1
|
Thom RE, D’Elia RV. Future applications of host direct therapies for infectious disease treatment. Front Immunol 2024; 15:1436557. [PMID: 39411713 PMCID: PMC11473292 DOI: 10.3389/fimmu.2024.1436557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
New and emerging pathogens, such as SARS-CoV2 have highlighted the requirement for threat agnostic therapies. Some antibiotics or antivirals can demonstrate broad-spectrum activity against pathogens in the same family or genus but efficacy can quickly reduce due to their specific mechanism of action and for the ability of the disease causing agent to evolve. This has led to the generation of antimicrobial resistant strains, making infectious diseases more difficult to treat. Alternative approaches therefore need to be considered, which include exploring the utility of Host-Directed Therapies (HDTs). This is a growing area with huge potential but difficulties arise due to the complexity of disease profiles. For example, a HDT given early during infection may not be appropriate or as effective when the disease has become chronic or when a patient is in intensive care. With the growing understanding of immune function, a new generation of HDT for the treatment of disease could allow targeting specific pathways to augment or diminish the host response, dependent upon disease profile, and allow for bespoke therapeutic management plans. This review highlights promising and approved HDTs that can manipulate the immune system throughout the spectrum of disease, in particular to viral and bacterial pathogens, and demonstrates how the advantages of HDT will soon outweigh the potential side effects.
Collapse
Affiliation(s)
- Ruth E. Thom
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - R V. D’Elia
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
2
|
Moussavi-Harami SF, Cleary SJ, Magnen M, Seo Y, Conrad C, English BC, Qiu L, Wang KM, Abram CL, Lowell CA, Looney MR. Loss of neutrophil Shp1 produces hemorrhagic and lethal acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595575. [PMID: 38854059 PMCID: PMC11160570 DOI: 10.1101/2024.05.23.595575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1 knockout mice suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo. We propose that the pharmacologic activation of Shp1 has the potential to fine-tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- S F Moussavi-Harami
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of California, San Francisco
| | - S J Cleary
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - M Magnen
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - Y Seo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - C Conrad
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - B C English
- Department of Microbiology & Immunology, University of California, San Francisco
- CoLabs, University of California, San Francisco
| | - L Qiu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - K M Wang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - C L Abram
- Department of Laboratory Medicine, University of California, San Francisco
| | - C A Lowell
- Department of Laboratory Medicine, University of California, San Francisco
| | - M R Looney
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
- Department of Laboratory Medicine, University of California, San Francisco
| |
Collapse
|
3
|
Dey A, Vaishak K, Deka D, Radhakrishnan AK, Paul S, Shanmugam P, Daniel AP, Pathak S, Duttaroy AK, Banerjee A. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection 2023; 51:1603-1618. [PMID: 36906872 PMCID: PMC10008189 DOI: 10.1007/s15010-023-02017-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE The COVID-19 pandemic caused by the novel Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has put the world in a medical crisis for the past three years; nearly 6.3 million lives have been diminished due to the virus outbreak. This review aims to update the recent findings on COVID-19 infections from an epigenetic scenario and develop future perspectives of epi-drugs to treat the disease. METHODS Original research articles and review studies related to COVID-19 were searched and analyzed from the Google Scholar/PubMed/Medline databases mainly between 2019 and 2022 to brief the recent work. RESULTS Numerous in-depth studies of the mechanisms used by SARS-CoV-2 have been going on to minimize the consequences of the viral outburst. Angiotensin-Converting Enzyme 2 receptors and Transmembrane serine protease 2 facilitate viral entry to the host cells. Upon internalization, it uses the host machinery to replicate viral copies and alter the downstream regulation of the normal cells, causing infection-related morbidities and mortalities. In addition, several epigenetic regulations such as DNA methylation, acetylation, histone modifications, microRNA, and other factors (age, sex, etc.) are responsible for the regulations of viral entry, its immune evasion, and cytokine responses also play a major modulatory role in COVID-19 severity, which has been discussed in detail in this review. CONCLUSION Findings of epigenetic regulation of viral pathogenicity open a new window for epi-drugs as a possible therapeutical approach against COVID-19.
Collapse
Affiliation(s)
- Amit Dey
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - K Vaishak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No.500 Fracc., CP 76130, San Pablo, Querétaro, Mexico
| | - Priyadarshini Shanmugam
- Department of Microbiology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, 603103, India
| | - Alice Peace Daniel
- Department of Microbiology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, 603103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India.
| |
Collapse
|
4
|
Negi V, Gavlock D, Miedel MT, Lee JK, Shun T, Gough A, Vernetti L, Stern AM, Taylor DL, Yechoor VK. Modeling mechanisms underlying differential inflammatory responses to COVID-19 in type 2 diabetes using a patient-derived microphysiological organ-on-a-chip system. LAB ON A CHIP 2023; 23:4514-4527. [PMID: 37766577 DOI: 10.1039/d3lc00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Background: COVID-19 pandemic has caused more than 6 million deaths worldwide. Co-morbid conditions such as Type 2 Diabetes (T2D) have increased mortality in COVID-19. With limited translatability of in vitro and small animal models to human disease, human organ-on-a-chip models are an attractive platform to model in vivo disease conditions and test potential therapeutics. Methods: T2D or non-diabetic patient-derived macrophages and human liver sinusoidal endothelial cells were seeded, along with normal hepatocytes and stellate cells in the liver-on-a-chip (LAMPS - liver acinus micro physiological system), perfused with media mimicking non-diabetic fasting or T2D (high levels of glucose, fatty acids, insulin, glucagon) states. The macrophages and endothelial cells were transduced to overexpress the SARS-CoV2-S (spike) protein with appropriate controls before their incorporation into LAMPS. Cytokine concentrations in the efflux served as a read-out of the effects of S-protein expression in the different experimental conditions (non-diabetic-LAMPS, T2D-LAMPS), including incubation with tocilizumab, an FDA-approved drug for severe COVID-19. Findings: S-protein expression in the non-diabetic LAMPS led to increased cytokines, but in the T2D-LAMPS, this was significantly amplified both in the number and magnitude of key pro-inflammatory cytokines (IL6, CCL3, IL1β, IL2, TNFα, etc.) involved in cytokine storm syndrome (CSS), mimicking severe COVID-19 infection in T2D patients. Compared to vehicle control, tocilizumab (IL6-receptor antagonist) decreased the pro-inflammatory cytokine secretion in T2D-COVID-19-LAMPS but not in non-diabetic-COVID-19-LAMPS. Interpretation: macrophages and endothelial cells play a synergistic role in the pathophysiology of the hyper-inflammatory response seen with COVID-19 and T2D. The effect of Tocilizumab was consistent with large clinical trials that demonstrated Tocilizumab's efficacy only in critically ill patients with severe disease, providing confirmatory evidence that the T2D-COVID-19-LAMPS is a robust platform to model human in vivo pathophysiology of COVID-19 in T2D and for screening potential therapeutics.
Collapse
Affiliation(s)
- Vinny Negi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Dillon Gavlock
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark T Miedel
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeong Kyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tongying Shun
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Albert Gough
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vijay K Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Spatola M, Nziza N, Jung W, Deng Y, Yuan D, Dinoto A, Bozzetti S, Chiodega V, Ferrari S, Lauffenburger DA, Mariotto S, Alter G. Neurologic sequelae of COVID-19 are determined by immunologic imprinting from previous coronaviruses. Brain 2023; 146:4292-4305. [PMID: 37161609 PMCID: PMC11004923 DOI: 10.1093/brain/awad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health emergency. Although SARS-CoV-2 is primarily a respiratory pathogen, extra-respiratory organs, including the CNS, can also be affected. Neurologic symptoms have been observed not only during acute SARS-CoV-2 infection, but also at distance from respiratory disease, also known as long-COVID or neurological post-acute sequelae of COVID-19 (neuroPASC). The pathogenesis of neuroPASC is not well understood, but hypotheses include SARS-CoV-2-induced immune dysfunctions, hormonal dysregulations and persistence of SARS-CoV-2 reservoirs. In this prospective cohort study, we used a high throughput systems serology approach to dissect the humoral response to SARS-CoV-2 (and other common coronaviruses: 229E, HKU1, NL63 and OC43) in the serum and CSF from 112 infected individuals who developed (n = 18) or did not develop (n = 94) neuroPASC. Unique SARS-CoV-2 humoral profiles were observed in the CSF of neuroPASC compared with serum responses. All antibody isotypes (IgG, IgM, IgA) and subclasses (IgA1-2, IgG1-4) were detected in serum, whereas CSF was characterized by focused IgG1 (and absence of IgM). These data argue in favour of compartmentalized brain-specific responses against SARS-CoV-2 through selective transfer of antibodies from the serum to the CSF across the blood-brain barrier, rather than intrathecal synthesis, where more diversity in antibody classes/subclasses would be expected. Compared to individuals who did not develop post-acute complications following infection, individuals with neuroPASC had similar demographic features (median age 65 versus 66.5 years, respectively, P = 0.55; females 33% versus 44%, P = 0.52) but exhibited attenuated systemic antibody responses against SARS-CoV-2, characterized by decreased capacity to activate antibody-dependent complement deposition (ADCD), NK cell activation (ADNKA) and to bind Fcγ receptors. However, surprisingly, neuroPASC individuals showed significantly expanded antibody responses to other common coronaviruses, including 229E, HKU1, NL63 and OC43. This biased humoral activation across coronaviruses was particularly enriched in neuroPASC individuals with poor outcome, suggesting an 'original antigenic sin' (or immunologic imprinting), where pre-existing immune responses against related viruses shape the response to the current infection, as a key prognostic marker of neuroPASC disease. Overall, these findings point to a pathogenic role for compromised anti-SARS-CoV-2 responses in the CSF, likely resulting in incomplete virus clearance from the brain and persistent neuroinflammation, in the development of post-acute neurologic complications of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marianna Spatola
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Nadège Nziza
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Silvia Bozzetti
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Vanessa Chiodega
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
- Department of Neurology/Stroke Unit, San Maurizio Hospital, 39100 Bolzano, Italy
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
| | | | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
An AY, Baghela A, Zhang P, Falsafi R, Lee AH, Trahtemberg U, Baker AJ, dos Santos CC, Hancock REW. Persistence is key: unresolved immune dysfunction is lethal in both COVID-19 and non-COVID-19 sepsis. Front Immunol 2023; 14:1254873. [PMID: 37822940 PMCID: PMC10562687 DOI: 10.3389/fimmu.2023.1254873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features, suggesting that severe COVID-19 is a form of viral sepsis. Our objective was to identify shared gene expression trajectories strongly associated with eventual mortality between severe COVID-19 patients and contemporaneous non-COVID-19 sepsis patients in the intensive care unit (ICU) for potential therapeutic implications. Methods Whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Using systems biology methods, drug candidates targeting key genes in the pathophysiology of COVID-19 and sepsis were identified. Results When compared to survivors, non-survivors (irrespective of COVID-19 status) had 3.6-fold more "persistent" genes (genes that stayed up/downregulated at both timepoints) (4,289 vs. 1,186 genes); these included persistently downregulated genes in T-cell signaling and persistently upregulated genes in select innate immune and metabolic pathways, indicating unresolved immune dysfunction in non-survivors, while resolution of these processes occurred in survivors. These findings of persistence were further confirmed using two publicly available datasets of COVID-19 and sepsis patients. Systems biology methods identified multiple immunomodulatory drug candidates that could target this persistent immune dysfunction, which could be repurposed for possible therapeutic use in both COVID-19 and sepsis. Discussion Transcriptional evidence of persistent immune dysfunction was associated with 28-day mortality in both COVID-19 and non-COVID-19 septic patients. These findings highlight the opportunity for mitigating common mechanisms of immune dysfunction with immunomodulatory therapies for both diseases.
Collapse
Affiliation(s)
- Andy Y. An
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Baghela
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Peter Zhang
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy H. Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Uriel Trahtemberg
- Keenan Research Center for Biomedical Science and the Department of Critical Care, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
- Department of Critical Care, Galilee Medical Center, Nahariya, Israel
| | - Andrew J. Baker
- Keenan Research Center for Biomedical Science and the Department of Critical Care, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Claudia C. dos Santos
- Keenan Research Center for Biomedical Science and the Department of Critical Care, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert E. W. Hancock
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Joseph NT, Collier ARY. COVID-19 Therapeutics and Considerations for Pregnancy. Obstet Gynecol Clin North Am 2023; 50:163-182. [PMID: 36822701 PMCID: PMC9584862 DOI: 10.1016/j.ogc.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The COVID-19 pandemic has generated an unprecedented amount of novel and repurposed vaccines and therapeutics that have been rapidly developed and implemented into clinical use. Unfortunately, pregnant persons have been excluded from most phase III clinical studies; therefore, our understanding regarding their safety for use in this population stems from understanding of theoretic risks and observational data. In this review, the authors discuss pregnancy-specific considerations for COVID-19 therapeutics.
Collapse
Affiliation(s)
- Naima T. Joseph
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Kirstein 3rd Floor, Boston, MA 02215, USA,Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA,Corresponding author. 330 Brookline Avenue, Kirstein, 3rd Floor, Boston, MA 02215
| | - Ai-Ris Y. Collier
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Kirstein 3rd Floor, Boston, MA 02215, USA,Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
An AY, Baghela A, Zhang P, Falsafi R, Lee AH, Trahtemberg U, Baker AJ, dos Santos CC, Hancock REW. Severe COVID-19 and non-COVID-19 severe sepsis converge transcriptionally after a week in the intensive care unit, indicating common disease mechanisms. Front Immunol 2023; 14:1167917. [PMID: 37090709 PMCID: PMC10115984 DOI: 10.3389/fimmu.2023.1167917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features. To what extent they share mechanistically-based gene expression trajectories throughout hospitalization was unknown. Our objective was to compare gene expression trajectories between severe COVID-19 patients and contemporaneous non-COVID-19 severe sepsis patients in the intensive care unit (ICU). Methods In this prospective single-center observational cohort study, whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Results At ICU admission, despite COVID-19 patients being almost clinically indistinguishable from non-COVID-19 sepsis patients, COVID-19 patients had 1,215 differentially expressed genes compared to non-COVID-19 sepsis patients. After one week in the ICU, the number of differentially expressed genes dropped to just 9 genes. This drop coincided with decreased expression of antiviral genes and relatively increased expression of heme metabolism genes over time in COVID-19 patients, eventually reaching expression levels seen in non-COVID-19 sepsis patients. Both groups also had similar underlying immune dysfunction, with upregulation of immune processes such as "Interleukin-1 signaling" and "Interleukin-6/JAK/STAT3 signaling" throughout disease compared to healthy controls. Discussion Early on, COVID-19 patients had elevated antiviral responses and suppressed heme metabolism processes compared to non-COVID-19 severe sepsis patients, although both had similar underlying immune dysfunction. However, after one week in the ICU, these diseases became indistinguishable on a gene expression level. These findings highlight the importance of early antiviral treatment for COVID-19, the potential for heme-related therapeutics, and consideration of immunomodulatory therapies for both diseases to treat shared immune dysfunction.
Collapse
Affiliation(s)
- Andy Y. An
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Baghela
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Peter Zhang
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy H. Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Uriel Trahtemberg
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
- Department of Critical Care, Galilee Medical Center, Nahariya, Israel
| | - Andrew J. Baker
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Claudia C. dos Santos
- The Department of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Robert E. W. Hancock,
| |
Collapse
|
9
|
Yoo S, Kim L, Lu M, Nagoshi K, Namchuk M. A review of clinical efficacy data supporting emergency use authorization for COVID-19 therapeutics and lessons for future pandemics. Clin Transl Sci 2022; 15:2279-2292. [PMID: 35929015 PMCID: PMC9538903 DOI: 10.1111/cts.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023] Open
Abstract
Emergency Use Authorization (EUA) allows the US Food and Drug Administration (FDA) to expedite the availability of therapeutics in the context of a public health emergency. To date, an evidentiary standard for clinical efficacy to support an EUA has not yet been established. This review examines the clinical data submitted in support of EUA for antiviral and anti-inflammatory therapeutics for coronavirus disease 2019 (COVID-19) through December of 2021 and the resilience of the authorization as new clinical data arose subsequent to the authorization. In the vast majority of cases, EUA was supported by at least one well-powered randomized controlled trial (RCT) where statistically significant efficacy was demonstrated. This included branded medications already approved for use outside of the context of COVID-19. When used, the standard of a single RCT seemed to provide adequate evidence of clinical efficacy, such that subsequent clinical studies generally supported or expanded the EUA of the therapeutic in question. The lone generic agent that was granted EUA (chloroquine/hydroxychloroquine) was not supported by a well-controlled RCT, and the EUA was withdrawn within 3 months time. This highlighted not only the ambiguity of the EUA standard, but also the need to provide avenues through which high quality clinical evidence for the efficacy of a generic medication could be obtained. Therefore, maintaining the clinical trial networks assembled during the COVID-19 pandemic could be a critical component of our preparation for future pandemics. Consideration could also be given to establishing a single successful RCT as regulatory guidance for obtaining an EUA.
Collapse
Affiliation(s)
| | - Lauren Kim
- Harvard CollegeCambridgeMassachusettsUSA
| | | | | | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular PharmacologyBlavatnik Institute, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
10
|
Pandrea I, Brooks K, Desai RP, Tare M, Brenchley JM, Apetrei C. I've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Front Immunol 2022; 13:899559. [PMID: 36032119 PMCID: PMC9411647 DOI: 10.3389/fimmu.2022.899559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and extensive collection of microorganisms that can directly stimulate the immune system. There are significant data to demonstrate that the spatial localization of the microbiome can impact viral disease pathogenesis. Here we discuss recent studies that have investigated causes and consequences of GI tract pathologies in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology from the basal side and SARS-CoV-2 from the luminal side. Both these infections result in alterations of the intestinal barrier, leading to microbial translocation, persistent inflammation, and T-cell immune activation. GI tract damage is one of the major contributors to multisystem inflammatory syndrome in SARS-CoV-2-infected individuals and to the incomplete immune restoration in HIV-infected subjects, even in those with robust viral control with antiretroviral therapy. While the causes of GI tract pathologies differ between these virus families, therapeutic interventions to reduce microbial translocation-induced inflammation and improve the integrity of the GI tract may improve the prognoses of infected individuals.
Collapse
Affiliation(s)
- Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rahul P. Desai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minali Tare
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Saravanan KA, Panigrahi M, Kumar H, Rajawat D, Nayak SS, Bhushan B, Dutt T. Role of genomics in combating COVID-19 pandemic. Gene 2022; 823:146387. [PMID: 35248659 PMCID: PMC8894692 DOI: 10.1016/j.gene.2022.146387] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID-19) quickly swept over the world, becoming one of the most devastating outbreaks in human history. Being the first pandemic in the post-genomic era, advancements in genomics contributed significantly to scientific understanding and public health response to COVID-19. Genomic technologies have been employed by researchers all over the world to better understand the biology of SARS-CoV-2 and its origin, genomic diversity, and evolution. Worldwide genomic resources have greatly aided in the investigation of the COVID-19 pandemic. The pandemic has ushered in a new era of genomic surveillance, wherein scientists are tracking the changes of the SARS-CoV-2 genome in real-time at the international and national levels. Availability of genomic and proteomic information enables the rapid development of molecular diagnostics and therapeutics. The advent of high-throughput sequencing and genome editing technologies led to the development of modern vaccines. We briefly discuss the impact of genomics in the ongoing COVID-19 pandemic in this review.
Collapse
Affiliation(s)
- K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
12
|
Dunai C, Collie C, Michael BD. Immune-Mediated Mechanisms of COVID-19 Neuropathology. Front Neurol 2022; 13:882905. [PMID: 35665037 PMCID: PMC9160362 DOI: 10.3389/fneur.2022.882905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Although SARS-CoV-2 causes a respiratory viral infection, there is a large incidence of neurological complications occurring in COVID-19 patients. These range from headaches and loss of smell to encephalitis and strokes. Little is known about the likely diverse mechanisms causing these pathologies and there is a dire need to understand how to prevent and treat them. This review explores recent research from the perspective of investigating how the immune system could play a role in neurological complications, including cytokines, blood biomarkers, immune cells, and autoantibodies. We also discuss lessons learnt from animal models. Overall, we highlight two key points that have emerged from increasing evidence: (1) SARS-CoV-2 does not invade the brain in the majority of cases and so the associated neurological complications might arise from indirect effects, such as immune activation (2) although the immune system plays a critical role in controlling the virus, its dysregulation can cause pathology.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom
| | - Ceryce Collie
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Benedict D. Michael
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
13
|
Lee TC, Morris AM, Schwartz IS, McDonald EG. Allocated but not treated: the silent 16. Lancet 2022; 399:1775. [PMID: 35526549 PMCID: PMC9071205 DOI: 10.1016/s0140-6736(22)00377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Todd C Lee
- Division of Infectious Diseases, McGill University, Montreal, QC H4A 3S1, Canada; Clinical Practice Assessment Unit, McGill University, Montreal, QC H4A 3S1, Canada; Department of Medicine and Royal Victoria Hospital, McGill University, Montreal, QC H4A 3S1, Canada.
| | - Andrew M Morris
- Division of Infectious Diseases, Department of Medicine, Sinai Health System, Toronto, ON, Canada
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Emily G McDonald
- Clinical Practice Assessment Unit, McGill University, Montreal, QC H4A 3S1, Canada; Division of General Internal Medicine, McGill University, Montreal, QC H4A 3S1, Canada; Department of Medicine and Royal Victoria Hospital, McGill University, Montreal, QC H4A 3S1, Canada
| |
Collapse
|
14
|
Rosas IO, Bräu N, Waters M, Go RC, Malhotra A, Hunter BD, Bhagani S, Skiest D, Savic S, Douglas IS, Garcia-Diaz J, Aziz MS, Cooper N, Youngstein T, Sorbo LD, Zerda DJDL, Ustianowski A, Gracian AC, Blyth KG, Carratalà J, François B, Benfield T, Haslem D, Bonfanti P, van der Leest CH, Rohatgi N, Wiese L, Luyt CE, Bauer RN, Cai F, Lee IT, Matharu B, Metcalf L, Wildum S, Graham E, Tsai L, Bao M. Tocilizumab in patients hospitalised with COVID-19 pneumonia: Efficacy, safety, viral clearance, and antibody response from a randomised controlled trial (COVACTA). EClinicalMedicine 2022; 47:101409. [PMID: 35475258 PMCID: PMC9022847 DOI: 10.1016/j.eclinm.2022.101409] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In COVACTA, a randomised, placebo-controlled trial in patients hospitalised with coronavirus disease-19 (COVID-19), tocilizumab did not improve 28-day mortality, but shortened hospital and intensive care unit stay. Longer-term effects of tocilizumab in patients with COVID-19 are unknown. Therefore, the efficacy and safety of tocilizumab in COVID-19 beyond day 28 and its impact on Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) clearance and antibody response in COVACTA were investigated. METHODS Adults in Europe and North America hospitalised with COVID-19 (N = 452) between April 3, 2020 and May 28, 2020 were randomly assigned (2:1) to double-blind intravenous tocilizumab or placebo and assessed for efficacy and safety through day 60. Assessments included mortality, time to hospital discharge, SARS-CoV-2 viral load in nasopharyngeal swab and serum samples, and neutralising anti-SARS-CoV-2 antibodies in serum. ClinicalTrials.gov registration: NCT04320615. FINDINGS By day 60, 24·5% (72/294) of patients in the tocilizumab arm and 25·0% (36/144) in the placebo arm died (weighted difference -0·5% [95% CI -9·1 to 8·0]), and 67·0% (197/294) in the tocilizumab arm and 63·9% (92/144) in the placebo arm were discharged from the hospital. Serious infections occurred in 24·1% (71/295) of patients in the tocilizumab arm and 29·4% (42/143) in the placebo arm. Median time to negative reverse transcriptase-quantitative polymerase chain reaction result in nasopharyngeal/oropharyngeal samples was 15·0 days (95% CI 14·0 to 21·0) in the tocilizumab arm and 21·0 days (95% CI 14·0 to 28·0) in the placebo arm. All tested patients had positive test results for neutralising anti-SARS-CoV-2 antibodies at day 60. INTERPRETATION There was no mortality benefit with tocilizumab through day 60. Tocilizumab did not impair viral clearance or host immune response, and no new safety signals were observed. Future investigations may explore potential biomarkers to optimize patient selection for tocilizumab treatment and combination therapy with other treatments. FUNDING F. Hoffmann-La Roche Ltd and the US Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, under OT number HHSO100201800036C.
Collapse
Affiliation(s)
- Ivan O. Rosas
- Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX 77030, USA
- Corresponding author.
| | - Norbert Bräu
- James J. Peters Veterans Affairs Medical Center, Bronx, and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ronaldo C. Go
- Hackensack Meridian School of Medicine and Hackensack University Medical Center, Hackensack, NJ, USA
| | - Atul Malhotra
- University of California San Diego, La Jolla, CA, USA
| | | | | | - Daniel Skiest
- University of Massachusetts Medical School–Baystate, Springfield, MA, USA
| | - Sinisa Savic
- Leeds Teaching Hospitals NHS Trust and National Institute for Health Research–Leeds, Biomedical Research Centre, Leeds, UK
| | - Ivor S. Douglas
- Denver Health Medical Center, Denver, and University of Colorado, Anschutz School of Medicine, Aurora, CO, USA
| | | | | | | | | | | | | | | | - Antonio Cubillo Gracian
- Hospital Universitario HM Sanchinarro, Centro Integral, Oncológico Clara Campal, and Departamento de Ciencias Médicas Clínicas, Facultad de Medicina, Universidad CEU San Pablo, Madrid, Spain
| | - Kevin G. Blyth
- Institute of Cancer Sciences, University of Glasgow/Department of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, University of Barcelona, and CIBERINFEC, Barcelona, Spain
| | - Bruno François
- Intensive Care Unit and Inserm CIC1435 and UMR1092, CHU Limoges, Limoges, France
| | - Thomas Benfield
- Center of Research and Disruption of Infectious Diseases, Department of Infectious Diseases, Copenhagen University Hospital–Amager and Hvidovre, Hvidovre, Denmark
| | | | - Paolo Bonfanti
- University of Milano–Bicocca and Azienda Ospedaliera San Gerardo di Monza, Monza, Italy
| | | | - Nidhi Rohatgi
- Division of Hospital Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lothar Wiese
- Department of Infectious Diseases, Zealand University Hospital, Roskilde, Denmark
| | | | | | - Fang Cai
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | - Min Bao
- Genentech, South San Francisco, CA, USA
| |
Collapse
|
15
|
C-reactive protein cut-off for early tocilizumab and dexamethasone prescription in hospitalized patients with COVID-19. Sci Rep 2022; 12:5250. [PMID: 35347166 PMCID: PMC8960074 DOI: 10.1038/s41598-022-08882-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Dexamethasone and tocilizumab have been associated with reduction in mortality, however, the beneficial effect is not for all patients and the impact on viral replication is not well defined. We hypostatized that C-reactive protein (CRP) could help in the identification of patients requiring anti-inflammatory therapy. Patients admitted for > 48 h in our hospital for a confirmed or suspected infection by SARS-CoV-2 from February 2020 to February 2021 were retrospectively evaluated. The primary outcome was mortality at 30 days. Demographics and the most relevant variables related with the outcome were included. CRP was stratified by percentiles. Univariate and multivariate analysis were performed. A total of 3218 patients were included with a median (IQR) age of 66 (74–78) years and 58.9% were males. The rate of intensive care unit admission was 24.4% and the 30-day mortality rate was 11.8%. Within the first 5 days from admission, 1018 (31.7%) patients received dexamethasone and 549 tocilizumab (17.1%). The crude analysis showed a mortality reduction in patients receiving dexamethasone when CRP was > 13.75 mg/dL and > 3.5 mg/dL for those receiving tocilizumab. Multivariate analysis identified the interaction of CRP > 13.75 mg/dL with dexamethasone (OR 0.57; CI 95% 0.37–0.89, P = 0014) and CRP > 3.5 mg/dL with tocilizumab (0.65; CI95%:0.44–0.95, P = 0.029) as independent predictors of mortality. Our results suggest that dexamethasone and tocilizumab are associated with a reduction in mortality when prescribed to patients with a certain inflammatory activity assessed by C-reactive protein.
Collapse
|
16
|
Barkas F, Christaki E, Liberopoulos E, Kosmidou M, Milionis H. Anakinra in COVID-19: A step closer to the cure. Eur J Intern Med 2022; 96:113-114. [PMID: 34794858 PMCID: PMC8580858 DOI: 10.1016/j.ejim.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Fotios Barkas
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eirini Christaki
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Evangelos Liberopoulos
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Maria Kosmidou
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Haralampos Milionis
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
17
|
Tan J. Clonal Wars: Monoclonal Antibodies Against Infectious Pathogens. DNA Cell Biol 2022; 41:34-37. [PMID: 34941449 PMCID: PMC8787689 DOI: 10.1089/dna.2021.0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibodies are coming of age as powerful tools for the prevention of infectious diseases. In recent years, the rate of antibody discovery has accelerated, and the coronavirus disease 2019 (COVID-19) pandemic has shone a spotlight on the role of these antibodies in combating pathogens. However, questions remain about the utility of monoclonal antibodies, especially when effective vaccines are also available. In this article, I discuss the role of monoclonal antibodies and briefly describe the effort to identify potent human monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including our study on bispecific antibodies that neutralize SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
18
|
Tepasse PR, Vollenberg R, Nowacki TM. Vaccination against SARS-CoV-2 in Patients with Inflammatory Bowel Diseases: Where Do We Stand? Life (Basel) 2021; 11:life11111220. [PMID: 34833096 PMCID: PMC8620225 DOI: 10.3390/life11111220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Crohn’s disease and ulcerative colitis are chronic inflammatory bowel diseases (IBDs). Immunosuppressive medication is the main therapeutic approach to reducing inflammation of the gastrointestinal tract. Immunocompromised patients are more vulnerable to severe courses of illness after infection with common pathogens. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 leads to acute respiratory distress syndrome (ARDS) following severe pulmonal damage in a significant number of cases. The worldwide circulation of SARS-CoV-2 has led to major concerns about the management of IBD patients during the pandemic, as these patients are expected to be at greater risk of complications because of their underlying altered immunological condition and immunosuppressive therapies. Vaccination against SARS-CoV-2 is considered the main approach in containing the pandemic. Today, several vaccines have been shown to be highly effective in the prevention of SARS-CoV-2 infection and severe disease course in subjects without underlying conditions in respective registration studies. Patients with underlying conditions such as IBD and/or immunosuppressive therapies were not included in the registration studies, so little is known about effectiveness and safety of SARS-CoV-2 vaccination in immunocompromised IBD patients. This review provides an overview of the recent knowledge about vaccine response in IBD patients after vaccination against SARS-CoV-2.
Collapse
|
19
|
Hosoya T, Cordelia D, Michael BD, Miyabe C, Nagai J, Murooka TT, Miyabe Y. Editorial: Targeting the Chemoattractant System in Inflammation. Front Pharmacol 2021; 12:744290. [PMID: 34483948 PMCID: PMC8415622 DOI: 10.3389/fphar.2021.744290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tadashi Hosoya
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Liverpool, United Kingdom
| | - Dunai Cordelia
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom.,NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom
| | - Benedict D Michael
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom.,NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Chie Miyabe
- Division of Dermatology, Tokyo Women's Medical University, Chiba, Japan
| | - Jun Nagai
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, United States
| | - Thomas T Murooka
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Yoshishige Miyabe
- Department of Cell Biology, Nippon Medical School, Institute for Advanced Medical Sciences, Tokyo, Japan
| |
Collapse
|
20
|
Maxwell D, Sanders KC, Sabot O, Hachem A, Llanos-Cuentas A, Olotu A, Gosling R, Cutrell JB, Hsiang MS. COVID-19 Therapeutics for Low- and Middle-Income Countries: A Review of Candidate Agents with Potential for Near-Term Use and Impact. Am J Trop Med Hyg 2021; 105:584-595. [PMID: 34270449 PMCID: PMC8592342 DOI: 10.4269/ajtmh.21-0200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/30/2021] [Indexed: 11/29/2022] Open
Abstract
Low- and middle-income countries (LMICs) face significant challenges in the control of COVID-19, given limited resources, especially for inpatient care. In a parallel effort to that for vaccines, the identification of therapeutics that have near-term potential to be available and easily administered is critical. Using the United States (US), European Union (EU), and World Health Organization (WHO) clinical trial registries, we reviewed COVID-19 therapeutic agents currently under investigation. The search was limited to oral or potentially oral agents, with at least a putative anti-SARS-CoV-2 virus mechanism and with at least five registered trials. The search yielded 1,001, 203, and 1,128 trials, in the US, EU, and WHO trial registers, respectively. These trials covered 13 oral or potentially oral repurposed agents that are currently used as antimicrobials and immunomodulatory therapeutics with established safety profiles. The available evidence regarding proposed mechanisms of action, potential limitations, and trial status is summarized. The results of the search demonstrate few published studies of high quality, a low proportion of trials completed, and the vast majority with negative results. These findings reflect limited investment in COVID-19 therapeutics development compared with vaccines. We also identified the need for better coordination of trials of accessible agents and their combinations in LMICs. To prevent COVID-19 from becoming a neglected tropical disease, there is a critical need for rapid and coordinated efforts in the evaluation and deployment of those agents found to be efficacious.
Collapse
Affiliation(s)
- Daniel Maxwell
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kelly C. Sanders
- Pandemic Response Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California
- Department of Pediatrics, Stanford University, Stanford, California
| | - Oliver Sabot
- Pandemic Response Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California
| | - Ahmad Hachem
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humbolt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ally Olotu
- Clinical Trials and Interventions Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Roly Gosling
- Pandemic Response Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California
| | - James B. Cutrell
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle S. Hsiang
- Pandemic Response Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
21
|
Codd AS, Hanna SJ, Compeer EB, Richter FC, Pring EJ, Gea-Mallorquí E, Borsa M, Moon OR, Scourfield DO, Gallimore AM, Milicic A. Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab016. [PMID: 35593707 PMCID: PMC8371938 DOI: 10.1093/oxfimm/iqab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have described the association between this virus and pathologically increased or decreased immune cell counts. In this review, we consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulocytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes. However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lymphopenia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly important for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform patient care decisions or predict disease outcomes.
Collapse
Affiliation(s)
- Amy S Codd
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephanie J Hanna
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ewoud B Compeer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Felix C Richter
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Eleanor J Pring
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mariana Borsa
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Owen R Moon
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Anita Milicic
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|