1
|
Sacoor C, Vitorino P, Nhacolo A, Munguambe K, Mabunda R, Garrine M, Jamisse E, Magaço A, Xerinda E, Sitoe A, Fernandes F, Carrilho C, Maixenchs M, Chirinda P, Nhampossa T, Nhancale B, Rakislova N, Bramugy J, Nhacolo A, Ajanovic S, Valente M, Massinga A, Varo R, Menéndez C, Ordi J, Mandomando I, Bassat Q. Child Health and Mortality Prevention Surveillance (CHAMPS): Manhiça site description, Mozambique. Gates Open Res 2024; 7:4. [PMID: 39233704 PMCID: PMC11374382 DOI: 10.12688/gatesopenres.13931.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 09/06/2024] Open
Abstract
The Manhiça Health Research Centre (Manhiça HDSS) was established in 1996 in Manhiça, a rural district at Maputo Province in the southern part of Mozambique with approximately 49,000 inhabited households, a total population of 209.000 individuals, and an annual estimated birth cohort of about 5000 babies. Since 2016, Manhiça HDSS is implementing the Child Health and Mortality Prevention Surveillance (CHAMPS) program aiming to investigate causes of death (CoD) in stillbirths and children under the age of 5 years using an innovative post-mortem technique known as Minimally Invasive Tissue sampling (MITS), comprehensive pathogen screening using molecular methods, clinical record abstraction and verbal autopsy. Both in-hospital and community pediatric deaths are investigated using MITS. For this, community-wide socio-demographic approaches (notification of community deaths by key informants, formative research involving several segments of the community, availability of free phone lines for notification of medical emergencies and deaths, etc.) are conducted alongside to foster community awareness, involvement and adherence as well as to compute mortality estimates and collect relevant information of health and mortality determinants. The main objective of this paper is to describe the Manhiça Health and Demographic Surveillance System (HDSS) site and the CHAMPS research environment in place including the local capacities among its reference hospital, laboratories, data center and other relevant areas involved in this ambitious surveillance and research project, whose ultimate aim is to improve child survival through public health actions derived from credible estimates and understanding of the major causes of childhood mortality in Mozambique.
Collapse
Affiliation(s)
- Charfudin Sacoor
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Pio Vitorino
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Ariel Nhacolo
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Khátia Munguambe
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- Faculty of Medicine, Eduardo Mondlane University, Maputo, Maputo, Mozambique
| | - Rita Mabunda
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Marcelino Garrine
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Edgar Jamisse
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Amílcar Magaço
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Elísio Xerinda
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - António Sitoe
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Fabíola Fernandes
- Faculty of Medicine, Eduardo Mondlane University, Maputo, Maputo, Mozambique
- Department of Pathology, Maputo Central Hospital, Maputo, Maputo, Mozambique
| | - Carla Carrilho
- Faculty of Medicine, Eduardo Mondlane University, Maputo, Maputo, Mozambique
- Department of Pathology, Maputo Central Hospital, Maputo, Maputo, Mozambique
| | - Maria Maixenchs
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Percina Chirinda
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Tacilta Nhampossa
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Bento Nhancale
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Natalia Rakislova
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Department of Pathology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Justina Bramugy
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Arsénio Nhacolo
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Sara Ajanovic
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Marta Valente
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Arsénia Massinga
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
| | - Rosauro Varo
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Clara Menéndez
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- CIBER Epidemiologia y Salud Publica (CIBERESP), Barcelona, Spain
| | - Jaume Ordi
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Department of Pathology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Inácio Mandomando
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- National Institute of Health, Ministry of Health of Mozambique, Maputo, Mozambique
| | - Quique Bassat
- Manhiça Health Research Center, Municipio da Vila da Manhiça, Maputo Province, 1929, Mozambique
- ISGlobal, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- CIBER Epidemiologia y Salud Publica (CIBERESP), Barcelona, Spain
- ICREA, Barcelona, Spain
- Pediatric Department, Hospital Sant Joan de Deu- Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
The effect of sickle cell genotype on the pharmacokinetic properties of artemether-lumefantrine in Tanzanian children. Int J Parasitol Drugs Drug Resist 2022; 19:31-39. [PMID: 35617818 PMCID: PMC9133758 DOI: 10.1016/j.ijpddr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Since there are inconsistent data relating to the effect of haemoglobinopathies on disposition of artemisinin antimalarial combination therapy, and none in sickle cell trait (SCT) or sickle cell disease (SCD), the aim of this study was to characterize the pharmacokinetic properties of artemether-lumefantrine (ARM-LUM) in children with SCD/SCT. Thirty-eight Tanzanian children aged 5–10 years with normal (haemoglobin AA; n = 12), heterozygous (haemoglobin AS; n = 14) or homozygous (haemoglobin SS; n = 12) sickle genotypes received six ARM-LUM doses (1.7 mg/kg plus 10 mg/kg, respectively) over 3 days. Sparse venous and mixed-capillary dried blood spot (DBS) samples were taken over 42 days. Plasma and DBS ARM and LUM, and their active metabolites dihydroartemisinin (DHA) and desbutyl-lumefantrine (DBL), were assayed using validated liquid chromatography-mass spectrometry. Multi-compartmental pharmacokinetic models were developed using a population approach. Plasma but not DBS concentrations of ARM/DHA were assessable. The majority (85%) of the 15 measurable values were within 95% prediction intervals from a published population pharmacokinetic ARM/DHA model in Papua New Guinean children of similar age without SCD/SCT who had uncomplicated malaria, and there was no clear sickle genotype clustering. Plasma (n = 38) and corrected DBS (n = 222) LUM concentrations were analysed using a two-compartment model. The median [inter-quartile range] LUM AUC0–∞ was 607,296 [426,480–860,773] μg.h/L, within the range in published studies involving different populations, age-groups and malaria status. DBS and plasma DBL concentrations correlated poorly and were not modelled. These data support use of the conventional ARM-LUM treatment regimen for uncomplicated malaria in children with SCT/SCD. Malaria remains a serious infection in children with sickle cell trait/disease. Artemether-lumefantrine (AL) is first-line therapy in this situation. There are no AL pharmacokinetic data in children with sickle cell disease/trait. AL disposition in Tanzanian children did not differ across sickle genotypes. Recommended AL treatment doses can be given regardless of sickle status.
Collapse
|
3
|
Mansoor R, Commons RJ, Douglas NM, Abuaku B, Achan J, Adam I, Adjei GO, Adjuik M, Alemayehu BH, Allan R, Allen EN, Anvikar AR, Arinaitwe E, Ashley EA, Ashurst H, Asih PBS, Bakyaita N, Barennes H, Barnes KI, Basco L, Bassat Q, Baudin E, Bell DJ, Bethell D, Bjorkman A, Boulton C, Bousema T, Brasseur P, Bukirwa H, Burrow R, Carrara VI, Cot M, D’Alessandro U, Das D, Das S, Davis TME, Desai M, Djimde AA, Dondorp AM, Dorsey G, Drakeley CJ, Duparc S, Espié E, Etard JF, Falade C, Faucher JF, Filler S, Fogg C, Fukuda M, Gaye O, Genton B, Ghulam Rahim A, Gilayeneh J, Gonzalez R, Grais RF, Grandesso F, Greenwood B, Grivoyannis A, Hatz C, Hodel EM, Humphreys GS, Hwang J, Ishengoma D, Juma E, Kachur SP, Kager PA, Kamugisha E, Kamya MR, Karema C, Kayentao K, Kazienga A, Kiechel JR, Kofoed PE, Koram K, Kremsner PG, Lalloo DG, Laman M, Lee SJ, Lell B, Maiga AW, Mårtensson A, Mayxay M, Mbacham W, McGready R, Menan H, Ménard D, Mockenhaupt F, Moore BR, Müller O, Nahum A, Ndiaye JL, Newton PN, Ngasala BE, Nikiema F, Nji AM, Noedl H, Nosten F, Ogutu BR, Ojurongbe O, Osorio L, et alMansoor R, Commons RJ, Douglas NM, Abuaku B, Achan J, Adam I, Adjei GO, Adjuik M, Alemayehu BH, Allan R, Allen EN, Anvikar AR, Arinaitwe E, Ashley EA, Ashurst H, Asih PBS, Bakyaita N, Barennes H, Barnes KI, Basco L, Bassat Q, Baudin E, Bell DJ, Bethell D, Bjorkman A, Boulton C, Bousema T, Brasseur P, Bukirwa H, Burrow R, Carrara VI, Cot M, D’Alessandro U, Das D, Das S, Davis TME, Desai M, Djimde AA, Dondorp AM, Dorsey G, Drakeley CJ, Duparc S, Espié E, Etard JF, Falade C, Faucher JF, Filler S, Fogg C, Fukuda M, Gaye O, Genton B, Ghulam Rahim A, Gilayeneh J, Gonzalez R, Grais RF, Grandesso F, Greenwood B, Grivoyannis A, Hatz C, Hodel EM, Humphreys GS, Hwang J, Ishengoma D, Juma E, Kachur SP, Kager PA, Kamugisha E, Kamya MR, Karema C, Kayentao K, Kazienga A, Kiechel JR, Kofoed PE, Koram K, Kremsner PG, Lalloo DG, Laman M, Lee SJ, Lell B, Maiga AW, Mårtensson A, Mayxay M, Mbacham W, McGready R, Menan H, Ménard D, Mockenhaupt F, Moore BR, Müller O, Nahum A, Ndiaye JL, Newton PN, Ngasala BE, Nikiema F, Nji AM, Noedl H, Nosten F, Ogutu BR, Ojurongbe O, Osorio L, Ouédraogo JB, Owusu-Agyei S, Pareek A, Penali LK, Piola P, Plucinski M, Premji Z, Ramharter M, Richmond CL, Rombo L, Roper C, Rosenthal PJ, Salman S, Same-Ekobo A, Sibley C, Sirima SB, Smithuis FM, Somé FA, Staedke SG, Starzengruber P, Strub-Wourgaft N, Sutanto I, Swarthout TD, Syafruddin D, Talisuna AO, Taylor WR, Temu EA, Thwing JI, Tinto H, Tjitra E, Touré OA, Tran TH, Ursing J, Valea I, Valentini G, van Vugt M, von Seidlein L, Ward SA, Were V, White NJ, Woodrow CJ, Yavo W, Yeka A, Zongo I, Simpson JA, Guerin PJ, Stepniewska K, Price RN. Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data. BMC Med 2022; 20:85. [PMID: 35249546 PMCID: PMC8900374 DOI: 10.1186/s12916-022-02265-9] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/18/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia. METHODS Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≥ 25% at day 3 and day 7. RESULTS A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0-19.7 g/dL) in Africa, 11.6 g/dL (range 5.0-20.0 g/dL) in Asia and 12.3 g/dL (range 6.9-17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≥ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39-3.05], p < 0.001). CONCLUSIONS In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery.
Collapse
|
4
|
Bui V, Higgins CR, Laing S, Ozawa S. Assessing the Impact of Substandard and Falsified Antimalarials in Benin. Am J Trop Med Hyg 2021; 106:tpmd210450. [PMID: 34749311 PMCID: PMC9209916 DOI: 10.4269/ajtmh.21-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/03/2021] [Indexed: 11/07/2022] Open
Abstract
Substandard and falsified antimalarials contribute to the global malaria burden by increasing the risk of treatment failures, adverse events, unnecessary health expenditures, and avertable deaths, yet no study has examined this impact in western francophone Africa to date. In Benin, where malaria remains endemic and is the leading cause of mortality among children younger than 5 years, there is a lack of robust data to combat the issue effectively and inform policy decisions. We adapted the Substandard and Falsified Antimalarial Research Impact model to assess the health and economic impact of poor-quality antimalarials in this population. The model simulates population characteristics, malaria infection, care-seeking behavior, disease progression, treatment outcomes, and associated costs of malaria. We estimated approximately 1.8 million cases of malaria in Benin among children younger than 5 years, which cost $193 million (95% CI, $192-$193 million) in treatment costs and productivity losses annually. Substandard and falsified antimalarials were responsible for 11% (n = 693) of deaths and nearly $20.8 million in annual costs. Moreover, we found that replacing all antimalarials with quality-ensured artemisinin combination therapies (ACTs) could result in $29.6 million in cost savings and prevent 1,038 deaths per year. These results highlight the value of improving access to quality-ensured artemisinin combination therapies for malaria treatment and increasing care-seeking in Benin. Policymakers and key stakeholders should use these findings to advocate for increased access to quality-ensured antimalarials, inform policies and interventions to improve health-care access and quality, and reduce the burden of malaria.
Collapse
Affiliation(s)
- Vy Bui
- Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Colleen R. Higgins
- Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah Laing
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Sachiko Ozawa
- Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Maternal Child Health, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Nhama A, Nhamússua L, Macete E, Bassat Q, Salvador C, Enosse S, Candrinho B, Carvalho E, Nhacolo A, Chidimatembue A, Saifodine A, Zulliger R, Lucchi N, Svigel SS, Moriarty LF, Halsey ES, Mayor A, Aide P. In vivo efficacy and safety of artemether-lumefantrine and amodiaquine-artesunate for uncomplicated Plasmodium falciparum malaria in Mozambique, 2018. Malar J 2021; 20:390. [PMID: 34600544 PMCID: PMC8487544 DOI: 10.1186/s12936-021-03922-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) has been the recommended first-line treatment for uncomplicated malaria in Mozambique since 2006, with artemether–lumefantrine (AL) and amodiaquine–artesunate (AS–AQ) as the first choice. To assess efficacy of currently used ACT, an in vivo therapeutic efficacy study was conducted. Methods The study was conducted in four sentinel sites: Montepuez, Moatize, Mopeia and Massinga. Patients between 6 and 59 months old with uncomplicated Plasmodium falciparum malaria (2000–200,000 parasites/µl) were enrolled between February and September of 2018, assigned to either an AL or AS–AQ treatment arm, and monitored for 28 days. A Bayesian algorithm was applied to differentiate recrudescence from new infection using genotyping data of seven neutral microsatellites. Uncorrected and PCR-corrected efficacy results at day 28 were calculated. Results Totals of 368 and 273 patients were enrolled in the AL and AS–AQ arms, respectively. Of these, 9.5% (35/368) and 5.1% (14/273) were lost to follow-up in the AL and AS–AQ arms, respectively. There were 48 and 3 recurrent malaria infections (late clinical and late parasitological failures) in the AL and AS–AQ arms, respectively. The day 28 uncorrected efficacy was 85.6% (95% confidence interval (CI) 81.3–89.2%) for AL and 98.8% (95% CI 96.7–99.8%) for AS–AQ, whereas day 28 PCR-corrected efficacy was 97.9% (95% CI 95.6–99.2%) for AL and 99.6% (95% CI 97.9–100%) for AS–AQ. Molecular testing confirmed that 87.4% (42/48) and 33.3% (1/3) of participants with a recurrent malaria infection in the AL and AS–AQ arms were new infections; an expected finding in a high malaria transmission area. Adverse events were documented in less than 2% of participants for both drugs. Conclusion Both AL and AS–AQ have therapeutic efficacies well above the 90% WHO recommended threshold and remain well-tolerated in Mozambique. Routine monitoring of therapeutic efficacy should continue to ensure the treatments remain efficacious. Trial registration Clinicaltrials.gov: NCT04370977 Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03922-9.
Collapse
Affiliation(s)
- Abel Nhama
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Lídia Nhamússua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Direção Nacional de Saúde Pública, Ministério da Saúde, Maputo, Mozambique
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Crizolgo Salvador
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Sónia Enosse
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Baltazar Candrinho
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Eva Carvalho
- World Health Organization, WHO Country Office Maputo, Maputo, Mozambique
| | - Arsénio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Abuchahama Saifodine
- United States President's Malaria Initiative, United States Agency for International Development, Maputo, Mozambique
| | - Rose Zulliger
- United States President's Malaria Initiative, Centers for Disease Control and Prevention, Maputo, Mozambique
| | - Naomi Lucchi
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samaly S Svigel
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Leah F Moriarty
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.,United States President's Malaria Initiative, Atlanta, GA, USA
| | - Eric S Halsey
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.,United States President's Malaria Initiative, Atlanta, GA, USA
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique. .,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique.
| |
Collapse
|
6
|
Amado PSM, Frija LMT, Coelho JAS, O'Neill PM, Cristiano MLS. Synthesis of Non-symmetrical Dispiro-1,2,4,5-Tetraoxanes and Dispiro-1,2,4-Trioxanes Catalyzed by Silica Sulfuric Acid. J Org Chem 2021; 86:10608-10620. [PMID: 34279102 DOI: 10.1021/acs.joc.1c01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel protocol for the preparation of non-symmetrical 1,2,4,5-tetraoxanes and 1,2,4-trioxanes, promoted by the heterogeneous silica sulfuric acid (SSA) catalyst, is reported. Different ketones react under mild conditions with gem-dihydroperoxides or peroxysilyl alcohols/β-hydroperoxy alcohols to generate the corresponding endoperoxides in good yields. Our mechanistic proposal, assisted by molecular orbital calculations, at the ωB97XD/def2-TZVPP/PCM(DCM)//B3LYP/6-31G(d) level of theory, enhances the role of SSA in the cyclocondensation step. This novel procedure differs from previously reported methods by using readily available and inexpensive reagents, with recyclable properties, thereby establishing a valid alternative approach for the synthesis of new biologically active endoperoxides.
Collapse
Affiliation(s)
- Patrícia S M Amado
- Center of Marine Sciences (CCMAR), University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Luís M T Frija
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural (CQE), Faculdade de Ciências, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal
| |
Collapse
|
7
|
Woodley CM, Amado PSM, Cristiano MLS, O'Neill PM. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies. Med Res Rev 2021; 41:3062-3095. [PMID: 34355414 DOI: 10.1002/med.21849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Artemisinin combination therapies (ACTs) have been used as the first-line treatments against Plasmodium falciparum malaria for decades. Recent advances in chemical proteomics have shed light on the complex mechanism of action of semi-synthetic artemisinin (ARTs), particularly their promiscuous alkylation of parasite proteins via previous heme-mediated bioactivation of the endoperoxide bond. Alarmingly, the rise of resistance to ART in South East Asia and the synthetic limitations of the ART scaffold have pushed the course for the necessity of fully synthetic endoperoxide-based antimalarials. Several classes of synthetic endoperoxide antimalarials have been described in literature utilizing various endoperoxide warheads including 1,2-dioxanes, 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes. Two of these classes, the 1,2,4-trioxolanes (arterolane and artefenomel) and the 1,2,4,5-tetraoxanes (N205 and E209) based antimalarials, have been explored extensively and are still in active development. In contrast, the most recent publication pertaining to the development of the 1,2-dioxane, Arteflene, and 1,2,4-trioxanes fenozan-50F, DU1301, and PA1103/SAR116242 was published in 2008. This review summarizes the synthesis, biological and clinical evaluation, and mechanistic studies of the most developed synthetic endoperoxide antimalarials, providing an update on those classes still in active development.
Collapse
Affiliation(s)
| | - Patrícia S M Amado
- Department of Chemistry, University of Liverpool, Liverpool, UK.,Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Sugiarto SR, Singh B, Page-Sharp M, Davis WA, Salman S, Hii KC, Davis TME. The pharmacokinetic properties of artemether and lumefantrine in Malaysian patients with Plasmodium knowlesi malaria. Br J Clin Pharmacol 2021; 88:691-701. [PMID: 34296469 DOI: 10.1111/bcp.15001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS The aim of this study was to assess the pharmacokinetic properties of artemether, lumefantrine and their active metabolites in Plasmodium knowlesi malaria. METHODS Malaysian adults presenting with uncomplicated P. knowlesi infections received six doses of artemether (1.7 mg/kg) plus lumefantrine (10 mg/kg) over 3 days. Venous blood and dried blood spot (DBS) samples were taken at predetermined time-points over 28 days. Plasma and DBS artemether, dihydroartemisinin, lumefantrine and desbutyl-lumefantrine were measured using liquid chromatography-mass spectrometry. Multi-compartmental population pharmacokinetic models were developed using plasma with or without DBS drug concentrations. RESULTS Forty-one participants (mean age 45 years, 66% males) were recruited. Artemether-lumefantrine treatment was well tolerated and parasite clearance was prompt. Plasma and DBS lumefantrine concentrations were in close agreement and were used together in pharmacokinetic modelling, but only plasma concentrations of the other analytes were used because of poor correlation with DBS levels. The areas under the concentration-time curve (AUC0-∞ ) for artemether, dihydroartemisinin and lumefantrine (medians 1626, 1881 and 625 098 μg.h/L, respectively) were similar to those reported in previous pharmacokinetic studies in adults and children. There was evidence of auto-induction of artemether metabolism (mean increase in clearance relative to bioavailability 25.2% for each subsequent dose). The lumefantrine terminal elimination half-life (median 9.5 days) was longer than reported in healthy volunteers and adults with falciparum malaria. CONCLUSION The disposition of artemether, dihydroartemisinin and lumefantrine in knowlesi malaria largely parallels that in other human malarias. DBS lumefantrine concentrations can be used in pharmacokinetic studies but DBS technology is currently unreliable for the other analytes.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Balbir Singh
- Universiti Malaysia Sarawak (UNIMAS) Malaria Research Centre, Kota Samarahan, Sarawak, Malaysia
| | - Madhu Page-Sharp
- School of Pharmacy, Curtin University of Technology, Bentley, Australia
| | - Wendy A Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Sam Salman
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia.,Clinical Pharmacology and Toxicology, PathWest, Nedlands, Western Australia, Australia.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | | | - Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| |
Collapse
|
9
|
Dillard LK, Fullerton AM, McMahon CM. Ototoxic hearing loss from antimalarials: A systematic narrative review. Travel Med Infect Dis 2021; 43:102117. [PMID: 34129960 DOI: 10.1016/j.tmaid.2021.102117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Drugs used in curative and prophylactic antimalarial treatment may be ototoxic and lead to permanent hearing loss, but there is no consensus regarding prevalence and permanence of ototoxic hearing loss caused by antimalarials. The purpose of this systematic narrative review was to synthesize current evidence on antimalarial ototoxicity in human populations. METHOD Studies published between 2005 and 2018 that reported prevalence of post-treatment hearing loss in individuals treated for malaria were included. RESULTS Twenty-two studies including data from 21 countries were included. Primary themes of the included studies were to evaluate drug safety and/or efficacy (n = 13) or ototoxic effects of drugs (n = 9). Hearing data were measured objectively in 9 studies. Five studies focused on quinine (or derivates), 10 focused on artemisinin combination therapies, and 7 considered multiple drug combinations. There is a paucity of evidence that thoroughly reports potentially permanent ototoxic effects of antimalarials. CONCLUSIONS Antimalarial drugs may be ototoxic in some cases. More research in human populations is needed to describe ototoxicity of current antimalarials and of future drugs that will be used/developed in response to antimalarial resistance. It is recommended that randomized trials evaluating drug safety objectively measure and report ototoxic hearing loss as an adverse event.
Collapse
Affiliation(s)
- Lauren K Dillard
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, WI, USA.
| | - Amanda M Fullerton
- Department of Linguistics, Macquarie University, Sydney, New South Wales, Australia
| | - Catherine M McMahon
- Department of Linguistics, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Bélard S, Ramharter M, Kurth F. Paediatric formulations of artemisinin-based combination therapies for treating uncomplicated malaria in children. Cochrane Database Syst Rev 2020; 12:CD009568. [PMID: 33289099 PMCID: PMC8092484 DOI: 10.1002/14651858.cd009568.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND In endemic malarial areas, young children have high levels of malaria morbidity and mortality. The World Health Organization recommends oral artemisinin-based combination therapy (ACT) for treating uncomplicated malaria. Paediatric formulations of ACT have been developed to make it easier to treat children. OBJECTIVES To evaluate evidence from trials on the efficacy, safety, tolerability, and acceptability of paediatric ACT formulations compared to tablet ACT formulations for uncomplicated P falciparum malaria in children up to 14 years old. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; Embase; the Latin American and Caribbean Health Science Information database (LILACS); ISI Web of Science; Google Scholar; Scopus; and the metaRegister of Controlled Trials (mRCT) to 11 December 2019. SELECTION CRITERIA We included randomised controlled clinical trials (RCTs) of paediatric versus non-paediatric formulated ACT in children aged 14 years or younger with acute uncomplicated malaria. DATA COLLECTION AND ANALYSIS Two authors independently assessed eligibility and risk of bias, and carried out data extraction. We analyzed the primary outcomes of efficacy, safety and tolerability of paediatric versus non-paediatric ACT using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were: treatment failure on the last day of observation (day 42), fever clearance time, parasite clearance time, pharmacokinetics, and acceptability. MAIN RESULTS Three trials met the inclusion criteria. Two compared a paediatric dispersible tablet formulation against crushed tablets of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DHA-PQ), and one trial assessed artemether-lumefantrine formulated as powder for suspension compared with crushed tablets. The trials were carried out between 2006 and 2015 in sub-Saharan Africa (Benin, Mali, Mozambique, Tanzania, Kenya, Democratic Republic of the Congo, Burkina Faso, and The Gambia). In all three trials, the paediatric and control ACT achieved polymerase chain reaction (PCR)-adjusted treatment failure rates of < 10% on day 28 in the per-protocol (PP) population. For the comparison of dispersible versus crushed tablets, the two trials did not detect a difference for treatment failure by day 28 (PCR-adjusted PP population: RR 1.35, 95% CI 0.49 to 3.72; 1061 participants, 2 studies, low-certainty evidence). Similarly, for the comparison of suspension versus crushed tablet ACT, we did not detect any difference in treatment failure at day 28 (PCR-adjusted PP population: RR 1.64, 95% CI 0.55 to 4.87; 245 participants, 1 study). We did not detect any difference in serious adverse events for the comparison of dispersible versus crushed tablets (RR 1.05, 95% CI 0.38 to 2.88; 1197 participants, 2 studies, low-certainty evidence), or for the comparison of suspension versus crushed tablet ACT (RR 0.74, 95% CI 0.17 to 3.26; 267 participants, 1 study). In the dispersible ACT arms, drug-related adverse events occurred in 9% of children in the AL study and 34% of children in the DHA-PQ study. In the control arms, drug-related adverse events occurred in 12% of children in the AL study and in 42% of children in the DHA-PQ study. Drug-related adverse events were lower in the dispersible ACT arms (RR 0.78, 95% CI 0.62 to 0.99; 1197 participants, 2 studies, moderate-certainty evidence). There was no detected difference in the rate of drug-related adverse events for suspension ACT versus crushed tablet ACT (RR 0.66, 95% CI 0.33 to 1.32; 267 participants, 1 study). Drug-related vomiting appeared to be less common in the dispersible ACT arms (RR 0.75, 95% CI 0.56 to 1.01; 1197 participants, 2 studies, low-certainty evidence) and in the suspension ACT arm (RR 0.66, 95% CI 0.33 to 1.32; 267 participants, 1 study), but both analyses were underpowered. No study assessed acceptability. AUTHORS' CONCLUSIONS Trials did not demonstrate a difference in efficacy between paediatric dispersible or suspension ACT when compared with the respective crushed tablet ACT for treating uncomplicated P falciparum malaria in children. However, the evidence is of low to moderate certainty due to limited power. There appeared to be fewer drug-related adverse events with dispersible ACT compared to crushed tablet ACT. None of the included studies assessed acceptability of paediatric ACT formulation.
Collapse
Affiliation(s)
- Sabine Bélard
- Department of Paediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Michael Ramharter
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Kurth
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
11
|
Torto B. Innovative approaches to exploit host plant metabolites in malaria control. PEST MANAGEMENT SCIENCE 2019; 75:2341-2345. [PMID: 31050133 DOI: 10.1002/ps.5460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Malaria is the most important vector-borne disease in sub-Saharan Africa (SSA). Recent reports indicate that the levels of malaria-associated mortality and morbidity in SSA have remained the same. Malaria vectors have modified their feeding behavior in response to the selective pressure from indoor-based interventions, and there is emerging malaria parasite resistance to artemisinin-based combination therapies. These challenges have created an altered malaria landscape, especially within local scales in some malaria-endemic countries in SSA. To address these challenges, complementary new strategies are urgently required for malaria control. This paper argues that to develop the next generation of vector and chemotherapeutic tools for malaria control, especially based on natural products with novel modes of action, a better understanding of mosquito bioecology and, more importantly, plant sugar feeding is needed. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
12
|
Discovering the in vitro potent inhibitors against Babesia and Theileria parasites by repurposing the Malaria Box: A review. Vet Parasitol 2019; 274:108895. [PMID: 31494399 DOI: 10.1016/j.vetpar.2019.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/27/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
There is an innovative approach to discovering and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. Large-scale screening of 400 compounds from a Malaria Box (a treasure trove of 400 diverse compounds with antimalarial activity has been established by Medicines for Malaria Venture) against the in vitro growth of bovine Babesia and equine Babesia and Theileria parasites was performed, and the data were published in a brief with complete dataset from 236 screens of the Malaria Box compounds. Therefore, in this review, we explored and discussed in detail the in vitro inhibitory effects of 400 antimalarial compounds (200 drug-like and 200 probe-like) from the Malaria Box against Babesia (B.) bovis, B. bigemina, B. caballi, and Theileria (T.) equi. Seventeen hits were the most interesting with regard to bovine Babesia parasites, with mean selectivity indices (SIs) greater than 300 and half maximal inhibitory concentration (IC50s) ranging from 50 to 410 nM. The most interesting compounds with regard to equine Babesia and Theileria parasites were MMV020490 and MMV020275, with mean SIs > 258.68 and >251.55, respectively, and IC50s ranging from 76 to 480 nM. Ten novel anti-B. bovis, anti-B. bigemina, anti-T. equi, and anti-B. caballi hits, MMV666093, MMV396794, MMV006706, MMV665941, MMV085203, MMV396693, MMV006787, MMV073843, MMV007092, and MMV665875, with nanomole levels of IC50 were identified. The most interesting hits were MMV396693, MMV073843, MMV666093, and MMV665875, with mean SIs greater than 307.8 and IC50s ranging from 43 to 630 nM for both bovine Babesia and equine Babesia and Theileria parasites. Screening the Malaria Box against the in vitro growth of Babesia and Theileria parasites helped with the discovery of new drugs than those traditionally used, diminazene aceturate and imidocarb dipropionate, and indicated the potential of the Malaria Box in finding new, potent antibabesial drugs.
Collapse
|
13
|
Mwaiswelo R, Ngasala B, Gil JP, Malmberg M, Jovel I, Xu W, Premji Z, Mmbando BP, Björkman A, Mårtensson A. Sustained High Cure Rate of Artemether-Lumefantrine against Uncomplicated Plasmodium falciparum Malaria after 8 Years of Its Wide-Scale Use in Bagamoyo District, Tanzania. Am J Trop Med Hyg 2017; 97:526-532. [PMID: 28829723 DOI: 10.4269/ajtmh.16-0780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We assessed the temporal trend of artemether-lumefantrine (AL) cure rate after 8 years of its wide-scale use for treatment of uncomplicated Plasmodium falciparum malaria from 2006 to 2014 in Bagamoyo district, Tanzania. Trend analysis was performed for four studies conducted in 2006, 2007-2008, 2012-2013, and 2014. Patients with acute uncomplicated P. falciparum malaria were enrolled, treated with standard AL regimen and followed-up for 3 (2006), 28 (2014), 42 (2012-2013), or 56 (2007-2008) days for clinical and laboratory evaluation. Primary outcome was day 28 polymerase chain reaction (PCR)-adjusted cure rate across years from 2007 to 2014. Parasite clearance was slower for the 2006 and 2007-2008 cohorts with less than 50% of patients cleared of parasitemia on day 1, but was rapid for the 2012-2013 and 2014 cohorts. Day 28 PCR-adjusted cure rate was 168/170 (98.8%) (95% confidence interval [CI], 97.2-100), 122/127 (96.1%) (95% CI, 92.6-99.5), and 206/207 (99.5%) (95% CI, 98.6-100) in 2007-2008, 2012-2013, and 2014, respectively. There was no significant change in the trend of cure rate between 2007 and 2014 (χ2trend test = 0.06, P = 0.90). Pretreatment P. falciparum multidrug-resistant gene 1 (Pfmdr1) N86 prevalence increased significantly across years from 13/48 (27.1%) in 2006 to 183/213 (85.9%) in 2014 (P < 0.001), and P. falciparum chloroquine resistance transporter gene (Pfcrt) K76 prevalence increased significantly from 24/47 (51.1%) in 2006 to 198/205 (96.6%) in 2014 (P < 0.001). The AL cure rate remained high after 8 years of its wide-scale use in Bagamoyo district for the treatment of uncomplicated P. falciparum malaria despite an increase in prevalence of pretreatment Pfmdr1 N86 and Pfcrt K76 between 2006 and 2014.
Collapse
Affiliation(s)
- Richard Mwaiswelo
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - J Pedro Gil
- Drug Resistance Unit, Division of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Irina Jovel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Weiping Xu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zul Premji
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Bruno P Mmbando
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Assessment of Clinical Pharmacokinetic Drug-Drug Interaction of Antimalarial Drugs α/β-Arteether and Sulfadoxine-Pyrimethamine. Antimicrob Agents Chemother 2017; 61:AAC.02177-16. [PMID: 28674061 DOI: 10.1128/aac.02177-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/11/2017] [Indexed: 11/20/2022] Open
Abstract
Antimalarial drug combination therapy is now being widely used for the treatment of uncomplicated malaria. The objective of the present study was to investigate the effects of coadministration of intramuscular α/β-arteether (α/β-AE) and oral sulfadoxine-pyrimethamine (SP) on the pharmacokinetic properties of each drug as a drug-drug interaction study to support the development of a fixed-dose combination therapy. A single-dose, open-label, crossover clinical trial was conducted in healthy adult Indian male volunteers (18 to 45 years, n = 13) who received a single dose of AE or SP or a combination dose of AE and SP. Blood samples were collected up to 21 days postadministration, and concentrations of α-AE, β-AE, sulfadoxine, and pyrimethamine were determined by using a validated liquid chromatography-tandem mass spectrometry method. Pharmacokinetic parameters were calculated and statistically analyzed to calculate the geometric mean ratio and confidence interval. Following single-dose coadministration of intramuscular AE and oral SP, the pharmacokinetic properties of α/β-AE were not significantly affected, and α/β-AE had no significant effect on the pharmacokinetic properties of SP in these selected groups of healthy volunteers. However, more investigations are needed to explore this further. (This study has been registered in the clinical trial registry of India under approval no. CTRI/2011/11/002155.).
Collapse
|
15
|
Baruah UK, Gowthamarajan K, Vanka R, Karri VVSR, Selvaraj K, Jojo GM. Malaria treatment using novel nano-based drug delivery systems. J Drug Target 2017; 25:567-581. [PMID: 28166440 DOI: 10.1080/1061186x.2017.1291645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reside in an era of technological innovation and advancement despite which infectious diseases like malaria remain to be one of the greatest threats to the humans. Mortality rate caused by malaria disease is a huge concern in the twenty-first century. Multiple drug resistance and nonspecific drug targeting of the most widely used drugs are the main reasons/drawbacks behind the failure in malarial therapy. Dose-related toxicity because of high doses is also a major concern. Therefore, to overcome these problems nano-based drug delivery systems are being developed to facilitate site-specific or target-based drug delivery and hence minimizing the development of resistance progress and dose-dependent toxicity issues. In this review, we discuss about the shortcomings in treating malaria and how nano-based drug delivery systems can help in curtailing the infectious disease malaria.
Collapse
Affiliation(s)
- Uday Krishna Baruah
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Kuppusamy Gowthamarajan
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Ravisankar Vanka
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | | | - Kousalya Selvaraj
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Gifty M Jojo
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| |
Collapse
|
16
|
Dama S, Niangaly H, Ouattara A, Sagara I, Sissoko S, Traore OB, Bamadio A, Dara N, Djimde M, Alhousseini ML, Goita S, Maiga H, Dara A, Doumbo OK, Djimde AA. Reduced ex vivo susceptibility of Plasmodium falciparum after oral artemether-lumefantrine treatment in Mali. Malar J 2017; 16:59. [PMID: 28148267 PMCID: PMC5289056 DOI: 10.1186/s12936-017-1700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapy is the recommended first-line treatment for uncomplicated falciparum malaria worldwide. However, recent studies conducted in Mali showed an increased frequency of recurrent parasitaemia following artemether-lumefantrine (AL) treatment. METHODS Study samples were collected during a large WANECAM study. Ex-vivo Plasmodium falciparum sensitivity to artemether and lumefantrine was assessed using the tritiated hypoxanthine-based assay. The prevalence of molecular markers of anti-malarial drug resistance (pfcrt K76T, pfmdr1 N86Y and K13-propeller) were measured by PCR and/or sequencing. RESULTS Overall 61 samples were successfully analysed in ex vivo studies. Mean IC50s increased significantly between baseline and recurrent parasites for both artemether (1.6 nM vs 3.2 nM, p < 0.001) and lumefantrine (1.4 nM vs 3.4 nM, p = 0.004). Wild type Pfmdr1 N86 allele was selected after treatment (71 vs 91%, 112 of 158 vs 95 of 105, p < 0.001) but not the wild type pfcrt K76 variant (23.5 vs 24.8%, 40 of 170 vs 26 of 105, p = 0.9). Three non-synonymous K13-propeller SNPs (A522C, A578S, and G638R) were found with allele frequencies <2%. CONCLUSION Malian post-AL P. falciparum isolates were less susceptible to artemether and lumefantrine than baseline isolates.
Collapse
Affiliation(s)
- Souleymane Dama
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Hamidou Niangaly
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Amed Ouattara
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Sekou Sissoko
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Oumar Bila Traore
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Amadou Bamadio
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Niawanlou Dara
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Moussa Djimde
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Mohamed Lamine Alhousseini
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Siaka Goita
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Hamma Maiga
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| |
Collapse
|
17
|
Soumana A, Kamaye M, Issofou B, Dima H, Daouda B, N'Diaye O, Sall G. [Prescription of antimalarial drugs in the pediatric ward of the National Hospital of Lamordé, in Niamey]. BULLETIN DE LA SOCIETE DE PATHOLOGIE EXOTIQUE (1990) 2016; 109:353-357. [PMID: 27864679 DOI: 10.1007/s13149-016-0535-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 10/02/2016] [Indexed: 11/26/2022]
Abstract
In Niger, malaria is a major public health problem, due to the high number of deaths that are attributable to it and because of its heavy weight and socioeconomic status. The objective of this study was to contribute to the inventory of medical practices to rationalize the use of medicines and minimize the resistance phenomenon. This is a prospective study, which took place from May 1 to July 31, 2009, in the pediatric ward of the National Hospital of Lamordé. It concerned children aged from 0 to 14 years hospitalized and having received one or more antimalarial drugs during at least 24 h. During the 3 months of the study, 1,248 children had been admitted in the department. Among them, 881 children received antimalarial treatment, i.e., 70.5% with prescriptions. Malaria was confirmed by microscopy in 410 children, i.e., 46.5% of the sick children received antimalarial treatment. Prescription control was deemed noncompliant in 258 patients, i.e., 29.3% of the total. Treatments based on microscopic diagnosis are one of the strategies that will help to streamline the use of antimalarial drugs to improve their effectiveness and efficiency and also to reduce the risk of emergence of resistance.
Collapse
Affiliation(s)
- A Soumana
- Service de pédiatrie, Hôpital national Lamordé, université Abdou-Moumouni, Niamey, Niger.
| | - M Kamaye
- Service de pédiatrie, Hôpital national Lamordé, université Abdou-Moumouni, Niamey, Niger
| | - B Issofou
- Service de pédiatrie, Hôpital national Lamordé, université Abdou-Moumouni, Niamey, Niger
| | - H Dima
- Service de pédiatrie, Hôpital national Lamordé, université Abdou-Moumouni, Niamey, Niger
| | - B Daouda
- Service de pédiatrie, Hôpital national Lamordé, université Abdou-Moumouni, Niamey, Niger
| | - O N'Diaye
- Faculté de médecine, de pharmacie et d'odonto-stomatologie, université Cheikh-Anta-Diop, Dakar, Sénégal
| | - G Sall
- Faculté de médecine, de pharmacie et d'odonto-stomatologie, université Cheikh-Anta-Diop, Dakar, Sénégal
| |
Collapse
|
18
|
Leang R, Khu NH, Mukaka M, Debackere M, Tripura R, Kheang ST, Chy S, Kak N, Buchy P, Tarantola A, Menard D, Roca-Felterer A, Fairhurst RM, Kheng S, Muth S, Ngak S, Dondorp AM, White NJ, Taylor WRJ. An optimised age-based dosing regimen for single low-dose primaquine for blocking malaria transmission in Cambodia. BMC Med 2016; 14:171. [PMID: 27784313 PMCID: PMC5081959 DOI: 10.1186/s12916-016-0701-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In 2012, the World Health Organization recommended the addition of single low-dose primaquine (SLDPQ, 0.25 mg base/kg body weight) to artemisinin combination therapies to block the transmission of Plasmodium falciparum without testing for glucose-6-phosphate dehydrogenase deficiency. The targeted group was non-pregnant patients aged ≥ 1 year (later changed to ≥ 6 months) with acute uncomplicated falciparum malaria, primarily in countries with artemisinin-resistant P. falciparum (ARPf). No dosing regimen was suggested, leaving malaria control programmes and clinicians in limbo. Therefore, we designed a user-friendly, age-based SLDPQ regimen for Cambodia, the country most affected by ARPf. METHODS By reviewing primaquine's pharmacology, we defined a therapeutic dose range of 0.15-0.38 mg base/kg (9-22.5 mg in a 60-kg adult) for a therapeutic index of 2.5. Primaquine doses (1-20 mg) were tested using a modelled, anthropometric database of 28,138 Cambodian individuals (22,772 healthy, 4119 with malaria and 1247 with other infections); age distributions were: 0.5-4 years (20.0 %, n = 5640), 5-12 years (9.1 %, n = 2559), 13-17 years (9.1 %, n = 2550), and ≥ 18 years (61.8 %, n = 17,389). Optimal age-dosing groups were selected according to calculated mg base/kg doses and proportions of individuals receiving a therapeutic dose. RESULTS Four age-dosing bands were defined: (1) 0.5-4 years, (2) 5-9 years, (3) 10-14 years, and (4) ≥15 years to receive 2.5, 5, 7.5, and 15 mg of primaquine base, resulting in therapeutic doses in 97.4 % (5494/5640), 90.5 % (1511/1669), 97.7 % (1473/1508), and 95.7 % (18,489/19,321) of individuals, respectively. Corresponding median (1st-99th centiles) mg base/kg doses of primaquine were (1) 0.23 (0.15-0.38), (2) 0.29 (0.18-0.45), (3) 0.27 (0.15-0.39), and (4) 0.29 (0.20-0.42). CONCLUSIONS This age-based SLDPQ regimen could contribute substantially to malaria elimination and requires urgent evaluation in Cambodia and other countries with similar anthropometric characteristics. It guides primaquine manufacturers on suitable tablet strengths and doses for paediatric-friendly formulations. Development of similar age-based dosing recommendations for Africa is needed.
Collapse
Affiliation(s)
- Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Naw Htee Khu
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Mark Debackere
- MSF Belgium Cambodia Malaria Program, #19, Street 388, Sangkat Tuol Svay Prey, Khan Chamkarmon, PO Box 1933, Phnom Penh, Cambodia
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Soy Ty Kheang
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Say Chy
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Neeraj Kak
- University Research Co., LLC Washington DC: 7200 Wisconsin Ave, Bethesda, MD, 20814, USA
| | - Philippe Buchy
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Didier Menard
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arantxa Roca-Felterer
- Malaria Consortium, House #91 Street 95, Boeung Trabek, Chamkar Morn, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Song Ngak
- FHI 360 Cambodia Office, #03, Street 330 Boeung Keng Kang III Khan Chamkamon, PO Box: 2586, Phnom Penh, Cambodia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Walter Robert John Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand. .,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Centre de Médecine Humanitaire, Hôpitaux Universitaires de Genève, Genève, Switzerland.
| |
Collapse
|
19
|
Lin W, Heimbach T, Jain JP, Awasthi R, Hamed K, Sunkara G, He H. A Physiologically Based Pharmacokinetic Model to Describe Artemether Pharmacokinetics in Adult and Pediatric Patients. J Pharm Sci 2016; 105:3205-3213. [PMID: 27506269 DOI: 10.1016/j.xphs.2016.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/25/2022]
Abstract
Artemether is co-administered with lumefantrine as part of a fixed-dose combination therapy for malaria in both adult and pediatric patients. However, artemether exposure is higher in younger infants (1-3 months) with a lower body weight (<5 kg) as compared to older infants (3-6 months) with a higher body weight (≥5 to <10 kg), children, and adults. In contrast, lumefantrine exposure is similar in all age groups. This article describes the clinically observed artemether exposure data in pediatric populations across various age groups (1 month to 12 years) and body weights (<5 or ≥5 kg) using physiologically based pharmacokinetic (PBPK) mechanistic models. A PBPK model was developed using artemether physicochemical, biopharmaceutic, and metabolic properties together with known enzyme ontogeny and pediatric physiology. The model was verified using clinical data from adult patients after multiple doses of oral artemether, and was then applied to simulate the exposure in children and infants. The simulated PBPK concentration-time profiles captured observed clinical data. Consistent with the clinical data, the PBPK model simulations indicated a higher artemether exposure for younger infants with lower body weight. A PBPK model developed for artemether reliably described the clinical data from adult and pediatric patients.
Collapse
Affiliation(s)
- Wen Lin
- Drug Metabolism & Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936
| | - Tycho Heimbach
- Drug Metabolism & Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936.
| | - Jay Prakash Jain
- Drug Metabolism & Pharmacokinetics, Novartis Institutes for Biomedical Research, Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Rakesh Awasthi
- Drug Metabolism & Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936
| | - Kamal Hamed
- Global Medical Affairs, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey 07936
| | - Gangadhar Sunkara
- Drug Metabolism & Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936
| | - Handan He
- Drug Metabolism & Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936
| |
Collapse
|
20
|
Tchaparian E, Sambol NC, Arinaitwe E, McCormack SA, Bigira V, Wanzira H, Muhindo M, Creek DJ, Sukumar N, Blessborn D, Tappero JW, Kakuru A, Bergqvist Y, Aweeka FT, Parikh S. Population Pharmacokinetics and Pharmacodynamics of Lumefantrine in Young Ugandan Children Treated With Artemether-Lumefantrine for Uncomplicated Malaria. J Infect Dis 2016; 214:1243-51. [PMID: 27471317 PMCID: PMC5034953 DOI: 10.1093/infdis/jiw338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022] Open
Abstract
Background. The pharmacokinetics and pharmacodynamics of lumefantrine, a component of the most widely used treatment for malaria, artemether-lumefantrine, has not been adequately characterized in young children. Methods. Capillary whole-blood lumefantrine concentration and treatment outcomes were determined in 105 Ugandan children, ages 6 months to 2 years, who were treated for 249 episodes of Plasmodium falciparum malaria with artemether-lumefantrine. Results. Population pharmacokinetics for lumefantrine used a 2-compartment open model with first-order absorption. Age had a significant positive correlation with bioavailability in a model that included allometric scaling. Children not receiving trimethoprim-sulfamethoxazole with capillary whole blood concentrations <200 ng/mL had a 3-fold higher hazard of 28-day recurrent parasitemia, compared with those with concentrations >200 ng/mL (P = .0007). However, for children receiving trimethoprim-sulfamethoxazole, the risk of recurrent parasitemia did not differ significantly on the basis of this threshold. Day 3 concentrations were a stronger predictor of 28-day recurrence than day 7 concentrations. Conclusions. We demonstrate that age, in addition to weight, is a determinant of lumefantrine exposure, and in the absence of trimethoprim-sulfamethoxazole, lumefantrine exposure is a determinant of recurrent parasitemia. Exposure levels in children aged 6 months to 2 years was generally lower than levels published for older children and adults. Further refinement of artemether-lumefantrine dosing to improve exposure in infants and very young children may be warranted.
Collapse
Affiliation(s)
- Eskouhie Tchaparian
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Nancy C Sambol
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | | | - Shelley A McCormack
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Victor Bigira
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Mary Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Nitin Sukumar
- Yale School of Public Health, New Haven, Connecticut
| | | | - Jordan W Tappero
- Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
21
|
Mssusa AK, Fimbo AM, Nkayamba AF, Irunde HF, Sillo HB, Shewiyo DH, Hill G, Minzi OM. Safety Profile of Artemether-Lumefantrine: A Cohort Event Monitoring Study in Public Health Facilities in Tanzania. Clin Drug Investig 2016; 36:401-11. [DOI: 10.1007/s40261-016-0385-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Ogouyèmi-Hounto A, Azandossessi C, Lawani S, Damien G, de Tove YSS, Remoue F, Kinde Gazard D. Therapeutic efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Benin. Malar J 2016; 15:37. [PMID: 26801767 PMCID: PMC4722724 DOI: 10.1186/s12936-016-1091-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Artemether/lumefantrine (Coartem®) has been used as a treatment for uncomplicated Plasmodium falciparum infection since 2004 in Benin. This open-label, non-randomized study evaluated efficacy of artemether–lumefantrine (AL) in treatment of uncomplicated falciparum malaria in children aged 6–59 months in two malaria transmission sites in northwest Benin. Methods
A 42-day therapeutic efficacy study was conducted between August and November 2014, in accordance with 2009 WHO guidelines. One-hundred and twenty-three children, aged 6 months to 5 years, with uncomplicated falciparum malaria were recruited into the study. The primary endpoint was parasitological cure on day 28 and day 42 while the secondary endpoints included: parasite and fever clearance, improvement in haemoglobin levels. Outcomes were classified as early treatment failure (ETF), late clinical failure, late parasitological failure, and adequate clinical and parasitological response (ACPR). Results Before PCR correction, ACPR rates were 87 % (95 % CI 76.0–94.7) and 75.6 %, respectively (95 % CI 67.0–82.9) on day 28 and day 42. In each study site, ACPR rates were 78.3 % in Djougou and 73 % in Cobly on day 42. There was no ETF and after PCR correction ACPR was 100 % in study population. All treatment failures were shown to be due to new infections. Fever was significantly cleared in 24 h and approximately 90 % of parasites where cleared on day 1 and almost all parasites were cleared on day 2. Haemoglobin concentration showed a slight increase with parasitic clearance. Conclusion AL remains an efficacious drug for the treatment of uncomplicated falciparum malaria in Benin, although higher rates of re-infection remain a concern. Surveillance needs to be continued to detect future changes in parasite sensitivity to artemisinin-based combination therapy.
Collapse
Affiliation(s)
- Aurore Ogouyèmi-Hounto
- Unité d'Enseignement et de Recherche en Parasitologie Mycologie/Faculté des Sciences de la Santé, laboratoire du Centre de Lutte intégrée contre le paludisme, 01 BP188, Cotonou, Benin. .,Laboratoire du Centre de Lutte intégrée contre le paludisme, 01 BP188, Cotonou, Benin.
| | | | - Souliatou Lawani
- Laboratoire du Centre de Lutte intégrée contre le paludisme, 01 BP188, Cotonou, Benin.
| | - Georgia Damien
- UMR 224-MIVEGEC, Institut de Recherche pour le Développement, 08 BP 841, Cotonou, Benin.
| | - Yolande Sissinto Savi de Tove
- Unité d'Enseignement et de Recherche en Parasitologie Mycologie/Faculté des Sciences de la Santé, laboratoire du Centre de Lutte intégrée contre le paludisme, 01 BP188, Cotonou, Benin. .,Laboratoire du Centre de Lutte intégrée contre le paludisme, 01 BP188, Cotonou, Benin.
| | - Franck Remoue
- UMR 224-MIVEGEC, Institut de Recherche pour le Développement, 08 BP 841, Cotonou, Benin.
| | - Dorothée Kinde Gazard
- Unité d'Enseignement et de Recherche en Parasitologie Mycologie/Faculté des Sciences de la Santé, laboratoire du Centre de Lutte intégrée contre le paludisme, 01 BP188, Cotonou, Benin. .,Laboratoire du Centre de Lutte intégrée contre le paludisme, 01 BP188, Cotonou, Benin.
| |
Collapse
|
23
|
Abdulla S, Ashley EA, Bassat Q, Bethell D, Björkman A, Borrmann S, D'Alessandro U, Dahal P, Day NP, Diakite M, Djimde AA, Dondorp AM, Duong S, Edstein MD, Fairhurst RM, Faiz MA, Falade C, Flegg JA, Fogg C, Gonzalez R, Greenwood B, Guérin PJ, Guthmann JP, Hamed K, Hien TT, Htut Y, Juma E, Lim P, Mårtensson A, Mayxay M, Mokuolu OA, Moreira C, Newton P, Noedl H, Nosten F, Ogutu BR, Onyamboko MA, Owusu-Agyei S, Phyo AP, Premji Z, Price RN, Pukrittayakamee S, Ramharter M, Sagara I, Se Y, Suon S, Stepniewska K, Ward SA, White NJ, Winstanley PA. Baseline data of parasite clearance in patients with falciparum malaria treated with an artemisinin derivative: an individual patient data meta-analysis. Malar J 2015; 14:359. [PMID: 26390866 PMCID: PMC4578675 DOI: 10.1186/s12936-015-0874-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/26/2015] [Indexed: 11/15/2022] Open
Abstract
Background Artemisinin resistance in Plasmodium falciparum manifests as slow parasite clearance but this measure is also influenced by host immunity, initial parasite biomass and partner drug efficacy. This study collated data from clinical trials of artemisinin derivatives in falciparum malaria with frequent
parasite counts to provide reference parasite clearance estimates stratified by location, treatment and time, to examine host factors affecting parasite clearance, and to assess the relationships between parasite clearance and risk of recrudescence during follow-up. Methods Data from 24 studies, conducted from 1996 to 2013, with frequent parasite counts were pooled. Parasite clearance half-life (PC1/2) was estimated using the WWARN Parasite Clearance Estimator. Random effects regression models accounting for study and site heterogeneity were used to explore factors affecting PC1/2 and risk of recrudescence within areas with reported delayed parasite clearance (western Cambodia, western Thailand after 2000, southern Vietnam, southern Myanmar) and in all other areas where parasite populations are artemisinin sensitive. Results PC1/2 was estimated in 6975 patients, 3288 of whom also had treatment outcomes evaluate d during 28–63 days follow-up, with 93 (2.8 %) PCR-confirmed recrudescences. In areas with artemisinin-sensitive parasites, the median PC1/2 following three-day artesunate treatment (4 mg/kg/day) ranged from 1.8 to 3.0 h and the proportion of patients with PC1/2 >5 h from 0 to 10 %. Artesunate doses of 4 mg/kg/day decreased PC1/2 by 8.1 % (95 % CI 3.2–12.6) compared to 2 mg/kg/day, except in populations with delayed parasite clearance. PC1/2 was longer in children and in patients with fever or anaemia at enrolment. Long PC1/2 (HR = 2.91, 95 % CI 1.95–4.34 for twofold increase, p < 0.001) and high initial parasitaemia (HR = 2.23, 95 % CI 1.44–3.45 for tenfold increase, p < 0.001) were associated independently with an increased risk of recrudescence. In western Cambodia, the region with the highest prevalence of artemisinin resistance, there was no evidence for increasing PC1/2 since 2007. Conclusions Several factors affect PC1/2. As substantial heterogeneity in parasite clearance exists between locations, early detection of artemisinin resistance requires reference PC1/2 data. Studies with frequent parasite count measurements to characterize PC1/2 should be encouraged. In western Cambodia, where PC1/2 values are longest, there is no evidence for recent emergence of higher levels of artemisinin resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0874-1) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Gray AM, Arguin PM, Hamed K. Surveillance for the safety and effectiveness of artemether-lumefantrine in patients with uncomplicated Plasmodium falciparum malaria in the USA: a descriptive analysis. Malar J 2015; 14:349. [PMID: 26377423 PMCID: PMC4573675 DOI: 10.1186/s12936-015-0881-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/03/2015] [Indexed: 11/23/2022] Open
Abstract
Background Data from clinical studies show that artemether-lumefantrine (AL) is effective and well tolerated in adults and children with uncomplicated Plasmodium falciparum malaria. However, data on effectiveness and safety of AL in patients in non-endemic settings are limited. Methods A 5-year surveillance plan included all AL-treated adult and paediatric patients with confirmed or suspected P. falciparum malaria in the USA, as reported to the National Malaria Surveillance System at the Centers for Disease Control and Prevention. Descriptive analyses included demographics, baseline characteristics, clinical effectiveness, and safety. From May 2010 to April 2015, demographics and baseline characteristics were collected for 203 patients and safety data for 108 patients. Treatment effectiveness data at day 7 were collected for 117 patients and at day 28 for 98 patients. Results The majority of patients were male (58.6 %), Black (62.6 %), non-Hispanic (92.6 %), and likely malaria non-immune (80.8 %). The median age was 32 (range 1–88) years and the median body mass index was 25.5 (range 13.8–42.4) kg/m2. All patients with effectiveness data had confirmed (n = 116) or suspected (n = 1) malaria. The overall cure rate for patients treated with AL was 91.5 % (95 % CI 84.8–95.8 %) at day 7 and 96.9 % (95 % CI 91.3–99.4 %) at day 28. Adverse events were reported in four (3.7 %) patients, and there were no new or unexpected safety signals. Conclusion AL was effective and well tolerated in the treatment of likely non-immune patients with P. falciparum malaria.
Collapse
Affiliation(s)
- Alyson M Gray
- Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop A06, Atlanta, GA, 30329-4027, USA.
| | - Paul M Arguin
- Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop A06, Atlanta, GA, 30329-4027, USA.
| | - Kamal Hamed
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA.
| |
Collapse
|
25
|
Lumefantrine and Desbutyl-Lumefantrine Population Pharmacokinetic-Pharmacodynamic Relationships in Pregnant Women with Uncomplicated Plasmodium falciparum Malaria on the Thailand-Myanmar Border. Antimicrob Agents Chemother 2015; 59:6375-84. [PMID: 26239986 PMCID: PMC4576090 DOI: 10.1128/aac.00267-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/15/2015] [Indexed: 02/05/2023] Open
Abstract
Artemether-lumefantrine is the most widely used antimalarial artemisinin-based combination treatment. Recent studies have suggested that day 7 plasma concentrations of the potent metabolite desbutyl-lumefantrine correlate better with treatment outcomes than those of lumefantrine. Low cure rates have been reported in pregnant women with uncomplicated falciparum malaria treated with artemether-lumefantrine in northwest Thailand. A simultaneous pharmacokinetic drug-metabolite model was developed based on dense venous and sparse capillary lumefantrine and desbutyl-lumefantrine plasma samples from 116 pregnant patients on the Thailand-Myanmar border. The best model was used to evaluate therapeutic outcomes with a time-to-event approach. Lumefantrine and desbutyl-lumefantrine concentrations, implemented in an Emax model, both predicted treatment outcomes, but lumefantrine provided better predictive power. A combined model including both lumefantrine and desbutyl-lumefantrine did not improve the model further. Simulations suggested that cure rates in pregnant women with falciparum malaria could be increased by prolonging the treatment course. (These trials were registered at controlled-trials.com [ISRCTN 86353884].).
Collapse
|
26
|
Tailoring a Pediatric Formulation of Artemether-Lumefantrine for Treatment of Plasmodium falciparum Malaria. Antimicrob Agents Chemother 2015; 59:4366-74. [PMID: 26014953 DOI: 10.1128/aac.00014-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specially created pediatric formulations have the potential to improve the acceptability, effectiveness, and accuracy of dosing of artemisinin-based combination therapy (ACT) in young children, a patient group that is inherently vulnerable to malaria. Artemether-lumefantrine (AL) Dispersible is a pediatric formulation of AL that is specifically tailored for the treatment of children with uncomplicated Plasmodium falciparum malaria, offering benefits relating to efficacy, convenience and acceptance, accuracy of dosing, safety, sterility, stability, and a pharmacokinetic profile and bioequivalence similar to those of crushed and intact AL tablets. However, despite being the first pediatric antimalarial to meet World Health Organization (WHO) specifications for use in infants and children who are ≥5 kg in body weight and its inclusion in WHO Guidelines, there are few publications that focus on AL Dispersible. Based on a systematic review of the recent literature, this paper provides a comprehensive overview of the clinical experience with AL Dispersible to date. A randomized, phase 3 study that compared the efficacy and safety of AL Dispersible to those of crushed AL tablets in 899 African children reported high PCR-corrected cure rates at day 28 (97.8% and 98.5% for AL Dispersible and crushed tablets, respectively), and the results of several subanalyses of these data indicate that this activity is observed regardless of patient weight, food intake, and maximum plasma concentrations of artemether or its active metabolite, dihydroartemisinin. These and other clinical data support the continued use of pediatric antimalarial formulations in all children <5 years of age with uncomplicated malaria when accompanied by continued monitoring for the emergence of resistance.
Collapse
|
27
|
Tiono AB, Tinto H, Alao MJ, Meremikwu M, Tshefu A, Ogutu B, Ouedraogo A, Lingani M, Cousin M, Lefèvre G, Jain JP, Duparc S, Hamed K. Increased systemic exposures of artemether and dihydroartemisinin in infants under 5 kg with uncomplicated Plasmodium falciparum malaria treated with artemether-lumefantrine (Coartem®). Malar J 2015; 14:157. [PMID: 25886021 PMCID: PMC4407414 DOI: 10.1186/s12936-015-0682-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/25/2015] [Indexed: 11/18/2022] Open
Abstract
Background Artemether-lumefantrine (AL) dispersible formulation was developed for the treatment of uncomplicated Plasmodium falciparum malaria in infants and children weighing 5 to <35 kg. However, there are no clinical studies with artemisinin-based combination therapy in infants <5 kg. Methods This multicentre, open-label, single-arm study evaluated the efficacy, safety and pharmacokinetics of AL dispersible in infants aged >28 days and <5 kg of body weight, who were treated with one AL dispersible tablet (20 mg artemether/120 mg lumefantrine) given twice-daily for three days and followed up for six weeks (core follow-up) and at 12 months of age (long-term follow-up). Results A total of 20 patients were enrolled and completed the six-week core study follow-up. In the per protocol population, PCR-corrected cure rate at days 28 and 42 was 100% (95% CI: 79.4, 100). AL dispersible was well tolerated with reported adverse events of mild to moderate severity. Pharmacokinetic data showed that lumefantrine levels were similar, however, artemether and dihydroartemisinin levels were on average two- to three-fold greater than historical values in infants and children ≥5 kg. Conclusions A three-day regimen of AL dispersible formulation was efficacious and generally well tolerated in infants weighing <5 kg with uncomplicated P. falciparum malaria, but artemether and dihydroartemisinin exposures could not be supported by the preclinical safety margins for neurotoxicity. Hence, dosing recommendations cannot be made in infants <5 kg as implications for toxicity are unknown. Trial Registration Clinicaltrials.gov NCT01619878.
Collapse
Affiliation(s)
- Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ministère de la Santé, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro (IRSS-CRUN), BP 218, Ouagadougou, CMS11, Burkina Faso.
| | - Maroufou J Alao
- Service de Pédiatrie, Hôpital de la Mère et de l'Enfant Lagune, Cotonou, 01 BP 107, Benin.
| | - Martin Meremikwu
- Institute of Tropical Disease Research and Prevention, University of Calabar Teaching Hospital, Calabar, PMB 1278, Nigeria.
| | - Antoinette Tshefu
- Kinshasa School of Public Health, University of Kinshasa, 11850, Kinshasa, Democratic Republic of Congo.
| | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ministère de la Santé, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Moussa Lingani
- Unité de Recherche Clinique de Nanoro (IRSS-CRUN), BP 218, Ouagadougou, CMS11, Burkina Faso.
| | - Marc Cousin
- Novartis Pharma AG, CH-4002, Basel, Switzerland.
| | | | | | - Stephan Duparc
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Meyrin, Switzerland.
| | - Kamal Hamed
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA.
| |
Collapse
|
28
|
The rise of multiple imputation: a review of the reporting and implementation of the method in medical research. BMC Med Res Methodol 2015; 15:30. [PMID: 25880850 PMCID: PMC4396150 DOI: 10.1186/s12874-015-0022-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/18/2015] [Indexed: 12/16/2022] Open
Abstract
Background Missing data are common in medical research, which can lead to a loss in statistical power and potentially biased results if not handled appropriately. Multiple imputation (MI) is a statistical method, widely adopted in practice, for dealing with missing data. Many academic journals now emphasise the importance of reporting information regarding missing data and proposed guidelines for documenting the application of MI have been published. This review evaluated the reporting of missing data, the application of MI including the details provided regarding the imputation model, and the frequency of sensitivity analyses within the MI framework in medical research articles. Methods A systematic review of articles published in the Lancet and New England Journal of Medicine between January 2008 and December 2013 in which MI was implemented was carried out. Results We identified 103 papers that used MI, with the number of papers increasing from 11 in 2008 to 26 in 2013. Nearly half of the papers specified the proportion of complete cases or the proportion with missing data by each variable. In the majority of the articles (86%) the imputed variables were specified. Of the 38 papers (37%) that stated the method of imputation, 20 used chained equations, 8 used multivariate normal imputation, and 10 used alternative methods. Very few articles (9%) detailed how they handled non-normally distributed variables during imputation. Thirty-nine papers (38%) stated the variables included in the imputation model. Less than half of the papers (46%) reported the number of imputations, and only two papers compared the distribution of imputed and observed data. Sixty-six papers presented the results from MI as a secondary analysis. Only three articles carried out a sensitivity analysis following MI to assess departures from the missing at random assumption, with details of the sensitivity analyses only provided by one article. Conclusions This review outlined deficiencies in the documenting of missing data and the details provided about imputation. Furthermore, only a few articles performed sensitivity analyses following MI even though this is strongly recommended in guidelines. Authors are encouraged to follow the available guidelines and provide information on missing data and the imputation process. Electronic supplementary material The online version of this article (doi:10.1186/s12874-015-0022-1) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
The effect of dose on the antimalarial efficacy of artemether-lumefantrine: a systematic review and pooled analysis of individual patient data. THE LANCET. INFECTIOUS DISEASES 2015; 15:692-702. [PMID: 25788162 DOI: 10.1016/s1473-3099(15)70024-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemether-lumefantrine is the most widely used artemisinin-based combination therapy for malaria, although treatment failures occur in some regions. We investigated the effect of dosing strategy on efficacy in a pooled analysis from trials done in a wide range of malaria-endemic settings. METHODS We searched PubMed for clinical trials that enrolled and treated patients with artemether-lumefantrine and were published from 1960 to December, 2012. We merged individual patient data from these trials by use of standardised methods. The primary endpoint was the PCR-adjusted risk of Plasmodium falciparum recrudescence by day 28. Secondary endpoints consisted of the PCR-adjusted risk of P falciparum recurrence by day 42, PCR-unadjusted risk of P falciparum recurrence by day 42, early parasite clearance, and gametocyte carriage. Risk factors for PCR-adjusted recrudescence were identified using Cox's regression model with frailty shared across the study sites. FINDINGS We included 61 studies done between January, 1998, and December, 2012, and included 14,327 patients in our analyses. The PCR-adjusted therapeutic efficacy was 97·6% (95% CI 97·4-97·9) at day 28 and 96·0% (95·6-96·5) at day 42. After controlling for age and parasitaemia, patients prescribed a higher dose of artemether had a lower risk of having parasitaemia on day 1 (adjusted odds ratio [OR] 0·92, 95% CI 0·86-0·99 for every 1 mg/kg increase in daily artemether dose; p=0·024), but not on day 2 (p=0·69) or day 3 (0·087). In Asia, children weighing 10-15 kg who received a total lumefantrine dose less than 60 mg/kg had the lowest PCR-adjusted efficacy (91·7%, 95% CI 86·5-96·9). In Africa, the risk of treatment failure was greatest in malnourished children aged 1-3 years (PCR-adjusted efficacy 94·3%, 95% CI 92·3-96·3). A higher artemether dose was associated with a lower gametocyte presence within 14 days of treatment (adjusted OR 0·92, 95% CI 0·85-0·99; p=0·037 for every 1 mg/kg increase in total artemether dose). INTERPRETATION The recommended dose of artemether-lumefantrine provides reliable efficacy in most patients with uncomplicated malaria. However, therapeutic efficacy was lowest in young children from Asia and young underweight children from Africa; a higher dose regimen should be assessed in these groups. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
30
|
Abstract
INTRODUCTION Chemotherapy of malaria has become a rapidly changing field. Less than two decades ago, treatment regimens were increasingly bound to fail due to emerging drug resistance against 4-aminoquinolines and sulfa compounds. By now, artemisinin-based combination therapies (ACTs) constitute the standard of care for uncomplicated falciparum malaria and are increasingly also taken into consideration for the treatment of non-falciparum malaria. AREAS COVERED This narrative review provides an overview of the state-of-art antimalarial drug therapy, highlights the global portfolio of current Phase III/IV clinical trials and summarizes current developments. EXPERT OPINION Malaria chemotherapy remains a dynamic field, with novel drugs and drug combinations continuing to emerge in order to outpace the development of large-scale drug resistance against the currently most important drug class, the artemisinin derivatives. More randomized controlled studies are urgently needed especially for the treatment of malaria in first trimester pregnant women. ACTs should be used for the treatment of imported malaria more consequently. Gaining sufficient efficacy and safety information on ACT use for non-falciparum species including Plasmodium ovale and malariae should be a research priority. Continuous investment into malaria drug development is a vital factor to combat artemisinin resistance and successfully improve malaria control toward the ultimate goal of elimination.
Collapse
Affiliation(s)
- Benjamin J Visser
- University of Amsterdam, Academic Medical Centre, Center of Tropical Medicine and Travel Medicine, Division of Infectious Diseases , Amsterdam , The Netherlands
| | | | | |
Collapse
|
31
|
Nhama A, Bassat Q, Enosse S, Nhacolo A, Mutemba R, Carvalho E, Naueia E, Sevene E, Guinovart C, Warsame M, Sanz S, Mussa A, Matsinhe G, Alonso P, Tiago A, Macete E. In vivo efficacy of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated falciparum malaria in children: a multisite, open-label, two-cohort, clinical trial in Mozambique. Malar J 2014; 13:309. [PMID: 25108397 PMCID: PMC4132202 DOI: 10.1186/1475-2875-13-309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mozambique adopted artemisinin-based combination therapy (ACT) for the treatment of uncomplicated Plasmodium falciparum malaria in the year 2006, and since 2009 artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) have been proposed as alternative first-line treatments. A multicentre study was conducted in five sites across the country to assess the in vivo efficacy and tolerability of these two drugs. Methods Children aged six to 59 months with uncomplicated malaria were recruited between June 2011 and January 2012 in five sites across Mozambique (Montepuez, Dondo, Tete, Chokwe, and Manhiça), and treated with AL or ASAQ in a non-randomized study. Follow-up was organized following standard WHO recommendations for in vivo studies, and included daily visits during the three-day-long supervised treatment course, followed by weekly visits up to day 28. The study primary outcome was the day 28 PCR-corrected early treatment failure (ETF), late clinical failure (LCF), late parasitological failure (LPF), and adequate clinical and parasitological response (ACPR). PCR was performed centrally for all cases of recurrent parasitaemia from day 7 onwards to distinguish recrudescence from re-infection. Results Four-hundred and thirty-nine (AL cohort; five sites) and 261 (ASAQ cohort, three sites) children were recruited to the study. Day 28 PCR-corrected efficacy for AL was 96.0% (335/339; 95% CI: 93.4-97.8), while for ASAQ it was 99.6% (232/233; 95% CI: 97.6-99.9). The majority of recurring parasitaemia cases throughout follow-up were shown to be re-infections by PCR. Both drugs were well tolerated, with the most frequent adverse event being vomiting (AL 4.5% [20/439]; ASAQ 9.6% [25/261]) and no significant events deemed related to the study drugs. Conclusion This study confirms that both AL and ASAQ remain highly efficacious and well tolerated for the treatment of uncomplicated malaria in Mozambican children. Studies such as these should be replicated regularly in the selected surveillance sentinel sites to continuously monitor the efficacy of these drugs and to rapidly detect any potential signs of declining efficacy to ACT, the mainstay of malaria treatment.
Collapse
Affiliation(s)
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ivanovska V, Rademaker CMA, van Dijk L, Mantel-Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics 2014; 134:361-72. [PMID: 25022739 DOI: 10.1542/peds.2013-3225] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Children differ from adults in many aspects of pharmacotherapy, including capabilities for drug administration, medicine-related toxicity, and taste preferences. It is essential that pediatric medicines are formulated to best suit a child's age, size, physiologic condition, and treatment requirements. To ensure adequate treatment of all children, different routes of administration, dosage forms, and strengths may be required. Many existing formulations are not suitable for children, which often leads to off-label and unlicensed use of adult medicines. New regulations, additional funding opportunities, and innovative collaborative research initiatives have resulted in some recent progress in the development of pediatric formulations. These advances include a paradigm shift toward oral solid formulations and a focus on novel preparations, including flexible, dispersible, and multiparticulate oral solid dosage forms. Such developments have enabled greater dose flexibility, easier administration, and better acceptance of drug formulations in children. However, new pediatric formulations address only a small part of all therapeutic needs in children; moreover, they are not always available. Five key issues need to be addressed to stimulate the further development of better medicines for children: (1) the continued prioritization of unmet formulation needs, particularly drug delivery in neonates and treatment gaps in pediatric cancers and childhood diseases in developing countries; (2) a better use of existing data to facilitate pediatric formulation development; (3) innovative technologies in adults that can be used to develop new pediatric formulations; (4) clinical feedback and practice-based evidence on the impact of novel formulations; and (5) improved access to new pediatric formulations.
Collapse
Affiliation(s)
- Verica Ivanovska
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands;Faculty of Medical Sciences, University Goce Delcev, Republic of Macedonia;
| | - Carin M A Rademaker
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands; and
| | - Liset van Dijk
- NIVEL, Netherlands Institute for Health Services Research, Utrecht, Netherlands
| | | |
Collapse
|
33
|
Makanga M. A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission. Malar J 2014; 13:291. [PMID: 25069530 PMCID: PMC4126813 DOI: 10.1186/1475-2875-13-291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/08/2014] [Indexed: 01/02/2023] Open
Abstract
While significant advances have been made in the prevention and treatment of malaria in recent years, these successes continue to fall short of the World Health Organization (WHO) goals for malaria control and elimination. For elimination strategies to be effective, limited disease transmission, achieved through rapid reduction in the infectious parasite reservoir and decreased gametocyte carriage, will be critical. Artemisinin-based combination therapy (ACT) forms the cornerstone of WHO-recommended treatment for uncomplicated Plasmodium falciparum malaria, and in combination with other effective interventions will undoubtedly play a vital role in elimination programmes. The gametocytocidal properties of artemisinins are a bonus attribute; there is epidemiological evidence of reductions in malaria incidence and transmission in African regions since the introduction of these agents. Many studies and analyses have specifically investigated the effects of the ACT, artemether-lumefantrine (AL) on gametocyte carriage. In this systematic review of 62 articles published between 1998 and January 2014, the effects of AL on gametocyte carriage and malaria transmission are compared with other artemisinin-based anti-malarials and non-ACT. The impact of AL treatment of asymptomatic carriers on population gametocyte carriage, and the potential future role of AL in malaria elimination initiatives are also considered. Despite the inherent difficulties in comparing data from a range of different studies that also utilized different diagnostic approaches to assess baseline gametocyte counts, the gametocytocidal effect of AL was proportionately consistent across the studies reviewed, suggesting that AL will continue to play a vital role in the treatment of malaria and contribute to clearing the path towards malaria elimination. However, the specific place of AL is the subject of much ongoing research and will undoubtedly be dependent on different demographic and geographical scenarios. Utilizing ACT, such as AL, within malaria elimination strategies is also associated with a number of other challenges, such as balancing potential increased use of ACT (e g, treatment of asymptomatic carriers and home-based treatment) with rational use and avoidance of drug resistance development.
Collapse
Affiliation(s)
- Michael Makanga
- European & Developing Countries Clinical Trials Partnership (EDCTP), PO Box 19070, Tygerberg, Cape Town, South Africa.
| |
Collapse
|
34
|
Sifuna P, Oyugi M, Ogutu B, Andagalu B, Otieno A, Owira V, Otsyula N, Oyieko J, Cowden J, Otieno L, Otieno W. Health & demographic surveillance system profile: The Kombewa health and demographic surveillance system (Kombewa HDSS). Int J Epidemiol 2014; 43:1097-104. [PMID: 25009309 DOI: 10.1093/ije/dyu139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Kombewa Health and Demographic Surveillance System (HDSS) grew out of the Kombewa Clinical Research Centre in 2007 and has since established itself as a platform for the conduct of regulated clinical trials, nested studies and local disease surveillance. The HDSS is located in a rural part of Kisumu County, Western Kenya, and covers an area of about 369 km(2) along the north-eastern shores of Lake Victoria. A dynamic cohort of 141 956 individuals drawn from 34 718 households forms the HDSS surveillance population. Following a baseline survey in 2011, the HDSS continues to monitor key population changes through routine biannual household surveys. The intervening period between set-up and baseline census was used for preparatory work, in particular Global Positioning System (GPS) mapping. Routine surveys capture information on individual and households including residency, household relationships, births, deaths, migrations (in and out) and causes of morbidity (syndromic incidence and prevalence) as well as causes of death (verbal autopsy). The Kombewa HDSS platform is used to support health research activities, that is clinical trials and epidemiological studies evaluating diseases of public health importance including malaria, HIV and global emerging infectious diseases such as dengue fever.
Collapse
Affiliation(s)
- Peter Sifuna
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Mary Oyugi
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Bernhards Ogutu
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Ben Andagalu
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Allan Otieno
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Victorine Owira
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Nekoye Otsyula
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Janet Oyieko
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Jessica Cowden
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USAKenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Lucas Otieno
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| | - Walter Otieno
- Kenya Medical Research Institute/United States Army Medical Research Unit-Kenya, Kisumu, Kenya and Walter Reed Army Institute of Research (WRAIR), Silver Springs, MD, USA
| |
Collapse
|
35
|
Sosnik A, Carcaboso AM. Nanomedicines in the future of pediatric therapy. Adv Drug Deliv Rev 2014; 73:140-61. [PMID: 24819219 DOI: 10.1016/j.addr.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 01/02/2023]
Abstract
Nanotechnology has become a key tool to overcome the main (bio)pharmaceutical drawbacks of drugs and to enable their passive or active targeting to specific cells and tissues. Pediatric therapies usually rely on the previous clinical experience in adults. However, there exists scientific evidence that drug pharmacokinetics and pharmacodynamics in children differ from those in adults. For example, the interaction of specific drugs with their target receptors undergoes changes over the maturation of the different organs and systems. A similar phenomenon is observed for toxicity and adverse effects. Thus, it is clear that the treatment of disease in children cannot be simplified to the direct adjustment of the dose to the body weight/surface. In this context, the implementation of innovative technologies (e.g., nanotechnology) in the pediatric population becomes extremely challenging. The present article overviews the different attempts to use nanotechnology to treat diseases in the pediatric population. Due to the relevance, though limited available literature on the matter, we initially describe from preliminary in vitro studies to preclinical and clinical trials aiming to treat pediatric infectious diseases and pediatric solid tumors by means of nanotechnology. Then, the perspectives of pediatric nanomedicine are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Angel M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona 08950, Spain
| |
Collapse
|
36
|
Ramos-Martín V, González-Martínez C, Mackenzie I, Schmutzhard J, Pace C, Lalloo DG, Terlouw DJ. Neuroauditory toxicity of artemisinin combination therapies-have safety concerns been addressed? Am J Trop Med Hyg 2014; 91:62-73. [PMID: 24865683 PMCID: PMC4080570 DOI: 10.4269/ajtmh.13-0702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although artemisinin-based combination therapies (ACTs) are widely viewed as safe drugs with a wide therapeutic dose range, concerns about neuroauditory safety of artemisinins arose during their development. A decade ago, reviews of human data suggested a potential neuro-ototoxic effect, but the validity of these findings was questioned. With 5–10 years of programmatic use, emerging artemisinin-tolerant falciparum malaria in southeast Asia, and the first calls to consider an increased dose of artemisinins, we review neuroauditory safety data on ACTs to treat uncomplicated falciparum malaria. Fifteen studies reported a neurological or auditory assessment. The large heterogeneity of neuro-ototoxic end points and assessment methodologies and the descriptive nature of assessments hampered a formal meta-analysis and definitive conclusions, but they highlight the persistent lack of data from young children. This subgroup is potentially most vulnerable to any neuroauditory toxicity because of their development stage, increased malaria susceptibility, and repeated ACT exposure in settings lacking robust safety monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dianne J. Terlouw
- *Address correspondence to Dianne J. Terlouw, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom. E-mail:
| |
Collapse
|
37
|
Bessoff K, Spangenberg T, Foderaro JE, Jumani RS, Ward GE, Huston CD. Identification of Cryptosporidium parvum active chemical series by Repurposing the open access malaria box. Antimicrob Agents Chemother 2014; 58:2731-9. [PMID: 24566188 PMCID: PMC3993250 DOI: 10.1128/aac.02641-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/20/2014] [Indexed: 01/19/2023] Open
Abstract
The apicomplexan parasites Cryptosporidium parvum and Cryptosporidium hominis are major etiologic agents of human cryptosporidiosis. The infection is typically self-limited in immunocompetent adults, but it can cause chronic fulminant diarrhea in immunocompromised patients and malnutrition and stunting in children. Nitazoxanide, the current standard of care for cryptosporidiosis, is only partially efficacious for children and is no more effective than a placebo for AIDS patients. Unfortunately, financial obstacles to drug discovery for diseases that disproportionately affect low-income countries and technical limitations associated with studies of Cryptosporidium biology impede the development of better drugs for treating cryptosporidiosis. Using a cell-based high-throughput screen, we queried the Medicines for Malaria Venture (MMV) Open Access Malaria Box for activity against C. parvum. We identified 3 novel chemical series derived from the quinolin-8-ol, allopurinol-based, and 2,4-diamino-quinazoline chemical scaffolds that exhibited submicromolar potency against C. parvum. Potency was conserved in a subset of compounds from each scaffold with varied physicochemical properties, and two of the scaffolds identified exhibit more rapid inhibition of C. parvum growth than nitazoxanide, making them excellent candidates for further development. The 2,4-diamino-quinazoline and allopurinol-based compounds were also potent growth inhibitors of the related apicomplexan parasite Toxoplasma gondii, and a good correlation was observed in the relative activities of the compounds in the allopurinol-based series against T. gondii and C. parvum. Taken together, these data illustrate the utility of the Open Access Malaria Box as a source of both potential leads for drug development and chemical probes to elucidate basic biological processes in C. parvum and other apicomplexan parasites.
Collapse
Affiliation(s)
- Kovi Bessoff
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | | | - Jenna E. Foderaro
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Rajiv S. Jumani
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Christopher D. Huston
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
38
|
Ogutu BR, Onyango KO, Koskei N, Omondi EK, Ongecha JM, Otieno GA, Obonyo C, Otieno L, Eyase F, Johnson JD, Omollo R, Perkins DJ, Akhwale W, Juma E. Efficacy and safety of artemether-lumefantrine and dihydroartemisinin-piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children aged less than five years: results of an open-label, randomized, single-centre study. Malar J 2014; 13:33. [PMID: 24472156 PMCID: PMC3916309 DOI: 10.1186/1475-2875-13-33] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND This open-label, randomized study evaluated efficacy and safety of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) in treatment of uncomplicated falciparum malaria in children below five years of age, to build evidence on use of AL as first-line treatment and DP as second-line treatment in Kenya. METHODS A total of 454 children aged six to 59 months with uncomplicated falciparum malaria were randomized (1:1) to receive AL dispersible or DP paediatric tablets and followed up for 42 days. Primary efficacy variable was corrected adequate clinical and parasitological response (ACPR) rate on day 28. Secondary variables included corrected (day 14, 28 and 42), uncorrected (day 3, 14, 28 and 42) cure rates, parasitological failure at days 3, 14 and 42. Acceptability and tolerability of both drugs were assessed by caregiver questionnaire. RESULTS On day 28, corrected ACPR rates for AL dispersible and DP paediatric were 97.8% (95% CI: 94.9-99.3) and 99.1% (95% CI: 96.8-99.9), respectively, in intention-to-treat population, with no significant treatment differences noted between AL dispersible and DP paediatric arms. Additionally, no significant differences were observed for PCR corrected cure rates on days 14 and ACPR on day 42 for AL dispersible (100%; 96.8%) and DP paediatric (100%; 98.7%). Similarly, for PCR uncorrected cure rates, no significant differences were seen on days 3, 14, 28, and 42 for AL dispersible (99.1%; 98.7%; 81.1%; 67.8%) and DP paediatric (100%; 100%; 87.7%; 70.5%). Parasite clearance was rapid, with approximately 90% clearance achieved in 40 hours in both treatment arms. Incidence of adverse events was related to underlying disease; malaria being reported in both treatment arms. One serious adverse event was noted in AL dispersible (0.42%) arm, not related to study drug. Adherence to treatment regimen was higher for children treated with AL dispersible (93.6%) compared to DP paediatric (85.6%). Acceptability of AL dispersible regimen was assessed as being significantly better than DP paediatric. CONCLUSIONS AL and DP were both efficacious and well tolerated, and had similar effects at day 42 on risk of recurrent malaria. No signs of Plasmodium falciparum tolerance to artemisinins were noted. TRIAL REGISTRATION PACTR201111000316370.
Collapse
Affiliation(s)
- Bernhards R Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
- Walter Reed Project/Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin O Onyango
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Nelly Koskei
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Edgar K Omondi
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John M Ongecha
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Godfrey A Otieno
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
- Walter Reed Project/Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Charles Obonyo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Lucas Otieno
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
- Walter Reed Project/Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fredrick Eyase
- Walter Reed Project/Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jacob D Johnson
- Walter Reed Project/Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Raymond Omollo
- Drugs for Neglected Disease Initiative, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Willis Akhwale
- Department of Disease Control and Prevention, Ministry of Public Health and Sanitation, Nairobi, Kenya
| | - Elizabeth Juma
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
- Division of Malaria Control, Ministry of Public Health and Sanitation, Nairobi, Kenya
| |
Collapse
|
39
|
Adjei GO, Goka BQ, Binka F, Kurtzhals JAL. Artemether–lumefantrine: an oral antimalarial for uncomplicated malaria in children. Expert Rev Anti Infect Ther 2014; 7:669-81. [DOI: 10.1586/eri.09.53] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, Apinan S, Lindegårdh N, Nosten F, Day NPJ, White NJ, Guerin PJ, Tarning J. Population Pharmacokinetics of Lumefantrine in Pregnant and Nonpregnant Women With Uncomplicated Plasmodium falciparum Malaria in Uganda. CPT Pharmacometrics Syst Pharmacol 2013; 2:e83. [PMID: 24226803 PMCID: PMC3852159 DOI: 10.1038/psp.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/12/2013] [Indexed: 11/10/2022] Open
Abstract
Pregnancy alters the pharmacokinetic properties of many antimalarial compounds. The objective of this study was to evaluate the pharmacokinetic properties of lumefantrine in pregnant and nonpregnant women with uncomplicated Plasmodium falciparum malaria in Uganda after a standard fixed oral artemether-lumefantrine treatment. Dense venous (n = 26) and sparse capillary (n = 90) lumefantrine samples were drawn from pregnant patients. A total of 17 nonpregnant women contributed with dense venous lumefantrine samples. Lumefantrine pharmacokinetics was best described by a flexible absorption model with multiphasic disposition. Pregnancy and body temperature had a significant impact on the pharmacokinetic properties of lumefantrine. Simulations from the final model indicated 27% lower day 7 concentrations in pregnant women compared with nonpregnant women and a decreased median time of 0.92 and 0.42 days above previously defined critical concentration cutoff values (280 and 175 ng/ml, respectively). The standard artemether-lumefantrine dose regimen in P. falciparum malaria may need reevaluation in nonimmune pregnant women.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e83; doi:10.1038/psp.2013.59; advance online publication 13 November 2013.
Collapse
Affiliation(s)
- F Kloprogge
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - P Piola
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Epicentre, Paris, France
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - M Dhorda
- Epicentre, Paris, France
- Epicentre, Mbarara, Uganda
- Malaria Group, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, USA
| | | | - E Turyakira
- Mbarara University of Science and Technology, Mbarara, Uganda
- Epicentre, Mbarara, Uganda
| | - S Apinan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - N Lindegårdh
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Deceased
| | - F Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - N P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - N J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - P J Guerin
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Epicentre, Paris, France
| | - J Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Mutabingwa TK, Adam I. Use of artemether-lumefantrine to treat malaria during pregnancy: what do we know and need to know? Expert Rev Anti Infect Ther 2013; 11:125-35. [PMID: 23409819 DOI: 10.1586/eri.12.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Artemether-lumefantrine is a fixed-dose combination containing 20 mg artemether/120 mg lumefantrine per tablet, used for treating uncomplicated malaria in patients weighing ≥5 kg. It is the first artemisinin-based combination registered in some European countries and in the USA. It is marketed in Europe as Riamet(®) (Novartis, Basel, Switzerland) and in malaria-endemic countries as Coartem(®) (Novartis). Safety concerns prevent early pregnancy usage, while limited postmarketing surveillance has delayed safety assessment and policy development. Large clinical studies, postmarketing surveillance and pharmacovigillance ongoing in some countries may soon bridge safety issues. Fatty diet requirements for optimal absorption, pregnancy-induced changes in pharmacokinetics, pregnancy-related anorexia and food taboos, and emerging reduced parasite sensitivity to artemisinin, challenges optimal artemether-lumefantrine dosing and efficacy during pregnancy. This evaluation addresses drug usage, safety concerns following early exposure, implications for changed pharmacokinetics and reduced parasite susceptibility. Clinical-use updates and strategies to address some knowledge gaps including key operational research are discussed.
Collapse
Affiliation(s)
- Theonest K Mutabingwa
- Faculty of Medicine, Hubert Kairuki Memorial University, 322 Regent Estate, PO Box 65300, Dar-es-Salaam, Tanzania.
| | | |
Collapse
|
42
|
Pharmacokinetic properties of artemether, dihydroartemisinin, lumefantrine, and quinine in pregnant women with uncomplicated plasmodium falciparum malaria in Uganda. Antimicrob Agents Chemother 2013; 57:5096-103. [PMID: 23917320 PMCID: PMC3811434 DOI: 10.1128/aac.00683-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pregnancy alters the pharmacokinetic properties of many drugs used in the treatment of malaria, usually resulting in lower drug exposures. This increases the risks of treatment failure, adverse outcomes for the fetus, and the development of resistance. The pharmacokinetic properties of artemether and its principal metabolite dihydroartemisinin (n = 21), quinine (n = 21), and lumefantrine (n = 26) in pregnant Ugandan women were studied. Lumefantrine pharmacokinetics in a nonpregnant control group (n = 17) were also studied. Frequently sampled patient data were evaluated with noncompartmental analysis. No significant correlation was observed between estimated gestational age and artemether, dihydroartemisinin, lumefantrine, or quinine exposures. Artemether/dihydroartemisinin and quinine exposures were generally low in these pregnant women compared to values reported previously for nonpregnant patients. Median day 7 lumefantrine concentrations were 488 (range, 30.7 to 3,550) ng/ml in pregnant women compared to 720 (339 to 2,150) ng/ml in nonpregnant women (P = 0.128). There was no statistical difference in total lumefantrine exposure or maximum concentration. More studies with appropriate control groups in larger series are needed to characterize the degree to which pregnant women are underdosed with current antimalarial dosing regimens.
Collapse
|
43
|
Staehli Hodel EM, Guidi M, Zanolari B, Mercier T, Duong S, Kabanywanyi AM, Ariey F, Buclin T, Beck HP, Decosterd LA, Olliaro P, Genton B, Csajka C. Population pharmacokinetics of mefloquine, piperaquine and artemether-lumefantrine in Cambodian and Tanzanian malaria patients. Malar J 2013; 12:235. [PMID: 23841950 PMCID: PMC3720542 DOI: 10.1186/1475-2875-12-235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 12/17/2022] Open
Abstract
Background Inter-individual variability in plasma concentration-time profiles might contribute to differences in anti-malarial treatment response. This study investigated the pharmacokinetics of three different forms of artemisinin combination therapy (ACT) in Tanzania and Cambodia to quantify and identify potential sources of variability. Methods Drug concentrations were measured in 143 patients in Tanzania (artemether, dihydroartemisinin, lumefantrine and desbutyl-lumefantrine), and in 63 (artesunate, dihydroartemisinin and mefloquine) and 60 (dihydroartemisinin and piperaquine) patients in Cambodia. Inter- and intra-individual variabilities in the pharmacokinetic parameters were assessed and the contribution of demographic and other covariates was quantified using a nonlinear mixed-effects modelling approach (NONMEM®). Results A one-compartment model with first-order absorption from the gastrointestinal tract fitted the data for all drugs except piperaquine (two-compartment). Inter-individual variability in concentration exposure was about 40% and 12% for mefloquine. From all the covariates tested, only body weight (for all antimalarials) and concomitant treatment (for artemether only) showed a significant influence on these drugs’ pharmacokinetic profiles. Artesunate and dihydroartemisinin could not be studied in the Cambodian patients due to insufficient data-points. Modeled lumefantrine kinetics showed that the target day 7 concentrations may not be achieved in a substantial proportion of patients. Conclusion The marked variability in the disposition of different forms of ACT remained largely unexplained by the available covariates. Dosing on body weight appears justified. The concomitance of unregulated drug use (residual levels found on admission) and sub-optimal exposure (variability) could generate low plasma levels that contribute to selecting for drug-resistant parasites.
Collapse
|
44
|
Duparc S, Borghini-Fuhrer I, Craft CJ, Arbe-Barnes S, Miller RM, Shin CS, Fleckenstein L. Safety and efficacy of pyronaridine-artesunate in uncomplicated acute malaria: an integrated analysis of individual patient data from six randomized clinical trials. Malar J 2013; 12:70. [PMID: 23433102 PMCID: PMC3598551 DOI: 10.1186/1475-2875-12-70] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyronaridine-artesunate (PA) is indicated for the treatment of acute uncomplicated Plasmodium falciparum and Plasmodium vivax malaria. METHODS Individual patient data on safety outcomes were integrated from six randomized clinical trials conducted in Africa and Asia in patients with microscopically confirmed P. falciparum (five studies) or P. vivax (one study) malaria. Efficacy against P. falciparum was evaluated across three Phase III clinical trials. RESULTS The safety population included 2,815 patients randomized to PA, 1,254 to comparators: mefloquine + artesunate (MQ + AS), artemether-lumefantrine (AL), or chloroquine. All treatments were generally well tolerated. Adverse events occurred in 57.2% (1,611/2,815) of patients with PA versus 51.5% (646/1,254) for comparators, most commonly (PA; comparators): headache (10.6%; 9.9%), cough (5.9%; 5.6%) and anaemia (4.5%; 2.9%). Serious averse events were uncommon for all treatments (0-0.7%). Transient increases in alanine aminotransferase and aspartate aminotransferase were observed with PA but did not lead to any clinical sequelae. For P. falciparum malaria, day-28 PCR-corrected adequate clinical and parasitological response with PA was 93.6% ([1,921/2,052] 95% CI 92.6, 94.7) in the intent-to-treat population and 98.5% ([1,852/1,880] 95% CI 98.0, 99.1) in the per-protocol population. Median parasite clearance time was 24.1 h with PA, 31.9 h with MQ + AS, and 24.0 h with AL. Median fever clearance time was 15.5 h with PA, 15.8 h with MQ + AS, and 14.0 h with AL. By day 42, P. falciparum gametocytes had declined to near zero for all treatments. CONCLUSIONS Pyronaridine-artesunate was well tolerated with no safety concerns with the exception of mostly mild transient rises in transaminases. Efficacy was high and met the requirements for use as first-line therapy. Pyronaridine-artesunate should be considered for inclusion in malaria treatment programmes. TRIAL REGISTRATION Clinicaltrials.gov: NCT00331136; NCT00403260; NCT00422084; NCT00440999; NCT00541385; NCT01594931.
Collapse
Affiliation(s)
- Stephan Duparc
- Medicines for Malaria Venture (MMV), International Center Cointrin, Route de Pré-Bois 20, PO Box 1826, CH-1215, Geneva 15, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ogutu B. Artemether and lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa. Expert Opin Pharmacother 2013; 14:643-54. [PMID: 23419113 DOI: 10.1517/14656566.2013.771167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION WHO Treatment Guidelines recommend that artemisinin-based combination therapies (ACTs) are used to treat uncomplicated Plasmodium falciparum malaria. Artemether plus lumefantrine (AL) is currently approved in 86 countries, with 30 of the 47 sub-Saharan African countries using it as first-line therapy, and 8 as second-line therapy. The dispersible formulation of AL that facilitates administration to infants and children, being simpler for caregivers to prepare and administer than crushed tablets, and easier for sick children and infants to take is discussed. AREAS COVERED A descriptive summary of available literature from sub-Saharan Africa demonstrates consistently high efficacy and safety for over a decade, with the majority of reported 28-day PCR-corrected cure rates being above 95%. EXPERT OPINION AL is an important antimalarial that will play a major role as countries move towards the elimination of malaria. Further advances in best practice of ACT use will come through strategies to prolong the longevity of ACTs, improved access to ACTs, new data on the use of ACTs in pregnancy, asymptomatic patients and novel paediatric formulations.
Collapse
Affiliation(s)
- Bernhards Ogutu
- Kenya Medical Research Institute, Centre for Clinical Research, Nairobi, Kenya.
| |
Collapse
|
46
|
Pharmacokinetic Profile of Artemisinin Derivatives and Companion Drugs Used in Artemisinin-Based Combination Therapies for the Treatment of Plasmodium falciparum Malaria in Children. Clin Pharmacokinet 2013; 52:153-67. [DOI: 10.1007/s40262-012-0026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Abstract
Malaria chemotherapy is under constant threat from the emergence and spread of multidrug resistance of Plasmodium falciparum. Resistance has been observed to almost all currently used antimalarials. Some drugs are also limited by toxicity. A fundamental component of the strategy for malaria chemotherapy is based on prompt, effective and safe antimalarial drugs. To counter the threat of resistance of P. falciparum to existing monotherapeutic regimens, current malaria treatment is based principally on the artemisinin group of compounds, either as monotherapy or artemisinin-based combination therapies for treatment of both uncomplicated and severe falciparum malaria. Key advantages of artemisinins over the conventional antimalarials include their rapid and potent action, with good tolerability profiles. Their action also covers transmissible gametocytes, resulting in decreased disease transmission. Up to now there has been no prominent report of drug resistance to this group of compounds. Treatment of malaria in pregnant women requires special attention in light of limited treatment options caused by potential teratogenicity coupled with a paucity of safety data for the mother and fetus. Treatment of other malaria species is less problematic and chloroquine is still the drug of choice, although resistance of P. vivax to chloroquine has been reported. Multiple approaches to the identification of new antimalarial targets and promising antimalarial drugs are being pursued in order to cope with drug resistance.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Faculty of Allied Health Sciences, Thammasat University (Rangsit Campus), Paholyothin Road, Klong Luang District, Pathumtanee 12121, Thailand.
| |
Collapse
|
48
|
Sagara I, Fofana B, Gaudart J, Sidibe B, Togo A, Toure S, Sanogo K, Dembele D, Dicko A, Giorgi R, Doumbo OK, Djimde AA. Repeated artemisinin-based combination therapies in a malaria hyperendemic area of Mali: efficacy, safety, and public health impact. Am J Trop Med Hyg 2012; 87:50-56. [PMID: 22764291 PMCID: PMC3391057 DOI: 10.4269/ajtmh.2012.11-0649] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Artemisinin-based combination therapies (ACTs) are the first-line treatment of uncomplicated malaria. The public health benefit and safety of repeated administration of a given ACT are poorly studied. We conducted a randomized trial comparing artemether-lumefantrine, artesunate plus amodiaquine (AS+AQ) and artesunate plus sulfadoxine-pyrimethamine (AS+SP) in patients 6 months of age and older with uncomplicated malaria in Mali from July 2005 to July 2007. The patient received the same initial treatment of each subsequent uncomplicated malaria episode except for treatment failures where quinine was used. Overall, 780 patients were included. Patients in the AS+AQ and AS+SP arms had significantly less risk of having malaria episodes; risk ratio (RR) = 0.84 (P = 0.002) and RR = 0.80 (P = 0.001), respectively. The treatment efficacy was similar and above 95% in all arms. Although all drugs were highly efficacious and well tolerated, AS+AQ and AS+SP were associated with less episodes of malaria.
Collapse
Affiliation(s)
- Issaka Sagara
- *Address correspondence to Issaka Sagara, Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805 Point G, Bamako, Mali. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tarning J, Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, Nuengchamnong N, Nosten F, Day NPJ, White NJ, Guerin PJ, Lindegardh N. Population pharmacokinetics of Artemether and dihydroartemisinin in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. Malar J 2012; 11:293. [PMID: 22913677 PMCID: PMC3502166 DOI: 10.1186/1475-2875-11-293] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/15/2012] [Indexed: 01/06/2023] Open
Abstract
Background Malaria in pregnancy increases the risk of maternal anemia, abortion and low birth weight. Approximately 85.3 million pregnancies occur annually in areas with Plasmodium falciparum transmission. Pregnancy has been reported to alter the pharmacokinetic properties of many anti-malarial drugs. Reduced drug exposure increases the risk of treatment failure. The objective of this study was to evaluate the population pharmacokinetic properties of artemether and its active metabolite dihydroartemisinin in pregnant women with uncomplicated P. falciparum malaria in Uganda. Methods Twenty-one women with uncomplicated P. falciparum malaria in the second and third trimesters of pregnancy received the fixed oral combination of 80 mg artemether and 480 mg lumefantrine twice daily for three days. Artemether and dihydroartemisinin plasma concentrations after the last dose administration were quantified using liquid chromatography coupled to tandem mass-spectroscopy. A simultaneous drug-metabolite population pharmacokinetic model for artemether and dihydroartemisinin was developed taking into account different disposition, absorption, error and covariate models. A separate modeling approach and a non-compartmental analysis (NCA) were also performed to enable a comparison with literature values and different modeling strategies. Results The treatment was well tolerated and there were no cases of recurrent malaria. A flexible absorption model with sequential zero-order and transit-compartment absorption followed by a simultaneous one-compartment disposition model for both artemether and dihydroartemisinin provided the best fit to the data. Artemether and dihydroartemisinin exposure was lower than that reported in non-pregnant populations. An approximately four-fold higher apparent volume of distribution for dihydroartemisinin was obtained by non-compartmental analysis and separate modeling compared to that from simultaneous modeling of the drug and metabolite. This highlights a potential pitfall when analyzing drug/metabolite data with traditional approaches. Conclusion The population pharmacokinetic properties of artemether and dihydroartemisinin, in pregnant women with uncomplicated P. falciparum malaria in Uganda, were described satisfactorily by a simultaneous drug-metabolite model without covariates. Concentrations of artemether and its metabolite dihydroartemisinin were relatively low in pregnancy compared to literature data. However, this should be interpreted with caution considered the limited literature available. Further studies in larger series are urgently needed for this vulnerable group.
Collapse
Affiliation(s)
- Joel Tarning
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hamed K, Grueninger H. Coartem ®: a decade of patient-centric malaria management. Expert Rev Anti Infect Ther 2012; 10:645-659. [DOI: 10.1586/eri.12.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|