics, Dental and Periodental Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Mortazavi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - S Dolati
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Matsui K, Kawai T, Ezoe Y, Yanagisawa T, Takahashi T, Kamakura S. Segmental Bone Reconstruction by Octacalcium Phosphate Collagen Composites with Teriparatide. Tissue Eng Part A 2020; 27:561-571. [PMID: 32799756 PMCID: PMC8126423 DOI: 10.1089/ten.tea.2020.0150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Octacalcium phosphate and collagen composite (OCPcol) demonstrated superior bone regeneration and has been commercialized recently in Japan. Teriparatide (TPTD) is a bioactive recombinant form of parathyroid hormone that is approved for osteoporosis treatment. Because mandibular bone reconstruction after segmental resection is a key clinical problem, it was examined whether single-dose local administration of OCPcol with TPTD can affect recovery after this procedure. OCPcol was prepared, and a commercially available hydroxyapatite and collagen composite (HAPcol) was used as a control. A 15 mm length segmental bone defect was made in the mandibular region of male beagle dogs. The experimental animals were divided in four groups. OCPcol treated with TPTD (OCPcol + TPTD), OCPcol, HAPcol treated with TPTD (HAPcol + TPTD), or HAPcol was implanted into the defect. The radiopaque areas of the implanted site were measured and statistically analyzed, and histological examination was performed after 6 months. The value of radiopaque area in total region of OCPcol + TPTD was highest (90.8 ± 7.3 mm2), followed in order by OCPcol (49.3 ± 21.8 mm2), HAPcol + TPTD (10.6 ± 2.3 mm2), and HAPcol (6.4 ± 2.3 mm2), and that of OCPcol + TPTD was significantly higher than that of HAPcol + TPTD or HAPcol. All segmented mandibles of OCPcol + TPTD and a part of those of OCPcol were bridged with newly formed bone, whereas no bone bridges were observed in HAPcol + TPTD or HAPcol. These results suggested that OCPcol treated with TPTD enabled bone reconstruction after segmental mandibular resection more than other three groups.
Collapse
Affiliation(s)
- Keiko Matsui
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tadashi Kawai
- Division of Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Yushi Ezoe
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toshiki Yanagisawa
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinji Kamakura
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
47
|
Gilbert RW. Reconstruction of the oral cavity; past, present and future. Oral Oncol 2020; 108:104683. [DOI: 10.1016/j.oraloncology.2020.104683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
|
48
|
Liu Y, Zhu Z, Pei X, Zhang X, Cheng X, Hu S, Gao X, Wang J, Chen J, Wan Q. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36978-36995. [PMID: 32814397 DOI: 10.1021/acsami.0c12090] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Designing bone adhesives with adhesiveness, antideformation, biocompatibility, and biofunctional effects has great practical significance for bone defect reconstructive treatment, especially for bone graft repair surgery. Here, we designed zeolitic imidazolate framework-8 nanoparticle (ZIF-8 NP)-modified catechol-chitosan (CA-CS) multifunctional hydrogels (CA-CS/Z) to stabilize the bone graft environment, ensure blood supply, promote osteogenic differentiation, and accelerate bone reconstruction. Characterizations confirmed the successful synthesis of CA-CS/Z hydrogels. Hydrogels exhibited advanced rheological properties, reliable mechanical strength, and excellent adhesion for clinical applications. Based on excellent biocompatibility, it could enhance paracrine of the vascular endothelial growth factor (VEGF) in rat bone marrow mesenchymal stem cells (rBMSCs) to ensure blood supply reconstruction in bone defect areas. Furthermore, the ZIF-8 NPs released from the hydrogels could also up-regulate the production and secretion of alkaline phosphatase, collagen 1, and osteocalcin, promoting the osteogenic differentiation of rBMSCs. In addition, the antibacterial properties of CA-CS/Z could also be observed. In vivo experiments further provided a powerful proof that CA-CS/Z promoted vascularized osteogenesis in wound areas by stabilizing bone graft materials and greatly accelerated the speed and healing of bone reconstruction. These results indicate the promising potential of CA-CS/Z hydrogels with promoting implantation stability, angiogenesis, and osteogenesis for bone regeneration applications.
Collapse
Affiliation(s)
- Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaomeng Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
49
|
Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:107-132. [PMID: 32635857 DOI: 10.1089/ten.teb.2020.0111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delayed healing and nonunion formation are major challenges in orthopedic surgery, which require the development of novel treatment strategies. Vascularization is considered one of the major prerequisites for successful bone healing, providing an adequate nutrient supply and allowing the infiltration of progenitor cells to the fracture site. Hence, during the last decade, a considerable number of studies have focused on the evaluation of vascularization strategies to prevent or to treat nonunion formation. These involve (1) biophysical applications, (2) systemic pharmacological interventions, and (3) tissue engineering, including sophisticated scaffold materials, local growth factor delivery systems, cell-based techniques, and surgical vascularization approaches. Accumulating evidence indicates that in nonunions, these strategies are indeed capable of improving the process of bone healing. The major challenge for the future will now be the translation of these strategies into clinical practice to make them accessible for the majority of patients. If this succeeds, these vascularization strategies may markedly reduce the incidence of nonunion formation. Impact statement Delayed healing and nonunion formation are a major clinical problem in orthopedic surgery. This review provides an overview of vascularization strategies for the prevention and treatment of nonunions. The successful translation of these strategies in clinical practice is of major importance to achieve adequate bone healing.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
50
|
In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells. MATERIALS 2020; 13:ma13143057. [PMID: 32650530 PMCID: PMC7412522 DOI: 10.3390/ma13143057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
3D printed biomaterials have been extensively investigated and developed in the field of bone regeneration related to clinical issues. However, specific applications of 3D printed biomaterials in different dental areas have seldom been reported. In this study, we aimed to and successfully fabricated 3D poly (lactic-co-glycolic acid)/β-tricalcium phosphate (3D-PLGA/TCP) and 3D β-tricalcium phosphate (3D-TCP) scaffolds using two relatively distinct 3D printing (3DP) technologies. Conjunctively, we compared and investigated mechanical and biological responses on human dental pulp stem cells (hDPSCs). Physicochemical properties of the scaffolds, including pore structure, chemical elements, and compression modulus, were characterized. hDPSCs were cultured on scaffolds for subsequent investigations of biocompatibility and osteoconductivity. Our findings indicate that 3D printed PLGA/TCP and β-tricalcium phosphate (β-TCP) scaffolds possessed a highly interconnected and porous structure. 3D-TCP scaffolds exhibited better compressive strength than 3D-PLGA/TCP scaffolds, while the 3D-PLGA/TCP scaffolds revealed a flexible mechanical performance. The introduction of 3D structure and β-TCP components increased the adhesion and proliferation of hDPSCs and promoted osteogenic differentiation. In conclusion, 3D-PLGA/TCP and 3D-TCP scaffolds, with the incorporation of hDPSCs as a personalized restoration approach, has a prospective potential to repair minor and critical bone defects in oral and maxillofacial surgery, respectively.
Collapse
|