1
|
Fang Q, Ye L, Han L, Yao S, Cheng Q, Wei X, Zhang Y, Huang J, Ning G, Wang J, Zhang Y, Zhang Z. LGR4 is a key regulator of hepatic gluconeogenesis. Free Radic Biol Med 2025; 229:183-194. [PMID: 39826817 DOI: 10.1016/j.freeradbiomed.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
AIMS/HYPOTHESIS Emerging evidence underscored the significance of leucine-rich repeat-containing G protein-coupled receptor (LGR) 4 in endocrine and metabolic disorders. Despite this, its role in LGR4 in hepatic glucose metabolism remains poorly understood. In this study we set out to test whether LGR4 regulates glucose production in liver through a specific signaling pathway. METHODS Hepatic glucose production and gluconeogenic gene expressions were detected after silence of LGR4 in three obese mice models. Then, whole-body LGR4-deficient (LGR4 KO) mice, liver-specific LGR4 knockout (LGR4LKO) mice, and liver-specific LGR4 overexpression (LGR4LOV) mice were generated, in which we analyzed the effects of LGR4 on hepatic glucose metabolism upon HFD feeding, among which live imaging and quantitative analysis of hepatic phosphoenolpyruvate carboxykinase (PEPCK)-luciferase activity were conducted. RESULTS LGR4 expression was significantly upregulated in the liver of three obese mouse models, and presented dynamic expression patterns in response to nutritional fluxes. We utilized global and liver-specific LGR4 knockouts (LGR4LKO), along with adenoviral-mediated LGR4 knockdown in mice, to show improved glucose tolerance and decreased hepatic gluconeogenesis. Specifically, the expression of rate-limiting gluconeogenic enzymes, PEPCK was significantly downregulated. Conversely, mouse model with adenovirus-mediated LGR4 overexpression (LGR4LOV) exhibited elevated gluconeogenesis and PEPCK expression and reversed the suppression observed in LGR4 knockout models. Notably, neither RANKL nor PKA signaling pathways, which were reported to take part in LGR4's function, were involved in the process of LGR4 regulating PEPCK. Instead, TopFlash reporter system and inhibitors application suggested that LGR4's influence on hepatic gluconeogenesis operates through the canonical Wnt/β-catenin/TCF7L2 signaling pathway. CONCLUSIONS/INTERPRETATION Overall, these findings underscore a novel mechanism by which LGR4 regulates hepatic gluconeogenesis, presenting a potential therapeutic target for diabetes management.
Collapse
Affiliation(s)
- Qianhua Fang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linmin Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Cheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juelin Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiguo Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu C, Zheng Y, Hu S, Liang X, Li Y, Yu Z, Liu Y, Bian Y, Man Y, Zhao S, Liu X, Liu H, Huang T, Ma J, Chen ZJ, Zhao H, Zhang Y. TOX3 deficiency mitigates hyperglycemia by suppressing hepatic gluconeogenesis through FoxO1. Metabolism 2024; 152:155766. [PMID: 38145825 DOI: 10.1016/j.metabol.2023.155766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Excessive hepatic glucose production is a hallmark that contributes to hyperglycemia in type 2 diabetes (T2D). The regulatory network governing this process remains incompletely understood. Here, we demonstrate that TOX3, a high-mobility group family member, acts as a major transcriptional driver for hepatic glucose production. METHODS Tox3-overexpressed and knockout mice were constructed to explore its metabolic functions. Transcriptomic and chromatin-immunoprecipitation sequencing (ChIP-seq) were used to identify downstream targets of TOX3. Both FoxO1 silencing and inhibitor approaches were used to assess the contribution of FoxO1. TOX3 expression levels were examined in the livers of mice and human subjects. Finally, Tox3 was genetically manipulated in diet-induced obese mice to evaluate its therapeutic potential. RESULTS Hepatic Tox3 overexpression activates the gluconeogenic program, resulting in hyperglycemia and insulin resistance in mice. Hepatocyte-specific Tox3 knockout suppresses gluconeogenesis and improves insulin sensitivity. Mechanistically, integrated hepatic transcriptomic and ChIP-seq analyses identify FoxO1 as a direct target of TOX3. TOX3 stimulates FoxO1 transcription by directly binding to and activating its promoter, whereas FoxO1 silencing abrogates TOX3-induced dysglycemia in mice. In human subjects, hepatic TOX3 expression shows a significant positive correlation with blood glucose levels under normoglycemic conditions, yet is repressed by high glucose during T2D. Importantly, hepatic Tox3 deficiency markedly protects against and ameliorates the hyperglycemia and glucose intolerance in diet-induced diabetic mice. CONCLUSIONS Our findings establish TOX3 as a driver for excessive gluconeogenesis through activating hepatic FoxO1 transcription. TOX3 could serve as a promising target for preventing and treating hyperglycemia in T2D.
Collapse
Affiliation(s)
- Congcong Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shourui Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Xiaofan Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yuxuan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Zhiheng Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yuehong Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yuanyuan Man
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Xin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hongbin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tao Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Jinlong Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Ji YX, Wang Y, Li PL, Cai L, Wang XM, Bai L, Liu Z, Tian H, Tian S, Zhang P, Zhang XJ, Cheng X, Yuan Y, She ZG, Hu Y, Li H. A kinome screen reveals that Nemo-like kinase is a key suppressor of hepatic gluconeogenesis. Cell Metab 2021; 33:1171-1186.e9. [PMID: 33951476 DOI: 10.1016/j.cmet.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/13/2020] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Antihyperglycemic therapy is an important priority for the treatment of type 2 diabetes (T2D). Excessive hepatic glucose production (HGP) is a major cause of fasting hyperglycemia. Therefore, a better understanding of its regulation would be important to develop effective antihyperglycemic therapies. Using a gluconeogenesis-targeted kinome screening approach combined with transcriptome analyses, we uncovered Nemo-like kinase (NLK) as a potent suppressor of HGP. Mechanistically, NLK phosphorylates and promotes nuclear export of CRTC2 and FOXO1, two key regulators of hepatic gluconeogenesis, resulting in the proteasome-dependent degradation of the former and the inhibition of the self-transcriptional activity and expression of the latter. Importantly, the expression of NLK is downregulated in the liver of individuals with diabetes and in diabetic rodent models and restoring NLK expression in the mouse model ameliorates hyperglycemia. Therefore, our findings uncover NLK as a critical player in the gluconeogenic regulatory network and as a potential therapeutic target for T2D.
Collapse
Affiliation(s)
- Yan-Xiao Ji
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yutao Wang
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng-Long Li
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China
| | - Lin Cai
- Institute of Model Animal of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ming Wang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China
| | - Lan Bai
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Liu
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xu Cheng
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Zhi-Gang She
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yufeng Hu
- Institute of Model Animal of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Wang X, Pan J, Liu D, Zhang M, Li X, Tian J, Liu M, Jin T, An F. Nicorandil alleviates apoptosis in diabetic cardiomyopathy through PI3K/Akt pathway. J Cell Mol Med 2019; 23:5349-5359. [PMID: 31131539 PMCID: PMC6653072 DOI: 10.1111/jcmm.14413] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xuyang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jinyu Pan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital of Shandong University, Jinan, China
| | - Dian Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingjun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaowei Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jingjing Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Jin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengshuang An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Lanhers C, Walther G, Chapier R, Lesourd B, Naughton G, Pereira B, Duclos M, Vinet A, Obert P, Courteix D, Dutheil F. Long-term cost reduction of routine medications following a residential programme combining physical activity and nutrition in the treatment of type 2 diabetes: a prospective cohort study. BMJ Open 2017; 7:e013763. [PMID: 28416496 PMCID: PMC5775459 DOI: 10.1136/bmjopen-2016-013763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES To demonstrate that lifestyle modifications will reduce the cost of routine medications in individuals with type 2 diabetes (T2D), through a mechanism involving glycaemic control. DESIGN A within-trial cost-medication analysis with a 1-year time horizon. SETTING Controlled environment within the spa resort of Chatel-Guyon, France. PARTICIPANTS Twenty-nine participants (aged 50-70 years) with T2D. INTERVENTIONS A 1-year follow-up intervention, beginning with a 3-week residential programme combining high exercise volume (15-20 hours/week), restrictive diet (-500 kcal/day) and education. Participants continued their routine medication, independently managed by their general practitioner. MAIN OUTCOME MEASURES Number of medications, number of pills, cost of medications and health-related outcomes. RESULTS Twenty-six participants completed the 1-year intervention. At 1 year, 14 patients out of 26 (54%) stopped/decreased their medications whereas only 5 (19%) increased or introduced new drugs (χ2=6.3, p=0.02). The number of pills per day decreased by 1.3±0.3 at 12 months (p<0.001). The annual cost of medications for T2D were lower at 1 year (€135.1±43.9) versus baseline (€212.6±35.8) (p=0.03). The regression coefficients on costs of routine medication were 0.507 (95% CI 0.056 to 0.959, p=0.027) for HbA1c and 0.156 (95% CI -0.010 to 0.322, p=0.06) for blood glucose levels. Diabetics patients with HbA1c >6.5% in the highest (last) quartile doubled their routine medication costs (66% vs 33%, p=0.037). CONCLUSIONS Individuals with T2D reduced routine medication costs following a long-term lifestyle intervention that started with a 3-week residential programme. Combining high exercise volume, restrictive diet and education effectively supported the health of T2D. The main factor explaining reduced medication costs was better glycaemic control, independent of weight changes. Despite limitations precluding generalisability, cost-effective results of reduced medication should contribute to the evidence base required to promote lifestyle interventions for individuals with T2D. TRIAL REGISTRATION NUMBER NCT00917917; Post-results.
Collapse
Affiliation(s)
- Charlotte Lanhers
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and psychosocial stress, CHU Clermont-Ferrand, Preventive and Occupational Medicine, Sports Medicine, F-63000 Clermont-Ferrand, France
| | - Guillaume Walther
- Université d'Avignon, LaPEC EA4278, Laboratory of Cardiovascular Pharm-Ecology, F-84000 Avignon, France
| | - Robert Chapier
- Université Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P), F-63000 Clermont-Ferrand, France
| | - Bruno Lesourd
- Université Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P), F-63000 Clermont-Ferrand, France
| | - Geraldine Naughton
- Australian Catholic University, Faculty of Health, School of Exercise Science, Melbourne, Victoria 3065, Australia
| | - Bruno Pereira
- CHU Clermont-Ferrand, the Clinical Research and Innovation Direction, F-63000 Clermont-Ferrand, France
| | - Martine Duclos
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, CHU Clermont-Ferrand, Sports Medicine, F-63000 Clermont-Ferrand, France
| | - Agnès Vinet
- Université d'Avignon, LaPEC EA4278, Laboratory of Cardiovascular Pharm-Ecology, F-84000 Avignon, France
| | - Philippe Obert
- Université d'Avignon, LaPEC EA4278, Laboratory of Cardiovascular Pharm-Ecology, F-84000 Avignon, France
- Australian Catholic University, Faculty of Health, School of Exercise Science, Melbourne, Victoria 3065, Australia
| | - Daniel Courteix
- Université Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P), F-63000 Clermont-Ferrand, France
- Australian Catholic University, Faculty of Health, School of Exercise Science, Melbourne, Victoria 3065, Australia
| | - Frédéric Dutheil
- Australian Catholic University, Faculty of Health, School of Exercise Science, Melbourne, Victoria 3065, Australia
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and psychosocial stress, CHU Clermont-Ferrand, Preventive and Occupational Medicine, WittyFit, F-63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Hyperglycemia attenuates remifentanil postconditioning-induced cardioprotection against hypoxia/reoxygenation injury in H9c2 cardiomyoblasts. J Surg Res 2016; 203:483-90. [DOI: 10.1016/j.jss.2016.03.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
|
7
|
Boonman-de Winter LJM, Cramer MJ, Hoes AW, Rutten FH. Uncovering heart failure with preserved ejection fraction in patients with type 2 diabetes in primary care: time for a change. Neth Heart J 2016; 24:237-43. [PMID: 26905581 PMCID: PMC4796062 DOI: 10.1007/s12471-016-0809-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Undetected heart failure appears to be an important health problem in patients with type 2 diabetes and aged ≥ 60 years. The prevalence of previously unknown heart failure in these patients is high, steeply rises with age, and is overall higher in women than in men. The majority of the patients with newly detected heart failure have a preserved ejection fraction. A diagnostic algorithm to detect or exclude heart failure in these patients with variables from the medical files combined with items from history taking and physical examination provides a good to excellent accuracy. Annual screening appears to be cost-effective. Both unrecognised heart failure with reduced and with preserved ejection fraction were associated with a clinically relevant lower health status in patients with type 2 diabetes. Also the prognosis of these patients was worse than of those without heart failure. Existing disease-management programs for type 2 diabetes pay insufficient attention to early detection of cardiovascular diseases, including heart failure. We conclude that more attention is needed for detection of heart failure in older patients with type 2 diabetes.
Collapse
Affiliation(s)
- L J M Boonman-de Winter
- Department of Scientific and Contract Research, Center for Diagnostic Support in Primary Care (SHL-Groep), Bredaseweg 165, 4872 LA, Etten-Leur, The Netherlands.
| | - M J Cramer
- Department of Cardiology, Heart-Lung Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A W Hoes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J. Diabetes and infection: assessing the association with glycaemic control in population-based studies. Lancet Diabetes Endocrinol 2016; 4:148-58. [PMID: 26656292 DOI: 10.1016/s2213-8587(15)00379-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 02/08/2023]
Abstract
Diabetes is a leading cause of morbidity and mortality. The global burden of diabetes is rising because of increased obesity and population ageing. Although preventive and treatment measures are well documented for macrovascular and microvascular complications, little such guidance exists for infections in people with diabetes, despite evidence suggesting greater susceptibility to infections, and worse outcomes. In particular, few studies have characterised the relation between glycaemic control and infectious disease, which we discuss in this Review. Some large population-based observational studies have reported strong associations between higher HbA1c and infection risks for both type 1 and type 2 diabetes. However, studies are contradictory, underpowered, or do not control for confounders. Evidence suggests that better glycaemic control might reduce infection risk, but further longitudinal studies with more frequent measures of HbA1c are needed. Older people (aged 70 years or older) with diabetes are at increased risk of complications, including infectious diseases. There is more uncertainty about appropriate glycaemic control targets in this age group, and evidence suggests that glycaemic control is often neglected. Robust evidence from cohorts with sufficient numbers of older people would help to develop clinically relevant guidelines and targets to reduce mortality, morbidity, and antibiotic use, and to improve quality of life.
Collapse
Affiliation(s)
| | | | - Tess Harris
- Population Health Research Institute, St George's, University of London, London, UK
| | - Derek G Cook
- Population Health Research Institute, St George's, University of London, London, UK
| | - Julia Critchley
- Population Health Research Institute, St George's, University of London, London, UK
| |
Collapse
|
9
|
Cheng P, Zhang F, Yu L, Lin X, He L, Li X, Lu X, Yan X, Tan Y, Zhang C. Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases. J Diabetes Res 2016; 2016:1540267. [PMID: 27247947 PMCID: PMC4876232 DOI: 10.1155/2016/1540267] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the most severe diseases in clinics. Fibroblast growth factor 21 (FGF21) is regarded as an important metabolic regulator playing a therapeutic role in diabetes and its complications. The heart is a key target as well as a source of FGF21 which is involved in heart development and also induces beneficial effects in CVDs. Our review is to clarify the roles of FGF21 in CVDs. Strong evidence showed that the development of CVDs including atherosclerosis, coronary heart disease, myocardial ischemia, cardiac hypertrophy, and diabetic cardiomyopathy is associated with serum FGF21 levels increase which was regarded as a compensatory response to induced cardiac protection. Furthermore, administration of FGF21 suppressed the above CVDs. Mechanistic studies revealed that FGF21 induced cardiac protection likely by preventing cardiac lipotoxicity and the associated oxidative stress, inflammation, and apoptosis. Normally, FGF21 induced therapeutic effects against CVDs via activation of the above kinases-mediated pathways by directly binding to the FGF receptors of the heart in the presence of β-klotho. However, recently, growing evidence showed that FGF21 induced beneficial effects on peripheral organs through an indirect way mediated by adiponectin. Therefore whether adiponectin is also involved in FGF21-induced cardiac protection still needs further investigation.
Collapse
Affiliation(s)
- Peng Cheng
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fangfang Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lechu Yu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiufei Lin
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luqing He
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuemian Lu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- *Yi Tan: and
| | - Chi Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- *Chi Zhang:
| |
Collapse
|