1
|
Ishibashi Y, Zhu J, Gernoux G, Yu Y, Suh MJ, Isgrig K, Grati M, Olszewski R, Hoa M, Liang C, Friedman TB, Adjali O, Chien WW. AAV-mediated inner ear gene delivery triggers mild host immune responses in the mammalian inner ear. Mol Ther Methods Clin Dev 2025; 33:101456. [PMID: 40236500 PMCID: PMC11999604 DOI: 10.1016/j.omtm.2025.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Hearing loss is a common disability affecting the world's population. Currently, its treatment options are limited. Adeno-associated virus (AAV)-mediated inner ear gene therapy has shown great promise as a treatment for hereditary hearing loss. However, the host immune responses to AAV-mediated gene therapy in the mammalian inner ear is not well understood. In this study, two serotypes of AAV vectors were injected individually into the mouse inner ear to evaluate the host innate and adaptive immune responses up to 1 month after inner ear gene delivery. Our results suggest that the host innate and adaptive immune responses to AAV-mediated inner ear gene delivery are limited and mild, which is favorable for its clinical translation.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianliang Zhu
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwladys Gernoux
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Yunkai Yu
- OMICS Technology Facility, Genetics Branch, The Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle J. Suh
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Isgrig
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cao Liang
- OMICS Technology Facility, Genetics Branch, The Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oumeya Adjali
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Wade W. Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Huang X, Wang X, Feng L, Zhou R, Chen W, Jiang X, Lv F, Xu W, Xu X, Xie X, Diao Y. Combination of miRNA148a-3p binding sites and C5-12 promoter in rAAV vector synergistically reduces antigen presentation and transgene immunity. Life Sci 2025; 376:123742. [PMID: 40404114 DOI: 10.1016/j.lfs.2025.123742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/23/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy. However, the transgene- induced immune response hinders treatment efficacy. Current strategies to suppress immune responses include tissue-specific promoters and miRNA-binding sites; however, neither approach alone completely inhibits transgene-induced immune response. This study innovatively combines the C5-12 promoter and miRNA148a-3p binding sequences (miRNA148BS) in rAAV vectors express full-length ovalbumin (OVA) as a model antigen. We evaluated their effects on antigen presentation, cellular immunity, and humoral immunity. Results demonstrate that the combination of miRNA148BS and C5-12 promoter preserves expression of OVA in C2C12 cells while completely suppressing the expression in antigen-presenting cells (APC). Antigen presentation assays confirmed near-undetectable levels of the SIINFEKL peptide-MHC complex. Notably, the dual-modification strategy enabled higher and more stable transgene expression in mouse muscle compared to individual modifications. Furthermore, the combination significantly inhibited cytotoxic CTL activation and suppressed Th17 responses in vivo. This synergistic approach provides a foundation for development safe and more effective rAAV-based gene therapy.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China; School of Medicine, Huaqiao University, Quan zhou, China
| | - Xiao Wang
- School of Medicine, Huaqiao University, Quan zhou, China
| | - Lei Feng
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Ruiyang Zhou
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Weihao Chen
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Xiuting Jiang
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Fengjiao Lv
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Wentao Xu
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Xianxiang Xu
- School of Medicine, Huaqiao University, Quan zhou, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quan zhou, China.
| |
Collapse
|
3
|
Keeler AM, Zhan W, Ram S, Fitzgerald KA, Gao G. The curious case of AAV immunology. Mol Ther 2025; 33:1946-1965. [PMID: 40156190 DOI: 10.1016/j.ymthe.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Immune responses to adeno-associated virus (AAV) have long been perplexing, from its first discovery to the latest clinical trials of recombinant AAV (rAAV) therapy. Wild-type AAV (wtAAV) does not cause any known disease, making it an ideal vector for gene therapy, as viral vectors retain virus-like properties. Although AAV stimulates only a mild immune response compared with other viruses, it is still recognized by the innate immune system and induces adaptive immune responses. B cell responses against both wtAAV and rAAV are robust and can hinder gene therapy applications and prevent redosing. T cell responses can clear transduced cells or establish tolerance against gene therapy. Immune responses to AAV gene therapy are influenced by many factors. Most clinical immunotoxicities that develop in response to gene therapies have emerged as higher doses of AAV vectors have been utilized and were not properly modeled in preclinical animal studies. Thus, several strategies have been undertaken to reduce or mitigate immune responses to AAV. While we have learned a considerable amount about how the immune system responds to AAV gene therapy since the discovery of AAV virus, it still remains a curious case that requires more investigation to fully understand.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; NeroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Lorek JK, Isaksson M, Nilsson B. Chromatography in Downstream Processing of Recombinant Adeno-Associated Viruses: A Review of Current and Future Practises. Biotechnol Bioeng 2025; 122:1067-1086. [PMID: 39905691 PMCID: PMC11975191 DOI: 10.1002/bit.28932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Recombinant adeno-associated virus (rAAV) has emerged as an attractive gene delivery vector platform to treat both rare and pervasive diseases. With more and more rAAV-based therapies entering late-stage clinical trials and commercialization, there is an increasing pressure on the rAAV manufacturing process to accelerate drug development, account for larger trials, and commercially provide high doses. Still, many of the pre-clinical and clinical manufacturing processes are tied to outdated technologies, which results in substantial production expenses. Those processes face challenges including low productivity and difficult scalability, which limits its ability to provide for required dosages which in turn influences the accessibility of the drug. And as upstream efforts are expected to increase productivities, the downstream part needs to adapt with more scalable and efficient technologies. In this review, both traditional and novel rAAV downstream technologies are presented and discussed. Traditional rAAV downstream processes are based on density gradient ultracentrifugation and have been shown to effectively purify rAAVs with high yields and purities. However, those processes lack scalability and efficiency, which is why novel rAAV downstream processes based on column-chromatography have emerged as an attractive alternative and show potential for integration in continuous processes, following the principle of next-generation manufacturing.
Collapse
Affiliation(s)
| | - Madelène Isaksson
- Department of Process and Life Science EngineeringLund UniversityLundSweden
| | - Bernt Nilsson
- Department of Process and Life Science EngineeringLund UniversityLundSweden
| |
Collapse
|
5
|
Jalil A, Ferrara M, Lippera M, Parry N, Black GC, Banderas S, Ashworth J, Biswas S, Hall G, Gray J, Newman W, Ivanova T. Real-world outcomes of Voretigene Neparvovec: a single-centre consecutive case series. Eye (Lond) 2025; 39:1356-1363. [PMID: 39900645 PMCID: PMC12043895 DOI: 10.1038/s41433-025-03637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
PURPOSE To present functional and anatomical outcomes of subretinal therapy with Voretigene Neparvovec (VN) in patients treated in one of the four specialist UK gene therapy centres. METHODS Single-centre, retrospective case series of patients affected by an inherited retinal dystrophy (IRD) caused by a pathogenic biallelic RPE65 mutation and treated with VN. Complete ophthalmic examination was planned preoperatively and 2, 4 and 8 weeks and 3, 6, 12, 18 and 24 months after surgery, and included visual acuity (VA) assessment (normal and low luminance), colour vision, contrast sensitivity, dark-adapted full-field stimulus threshold, macular optical coherence tomography (OCT) and fundus autofluorescence. RESULTS Fourteen eyes of 8 patients were included with a mean follow-up of 26 months. Mean final VA improved by 2 lines, and improvements were noted in most other functional tests. Central retina thickness (CRT) remained fairly stable in the majority of patients, whereas 2 eyes experienced a reduction >30 μm. The status of ellipsoid band and external limiting membrane remained stable in all patients, except one. Peripapillary atrophy (PPA) was present in 5 eyes of 3 patients at the baseline; postoperative progression was noted in both eyes of one patient. No patient developed new PPA or chorioretinal atrophy (CRA) involving the macular area after treatment. Five eyes of 3 patients developed CRA at the retinotomy site, that progressed in 3 of them. CONCLUSIONS Our study confirmed the effectiveness of subretinal VN therapy in terms of improvement of visual function. CRA was confirmed as a common postoperative complication, with limited functional impact.
Collapse
Affiliation(s)
- Assad Jalil
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| | - Mariantonia Ferrara
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Eye Unit, ASST Spedali Civili di Brescia, Piazzale Spedali Civili, Brescia, Italia
| | - Myrta Lippera
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Neil Parry
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- School of Health Sciences, University of Manchester, Manchester, M13 9NT, United Kingdom
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sandra Banderas
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Jane Ashworth
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Sus Biswas
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Georgina Hall
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Jane Gray
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - William Newman
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Tsveta Ivanova
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Purdy R, John M, Bray A, Clare AJ, Copland DA, Chan YK, Henderson RH, Nerinckx F, Leroy BP, Yang P, Pennesi ME, MacLaren RE, Fischer MD, Dick AD, Xue K. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. Prog Retin Eye Res 2025; 106:101354. [PMID: 40090458 DOI: 10.1016/j.preteyeres.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Retinal gene therapy using adeno-associated viral (AAV) vectors has been a groundbreaking step-change in the treatment of inherited retinal diseases (IRDs) and could also be used to treat more common retinal diseases such as age-related macular degeneration and diabetic retinopathy. The delivery and expression of therapeutic transgenes in the eye is limited by innate and adaptive immune responses against components of the vector product, which has been termed gene therapy-associated uveitis (GTAU). This is clinically important as intraocular inflammation could lead to irreversible loss of retinal cells, deterioration of visual function and reduced durability of treatment effect associated with a costly one-off treatment. For retinal gene therapy to achieve an improved efficacy and safety profile for treating additional IRDs and more common diseases, the risk of GTAU must be minimised. We have collated insights from pre-clinical research, clinical trials, and the real-world implementation of AAV-mediated retinal gene therapy to help understand the risk factors for GTAU. We draw attention to an emerging framework, which includes patient demographics, vector construct, vector dose, route of administration, and choice of immunosuppression regime. Importantly, we consider efforts to date and potential future strategies to mitigate the adverse immune response across each of these domains. We advocate for more targeted immunomodulatory approaches to the prevention and treatment of GTAU based on better understanding of the underlying immune response.
Collapse
Affiliation(s)
- Ryan Purdy
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Molly John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Cirrus Therapeutics, Cambridge, MA, USA
| | - Robert H Henderson
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fanny Nerinckx
- Chirec Delta Hospital, Brussels, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Liu Z, Zhang H, Jia H, Wang H, Huang Z, Tang Y, Wang Z, Hu J, Zhao X, Li T, Sun X. The clinical safety landscape for ocular AAV gene therapies: A systematic review and meta-analysis. iScience 2025; 28:112265. [PMID: 40248125 PMCID: PMC12005934 DOI: 10.1016/j.isci.2025.112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Adeno-associated virus (AAV) gene therapy is a promising approach for treating ocular monogenic or acquired diseases, though immunogenicity and safety remain critical considerations. We conducted a systematic review of 120 trials and 32 publications to assess immune responses across different delivery routes. Intravitreal administration was associated with higher rates of anterior uveitis (43.06% vs. 10.22%) and intermediate/posterior uveitis (40.36% vs. 6.18%) compared to subretinal delivery. Engineered AAV capsids, used exclusively in intravitreal studies, showed no significant difference in either type of uveitis incidence compared to natural serotypes. Prophylactic immunosuppression (PI) did not affect ocular or systemic immune responses in subretinal delivery, but significantly reduced systemic immune responses in intravitreal administration. These findings underscore the potential of PI to mitigate systemic immune responses in intravitreal AAV therapy. This review should help guide the choice of routes of administration and immunosuppression strategies, and highlights current trends in ocular AAV gene therapy.
Collapse
Affiliation(s)
- Zishi Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Haoliang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Zhonghe Huang
- Qingdao University School of Mathematics and Statistics, Qingdao, China
| | - Yuhao Tang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Zilin Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Jing Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Xiaohuan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| |
Collapse
|
8
|
Chai AC, Siegwart DJ, Wang RC. Nucleic Acid Therapy for the Skin. J Invest Dermatol 2025; 145:780-789. [PMID: 39269387 PMCID: PMC11903366 DOI: 10.1016/j.jid.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024]
Abstract
Advances in sequencing technologies have facilitated the identification of the genes and mechanisms for many inherited skin diseases. Although targeted nucleic acid therapeutics for diseases in other organs have begun to be deployed in patients, the goal of precise therapeutics for skin diseases has not yet been realized. First, we review the current and emerging nucleic acid-based gene-editing and delivery modalities. Next, current and emerging viral and nanoparticle vehicles for the delivery of gene therapies are reviewed. Finally, specific skin diseases that could benefit optimally from nucleic acid therapies are highlighted. By adopting the latest technologies and addressing specific barriers related to skin biology, nucleic acid therapeutics have the potential to revolutionize treatments for patients with skin disease.
Collapse
Affiliation(s)
- Andreas C Chai
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Medical Scientist Training Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harmon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Daniel J Siegwart
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Kwok E, Alam K, Lim J, Niyazmand H, Tang V, Trinh H, Chen FK, Charng J. Evaluating ocular health in retinal gene therapies. Clin Exp Optom 2025:1-12. [PMID: 39956654 DOI: 10.1080/08164622.2025.2457429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Inherited retinal disease (IRD) refers to a heterogeneous group of genetic eye disease that causes progressive vision loss and was once regarded untreatable. However, regulatory approval for Luxturna (voretigene neparvovec-rzyl) for patients with biallelic mutation in the RPE65 gene has heralded new optimism for patients with the disease. One critical question in designing clinical trial in patients with IRD is choosing appropriate outcome measures to assess the retina, taking into consideration the slow disease progression and the inherent low vision associated with the disease. In this review, the functional and structural endpoints that have been utilised in human retinal gene therapy clinical trials in patient selection as well as measures of safety and efficacy are described. For clinicians, an appreciation of these specialised measures of eye health in a patient with IRD will enhance understanding of retinal health assessments, disease prognosis as well as facilitating discussions with patients potentially eligible for retinal gene therapy clinical trial.
Collapse
Affiliation(s)
- Eden Kwok
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Khyber Alam
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jeremiah Lim
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hamed Niyazmand
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Vanessa Tang
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Han Trinh
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Chen X, Liu X, Cui S, Wang G, Liu Y, Qu G, Jiang L, Liu Y, Li X. Safety and Vision Outcomes Following Gene Therapy for Bietti Crystalline Dystrophy: A Nonrandomized Clinical Trial. JAMA Ophthalmol 2025; 143:126-133. [PMID: 39786763 PMCID: PMC11843373 DOI: 10.1001/jamaophthalmol.2024.5619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/02/2024] [Indexed: 01/12/2025]
Abstract
Importance Bietti crystalline dystrophy (BCD) is a severe genetic retinopathy caused by variants in the CYP4V2 gene. Currently, there is no approved treatment for BCD. Objective To evaluate safety and vision outcomes following gene therapy with adeno-associated virus (AAV) encoding CYP4V2 (rAAV-hCYP4V2, NGGT001 [Next Generation Gene Therapeutics]). Design, Setting, and Participants This open-label, dose-escalation nonrandomized clinical trial was conducted from February 2023 to May 2024 at 2 study sites in China. Patients with genetically confirmed biallelic disease-linked CYP4V2 variants received subretinal injections of rAAV2-hCYP4V2 at 1 of 2 dosage levels and were followed up for 12 months. Intervention A single unilateral injection of 1.5 × 1011 or 3.0 × 1011 total vector genomes of recombinant AAV-hCYP4V2 in the worse eye, based on visual acuity letter score. Main Outcomes and Measures The primary outcome was safety, assessed by clinical examination of ocular inflammation and evaluated by routine clinical chemistry and immunogenicity testing. Secondary outcomes were changes in visual function from baseline in best-corrected visual acuity (BCVA), microperimetry, and contrast sensitivity 12 months after treatment. Results Among 12 patients with BCD (6 patients per dose group), mean (SD) patient age was 40.5 (7.1) years, and 5 patients (42%) were female. No severe adverse events related to the treatment were observed. However, mild intraocular inflammation was noted in 1 participant. The median (IQR) baseline BCVA letter score for the study eye was 34 (10-53), equivalent to 20/200 Snellen, while the nonstudy eye had a median (IQR) BCVA of 60 (40-67), equivalent to approximately 20/63 Snellen. At 12 months, the study eye improved by a mean (SD) letter score of 13.9 (13.1) compared with 6.3 (7.4) in the nonstudy eye. The 12-month median (IQR) BCVA for the study eye was 53 (37-64) (equivalent to approximately 20/80 Snellen) and 62 (42-70) (approximately 20/50 Snellen) for the nonstudy eye. Conclusions and Relevance This open-label, exploratory nonrandomized clinical trial identified no serious safety concerns related to gene therapy over 12 months' follow-up among patients with BCD. While improvement in BCVA was noted, the magnitude was within test-retest values typically noted in eyes with very low levels of visual acuity, and BCVA improvement in both the study and nonstudy eyes could be related to a learning effect, with greater improvement in the study eye possibly related to study eyes' being the worse-seeing eye. Trial Registration ClinicalTrials.gov Identifier: NCT06302608.
Collapse
Affiliation(s)
- Xiuju Chen
- Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Shihe Cui
- NGGT (Suzhou) Biotechnology Co, Ltd, Suzhou, Jiangsu, China
| | - Gang Wang
- NGGT (Suzhou) Biotechnology Co, Ltd, Suzhou, Jiangsu, China
| | | | - Guang Qu
- NGGT (Suzhou) Biotechnology Co, Ltd, Suzhou, Jiangsu, China
- NGGT Inc, Walnut Creek, California
| | - Lixin Jiang
- NGGT (Suzhou) Biotechnology Co, Ltd, Suzhou, Jiangsu, China
- NGGT Inc, Walnut Creek, California
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Xiaoxin Li
- Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
| |
Collapse
|
11
|
Simunovic MP, Moore AT, Grigg J, Sergouniotis P, Mahroo OA, Vincent A, Singh M, Fischer MD, Edwards T, Mack H, Hogden M, Chen FK, Hewitt A, Ayton L, Leroy B, Jamieson R, Gillies MC, Barthelmes D. THE FIGHT INHERITED RETINAL BLINDNESS! PROJECT: A New Treatment Outcome and Natural History Registry for Inherited Retinal Disease. Retina 2025; 45:286-295. [PMID: 39418576 PMCID: PMC11753432 DOI: 10.1097/iae.0000000000004296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE To design and build a new disease registry to track the natural history and outcomes of approved gene therapy in patients with inherited retinal diseases. METHODS A core committee of six members was convened to oversee the construction of the Fight Inherited Retinal Blindness! module. A further 11 experts formed a steering committee, which discussed disease classification and variables to form minimum datasets using a consensus approach. RESULTS The web-based Fight Inherited Retinal Blindness! registry records baseline demographic, clinical, and genetic data together with follow-up data. The Human Phenotype Ontology and Monarch Disease Ontology nomenclature were incorporated within the Fight Inherited Retinal Blindness! architecture to standardize nomenclature. The registry software assigns individual diagnoses to one of seven broad phenotypic groups, with minimum datasets dependent on the broad phenotypic group. In addition, minimum datasets were agreed on for patients undergoing approved gene therapy with voretigene neparvovec (Luxturna). New patient entries can be completed in 5 minutes, and follow-up data can be entered in 2 minutes. CONCLUSION Fight Inherited Retinal Blindness! is an organized, web-based system that uses observational study methods to collect uniform data from patients with inherited retinal disease to track natural history and (uniquely) treatment outcomes. It is free to users who have control over their data.
Collapse
Affiliation(s)
- Matthew P. Simunovic
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Sydney Eye Hospital, Sydney, NSW, Australia;
| | - Anthony T. Moore
- University of California at San Francisco Medical Center, San Francisco, California;
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, United Kingdom;
- The University College London, Institute of Ophthalmology, United Kingdom;
| | - John Grigg
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Sydney Eye Hospital, Sydney, NSW, Australia;
| | - Panagiotis Sergouniotis
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Omar A. Mahroo
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, United Kingdom;
- The University College London, Institute of Ophthalmology, United Kingdom;
| | - Andrea Vincent
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand;
| | - Mandeep Singh
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand;
| | | | - Thomas Edwards
- Centre for Eye Research Australia, East Melbourne, VIC, Australia;
| | - Heather Mack
- Centre for Eye Research Australia, East Melbourne, VIC, Australia;
| | - Michael Hogden
- Department of Ophthalmology, Princess Alexandra Hospital, Brisbane, QLD, Australia;
| | - Fred K. Chen
- Centre for Ophthalmology and Vision Sciences, The University of Western Australia, Perth, Washington, Australia;
| | - Alex Hewitt
- Centre for Eye Research Australia, East Melbourne, VIC, Australia;
| | - Lauren Ayton
- Centre for Eye Research Australia, East Melbourne, VIC, Australia;
| | - Bart Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium;
| | - Robyn Jamieson
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; and
| | - Mark C. Gillies
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Sydney Eye Hospital, Sydney, NSW, Australia;
| | - Daniel Barthelmes
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Daruich A, Rateaux M, Batté E, de Vergnes N, Valleix S, Robert MP, Bremond Gignac D. 12-month outcomes after voretigene neparvovec gene therapy in paediatric patients with RPE65-mediated inherited retinal dystrophy. Br J Ophthalmol 2025; 109:281-285. [PMID: 39578019 PMCID: PMC11866291 DOI: 10.1136/bjo-2024-326221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024]
Abstract
AIMS To report main outcomes and complications following voretigene neparvovec (Luxturna) treatment in paediatric patients. METHODS Records of patients under the age of 17 treated by subretinal administration of voretigene neparvovec for confirmed biallelic RPE65-mediated inherited retinal dystrophy were retrospectively reviewed. Best-corrected visual acuity (BCVA) and data from spectral-domain optical coherence tomography, ultra-wide-field fundus imaging and Goldmann visual field (VF) were analysed at 12 months follow-up. RESULTS 12 eyes of six patients (mean age: 7.8 years) were analysed. No intraoperative complications occurred. BCVA significantly improved at 12-month follow-up (mean LogMAR (logarithm of the minimal angle of resolution) BCVA: 1.0±0.8 at baseline vs 0.6±0.3 at 12 months, p=0.001). Mean central macular thickness and central outer nuclear layer thickness did not change at 12 months follow-up. VF V4e isopter did not show significant changes. Postoperatively complications included: elevated intraocular pressure in two eyes of the same patient, a parafoveal lamellar hole at 3 months post-treatment and atrophy on the injection site observed in all eyes except one, which significantly enlarged during 12 months (p=0.008). CONCLUSIONS Most paediatric patients treated by voretigene neparvovec showed a significant increase in visual function at 12 months follow-up. None of the postoperative complications prevented gains in visual function.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, 149 Rue de Sèvres, 75015 Paris, France, Paris, France
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France, Paris, France
| | - Maxence Rateaux
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, 149 Rue de Sèvres, 75015 Paris, France, Paris, France
- Centre Borelli, Paris Cité University, ENS-Saclay, CNRS, INSERM, SSA, Paris, France, Paris, Île-de-France, France
| | - Emilie Batté
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, 149 Rue de Sèvres, 75015 Paris, France, Paris, France
| | - Nathalie de Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, 149 Rue de Sèvres, 75015 Paris, France, Paris, France
| | - Sophie Valleix
- Genomic Medicine Department of systemic and organ diseases, Cochin hospital, APHP. Paris City University, 75014, France, Paris, France
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, 149 Rue de Sèvres, 75015 Paris, France, Paris, France
- Centre Borelli, Paris Cité University, ENS-Saclay, CNRS, INSERM, SSA, Paris, France, Paris, Île-de-France, France
| | - Dominique Bremond Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, 149 Rue de Sèvres, 75015 Paris, France, Paris, France
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France, Paris, France
| |
Collapse
|
13
|
Ross M, Sade K, Obolensky A, Averbukh E, Desrosiers M, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Characterization of anti-AAV2 neutralizing antibody levels in sheep prior to and following intravitreal AAV2.7m8 injection. Gene Ther 2024; 31:580-586. [PMID: 39472677 DOI: 10.1038/s41434-024-00495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Gene augmentation therapy is a promising treatment for incurable, blinding inherited retinal diseases, and intravitreal delivery is being studied as a safe alternative to subretinal injections. Adeno-Associated Viruses (AAV) are commonly-used vectors for ocular gene augmentation therapy. Naturally occurring pre-operative exposure and infection with AAV could result in presence of neutralizing antibodies (NAB's) in patients' serum, and may affect the safety and efficacy of treatment. Our aim was to characterize the humoral response against AAV pre- and post-intravitreal delivery of AAV2.7m8 vectors in a naturally-occurring sheep model of CNGA3 achromatopsia. Serial serum neutralization assays were performed to screen sheep for pre-exiting anti-AAV2 NAB's, and to assess the effect of intravitreal AAV2.7m8 injection on post-operative NAB titers and intraocular inflammation in sheep. The effect of viral dose and transgene type were also assessed. Serological screening revealed pre-operative seropositivity in 21.4% of animals, with age being a risk factor for the presence of anti-AAV2 NAB's. NAB titers increased following intravitreal AAV administration in the majority of sheep. There was no significant difference in the degree of post-operative serum neutralization between pre-operatively seronegative sheep and those with pre-existing antibodies. However, only sheep with pre-existing antibodies presented with signs of post-operative inflammation. We conclude that pre-existing anti-AAV2 NAB's do not affect the level of post-operative NAB titers; however, they increase the risk of post-operative ocular inflammation. Our results could have implications for the management of AAV-mediated ocular gene therapies, a technology being increasingly studied and used in patients.
Collapse
Affiliation(s)
- Maya Ross
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Kareen Sade
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edward Averbukh
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melissa Desrosiers
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Alexander Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Hay Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Elisha Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
14
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
15
|
Vrellaku B, Sethw Hassan I, Howitt R, Webster CP, Harriss E, McBlane F, Betts C, Schettini J, Lion M, Mindur JE, Duerr M, Shaw PJ, Kirby J, Azzouz M, Servais L. A systematic review of immunosuppressive protocols used in AAV gene therapy for monogenic disorders. Mol Ther 2024; 32:3220-3259. [PMID: 39044426 PMCID: PMC11489562 DOI: 10.1016/j.ymthe.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
The emergence of adeno-associated virus (AAV)-based gene therapy has brought hope to patients with severe monogenic disorders. However, immune responses to AAV vectors and transgene products present challenges that require effective immunosuppressive strategies. This systematic review focuses on the immunosuppressive protocols used in 38 clinical trials and 35 real-world studies, considering a range of monogenic diseases, AAV serotypes, and administration routes. The review underscores the need for a deeper understanding of immunosuppressive regimens to enhance the safety and effectiveness of AAV-based gene therapy. Characterizing the immunological responses associated with various gene therapy treatments is crucial for optimizing treatment protocols and ensuring the safety and efficacy of forthcoming gene therapy interventions. Further research and understanding of the impact of immunosuppression on disease, therapy, and route of administration will contribute to the development of more effective and safer gene therapy approaches in the future.
Collapse
Affiliation(s)
- Besarte Vrellaku
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ilda Sethw Hassan
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | | | - Corinne Betts
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jorge Schettini
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mattia Lion
- Takeda Pharmaceuticals USA, Inc, Cambridge, MA, USA
| | | | - Michael Duerr
- Bayer Aktiengesellschaft, CGT&Rare Diseases, Leverkusen, Deutschland
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Gene Therapy Innovation & Manufacturing Centre (GTIMC), University of Sheffield, Sheffield, UK.
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Division of Child Neurology, Department of Paediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, Liège, Belgium.
| |
Collapse
|
16
|
Amato A, Tschetter W, Everett L, Bailey ST, Lauer AK, Yang P, Pennesi ME. Partial rescue of the full-field electroretinogram in patients with RPE65-related retinal dystrophy following gene augmentation therapy with voretigene neparvovec-rzyl. Doc Ophthalmol 2024; 149:63-75. [PMID: 39141279 DOI: 10.1007/s10633-024-09987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE To present a series of patients with RPE65-related retinal dystrophy showing a partial rescue of the full-field electroretinogram (ERG) following gene replacement therapy with voretigene neparovec-rzyl (Luxturna®). METHODS This retrospective chart review examined 17 patients treated with voretigene neparovec-rzyl (VN) at the Casey Eye Institute (2018-2022). The last pre-operative ERG and all available post-operative ERGs were analyzed to identify subjects with functional rescue. Measurements of amplitudes and implicit times were compared to data from age-matched controls and the attenuation relative to the lower limit of normal (LLN) was calculated. For comparison with other functional exams, the last pre-operative and all post-treatment best-corrected visual acuity (BCVA) data, visual field (VF) tests and full-field threshold stimulus tests (FST) were also described. RESULTS Of patients who underwent ERGs, most had unrecordable ERGs that did not change after treatment. However, we identified three patients, treated bilaterally, who demonstrated partial rescue of the full-field ERG in both eyes which was sustained during the course of the study. CONCLUSIONS This is the largest series of patients treated with VN showing a partial rescue of the ERG. This is also the first report of bilateral ERG rescue, as well as the first description of ERG recovery occurring in non-pediatric subjects. Full-field ERG could be used in combination with other psychophysical tests and imaging modalities to detect and deepen our understanding of the response to this gene therapy approach.
Collapse
Affiliation(s)
- A Amato
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - W Tschetter
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - L Everett
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - S T Bailey
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - A K Lauer
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - P Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - M E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- Retina Foundation of the Southwest, 9600 N Central Pkwy, Dallas, TX, 75231, USA.
| |
Collapse
|
17
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
18
|
Oshitari T. Translational Research and Therapies for Neuroprotection and Regeneration of the Optic Nerve and Retina: A Narrative Review. Int J Mol Sci 2024; 25:10485. [PMID: 39408817 PMCID: PMC11476551 DOI: 10.3390/ijms251910485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Most retinal and optic nerve diseases pose significant threats to vision, primarily due to irreversible retinal neuronal cell death, a permanent change, which is a critical factor in their pathogenesis. Conditions such as glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration are the top four leading causes of blindness among the elderly in Japan. While standard treatments-including reduction in intraocular pressure, anti-vascular endothelial growth factor therapies, and retinal photocoagulation-can partially delay disease progression, their therapeutic effects remain limited. To address these shortcomings, a range of neuroprotective and regenerative therapies, aimed at preventing retinal neuronal cell loss, have been extensively studied and increasingly integrated into clinical practice over the last two decades. Several of these neuroprotective therapies have achieved on-label usage worldwide. This narrative review introduces several neuroprotective and regenerative therapies for retinal and optic nerve diseases that have been successfully translated into clinical practice, providing foundational knowledge and success stories that serve as valuable references for researchers in the field.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan; ; Tel.: +81-43-226-2124; Fax: +81-43-224-4162
- Department of Ophthalmology, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita 286-8686, Japan
| |
Collapse
|
19
|
Zhu Y, Liu X, Ma J, Wang Z, Jiang H, Sun C, Jeong DY, Guan H, Chu B. Wireless and Opto-Stimulated Flexible Implants: Artificial Retina Constructed by Ferroelectric BiFeO 3-BaTiO 3/P(VDF-TrFE) Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48395-48405. [PMID: 39223074 DOI: 10.1021/acsami.4c12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The degeneration of retinal photoreceptors is one of the primary causes of blindness, and the implantation of retinal prostheses offers hope for vision restoration in individuals who are completely blind. Flexible bioelectronic devices present a promising avenue for the next generation of retinal prostheses owing to their soft mechanical properties and tissue friendliness. In this study, we developed flexible composite films of ferroelectric BiFeO3-BaTiO3 (BFO-BTO) particles synthesized by the hydrothermal method and ferroelectric poly(vinyldene difluoride-trifluoroethylene) (P(VDF-TrFE)) polymer and investigated their applications in artificial retinas. Owing to the coupling of the photothermal effect of BFO-BTO particles and the pyroelectric effect of the P(VDF-TrFE) polymer, the composite films demonstrate a strong photoelectric response (a maximum peak-to-peak photovoltage > 80 V under blue light of 100 mW/cm2) in a wide wavelength range of light (from visible to infrared) with the inherent flexibility and ease of preparation, making it an attractive candidate for artificial retinal applications. Experimental results showed that blind rats implanted with artificial retinas of the composites display light-responsive behavior, showcasing the effectiveness of vision restoration. This study demonstrates a novel approach for employing ferroelectric materials in vision restoration and offers insights into future artificial retina design.
Collapse
Affiliation(s)
- Yuhong Zhu
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong 226001, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Zhaopeng Wang
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jiang
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Dae-Yong Jeong
- Department of Materials Science & Engineering, Inha University, Incheon 22212, Korea
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong 226001, China
| | - Baojin Chu
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Kvanta A, Rangaswamy N, Holopigian K, Watters C, Jennings N, Liew MSH, Bigelow C, Grosskreutz C, Burstedt M, Venkataraman A, Westman S, Geirsdottir A, Stasi K, André H. Interim safety and efficacy of gene therapy for RLBP1-associated retinal dystrophy: a phase 1/2 trial. Nat Commun 2024; 15:7438. [PMID: 39256350 PMCID: PMC11387776 DOI: 10.1038/s41467-024-51575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Gene therapy holds promise for treatment of inherited retinal dystrophies, a group of rare genetic disorders characterized by severe loss of vision. Here, we report up to 3-year pre-specified interim safety and efficacy results of an open-label first-in-human dose-escalation phase 1/2 gene therapy clinical trial in 12 patients with retinal dystrophy caused by biallelic mutations in the retinaldehyde-binding protein 1 (RLBP1) gene of the visual cycle. The primary endpoints were systemic and ocular safety and recovery of dark adaptation. Secondary endpoints included microperimetry, visual field sensitivity, dominant eye test and patient-reported outcomes. Subretinal delivery of an adeno-associated viral vector (AAV8-RLBP1) was well tolerated with dose-dependent intraocular inflammation which responded to corticosteroid treatment, and focal atrophy of the retinal pigment epithelium as the dose limiting toxicity. Dark adaptation kinetics, the primary efficacy endpoint, improved significantly in all dose-cohorts. Treatment with AAV8-RLBP1 resulted in the resolution of disease-related retinal deposits, suggestive of successful restoration of the visual cycle. In conclusion, to date, AAV8-RLBP1 has shown preliminary safety and efficacy in patients with RLBP1-associated retinal dystrophy. Trial number: NCT03374657.
Collapse
Affiliation(s)
- Anders Kvanta
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | | | - Karen Holopigian
- Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | | | - Nicki Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Chad Bigelow
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Marie Burstedt
- Department of Clinical Sciences/Ophthalmology, University of Umeå, Umeå, Sweden
| | - Abinaya Venkataraman
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sofie Westman
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Asbjörg Geirsdottir
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kalliopi Stasi
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Xie M, Wang L, Deng Y, Ma K, Yin H, Zhang X, Xiang X, Tang J. Sustained and Efficient Delivery of Antivascular Endothelial Growth Factor by the Adeno-associated Virus for the Treatment of Corneal Neovascularization: An Outlook for Its Clinical Translation. J Ophthalmol 2024; 2024:5487973. [PMID: 39286553 PMCID: PMC11405113 DOI: 10.1155/2024/5487973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Corneal diseases represent 5.1% of all eye defects and are the fourth leading cause of blindness globally. Corneal neovascularization can arise from all conditions of chronic irritation or hypoxia, which disrupts the immune-privileged state of the healthy cornea, increases the risk of rejection after keratoplasty, and leads to opacity. In the past decades, significant progress has been made for neovascular diseases of the retina and choroid, with plenty of drugs getting commercialized. In addition, to overcome the barriers of the short duration and inadequate penetration of conventional formulations of antivascular endothelial growth factor (VEGF), multiple novel drug delivery systems, including adeno-associated virus (AAV)-mediated transfer have gone through the full process of bench-to-bedside translation. Like retina neovascular diseases, corneal neovascularization also suffers from chronicity and a high risk of recurrence, necessitating sustained and efficient delivery across the epithelial barrier to reach deep layers of the corneal stroma. Among the explored methods, adeno-associated virus-mediated delivery of anti-VEGF to treat corneal neovascularization is the most extensively researched and most promising strategy for clinical translation although currently although, it remains predominantly at the preclinical stage. This review comprehensively examines the necessity, benefits, and risks of applying AAV vectors for anti-VEGF drug delivery in corneal vascularization, including its current progress and challenges in clinical translation.
Collapse
Affiliation(s)
- Mengzhen Xie
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
- Beijing Institute of Ophthalmology Beijing Tongren Eye Center Beijing Tongren Hospital Capital Medical University Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Lixiang Wang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Yingping Deng
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Ke Ma
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Hongbo Yin
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xiaolan Zhang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xingye Xiang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, China
- Georgia State University, Atlanta, GA 30302, USA
| | - Jing Tang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Ashtari M, Bennett J, Leopold DA. Central visual pathways affected by degenerative retinal disease before and after gene therapy. Brain 2024; 147:3234-3246. [PMID: 38538211 PMCID: PMC11370797 DOI: 10.1093/brain/awae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic diseases affecting the retina can result in partial or complete loss of visual function. Leber's congenital amaurosis (LCA) is a rare blinding disease, usually inherited in an autosomally recessive manner, with no cure. Retinal gene therapy has been shown to improve vision in LCA patients caused by mutations in the RPE65 gene (LCA2). However, little is known about how activity in central visual pathways is affected by the disease or by subsequent gene therapy. Functional MRI (fMRI) was used to assess retinal signal transmission in cortical and subcortical visual structures before and 1 year after retinal intervention. The fMRI paradigm consisted of 15-s blocks of flickering (8 Hz) black and white checkerboards interleaved with 15 s of blank (black) screen. Visual activation in the brain was assessed using the general linear model, with multiple comparisons corrected using the false discovery rate method. Response to visual stimulation through untreated eyes of LCA2 patients showed heightened fMRI responses in the superior colliculus and diminished activities in the lateral geniculate nucleus (LGN) compared to controls, indicating a shift in the patients' visual processing towards the retinotectal pathway. Following gene therapy, stimuli presented to the treated eye elicited significantly stronger fMRI responses in the LGN and primary visual cortex, indicating some re-engagement of the geniculostriate pathway (GS) pathway. Across patients, the post-treatment LGN fMRI responses correlated significantly with performance on a clinical test measuring light sensitivity. Our results demonstrate that the low vision observed in LCA2 patients involves a shift in visual processing toward the retinotectal pathway, and that gene therapy partially reinstates visual transmission through the GS pathway. This selective boosting of retinal output through the GS pathway and its correlation to improved visual performance, following several years of degenerative retinal disease, is striking. However, while retinal gene therapy and other ocular interventions have given hope to RPE65 patients, it may take years before development of therapies tailored to treat the diseases in other low vision patients are available. Our demonstration of a shift toward the retinotectal pathway in these patients may spur the development of new tools and rehabilitation strategies to help maximize the use of residual visual abilities and augment experience-dependent plasticity.
Collapse
Affiliation(s)
- Manzar Ashtari
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Testa F, Bacci G, Falsini B, Iarossi G, Melillo P, Mucciolo DP, Murro V, Salvetti AP, Sodi A, Staurenghi G, Simonelli F. Voretigene neparvovec for inherited retinal dystrophy due to RPE65 mutations: a scoping review of eligibility and treatment challenges from clinical trials to real practice. Eye (Lond) 2024; 38:2504-2515. [PMID: 38627549 PMCID: PMC11385234 DOI: 10.1038/s41433-024-03065-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 09/11/2024] Open
Abstract
Biallelic mutations in the RPE65 gene affect nearly 8% of Leber Congenital Amaurosis and 2% of Retinitis Pigmentosa cases. Voretigene neparvovec (VN) is the first gene therapy approach approved for their treatment. To date, real life experience has demonstrated functional improvements following VN treatment, which are consistent with the clinical trials outcomes. However, there is currently no consensus on the characteristics for eligibility for VN treatment. We reviewed relevant literature to explore whether recommendations on patient eligibility can be extrapolated following VN marketing. We screened 166 papers through six research questions, following scoping reviews methodology, to investigate: (1) the clinical and genetic features considered in VN treatment eligibility; (2) the psychophysical tests and imaging modalities used in the pre-treatment and follow-up; (3) the potential correlations between visual function and retinal structure that can be used to define treatment impact on disease progression; (4) retinal degeneration; (5) the most advanced testing modalities; and (6) the impact of surgical procedure on treatment outcomes. Current gaps concerning patients' eligibility in clinical settings, such as pre-treatment characteristics and outcomes are not consistently reported across the studies. No upper limit of retinal degeneration can be defined as the univocal factor in patient eligibility, although evidence suggested that the potential for function rescue is related to the preservation of photoreceptors before treatment. In general, paediatric patients retain more viable cells, present a less severe disease stage and show the highest potential for improvements, making them the most suitable candidates for treatment.
Collapse
Affiliation(s)
- Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giacomo Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Benedetto Falsini
- Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Ophthalmology, Bambino Gesù IRCCS Children's Hospital, Rome, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù IRCCS Children's Hospital, Rome, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Dario Pasquale Mucciolo
- Ophthalmology Unit, S. Jacopo Hospital, Pistoia, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- Eye Clinic, Careggi Teaching Hospital, Florence, Italy
| | - Anna Paola Salvetti
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy.
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
24
|
Huang XX, Wang YM, Xie MY, Sun YQ, Zhao XH, Chen YH, Chen JQ, Han SY, Zhou MW, Sun XD. Publication trends of Leber congenital amaurosis researches: a bibliometric study during 2002-2022. Int J Ophthalmol 2024; 17:1501-1509. [PMID: 39156783 PMCID: PMC11286431 DOI: 10.18240/ijo.2024.08.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/12/2024] [Indexed: 08/20/2024] Open
Abstract
AIM To analyze the changes in scientific output relating to Leber congenital amaurosis (LCA) and forecast the study trends in this field. METHODS All of the publications in the field of LCA from 2002 to 2022 were collected from Web of Science (WOS) database. We analyzed the quantity (number of publications), quality (citation and H-index) and development trends (relative research interest, RRI) of published LCA research over the last two decades. Moreover, VOSviewer software was applied to define the co-occurrence network of keywords in this field. RESULTS A total of 2158 publications were ultimately examined. We found that the focus on LCA kept rising and peaked in 2015 and 2018, which is consistent with the development trend of gene therapy. The USA has contributed most to this field with 1162 publications, 56 674 citations and the highest H-index value (116). The keywords analysis was divided into five clusters to show the hotspots in the field of LCA, namely mechanism-related, genotype-related, local phenotype-related, system phenotype-related, and therapy-related. We also identified gene therapy and anti-retinal degeneration therapy as a major focus in recent years. CONCLUSION Our study illustrates historical research process and future development trends in LCA field. This may help to guide the orientation for further clinical diagnosis, treatment and scientific research.
Collapse
Affiliation(s)
- Xiao-Xu Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yi-Min Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Min-Yue Xie
- Beijing Tongren Hospital, Capital Medical University, Beijing 100054, China
| | - Yi-Qing Sun
- Eberly College of Science, Penn State University, University Park 16802-1503, United States
| | - Xiao-Huan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Jie-Qiong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Si-Yang Han
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Min-Wen Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| |
Collapse
|
25
|
Maurya R, Vikal A, Narang RK, Patel P, Kurmi BD. Recent advancements and applications of ophthalmic gene therapy strategies: A breakthrough in ocular therapeutics. Exp Eye Res 2024; 245:109983. [PMID: 38942133 DOI: 10.1016/j.exer.2024.109983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Over the past twenty years, ocular gene therapy has primarily focused on addressing diseases linked to various genetic factors. The eye is an ideal candidate for gene therapy due to its unique characteristics, such as easy accessibility and the ability to target both corneal and retinal conditions, including retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), and Stargardt disease. Currently, literature documents 33 clinical trials in this field, with the most promising results emerging from trials focused on LCA. These successes have catalyzed further research into other ocular conditions such as glaucoma, AMD, RP, and choroideremia. The effectiveness of gene therapy relies on the efficient delivery of genetic material to specific cells, ensuring sustained and optimal gene expression over time. Viral vectors have been widely used for this purpose, although concerns about potential risks such as immune reactions and genetic mutations have led to the development of non-viral vector systems. Preliminary laboratory research and clinical investigations have shown a connection between vector dosage and the intensity of immune response and inflammation in the eye. The method of administration significantly influences these reactions, with subretinal delivery resulting in a milder humoral response compared to the intravitreal route. This review discusses various ophthalmic diseases, including both corneal and retinal conditions, and their underlying mechanisms, highlighting recent advances and applications in ocular gene therapies.
Collapse
Affiliation(s)
- Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India; ISF College of Pharmacy & Research, Rattian Road, Moga, 142048, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
26
|
Wang X, Wang T, Kaneko S, Kriukov E, Lam E, Szczepan M, Chen J, Gregg A, Wang X, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S, Baranov P, Sun Y. Photoreceptors inhibit pathological retinal angiogenesis through transcriptional regulation of Adam17 via c-Fos. Angiogenesis 2024; 27:379-395. [PMID: 38483712 PMCID: PMC11303108 DOI: 10.1007/s10456-024-09912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/11/2024]
Abstract
Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Kaneko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emil Kriukov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manon Szczepan
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmine Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin Gregg
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xingyan Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Petr Baranov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Słyk Ż, Stachowiak N, Małecki M. Recombinant Adeno-Associated Virus Vectors for Gene Therapy of the Central Nervous System: Delivery Routes and Clinical Aspects. Biomedicines 2024; 12:1523. [PMID: 39062095 PMCID: PMC11274884 DOI: 10.3390/biomedicines12071523] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The Central Nervous System (CNS) is vulnerable to a range of diseases, including neurodegenerative and oncological conditions, which present significant treatment challenges. The blood-brain barrier (BBB) restricts molecule penetration, complicating the achievement of therapeutic concentrations in the CNS following systemic administration. Gene therapy using recombinant adeno-associated virus (rAAV) vectors emerges as a promising strategy for treating CNS diseases, demonstrated by the registration of six gene therapy products in the past six years and 87 ongoing clinical trials. This review explores the implementation of rAAV vectors in CNS disease treatment, emphasizing AAV biology and vector engineering. Various administration methods-such as intravenous, intrathecal, and intraparenchymal routes-and experimental approaches like intranasal and intramuscular administration are evaluated, discussing their advantages and limitations in different CNS contexts. Additionally, the review underscores the importance of optimizing therapeutic efficacy through the pharmacokinetics (PK) and pharmacodynamics (PD) of rAAV vectors. A comprehensive analysis of clinical trials reveals successes and challenges, including barriers to commercialization. This review provides insights into therapeutic strategies using rAAV vectors in neurological diseases and identifies areas requiring further research, particularly in optimizing rAAV PK/PD.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Stachowiak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
28
|
Gopalappa R, Lee M, Kim G, Jung ES, Lee H, Hwang HY, Lee JG, Kim SJ, Yoo HJ, Sung YH, Kim D, Baek IJ, Kim HH. In vivo adenine base editing rescues adrenoleukodystrophy in a humanized mouse model. Mol Ther 2024; 32:2190-2206. [PMID: 38796705 PMCID: PMC11286820 DOI: 10.1016/j.ymthe.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent β-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.
Collapse
Affiliation(s)
- Ramu Gopalappa
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - MinYoung Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eul Sik Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; JES Clinic, Incheon 21550, Republic of Korea
| | - Hanahrae Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Hyun Ju Yoo
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
29
|
Vendomèle J, Chauveau GA, Dalkara D, Galy A, Fisson S. Peripheral Cellular Immune Responses Induced by Subretinal Adeno-Associated Virus Gene Transfer Can Be Restrained by the Subretinal-Associated Immune Inhibition Mechanism. Hum Gene Ther 2024; 35:464-476. [PMID: 38877808 DOI: 10.1089/hum.2023.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
After more than two decades of basic research and preclinical studies, adeno-associated virus (AAV)-mediated gene transfer has been tested successfully in clinical trials to treat inherited retinal diseases. Despite the eye's immune-privileged status, some patients display inflammatory events requiring the use of corticoids as an adjunct treatment which led us to question the immune consequences of a subretinal AAV administration. We first characterized anti-transgene immune responses induced in the periphery by injecting increasing doses of AAV8 encoding reporter proteins fused with the HY male antigen into the subretinal space of female C57BL/6 and rd10 mice. Transgene expression was monitored over time with bioluminescence imaging, and T cell immune responses in the spleen were analyzed by IFNγ ELISpot and cytokine multiplex assays. Our data show that AAV8 injections cause pro-inflammatory T cell immune response against the transgene product correlated with the transgene expression level at 2.109 vg and above. In addition, co-injection of immunodominant peptides from the transgene product, along with AAV8, modulates the immune response at all AAV doses tested. Taken together, our data suggest that injection of AAV8 in the subretinal space induces pro-inflammatory peripheral T cell responses to the transgene product that can be modulated by the subretinal-associated immune inhibition mechanism.
Collapse
Affiliation(s)
- Julie Vendomèle
- Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, Université Paris-Saclay, Evry, France
- Généthon, Evry, France
| | - Gaëlle Anne Chauveau
- Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, Université Paris-Saclay, Evry, France
- Généthon, Evry, France
- Sorbonne Université, Inserm UMR_S968, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, Inserm UMR_S968, CNRS, Institut de la Vision, Paris, France
| | - Anne Galy
- Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, Université Paris-Saclay, Evry, France
- Généthon, Evry, France
| | - Sylvain Fisson
- Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, Université Paris-Saclay, Evry, France
- Généthon, Evry, France
- Sorbonne Université, Inserm UMR_S968, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
30
|
Tang M, Zhong L, Rong H, Li K, Ye M, Peng J, Ge J. Efficient retinal ganglion cells transduction by retro-orbital venous sinus injection of AAV-PHP.eB in mature mice. Exp Eye Res 2024; 244:109931. [PMID: 38763353 DOI: 10.1016/j.exer.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Gene therapy is one of the strategies that may reduce or reverse progressive neurodegeneration in retinal neurodegenerative diseases. However, efficiently delivering transgenes to retinal ganglion cells (RGCs) remains hard to achieve. In this study, we innovatively investigated transduction efficiency of adeno-associated virus (AAV)-PHP.eB in murine RGCs by retro-orbital venous sinus injection. Five doses of AAV-PHP.eB-EGFP were retro-orbitally injected in venous sinus in adult C57/BL6J mice. Two weeks after administration, RGCs transduction efficiency was quantified by retinal flat-mounts and frozen section co-labeling with RGCs marker Rbpms. In addition, safety of this method was evaluated by RGCs survival rate and retinal morphology. To conform efficacy of this new method, AAV-PHP.eB-CNTF was administrated into mature mice through single retro-orbital venous injection after optic nerve crush injury to evaluate axonal elongation. Results indicated that AAV- PHP.eB readily crossed the blood-retina barrier and was able to transduce more than 90% of RGCs when total dose of virus reached 5 × 1010 vector genomes (vg). Moreover, this technique did not affect RGCs survival rate and retinal morphology. Furthermore, retro-orbital venous delivery of AAV-PHP.eB-CNTF effectively transduced RGCs, robustly promoted axonal regeneration after optic nerve crush injury. Thus, novel AAV-PHP.eB retro-orbital injection provides a minimally invasive and efficient route for transgene delivery in treatment of retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingjun Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Liuxueying Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Huifeng Rong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jingyi Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
31
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
32
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
33
|
Britten-Jones AC, McGuinness MB, Chen FK, Grigg JR, Mack HG, Ayton LN. A multinational survey of potential participant perspectives on ocular gene therapy. Gene Ther 2024; 31:314-323. [PMID: 38565634 PMCID: PMC11090820 DOI: 10.1038/s41434-024-00450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Amidst rapid advancements in ocular gene therapy, understanding patient perspectives is crucial for shaping future treatment choices and research directions. This international cross-sectional survey evaluated knowledge, attitudes, and perceptions of ocular genetic therapies among potential recipients with inherited retinal diseases (IRDs). Survey instruments included the Attitudes to Gene Therapy-Eye (AGT-Eye), EQ-5D-5L, National Eye Institute Visual Functioning Questionnaire (NEI-VFQ-25), and Patient Attitudes to Clinical Trials (PACT-22) instruments. This study included 496 participant responses (89% adults with IRDs; 11% parents/guardians/carers) from 35 countries, with most from the United States of America (USA; 69%) and the United Kingdom (11%). Most participants (90%) indicated they would likely accept gene therapy if it was available, despite only 45% agreeing that they had good knowledge of gene therapy. The main sources of information were research registries (60% of participants) and the internet (61%). Compared to data from our recently published Australian national survey of people with IRDs (n = 694), USA respondents had higher knowledge of gene therapy outcomes, and Australian respondents indicated a higher perceived value of gene therapy treatments. Addressing knowledge gaps regarding outcomes and financial implications will be central to ensuring informed consent, promoting shared decision-making, and the eventual clinical adoption of genetic therapies.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Myra B McGuinness
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Fred K Chen
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital and Perth Children's Hospital, Perth, WA, Australia
| | - John R Grigg
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Heather G Mack
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Wang J, Zhang J, Yu S, Li H, Chen S, Luo J, Wang H, Guan Y, Zhang H, Yin S, Wang H, Li H, Liu J, Zhu J, Yang Q, Sha Y, Zhang C, Yang Y, Yang X, Zhang X, Zhao X, Wang L, Yang L, Wei W. Gene replacement therapy in Bietti crystalline corneoretinal dystrophy: an open-label, single-arm, exploratory trial. Signal Transduct Target Ther 2024; 9:95. [PMID: 38653979 PMCID: PMC11039457 DOI: 10.1038/s41392-024-01806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Bietti crystalline corneoretinal dystrophy is an inherited retinal disease caused by mutations in CYP4V2, which results in blindness in the working-age population, and there is currently no available treatment. Here, we report the results of the first-in-human clinical trial (NCT04722107) of gene therapy for Bietti crystalline corneoretinal dystrophy, including 12 participants who were followed up for 180-365 days. This open-label, single-arm exploratory trial aimed to assess the safety and efficacy of a recombinant adeno-associated-virus-serotype-2/8 vector encoding the human CYP4V2 protein (rAAV2/8-hCYP4V2). Participants received a single unilateral subretinal injection of 7.5 × 1010 vector genomes of rAAV2/8-hCYP4V2. Overall, 73 treatment-emergent adverse events were reported, with the majority (98.6%) being of mild or moderate intensity and considered to be procedure- or corticosteroid-related; no treatment-related serious adverse events or local/systemic immune toxicities were observed. Compared with that measured at baseline, 77.8% of the treated eyes showed improvement in best-corrected visual acuity (BCVA) on day 180, with a mean ± standard deviation increase of 9.0 ± 10.8 letters in the 9 eyes analyzed (p = 0.021). By day 365, 80% of the treated eyes showed an increase in BCVA, with a mean increase of 11.0 ± 10.6 letters in the 5 eyes assessed (p = 0.125). Importantly, the patients' improvement observed using multifocal electroretinogram, microperimetry, and Visual Function Questionnaire-25 further supported the beneficial effects of the treatment. We conclude that the favorable safety profile and visual improvements identified in this trial encourage the continued development of rAAV2/8-hCYP4V2 (named ZVS101e).
Collapse
Affiliation(s)
- Jinyuan Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- School of Clinical Medicine, Tsinghua University, 100084, Beijing, China
| | | | - Shicheng Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 100191, Beijing, China
| | - Hongyan Li
- Chigenovo Co., Ltd., 102206, Beijing, China
| | | | - Jingting Luo
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Haibo Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, 116091, Dalian, China
| | - Yuxia Guan
- Chigenovo Co., Ltd., 102206, Beijing, China
| | - Haihan Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Shiyi Yin
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Huili Wang
- Chigenovo Co., Ltd., 102206, Beijing, China
| | - Heping Li
- Chigenovo Co., Ltd., 102206, Beijing, China
| | - Junle Liu
- Chigenovo Co., Ltd., 102206, Beijing, China
| | - Jingyuan Zhu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Qiong Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Ying Sha
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Chuan Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Yuhang Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Xuan Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Xifang Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Xiuli Zhao
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Likun Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 100191, Beijing, China.
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
| |
Collapse
|
35
|
Jolly JK, Rodda BM, Edwards TL, Ayton LN, Ruddle JB. Optical coherence tomography in children with inherited retinal disease. Clin Exp Optom 2024; 107:255-266. [PMID: 38252959 DOI: 10.1080/08164622.2023.2294807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Recent advances have led to therapeutic options becoming available for people with inherited retinal disease. In particular, gene therapy has been shown to hold great promise for slowing vision loss from inherited retinal disease. Recent studies suggest that gene therapy is likely to be most effective when implemented early in the disease process, making consideration of paediatric populations important. It is therefore necessary to have a comprehensive understanding of retinal imaging in children with inherited retinal diseases, in order to monitor disease progression and to determine which early retinal biomarkers may be used as outcome measures in future clinical trials. In addition, as many optometrists will review children with an inherited retinal disease, an understanding of the expected imaging outcomes can improve clinical care. This review focuses on the most common imaging modality used in research assessment of paediatric inherited retinal diseases: optical coherence tomography. Optical coherence tomography findings can be used in both the clinical and research setting. In particular, the review discusses current knowledge of optical coherence tomography findings in eight paediatric inherited retinal diseases - Stargardt disease, Bests disease, Leber's congenital amaurosis, choroideremia, RPGR related retinitis pigmentosa, Usher syndrome, X-linked retinoschisis and, Batten disease.
Collapse
Affiliation(s)
- Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brent M Rodda
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
| | - Thomas L Edwards
- Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, Victoria, Australia
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, Victoria, Australia
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jonathan B Ruddle
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Ophthalmology, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Mével M, Pichard V, Bouzelha M, Alvarez-Dorta D, Lalys PA, Provost N, Allais M, Mendes A, Landagaray E, Ducloyer JB, Toublanc E, Galy A, Brument N, Lefevre GM, Gouin SG, Isiegas C, Le Meur G, Cronin T, Le Guiner C, Weber M, Moullier P, Ayuso E, Deniaud D, Adjali O. Mannose-coupled AAV2: A second-generation AAV vector for increased retinal gene therapy efficiency. Mol Ther Methods Clin Dev 2024; 32:101187. [PMID: 38327809 PMCID: PMC10847035 DOI: 10.1016/j.omtm.2024.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Inherited retinal diseases are a leading and untreatable cause of blindness and are therefore candidate diseases for gene therapy. Recombinant vectors derived from adeno-associated virus (rAAV) are currently the most promising vehicles for in vivo therapeutic gene delivery to the retina. However, there is a need for novel AAV-based vectors with greater efficacy for ophthalmic applications, as underscored by recent reports of dose-related inflammatory responses in clinical trials of rAAV-based ocular gene therapies. Improved therapeutic efficacy of vectors would allow for decreases in the dose delivered, with consequent reductions in inflammatory reactions. Here, we describe the development of new rAAV vectors using bioconjugation chemistry to modify the rAAV capsid, thereby improving the therapeutic index. Covalent coupling of a mannose ligand, via the formation of a thiourea bond, to the amino groups of the rAAV capsid significantly increases vector transduction efficiency of both rat and nonhuman primate retinas. These optimized rAAV vectors have important implications for the treatment of a wide range of retinal diseases.
Collapse
Affiliation(s)
- Mathieu Mével
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Virginie Pichard
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Mohammed Bouzelha
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | | | | | - Nathalie Provost
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Marine Allais
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Alexandra Mendes
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | | | - Jean-Baptiste Ducloyer
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Estelle Toublanc
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Anne Galy
- Coave Therapeutics (formerly, Horama), 75012 Paris, France
| | - Nicole Brument
- Coave Therapeutics (formerly, Horama), 75012 Paris, France
| | | | | | - Carolina Isiegas
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Guylène Le Meur
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Thérèse Cronin
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Caroline Le Guiner
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Michel Weber
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Philippe Moullier
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Eduard Ayuso
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - David Deniaud
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| |
Collapse
|
37
|
Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, Karabelsky AV, Malogolovkin AS. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin Transl Med 2024; 14:e1607. [PMID: 38488469 PMCID: PMC10941601 DOI: 10.1002/ctm2.1607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.
Collapse
Affiliation(s)
- Valeria V. Kolesnik
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ruslan F. Nurtdinov
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ezekiel Sola Oloruntimehin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | | | - Alexander S. Malogolovkin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
- Center for Translational MedicineSirius University of Science and TechnologySochiRussia
| |
Collapse
|
38
|
Merten OW. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms 2024; 12:384. [PMID: 38399788 PMCID: PMC10892526 DOI: 10.3390/microorganisms12020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Today, recombinant adeno-associated virus (rAAV) vectors represent the vector systems which are mostly used for in vivo gene therapy for the treatment of rare and less-rare diseases. Although most of the past developments have been performed by using a transfection-based method and more than half of the authorized rAAV-based treatments are based on transfection process, the tendency is towards the use of stable inducible packaging and producer cell lines because their use is much more straightforward and leads in parallel to reduction in the overall manufacturing costs. This article presents the development of HeLa cell-based packaging/producer cell lines up to their use for large-scale rAAV vector production, the more recent development of HEK293-based packaging and producer cell lines, as well as of packaging cell lines based on the use of Sf9 cells. The production features are presented in brief (where available), including vector titer, specific productivity, and full-to-empty particle ratio.
Collapse
|
39
|
Jung R, Kempf M, Holocher S, Kortüm FC, Stingl K, Stingl K. Multi-luminance mobility testing after gene therapy in the context of retinal functional diagnostics. Graefes Arch Clin Exp Ophthalmol 2024; 262:601-607. [PMID: 37768368 PMCID: PMC10844143 DOI: 10.1007/s00417-023-06237-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Voretigene neparvovec (Luxturna®) is the first approved gene therapy for RPE65-linked Leber congenital amaurosis (LCA). Though individual effects are highly variable, most recipients report improved vision in everyday life. To describe such effects, visual navigation tests are now frequently used in clinical trials. However, it is still unclear how their results should be interpreted compared to conventional parameters of visual function. METHODS Seven LCA patients underwent a multi-luminance visual navigation test (Ora-VNCTM) before and 3 months after receiving Luxturna gene therapy. Their performance was rated based on the luminance level at which they passed the course. Differences between the first and second test were correlated to changes in visual acuity, full-field stimulus thresholds, chromatic pupil campimetry, and dark-adapted perimetry. RESULTS A few patients displayed notable improvements in conventional measures of visual function whereas patients with advanced retinal degeneration showed no relevant changes. Independent of these results, almost all participants improved in the visual navigation task by one or more levels. The improvement in the mobility test was best correlated to the change in full-field stimulus thresholds. Other measures of visual functions showed no clear correlation with visual navigation. DISCUSSION In patients who passed the test's more difficult levels, improved visual navigation can be attributed to the reactivation of rods. However, the performance of patients with low vision seemed to depend much more on confounding factors in the easier levels. In sum, such tests might only be meaningful for patients with better preserved visual functions.
Collapse
Affiliation(s)
- Ronja Jung
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany.
| | - Melanie Kempf
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Saskia Holocher
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
| | - Friederike C Kortüm
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
| | - Krunoslav Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany.
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
40
|
Wang JD, Zhang JS, Li XX, Wang KJ, Li M, Mao YY, Wan XH. Knockout of TGF-β receptor II by CRISPR/Cas9 delays mesenchymal transition of Lens epithelium and posterior capsule opacification. Int J Biol Macromol 2024; 259:129290. [PMID: 38199534 DOI: 10.1016/j.ijbiomac.2024.129290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Posterior capsule opacification (PCO) is the most common postoperative complication of cataract surgery. Transforming growth factor-β (TGF-β) is related to epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) that is proven to induce PCO formation in clinical and experimental studies. In this study, CRISPR sequences targeting exon of TGF-βRII were knocked out with lentiviral transfection in LECs. Rabbits' PCO model was established and recombinant adeno-associated virus (AAV) for transferring the gRNA of TGF βRII were intravitreally injected. SgRNA inhibited TGF-βRII expression and human LECs proliferation. In TGF-βRII knockout group, LECs motility and migration were suppressed, N-cadherin and vimentin expressions were significantly decreased, whereas E-cadherin was increased. The animal model showed that TGF-βRII knockout in vivo was effective in suppressing PCO. The current study suggested that the CRISPR/Cas9 endonuclease system could suppress TGF-βRII secretion, which participates in the EMT procedure of LECs in vitro and PCO in vivo. These findings might provide a new gene-editing approach and insight into a novel therapeutic strategy for PCO.
Collapse
Affiliation(s)
- Jin Da Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Jing Shang Zhang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xiao Xia Li
- Department of Ophthalmology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - Kai Jie Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Meng Li
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Ying Yan Mao
- Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| | - Xiu Hua Wan
- Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China.
| |
Collapse
|
41
|
Luo LL, Xu J, Wang BQ, Chen C, Chen X, Hu QM, Wang YQ, Zhang WY, Jiang WX, Li XT, Zhou H, Xiao X, Zhao K, Lin S. A novel capsid-XL32-derived adeno-associated virus serotype prompts retinal tropism and ameliorates choroidal neovascularization. Biomaterials 2024; 304:122403. [PMID: 38016335 DOI: 10.1016/j.biomaterials.2023.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Gene therapy has been adapted, from the laboratory to the clinic, to treat retinopathies. In contrast to subretinal route, intravitreal delivery of AAV vectors displays the advantage of bypassing surgical injuries, but the viral particles are more prone to be nullified by the host neutralizing factors. To minimize such suppression of therapeutic effect, especially in terms of AAV2 and its derivatives, we introduced three serine-to-glycine mutations, based on the phosphorylation sites identified by mass spectrum analysis, to the XL32 capsid to generate a novel serotype named AAVYC5. Via intravitreal administration, AAVYC5 was transduced more effectively into multiple retinal layers compared with AAV2 and XL32. AAVYC5 also enabled successful delivery of anti-angiogenic molecules to rescue laser-induced choroidal neovascularization and astrogliosis in mice and non-human primates. Furthermore, we detected fewer neutralizing antibodies and binding IgG in human sera against AAVYC5 than those specific for AAV2 and XL32. Our results thus implicate this capsid-optimized AAVYC5 as a promising vector suitable for a wide population, particularly those with undesirable AAV2 seroreactivity.
Collapse
Affiliation(s)
- Lin-Lin Luo
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jie Xu
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Bing-Qiao Wang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Chen Chen
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China
| | - Xi Chen
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Qiu-Mei Hu
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yu-Qiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wan-Yun Zhang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Wan-Xiang Jiang
- Sichuan Greentech Bioscience Co,. Ltd, Bencao Avenue, New Economic Development Zone, Meishan, Sichuan, 620010, China
| | - Xin-Ting Li
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China.
| | - Kai Zhao
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China.
| | - Sen Lin
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
42
|
Shi LF, Hall AJ, Thompson DA. Full-field stimulus threshold testing: a scoping review of current practice. Eye (Lond) 2024; 38:33-53. [PMID: 37443335 PMCID: PMC10764876 DOI: 10.1038/s41433-023-02636-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The full-field stimulus threshold (FST) is a psychophysical measure of whole-field retinal light sensitivity. It can assess residual visual function in patients with severe retinal disease and is increasingly being adopted as an endpoint in clinical trials. FST applications in routine ophthalmology clinics are also growing, but as yet there is no formalised standard guidance for measuring FST. This scoping review explored current variability in FST conduct and reporting, with an aim to inform further evidence synthesis and consensus guidance. A comprehensive electronic search and review of the literature was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) checklist. Key source, participant, methodology and outcomes data from 85 included sources were qualitatively and quantitatively compared and summarised. Data from 85 sources highlight how the variability and insufficient reporting of FST methodology, including parameters such as units of flash luminance, colour, duration, test strategy and dark adaptation, can hinder comparison and interpretation of clinical significance across centres. The review also highlights an unmet need for paediatric-specific considerations for test optimisation. Further evidence synthesis, empirical research or structured panel consultation may be required to establish coherent standardised guidance on FST methodology and context or condition dependent modifications. Consistent reporting of core elements, most crucially the flash luminance equivalence to 0 dB reference level is a first step. The development of criteria for quality assurance, calibration and age-appropriate reference data generation may further strengthen rigour of measurement.
Collapse
Affiliation(s)
- Linda F Shi
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Amanda J Hall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Dorothy A Thompson
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- UCL Great Ormond Street Institute for Child Health, University College London, London, UK.
| |
Collapse
|
43
|
Burnight ER, Wiley LA, Mullin NK, Adur MK, Lang MJ, Cranston CM, Jiao C, Russell SR, Sohn EH, Han IC, Ross JW, Stone EM, Mullins RF, Tucker BA. CRISPRi-Mediated Treatment of Dominant Rhodopsin-Associated Retinitis Pigmentosa. CRISPR J 2023; 6:502-513. [PMID: 38108516 PMCID: PMC11304754 DOI: 10.1089/crispr.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Rhodopsin (RHO) mutations such as Pro23His are the leading cause of dominantly inherited retinitis pigmentosa in North America. As with other dominant retinal dystrophies, these mutations lead to production of a toxic protein product, and treatment will require knockdown of the mutant allele. The purpose of this study was to develop a CRISPR-Cas9-mediated transcriptional repression strategy using catalytically inactive Staphylococcus aureus Cas9 (dCas9) fused to the Krüppel-associated box (KRAB) transcriptional repressor domain. Using a reporter construct carrying green fluorescent protein (GFP) cloned downstream of the RHO promoter fragment (nucleotides -1403 to +73), we demonstrate a ∼74-84% reduction in RHO promoter activity in RHOpCRISPRi-treated versus plasmid-only controls. After subretinal transduction of human retinal explants and transgenic Pro23His mutant pigs, significant knockdown of rhodopsin protein was achieved. Suppression of mutant transgene in vivo was associated with a reduction in endoplasmic reticulum (ER) stress and apoptosis markers and preservation of photoreceptor cell layer thickness.
Collapse
Affiliation(s)
- Erin R. Burnight
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Luke A. Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nathaniel K. Mullin
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Malavika K. Adur
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Mallory J. Lang
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Cathryn M. Cranston
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chunhua Jiao
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen R. Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elliot H. Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ian C. Han
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Edwin M. Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
44
|
Minskaia E, Galieva A, Egorov AD, Ivanov R, Karabelsky A. Viral Vectors in Gene Replacement Therapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2157-2178. [PMID: 38462459 DOI: 10.1134/s0006297923120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
Throughout the years, several hundred million people with rare genetic disorders have been receiving only symptom management therapy. However, research and development efforts worldwide have led to the development of long-lasting, highly efficient, and safe gene therapy for a wide range of hereditary diseases. Improved viral vectors are now able to evade the preexisting immunity and more efficiently target and transduce therapeutically relevant cells, ensuring genome maintenance and expression of transgenes at the relevant levels. Hematological, ophthalmological, neurodegenerative, and metabolic therapeutic areas have witnessed successful treatment of hemophilia and muscular dystrophy, restoration of immune system in children with immunodeficiencies, and restoration of vision. This review focuses on three leading vector platforms of the past two decades: adeno-associated viruses (AAVs), adenoviruses (AdVs), and lentiviruses (LVs). Special attention is given to successful preclinical and clinical studies that have led to the approval of gene therapies: six AAV-based (Glybera® for lipoprotein lipase deficiency, Luxturna® for retinal dystrophy, Zolgensma® for spinal muscular atrophy, Upstaza® for AADC, Roctavian® for hemophilia A, and Hemgenix® for hemophilia B) and three LV-based (Libmeldy® for infantile metachromatic leukodystrophy, Zynteglo® for β-thalassemia, and Skysona® for ALD). The review also discusses the problems that arise in the development of gene therapy treatments, which, nevertheless, do not overshadow the successes of already developed gene therapies and the hope these treatments give to long-suffering patients and their families.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia.
| | - Alima Galieva
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander D Egorov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Roman Ivanov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander Karabelsky
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| |
Collapse
|
45
|
Bremond-Gignac D, Robert MP, Daruich A. Update on gene therapies in pediatric ophthalmology. Arch Pediatr 2023; 30:8S41-8S45. [PMID: 38043982 DOI: 10.1016/s0929-693x(23)00226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rare eye diseases encompass a broad spectrum of genetic anomalies with or without additional extraocular manifestations. Genetic eye disorders in pediatric patients often lead to severe visual impairments. Therefore, a challenge of gene therapy is to provide better vision to these affected children. In recent years, inherited retinal diseases, inherited optic neuropathies, and corneal dystrophies have dominated discussions to establish gene and cell replacement therapies for these diseases. Gene therapy involves the transfer of genetic material to remove, replace, repair, or introduce a gene, or to overexpress a protein, whose activity would have a therapeutic impact. For the majority of anterior segment diseases, these studies are still emerging at a preclinical stage; however, for inherited retinal disorders, translation has been reached, leading to the introduction of the first gene therapies into clinical practice. In the past decade, the first gene therapy for biallelic RPE65-mediated inherited retinal dystrophy has been developed and the FDA and EMA both approved ocular gene therapy. Other promising approaches by intravitreal injection have been investigated such as in CEP290-Leber congenital amaurosis. Various techniques of gene therapies include gene supplementation, CRISPR-based genome editing, as well as RNA modulation and optogenetics. Optogenetic therapies deliver light-activated ion channels to surviving retinal cell types in order to restore photosensitivity. Beyond retinal function, ataluren, a nonsense mutation suppression therapy, enables ribosomal read-through of mRNA containing premature termination codons, resulting in the production of a full-length protein. An ophthalmic formulation was recently evaluated with the aim of repairing corneal damage, pending new clinical studies. However, various congenital disorders exhibit severe developmental defects or cell loss at birth, limiting the potential for viral gene therapy. Therefore mutation-independent strategies seem promising for maintaining the survival of photoreceptors or for restoring visual function. Restoring vision in children with gene therapy continues to be a challenge in ophthalmology. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Dominique Bremond-Gignac
- Département d'Ophthalmologie, Hôpital Universitaire Necker-Enfants malades, AP-HP, Université Paris Cité, Paris, France; INSERM, UMRS1138, Equipe 17 Sorbonne Université, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France.
| | - Matthieu P Robert
- Département d'Ophthalmologie, Hôpital Universitaire Necker-Enfants malades, AP-HP, Université Paris Cité, Paris, France; Centre Borelli, UMR 9010 CNRS - SSA - ENS Paris Saclay - Paris University
| | - Alejandra Daruich
- Département d'Ophthalmologie, Hôpital Universitaire Necker-Enfants malades, AP-HP, Université Paris Cité, Paris, France; INSERM, UMRS1138, Equipe 17 Sorbonne Université, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
46
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
47
|
Sobh M, Lagali PS, Ghiasi M, Montroy J, Dollin M, Hurley B, Leonard BC, Dimopoulos I, Lafreniere M, Fergusson DA, Lalu MM, Tsilfidis C. Safety and Efficacy of Adeno-Associated Viral Gene Therapy in Patients With Retinal Degeneration: A Systematic Review and Meta-Analysis. Transl Vis Sci Technol 2023; 12:24. [PMID: 37982768 PMCID: PMC10668613 DOI: 10.1167/tvst.12.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/18/2023] [Indexed: 11/21/2023] Open
Abstract
Purpose This systematic review evaluates the safety and efficacy of ocular gene therapy using adeno-associated virus (AAV). Methods MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched systematically for controlled or non-controlled interventional gene therapy studies using key words related to retinal diseases, gene therapy, and AAV vectors. The primary outcome measure was safety, based on ocular severe adverse events (SAEs). Secondary outcome measures evaluated efficacy of the therapy based on best corrected visual acuity (BCVA) and improvements in visual sensitivity and systemic involvement following ocular delivery. Pooling was done using a DerSimonian Laird random effects model. Risk of bias was assessed using the Cochrane Risk of Bias Tool, version 1. Results Our search identified 3548 records. Of these, 80 publications met eligibility criteria, representing 28 registered clinical trials and 5 postmarket surveillance studies involving AAV gene therapy for Leber congenital amaurosis (LCA), choroideremia, Leber hereditary optic neuropathy (LHON), age-related macular degeneration (AMD), retinitis pigmentosa (RP), X-linked retinoschisis, and achromatopsia. Overall, AAV therapy vectors were associated with a cumulative incidence of at least one SAE of 8% (95% confidence intervals [CIs] of 5% to 12%). SAEs were often associated with the surgical procedure rather than the therapeutic vector itself. Poor or inconsistent reporting of adverse events (AEs) were a limitation for the meta-analysis. The proportion of patients with any improvement in BCVA and visual sensitivity was 41% (95% CIs of 31% to 51%) and 51% (95% CIs of 31% to 70%), respectively. Systemic immune involvement was associated with a cumulative incidence of 31% (95% CI = 21% to 42%). Conclusions AAV gene therapy vectors appear to be safe but the surgical procedure required to deliver them is associated with some risk. The large variability in efficacy can be attributed to the small number of patients treated, the heterogeneity of the population and the variability in dosage, volume, and follow-up. Translational Relevance This systematic review will help to inform and guide future clinical trials.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pamela S. Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maryam Ghiasi
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Dollin
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Bernard Hurley
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Brian C. Leonard
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ioannis Dimopoulos
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Mackenzie Lafreniere
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Departments of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
48
|
Kerschensteiner D. Losing, preserving, and restoring vision from neurodegeneration in the eye. Curr Biol 2023; 33:R1019-R1036. [PMID: 37816323 PMCID: PMC10575673 DOI: 10.1016/j.cub.2023.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The retina is a part of the brain that sits at the back of the eye, looking out onto the world. The first neurons of the retina are the rod and cone photoreceptors, which convert changes in photon flux into electrical signals that are the basis of vision. Rods and cones are frequent targets of heritable neurodegenerative diseases that cause visual impairment, including blindness, in millions of people worldwide. This review summarizes the diverse genetic causes of inherited retinal degenerations (IRDs) and their convergence onto common pathogenic mechanisms of vision loss. Currently, there are few effective treatments for IRDs, but recent advances in disparate areas of biology and technology (e.g., genome editing, viral engineering, 3D organoids, optogenetics, semiconductor arrays) discussed here enable promising efforts to preserve and restore vision in IRD patients with implications for neurodegeneration in less approachable brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Kiraly P, Cottriall CL, Taylor LJ, Jolly JK, Cehajic-Kapetanovic J, Yusuf IH, Martinez-Fernandez de la Camara C, Shanks M, Downes SM, MacLaren RE, Fischer MD. Outcomes and Adverse Effects of Voretigene Neparvovec Treatment for Biallelic RPE65-Mediated Inherited Retinal Dystrophies in a Cohort of Patients from a Single Center. Biomolecules 2023; 13:1484. [PMID: 37892166 PMCID: PMC10605275 DOI: 10.3390/biom13101484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Our study evaluated the morphological and functional outcomes, and the side effects, of voretigene neparvovec (VN) gene therapy for RPE65-mediated inherited retinal dystrophies (IRDs) in 12 eyes (six patients) at the Oxford Eye Hospital with a mean follow-up duration of 8.2 (range 1-12) months. All patients reported a subjective vision improvement 1 month after gene therapy. Best-corrected visual acuity (BCVA) remained stable (baseline: 1.28 (±0.71) vs. last follow-up: 1.46 (±0.60); p = 0.25). Average white Full-Field Stimulus Testing (FST) showed a trend towards improvement (baseline: -4.41 (±10.62) dB vs. last follow-up: -11.98 (±13.83) dB; p = 0.18). No changes in central retinal thickness or macular volume were observed. The side effects included mild intraocular inflammation (two eyes) and cataracts (four eyes). Retinal atrophy occurred in 10 eyes (eight mild, two severe) but did not impact FST measurements during the follow-up period. Increased intraocular pressure (IOP) was noted in three patients (six eyes); four eyes (two patients) required glaucoma surgery. The overall safety and effectiveness of VN treatment in our cohort align with previous VN clinical trials, except for the higher occurrence of retinal atrophy and increased IOP in our cohort. This suggests that raised IOP and retinal atrophy may be more common than previously reported.
Collapse
Affiliation(s)
- Peter Kiraly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
| | - Charles L. Cottriall
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
| | - Laura J. Taylor
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
| | - Jasleen K. Jolly
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
| | - Imran H. Yusuf
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
| | - Cristina Martinez-Fernandez de la Camara
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
| | - Morag Shanks
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Susan M. Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (P.K.); (J.C.-K.); (I.H.Y.); (C.M.-F.d.l.C.); (S.M.D.); (R.E.M.)
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK;
- Centre for Ophthalmology, University Hospital Tubingen, 72076 Tubingen, Germany
| |
Collapse
|
50
|
Sisk RA, Berger TA, Williams ER, Riemann CD. INTRAOPERATIVE BLEB BEHAVIOR IN SUBRETINAL GENE AUGMENTATION THERAPY FOR INHERITED RETINAL DISEASES. Retina 2023; 43:1763-1772. [PMID: 37315516 DOI: 10.1097/iae.0000000000003857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE In subretinal gene therapy for inherited retinal diseases (IRDs), blebs may not propagate predictably in the direction of the injection cannula. We evaluated factors that influenced bleb propagation among various IRDs. METHODS Retrospective review of all subretinal gene therapy procedures performed by a single surgeon between September 2018 and March 2020 for various IRDs. Main outcome measures were directional bias of bleb propagation and intraoperative foveal detachment. RESULTS Desired injection volumes and/or foveal treatment were successfully achieved in all 70 eyes of 46 patients with IRD regardless of IRD indication. Bullous foveal detachment was associated with retinotomy closer to the fovea, posterior bleb bias, and greater bleb volumes ( P < 0.01). Blebs biased anteriorly or posteriorly based on disease indication ( P = 0.04) and age ( P < 0.001). Retinotomy location ≤ 3.7 mm (approximately two disk diameters) from the fovea favored foveal detachment ( P < 0.001). Multiple retinotomies and blebs allowed greater surface area coverage in some eyes, but intersecting blebs did not propagate further. CONCLUSION Bleb formation and propagation are predictable based on patient age, retinotomy location, disease indication, and how tangentially fluid is directed into the subretinal space.
Collapse
Affiliation(s)
- Robert A Sisk
- Retina Division, Cincinnati Eye Institute, Cincinnati, Ohio
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio; and
- Department of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Tyler A Berger
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio; and
| | - Eric R Williams
- Retina Division, Cincinnati Eye Institute, Cincinnati, Ohio
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio; and
| | - Christopher D Riemann
- Retina Division, Cincinnati Eye Institute, Cincinnati, Ohio
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|