1
|
Zhang M, Xiang C, Niu R, He X, Luo W, Liu W, Gu R. Liposomes as versatile agents for the management of traumatic and nontraumatic central nervous system disorders: drug stability, targeting efficiency, and safety. Neural Regen Res 2025; 20:1883-1899. [PMID: 39254548 DOI: 10.4103/nrr.nrr-d-24-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/28/2024] [Indexed: 09/11/2024] Open
Abstract
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied. However, their inability to cross the blood-brain barrier hampers the clinical translation of these therapeutic strategies. Liposomes are nanoparticles composed of lipid bilayers, which can effectively encapsulate drugs and improve drug delivery across the blood-brain barrier and into brain tissue through their targeting and permeability. Therefore, they can potentially treat traumatic and nontraumatic central nervous system diseases. In this review, we outlined the common properties and preparation methods of liposomes, including thin-film hydration, reverse-phase evaporation, solvent injection techniques, detergent removal methods, and microfluidics techniques. Afterwards, we comprehensively discussed the current applications of liposomes in central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and brain tumors. Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials. Additionally, their application as drug delivery systems in clinical practice faces challenges such as drug stability, targeting efficiency, and safety. Therefore, we proposed development strategies related to liposomes to further promote their development in neurological disease research.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Mohan M, Mannan A, Nauriyal A, Singh TG. Emerging targets in amyotrophic lateral sclerosis (ALS): The promise of ATP-binding cassette (ABC) transporter modulation. Behav Brain Res 2025; 476:115242. [PMID: 39243983 DOI: 10.1016/j.bbr.2024.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative primarily affecting motor neurons, leading to disability and neuronal death, and ATP-Binding Cassette (ABC) transporter due to their role in drug efflux and modulation of various cellular pathways contributes to the pathogenesis of ALS. In this article, we extensively investigated various molecular and mechanistic pathways linking ALS transporter to the pathogenesis of ALS; this involves inflammatory pathways such as Mitogen-Activated Protein Kinase (MAPK), Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt), Toll-Like Receptor (TLR), Glycogen Synthase Kinase 3β (GSK-3β), Nuclear Factor Kappa-B (NF-κB), and Cyclooxygenase (COX). Oxidative pathways such as Astrocytes, Glutamate, Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Sirtuin 1 (SIRT-1), Forkhead box protein O (FOXO), Extracellular signal-regulated kinase (ERK). Additionally, we delve into the role of autophagic pathways like TAR DNA-binding protein 43 (TDP-43), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and lastly, the apoptotic pathways. Furthermore, by understanding these intricate interactions, we aim to develop novel therapeutic strategies targeting ABC transporters, improving drug delivery, and ultimately offering a promising avenue for treating ALS.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Aayush Nauriyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
3
|
He D, Wang X, Hao M, Shen D, Yang X, Liu M, Li Y, Wang J, Cui L. Mutational and transcriptional profiling of cuproptosis-associated genes in amyotrophic lateral sclerosis. Genes Dis 2025; 12:101208. [PMID: 39314515 PMCID: PMC11416654 DOI: 10.1016/j.gendis.2024.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 09/25/2024] Open
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xilu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 201203, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Yang J, Tang C. Causal relationship between imaging-derived phenotypes and neurodegenerative diseases: a Mendelian randomization study. Mamm Genome 2024; 35:711-723. [PMID: 39180568 DOI: 10.1007/s00335-024-10065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Neurodegenerative diseases are incurable conditions that lead to gradual and progressive deterioration of brain function in patients. With the aging population, the prevalence of these diseases is expected to increase, posing a significant economic burden on society. Imaging techniques play a crucial role in the diagnosis and monitoring of neurodegenerative diseases. This study utilized a two-sample Mendelian randomization (MR) analysis to assess the causal relationship between different imaging-derived phenotypes (IDP) in the brain and neurodegenerative diseases. Multiple MR methods were employed to minimize bias and obtain reliable estimates of the potential causal relationship between the variable exposures of interest and the outcomes. The study found potential causal relationships between different IDPs and Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and frontotemporal dementia (FTD). Specifically, the study identified potential causal relationships between 2 different types of IDPs and AD, 8 different types of IDPs and PD, 11 different types of imaging-derived phenotypes and ALS, 1 type of IDP and MS, and 1 type of IDP and FTD. This study provides new insights for the prevention, diagnosis, and treatment of neurodegenerative diseases, offering important clues for understanding the pathogenesis of these diseases and developing relevant intervention strategies.
Collapse
Affiliation(s)
- Jiaxin Yang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Chao Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
- School of Clinical Medicine, Guizhou Medical University, No.28, Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
5
|
Wang PS, Yang XX, Wei Q, Lv YT, Wu ZY, Li HF. Clinical characterization and founder effect analysis in Chinese amyotrophic lateral sclerosis patients with SOD1 common variants. Ann Med 2024; 56:2407522. [PMID: 39351695 PMCID: PMC11445911 DOI: 10.1080/07853890.2024.2407522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE In the Asian population, SOD1 variants are the most common cause of amyotrophic lateral sclerosis (ALS). To date, more than 200 variants have been reported in SOD1. This study aimed to summarize the genotype-phenotype correlation and determine whether the patients carrying common variants derive from a common ancestor. METHODS A total of 103 sporadic ALS (SALS) and 11 familial ALS (FALS) probands were included and variants were screened by whole exome sequencing. Functional analyses were performed on fibroblasts derived from patients with SOD1 p.V48A and control. Haplotype analysis was performed in the probands with p.H47R or p.V48A and their familial members. RESULTS A total of 25 SOD1 variants were identified in 44 probands, in which p.H47R, p.V48A and p.C112Y variants were the most common variants. 94.3% and 60% of patients with p.H47R or p.V48A had lower limb onset with predominant lower motor neurons (LMNs) involvement. Patients with p.H47R had a slow progression and prolonged survival time, while patients with p.V48A exhibited a duration of 2-5 years. Patients with p.C112Y variant showed remarkable phenotypic variation in age at onset and disease course. SOD1V48A fibroblasts showed mutant SOD1 aggregate formation, enhanced intracellular reactive oxygen species level, and decreased mitochondrial membrane potential compared to the control fibroblast. Haplotype analysis showed that seven families had two different haplotypes. p.H47R and p.V48A variants did not originate from a common founder. CONCLUSIONS Our study expanded the understanding of the genotype-phenotype correlation of ALS with SOD1 variants and revealed that the common p.H47R or p.V48A variant did not have a founder effect.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xia Yang
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Wei
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ting Lv
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Hong-Fu Li
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zhang J, Chen K, Chen Y, Hua L, Chen S, Chen X, Zou L, Li S, Yang X, Shen Y. Pathology reduction and motor behavior improvement associated with ultrasound-mediated delivery of arctiin to the motor cortex in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. ULTRASONICS 2024; 144:107449. [PMID: 39217855 DOI: 10.1016/j.ultras.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is marked by the deterioration of both cortical and spinal cord motor neurons. Despite the underlying causes of the disease remain elusive, there has been a growing attention on the well-being of cortical motor neurons in recent times. Focused ultrasound combined with microbubbles (FUS/MB) for opening the blood-brain barrier (BBB) provides a means for drug delivery to specific brain regions, holding significant promise for the treatment of neurological disorders. OBJECTIVES We aim to explore the outcomes of FUS/MB-mediated delivery of arctiin (Arc), a natural compound with anti-inflammatory activities, to the cerebral motor cortex area by using a transgenic ALS mouse model. METHODS The ALS mouse model with the SOD1G93A mutation was used and subjected to daily Arc administration with FUS/MB treatment twice a week. After six-week treatments, the motor performance was assessed by grip strength, wire hanging, and climbing-pole tests. Mouse brains, spinal cords and gastrocnemius muscle were harvested for histological staining. RESULTS Compared with the mice given Arc administration only, the combined treatments of FUS/MB with Arc induced further mitigation of the motor function decline, accompanied by improved health of the gastrocnemius muscle. Furthermore, notable neuroprotective effect was evidenced by the amelioration of motor neuron failure in the cortex and lumbar spinal cord. CONCLUSION These preliminary results indicated that the combined treatment of FUS/MB and arctiin exerted a potentially beneficial effect on neuromuscular function in the ALS disease.
Collapse
Affiliation(s)
- Ji Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Kaili Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yizhe Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Lingchen Hua
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
7
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
8
|
Vucic S. Trial designs for motor neuron disease in the 21st century. Lancet Neurol 2024; 23:1065-1066. [PMID: 39307152 DOI: 10.1016/s1474-4422(24)00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 10/20/2024]
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Center, Concord Clinical School University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Chen W, Jiang S, Li S, Li C, Xu R. OSMR is a potential driver of inflammation in amyotrophic lateral sclerosis. Neural Regen Res 2024; 19:2513-2521. [PMID: 38526287 PMCID: PMC11090450 DOI: 10.4103/1673-5374.391309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00031/figure1/v/2024-03-08T184507Z/r/image-tiff Amyotrophic lateral sclerosis is a neurodegenerative disease, and the molecular mechanism underlying its pathology remains poorly understood. However, inflammation is known to play an important role in the development of this condition. To identify driver genes that affect the inflammatory response in amyotrophic lateral sclerosis, as well as potential treatment targets, it is crucial to analyze brain tissue samples from patients with both sporadic amyotrophic lateral sclerosis and C9orf72-related amyotrophic lateral sclerosis. Therefore, in this study we used a network-driven gene analysis tool, NetBID2.0, which is based on SJARACNe, a scalable algorithm for the reconstruction of accurate cellular networks, to experimentally analyze sequencing data from patients with sporadic amyotrophic lateral sclerosis. The results showed that the OSMR gene is pathogenic in amyotrophic lateral sclerosis and participates in the progression of amyotrophic lateral sclerosis by mediating the neuroinflammatory response. Furthermore, there were differences in OSMR activity and expression between patients with sporadic amyotrophic lateral sclerosis and those with C9orf72-related amyotrophic lateral sclerosis. These findings suggest that OSMR may be a diagnostic and prognostic marker for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Xiangya Hospital Jiangxi Hospital of Central South University, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital, Xiangya Hospital Jiangxi Hospital of Central South University, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Xiangya Hospital Jiangxi Hospital of Central South University, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Xiangya Hospital Jiangxi Hospital of Central South University, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Xiangya Hospital Jiangxi Hospital of Central South University, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
10
|
Liu Y, Fu R, Jia H, Yang K, Ren F, Zhou MS. GHRH and its analogues in central nervous system diseases. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09920-x. [PMID: 39470866 DOI: 10.1007/s11154-024-09920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is primarily produced by the hypothalamus and stimulates the release of growth hormone (GH) in the anterior pituitary gland, which subsequently regulates the production of hepatic insulin-like growth factor-1 (IGF-1). GH and IGF-1 have potent effects on promoting cell proliferation, inhibiting cell apoptosis, as well as regulating cell metabolism. In central nerve system (CNS), GHRH/GH/IGF-1 promote brain development and growth, stimulate neuronal proliferation, and regulate neurotransmitter release, thereby participating in the regulation of various CNS physiological activities. In addition to hypothalamus-pituitary gland, GHRH and GHRH receptor (GHRH-R) are also expressed in other brain cells or tissues, such as endogenous neural stem cells (NSCs) and tumor cells. Alternations in GHRH/GH/IGF-1 axis are associated with various CNS diseases, for example, Alzheimer's disease, amyotrophic lateral sclerosis and emotional disorders manifest GHRH, GH or IGF-1 deficiency, and GH or IGF-1 supplementation exerts beneficial therapeutic effects on these diseases. CNS tumors, such as glioma, can express GHRH and GHRH-R, and activating this signaling pathway promotes tumor cell growth. The synthesized GHRH antagonists have shown to inhibit glioma cell growth and may hold promising as an adjuvant therapy for treating glioma. In addition, we have shown that GHRH agonist MR-409 can improve neurological sequelae after ischemic stroke by activating extrapituitary GHRH-R signaling and promoting endogenous NSCs-derived neuronal regeneration. This article reviews the involvement of GHRH/GH/IGF-1 in CNS diseases, and potential roles of GHRH agonists and antagonists in treating CNS diseases.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Rong Fu
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, 110034, China
| | - Kefan Yang
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China.
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
11
|
Joyce EE, Xu S, Ingre C, Potenza RL, Seitz C, Yang H, Zeng Y, Song H, Fang F. Association Between Early-Life and Premorbid Measurements of Body Composition and Risk of Motor Neuron Disease: A Prospective Cohort Study in the UK Biobank. Ann Neurol 2024. [PMID: 39455418 DOI: 10.1002/ana.27109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the association between developmental and premorbid body composition measurements and the risk of motor neuron disease (MND). METHODS We performed a cohort study in the UK Biobank to assess the association of developmental body metrics and premorbid body composition measures (using 28 measurements and 7 patterns of body composition) with the risk of MND. Among participants with longitudinal measures, we compared the changes in body composition over time between individuals who later developed MND and those who remained free of MND. RESULTS Among the 412,691 individuals included in this study, 549 people received an MND diagnosis during the follow-up visit. Higher birth weight was associated with an increased risk of MND among individuals born over 4 kg (hazard ratio [HR] per kg increase = 2.21, 95% confidence interval [CI] = 1.38-3.55), and taller adult height was associated with an increased risk of MND (HR per 5 cm increase = 1.10, 95% CI = 1.03-1.17). We observed that measures of elevated fat mass were associated with a lower risk of MND more than 5 years before diagnosis. A higher "leg-dominant fat distribution" pattern was associated with an increased risk whereas higher "muscle strength" was associated with a reduced risk of MND 5 years before diagnosis. Longitudinal analyses indicated a faster decline in measures of fat mass and muscle strength, as well as a shift in fat distribution from arm to leg dominant, among individuals who later developed MND, compared with others. INTERPRETATION Body composition at early and middle age may be indicative of the risk of MND development. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Emily E Joyce
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shishi Xu
- Division of Endocrinology and Metabolism and West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, China
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Rosa Luisa Potenza
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Huazhen Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yu Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Huan Song
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Caferra P, Fraisse T, Trincavelli ML, Marchetti L, Piras AM. Evaluation of orphan maintained biological medicinal products in the European Union between 2018 to 2023: a regulatory perspective. Expert Opin Biol Ther 2024. [PMID: 39460383 DOI: 10.1080/14712598.2024.2422360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVES Orphan medicinal products (OMPs) authorized in the European Union (EU) benefit from market exclusivity, fee waivers, and national incentives. Maintaining orphan status during the marketing authorization application (MAA) requires meeting eligibility criteria, especially demonstrating significant benefit (SB), which is challenging. This study identifies key features linked to successful orphan status maintenance for biological OMPs approved in the EU between 2018 and 2023. METHODS Data from European public assessment reports and orphan maintenance assessment reports were analyzed. RESULTS Among the 50 biological OMPs granted orphan designation, 68.0% had to demonstrate SB over existing treatments, with 91.2% leveraging the clinically relevant advantage area, utilizing better clinical efficacy (83.8%) and subpopulation (38.7%) sub-domains. However, 32% did not need to demonstrate SB due to a lack of alternative treatments, most of which were ultra-orphan drugs. Advanced therapy medicinal products and monoclonal antibodies were the most numerous OMP categories, whereas oncology and immunomodulation were the preferred therapeutic areas. CONCLUSION The Orphan Regulation plays a critical role in advancing treatments for rare diseases, fostering innovation while addressing unmet medical needs. Nonetheless, the insufficient return on investment criterion remains underused, whereas refining major contribution to patient care guidelines and incorporating real-world evidence may enhance regulatory evaluations.
Collapse
Affiliation(s)
- Paolo Caferra
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Sanofi, Amsterdam, the Netherlands
| | - Thomas Fraisse
- Sanofi, Amsterdam, the Netherlands
- Faculty of Pharmacy of Montpellier University, Montpellier, France
| | | | | | | |
Collapse
|
13
|
Basu D. Palmitoylethanolamide, an endogenous fatty acid amide, and its pleiotropic health benefits: A narrative review. J Biomed Res 2024; 38:1-15. [PMID: 39433509 DOI: 10.7555/jbr.38.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The global nutritional transition has led to high frequency and severity of chronic degenerative diseases worldwide, primarily driven by chronic inflammatory stress. At the mealtimes, various pharmaceutical products aim to prevent such an inflammatory stress, they usually cause various systemic side effects. Therefore, supplementation of natural and safe ingredients is a great strategy to reduce the risk and severity of inflammatory stress-related diseases. As a result, palmitoylethanolamide (PEA), an endocannabinoid-like mediator, has been extensively studied for its myriad of actions, including anti-inflammatory, anti-microbial, immunostimulatory, neuroprotective, and pain-reducing effects with high tolerability and safety of PEA in animals and humans. Because of the multiple molecular targets and mechanisms of action, PEA has shown therapeutic benefits in various diseases, including neurological, psychiatric, ophthalmic, metabolic, oncological, renal, hepatic, immunological, rheumatological, and gastrointestinal conditions. The current review highlights the roles and functions of PEA in various physiological and pathological conditions, further supporting the use of PEA as an important dietary agent.
Collapse
Affiliation(s)
- Debasis Basu
- Healious Global METTA Clinic, Kolkata, West Bengal 700029, India
| |
Collapse
|
14
|
Zhu L, Li Y, Yu X, Chen Y, Zhang J, Pang C, Xie J, Gao L, Du L, Cao W, Fan D, Cui C, Yu H, Deng B. Fighting Amyotrophic Lateral Sclerosis by Protecting the Liver? A Prospective Cohort Study. Ann Neurol 2024. [PMID: 39425590 DOI: 10.1002/ana.27115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Previous studies have observed liver abnormalities in amyotrophic lateral sclerosis (ALS) patients. This study aimed to investigate whether early signs of liver disease, measured by magnetic resonance imaging-derived iron-corrected T1-mapping (cT1), are risk factors for developing ALS. METHODS cT1 and proton density fat fraction were measured and automatically analyzed using LiverMultiScan® software. The Fibrosis-4 index was calculated using an established formula based on age and blood markers. Cox proportional hazard models were used to examine the relationship between liver disease, liver biomarkers, and incident ALS. RESULTS In a cohort of 533,707 individuals from UK Biobank, 24 ALS cases were identified among 28,328 participants with liver disease during the follow-up period. Among a total of 33,959 individuals with complete liver imaging data, 15 incident ALS cases were observed during a median follow-up period of 5.6 years. Individuals with liver disease had a higher risk of developing ALS, with an adjusted hazard ratio of 7.35 (95% CI 4.47-12.09; p < 0.001). An increase in cT1 was also associated with a higher risk of ALS. After adjusting for age, sex, Townsend deprivation index, smoking status, alcohol intake frequency, body mass index, proton density fat fraction, Fibrosis-4, and metabolic syndrome, an increase in cT1 remained significantly associated with a higher risk of ALS, with an adjusted hazard ratio of 3.15 (95% CI 1.79-5.55) per 1-SD increase. Sensitivity analyses confirmed these robust results. INTERPRETATION Liver disease activity, indicated by cT1, increases the risk of developing ALS, independent of metabolic syndrome, liver fat, or fibrosis. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Luyi Zhu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyue Yu
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- First Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Junwei Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyang Pang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiali Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingfei Gao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lihuai Du
- College of Mathematics and Physics, Wenzhou University, Wenzhou, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Can Cui
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
McGrath MS, Zhang R, Bracci PM, Azhir A, Forrest BD. Systemic Innate Immune System Restoration as a Therapeutic Approach for Neurodegenerative Disease: Effects of NP001 on Amyotrophic Lateral Sclerosis (ALS) Progression. Biomedicines 2024; 12:2362. [PMID: 39457680 PMCID: PMC11505581 DOI: 10.3390/biomedicines12102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a diagnosis that incorporates a heterogeneous set of neurodegenerative processes into a single progressive and uniformly fatal disease making the development of a uniformly applicable therapeutic difficult. Recent multinational ALS natural history incidence studies have identified systemic chronic activation of the innate immune system as a major risk factor for developing ALS. Persistent immune activation in patients with ALS leads to loss of muscle and lowering of serum creatinine. The goal of the current study was to test whether the slowing of nerve and muscle destruction in NP001-treated ALS patients compared with controls in phase 2 studies would lead to extension of survival. METHODS Phase 2 clinical studies with NP001, an intravenously administered form of the innate immune system regulator NaClO2, are now reporting long-term survival benefits for drug recipients vs. placebo controls after only six months of intermittent treatment. As a prodrug, NP001 is converted by macrophages to taurine chloramine, a long-lived regulator of inflammation. We performed a pooled analysis of all patients who had completed the studies in two six-month NP001 phase 2 trials. Changes in respiratory vital capacity and the muscle mass product, creatinine, defined treated patients who, compared to placebo, had up to a year of extended survival. CONCLUSIONS The observed longer survival in ALS patients with the greatest inflammation-associated muscle loss provides further evidence that ALS is a disease of ongoing innate immune dysfunction and that NP001 is a disease-modifying drug with sustained clinical activity.
Collapse
Affiliation(s)
- Michael S. McGrath
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- Neuvivo, Inc., Palo Alto, CA 94301, USA
| | - Rongzhen Zhang
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ari Azhir
- Neuvivo, Inc., Palo Alto, CA 94301, USA
| | - Bruce D. Forrest
- Neuvivo, Inc., Palo Alto, CA 94301, USA
- Hudson Innovations, LLC, Nyack, NY 10960, USA
| |
Collapse
|
16
|
Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. Eur J Pharmacol 2024; 981:176882. [PMID: 39128808 DOI: 10.1016/j.ejphar.2024.176882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Interferon beta (IFNβ) is a member of the type-1 interferon family and has various immunomodulatory functions in neuropathological conditions. Although the level of IFNβ is low under healthy conditions, it is increased during inflammatory processes to protect the central nervous system (CNS). In particular, microglia and astrocytes are the main sources of IFNβ upon inflammatory insult in the CNS. The protective effects of IFNβ are well characterized in reducing the progression of multiple sclerosis (MS); however, little is understood about its effects in other neurological/neurodegenerative diseases. In this review, different types of IFNs and their signaling pathways will be described. Then we will focus on the potential role and therapeutic effect of IFNβ in several CNS-related diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury, prion disease and spinocerebellar ataxia 7.
Collapse
Affiliation(s)
- Mohsen Farhangian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Azarafrouz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Xu Z, Tang J, Gong Y, Zhang J, Zou Y. Atomistic Insights into the Stabilization of TDP-43 Protofibrils by ATP. J Chem Inf Model 2024; 64:7639-7649. [PMID: 39292611 DOI: 10.1021/acs.jcim.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The aberrant accumulation of the transactive response deoxyribonucleic acid (DNA)-binding protein of 43 kDa (TDP-43) aggregates in the cytoplasm of motor neurons is the main pathological hallmark of amyotrophic lateral sclerosis (ALS). Previous experiments reported that adenosine triphosphate (ATP), the universal energy currency for all living cells, could induce aggregation and enhance the folding of TDP-43 fibrillar aggregates. However, the significance of ATP on TDP-43 fibrillation and the mechanism behind it remain elusive. In this work, we conducted multiple atomistic molecular dynamics (MD) simulations totaling 20 μs to search the critical nucleus size of TDP-43282-360 and investigate the impact of ATP molecules on preformed protofibrils. The results reveal that the trimer is the critical nucleus for TDP-43282-360 fibril formation and the tetramer is the minimal stable nucleus. When ATP molecules bind to the TDP-43282-360 trimer and tetramer, they can consolidate the TDP-43282-360 protofibrils by increasing the content of the β-sheet structure and promoting the formation of hydrogen bonds (H-bonds). Binding site analyses show that the N-terminus of TDP-43282-360 protofibrils is the main binding site of ATP, and R293 dominates the direct binding of ATP. Further analyses reveal that the π-π, cation-π, salt bridge, and H-bonding interactions together contribute to the binding of ATP to TDP-43282-360 protofibrils. This study decoded the detailed stabilization mechanism of protofibrillar TDP-43282-360 oligomers by ATP, and may provide new avenues for the development of drug design against ALS.
Collapse
Affiliation(s)
- Zhengdong Xu
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Jiaxing Tang
- College of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Yehong Gong
- General Education Center, Westlake University, 600 Dunyu Road, Hangzhou 310030, People's Republic of China
| | - Jianxin Zhang
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310007, People's Republic of China
| |
Collapse
|
18
|
Gunner G, Basu H, Lu Y, Bergstresser M, Neel D, Choi SY, Chiu IM. Gasdermin D is activated but does not drive neurodegeneration in SOD1 G93A model of ALS: Implications for targeting pyroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617609. [PMID: 39416104 PMCID: PMC11482889 DOI: 10.1101/2024.10.10.617609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron loss, microgliosis, and neuroinflammation. While pyroptosis, an inflammatory form of programmed cell death, has been implicated in ALS, the specific role of Gasdermin D (GSDMD) - the primary executioner of pyroptosis - remains unexplored. In this study, we examined the function of GSDMD in the well-established SOD1 G93A mouse model of ALS. Our results showed robust GSDMD activation in the spinal cords of SOD1 G93A animals across two strain backgrounds, with elevated expression in Iba1+ microglia. To explore its role in disease progression, we bred B6.SOD1 G93A mice onto a GSDMD - deficient background. In comparing SOD1 G93A ; Gsdmd +/+ and SOD1 G93A ; Gsdmd -/- mice, we found that Gsdmd loss did not affect disease onset, weight loss, or grip strength decline in either male or female animals. Notably, GSDMD deficiency resulted in a modest but statistically significant increase in mortality in SOD1 G93A mice. Moreover, GSDMD absence had minimal impact on astrogliosis, microgliosis and motor neuron loss. These findings show that while GSDMD is activated in the ALS mouse model, its loss does not mitigate key ALS behavioral phenotypes, gliosis or motor neuron loss. This study provides insights into the potential therapeutic relevance of targeting pyroptosis and inflammatory pathways in ALS.
Collapse
|
19
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
20
|
Zhang Y, Li T, Wang G, Ma Y. Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease. Cell Mol Neurobiol 2024; 44:65. [PMID: 39387975 PMCID: PMC11467076 DOI: 10.1007/s10571-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
The incidence of central nervous system (CNS) disease has persistently increased over the last several years. There is an urgent need for effective methods to improve the cure rates of CNS disease. However, the precise molecular basis underlying the development and progression of major CNS diseases remains elusive. A complete molecular map will contribute to research on CNS disease treatment strategies. Emerging technologies such as single-cell RNA sequencing (scRNA-seq) and Spatial Transcriptomics (ST) are potent tools for exploring the molecular complexity, cell heterogeneity, and functional specificity of CNS disease. scRNA-seq and ST can provide insights into the disease at cellular and spatial transcription levels. This review presents a survey of scRNA-seq and ST studies on CNS diseases, such as chronic neurodegenerative diseases, acute CNS injuries, and others. These studies offer novel perspectives in treating and diagnosing CNS diseases by discovering new cell types or subtypes associated with the disease, proposing new pathophysiological mechanisms, uncovering novel therapeutic targets, and identifying putative biomarkers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Teng Li
- Department of Laboratory Medicine, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yabin Ma
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
21
|
Howard IM, Babu S, Carter C, Sakowski SA, Kurent JE, Cudkowicz ME, Feldman EL. Priorities and Recommendations to Make ALS a Livable Disease Emanating from the 2024 National Academies of Sciences, Engineering, and Medicine Report Living with ALS. Ann Neurol 2024. [PMID: 39390661 DOI: 10.1002/ana.27097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentless, fatal neurodegenerative disease. The progressive loss of voluntary muscle function, diagnostic delays, lack of effective treatments, and challenges accessing multidisciplinary care and resources have tremendous impact on quality of life. The congressionally directed ALS committee of the National Academies of Science, Engineering, and Medicine, in their 2024 report "Living with ALS," recommends critical actions for specific United States stakeholders to make ALS a livable disease over the next decade. This review summarizes the context and recommendations of the report. Advocacy efforts are critical to make these recommendations a reality for the ALS community. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Ileana M Howard
- Rehabilitation Care Services, VA Puget Sound Healthcare System, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Suma Babu
- Department of Neurology, Sean M. Healy and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chelsey Carter
- School of Public Health, Yale University, New Haven, CT, USA
| | | | - Jerome E Kurent
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Merit E Cudkowicz
- Department of Neurology, Sean M. Healy and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Tirassa P, Rosso P, Fico E, Marenco M, Mallone F, Gharbiya M, Lambiase A, Severini C. Perspective role of Substance P in Amyotrophic Lateral Sclerosis: From neuronal vulnerability to neuroprotection. Neurosci Biobehav Rev 2024; 167:105914. [PMID: 39374680 DOI: 10.1016/j.neubiorev.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
The neuropeptide Substance P (SP) and its preferred Neurokinin1 Receptor (NK1R) are known to participate in the physiopathology of neurodegenerative diseases and mainly exert a neuroprotective role. In the present work, we have described the involvement of SP and NK1R in Amyotrophic Lateral Sclerosis (ALS). This was demonstrated by the detection of altered levels of SP in the brain, spinal cord and cerebrospinal fluid (CSF) of patients and preclinical models of ALS, and by its ability to inhibit excitotoxicity-induced neurodegeneration in ALS animal models. These data are supported by results indicating an excitatory effect of SP at the motor neuron (MN) level, which promotes locomotor activity. ALS patients are characterized by a differential susceptibility to MNs degeneration, since sphincters and extraocular muscles are classically spared. It is hypothesized that SP may play a role in the maintenance of the ocular system and the innervation of the pelvic floor by contributing directly or indirectly to the selective resistance of this subset of MNs.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome 00015, Italy.
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome 00015, Italy.
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome 00015, Italy.
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy.
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy.
| | - Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy.
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome 00015, Italy.
| |
Collapse
|
23
|
Zhao Y, Li X, Wang K, Iyer G, Sakowski SA, Zhao L, Teener S, Bakulski KM, Dou JF, Traynor BJ, Karnovsky A, Batterman SA, Feldman EL, Sartor MA, Goutman SA. Epigenetic age acceleration is associated with occupational exposures, sex, and survival in amyotrophic lateral sclerosis. EBioMedicine 2024; 109:105383. [PMID: 39369616 PMCID: PMC11491892 DOI: 10.1016/j.ebiom.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is linked to ageing and genetic and environmental risk factors, yet underlying mechanisms are incompletely understood. We aimed to evaluate epigenetic age acceleration (EAA), i.e., DNA methylation (DNAm) age acceleration, and its association with ALS case status and survival. METHODS In this study, we included 428 ALS and 288 control samples collected between 2011 and 2021. We calculated EAA using the GrimAge residual method from ALS and control blood samples and grouped participants with ALS into three ageing groups (fast, normal, slow). We associated EAA with ALS case status and survival, stratified by sex, and correlated it with environmental and biological factors through occupational exposure assessments, immune cell proportions, and transcriptome changes. FINDINGS Participants with ALS had higher average EAA by 1.80 ± 0.30 years (p < 0.0001) versus controls. Participants with ALS in the fast ageing group had a hazard ratio of 1.52 (95% confidence interval 1.16-2.00, p = 0.0028) referenced to the normal ageing group. In males, this hazard ratio was 1.55 (95% confidence interval 1.11-2.17, p = 0.010), and EAA was positively correlated with high-risk occupational exposures including particulate matter (adj.p < 0.0001) and metals (adj.p = 0.0087). Also, in male participants with ALS, EAA was positively correlated with neutrophil proportions and was negatively correlated with CD4+ T cell proportions. Pathways dysregulated in participants with ALS with fast ageing included spliceosome, nucleocytoplasmic transport, axon guidance, and interferons. INTERPRETATION EAA was associated with ALS case status and, at least in males, with shorter survival after diagnosis. The effect of EAA on ALS was partially explained by occupational exposures and immune cell proportions in a sex-dependent manner. These findings highlight the complex interactions of ageing and exposures in ALS. FUNDING NIH, CDC/National ALS Registry, ALS Association, Dr. Randall Whitcomb Fund for ALS Genetics, Peter Clark Fund for ALS Research, Sinai Medical Staff Foundation, Scott L. Pranger ALS Clinic Fund, NeuroNetwork Therapeutic Discovery Fund, NeuroNetwork for Emerging Therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xiayan Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gayatri Iyer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Samuel Teener
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stuart A Batterman
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Sharma R, Mehan S, Khan Z, Das Gupta G, Narula AS. Therapeutic potential of oleanolic acid in modulation of PI3K/Akt/mTOR/STAT-3/GSK-3β signaling pathways and neuroprotection against methylmercury-induced neurodegeneration. Neurochem Int 2024; 180:105876. [PMID: 39368746 DOI: 10.1016/j.neuint.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that gradually deteriorates motor neurons, leading to demyelination, muscle weakness, and eventually respiratory failure. The disease involves several pathological processes, such as increased glutamate levels, mitochondrial dysfunction, and persistent neuroinflammation, often exacerbated by environmental toxins like mercury. This study explores the therapeutic potential of Olea europaea active phytoconstituents oleanolic acid (OLA) against ALS by targeting the overactivated PI3K/Akt/mTOR/STAT-3/GSK-3β signalling pathways. Methods involved in-silico studies, in vitro and in vivo experiments in which varying doses of methylmercury 5 mg/kg, p.o. and OLA (100 and 200 mg/kg, i.p.) were administered to rats for 42 days. Behavioural assessments, gross morphological, histopathological, and neurochemical parameters were measured in cerebrospinal fluid (CSF), blood plasma, and brain homogenates (cerebral cortex, hippocampus, striatum, midbrain, cerebellum) along with complete blood count (CBC) analysis. Results revealed OLA's significant neuroprotective properties. OLA effectively modulated targeted pathways, reducing pro-inflammatory cytokines, restoring normal levels of myelin basic protein (MBP) and neurofilament light chain (NEFL), and reducing histopathological changes. Gross pathological studies indicated less tissue damage, while CBC analysis showed improved hematology parameters. Additionally, the combination of OLA and edaravone (10 mg/kg, i.p.) demonstrated enhanced efficacy, improving motor functions and extending survival in ALS model rats. In conclusion, OLA exhibits significant therapeutic potential for ALS, acting as a potent modulator of key pathological signaling pathways. The findings suggest the feasibility of integrating OLA into existing treatment regimens, potentially improving clinical outcomes for ALS patients. However, further research must validate these findings in human clinical trials.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
25
|
Fernandes JPM, Garcia LP, Gouhie FA, Pereira RC, Santos DFD. Association between motor neuron disease and HIV infection: A systematic review of case reports. Int J STD AIDS 2024:9564624241288283. [PMID: 39361871 DOI: 10.1177/09564624241288283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Motor neuron disease (MND) is a well-known group of neurodegenerative diseases, with amyotrophic lateral sclerosis (ALS) being the most common form. Since 1985, a possible association between MND/ALS and HIV infection has been described. METHODS We performed a systematic review of case reports and case series involving people living with HIV with MND/ALS through PubMed, Bireme, Embase, and Lilacs databases. The risk of bias was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Tool for Case Reports. RESULTS We analyzed 36 articles presenting 88 cases. The mean age was 41.6 years. Antiretroviral therapy (ART) was used by 89.8% and riluzole by 16.9%. First signs and symptoms were similarly present on cervical/upper (25%) and lumbosacral/lower limbs (23.9%), mostly with fasciculations (69.8%) and hyperreflexia (58.8%). MND had a progressive course in 32.9% patients and a clinical improve in 54.6% following ART. The mean survival of the 32 patients who died was 12.3 months and the mean survival of the living patients was 62 months. Respiratory failure was the main cause of death (35.7%). CONCLUSIONS MND/ALS may present differently in the people living with HIV as a rapidly progressive disease in younger people but with the potential to improve weakness and survival through antiretroviral therapy.
Collapse
Affiliation(s)
| | | | | | | | - Diogo Fernandes Dos Santos
- School of Medicine, Federal University of Uberlândia (UFU), Uberlândia, Brazil
- Postgraduate Program in Health Sciences, School of Medicine, Federal University of Uberlândia (UFU), Uberlândia, Brazil
| |
Collapse
|
26
|
Senerchia G, Dubbioso R. Non-invasive brain stimulation therapy in amyotrophic lateral sclerosis: are we ready for clinical use? THE LANCET REGIONAL HEALTH. EUROPE 2024; 45:101055. [PMID: 39291248 PMCID: PMC11406326 DOI: 10.1016/j.lanepe.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Affiliation(s)
- Gianmaria Senerchia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples, Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples, Naples, Italy
| |
Collapse
|
27
|
Wang LY, Zhang L, Bai XY, Qiang RR, Zhang N, Hu QQ, Cheng JZ, Yang YL, Xiang Y. The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment. Neurochem Res 2024; 49:2653-2667. [PMID: 38864944 DOI: 10.1007/s11064-024-04194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.
Collapse
Affiliation(s)
- Le Yi Wang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Rong Rong Qiang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Ning Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Jun Zhi Cheng
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China.
| |
Collapse
|
28
|
Calma AD, Pavey N, Menon P, Vucic S. Neuroinflammation in amyotrophic lateral sclerosis: pathogenic insights and therapeutic implications. Curr Opin Neurol 2024; 37:585-592. [PMID: 38775138 DOI: 10.1097/wco.0000000000001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW Neuroinflammation appears to be an important pathogenic process in amyotrophic lateral sclerosis (ALS). Dysfunction of central immune pathways, including activation of microglia and astrocytes, and peripherally derived immune cells, initiate noncell autonomous inflammatory mechanisms leading to degeneration. Cell autonomous pathways linked to ALS genetic mutations have been recently identified as contributing mechanism for neurodegeneration. The current review provides insights into the pathogenic importance of central and peripheral inflammatory processes in ALS pathogenesis and appraises their potential as therapeutic targets. RECENT FINDINGS ALS is a multistep process mediated by a complex interaction of genetic, epigenetic, and environmental factors. Noncell autonomous inflammatory pathways contribute to neurodegeneration in ALS. Activation of microglia and astrocytes, along with central nervous system infiltration of peripherally derived pro-inflammatory innate (NK-cells/monocytes) and adaptive (cell-mediated/humoral) immune cells, are characteristic of ALS. Dysfunction of regulatory T-cells, elevation of pro-inflammatory cytokines and dysbiosis of gut microbiome towards a pro-inflammatory phenotype, have been reported as pathogenic mechanisms in ALS. SUMMARY Dysregulation of adaptive and innate immunity is pathogenic in ALS, being associated with greater disease burden, more rapid disease course and reduced survival. Strategies aimed at modulating the pro-inflammatory immune components could be of therapeutic utility.
Collapse
Affiliation(s)
- Aicee D Calma
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
29
|
Bjelica B, Petri S. Narrative review of diagnosis, management and treatment of dysphagia and sialorrhea in amyotrophic lateral sclerosis. J Neurol 2024; 271:6508-6513. [PMID: 39207520 PMCID: PMC11447084 DOI: 10.1007/s00415-024-12657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS) frequently leads bulbar symptoms like dysarthria, dysphagia, and sialorrhea, in approximately one-third of cases being the initial symptom. Throughout the disease, more than two-thirds of ALS patients experience dysphagia, regardless of the region of onset. In this review, we aimed to offer an updated overview of dysphagia and sialorrhea in ALS, covering its diagnosis, monitoring, and treatment in clinical practice. Regular assessment of dysphagia and sialorrhea during each patient visit is essential and should be a standard aspect of ALS care. Early discussion of potential treatments such as high-calorie diets or percutaneous endoscopic gastrostomy (PEG) is crucial. Furthermore, this review highlights and discusses potential areas for improvement in both clinical practice and research.
Collapse
Affiliation(s)
- Bogdan Bjelica
- Department of Neurology, Hannover Medical School, 1, Carl-Neuberg-Strasse, 30625, Hannover, Germany.
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 1, Carl-Neuberg-Strasse, 30625, Hannover, Germany
| |
Collapse
|
30
|
Yang N, Shi L, Xu P, Ren F, Li C, Qi X. Identification of potential drug targets for amyotrophic lateral sclerosis by Mendelian randomization analysis based on brain and plasma proteomics. Exp Gerontol 2024; 195:112538. [PMID: 39116956 DOI: 10.1016/j.exger.2024.112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Amyotrophic lateral sclerosis as a fatal neurodegenerative disease currently lacks effective therapeutic agents. Thus, finding new therapeutic targets to drive disease treatment is necessary. In this study, we utilized brain and plasma proteins as genetic instruments obtained from genome-wide association studies to conduct a Mendelian randomization analysis to identify potential drug targets for amyotrophic lateral sclerosis. Additionally, we validated our results externally using other datasets. We also used Bayesian co-localization analysis and phenotype scanning. Furthermore, we constructed a protein-protein interaction network to elucidate potential correlations between the identified proteins and existing targets. Mendelian randomization analysis indicated that elevated levels of ANO5 (OR = 1.30; 95 % CI, 1.14-1.49; P = 1.52E-04), SCFD1 (OR = 3.82; 95 % CI, 2.39-6.10; P = 2.19E-08), and SIGLEC9 (OR = 1.05; 95% CI, 1.03-1.07; P = 4.71E-05) are associated with an increased risk of amyotrophic lateral sclerosis, with external validation supporting these findings. Co-localization analysis confirmed that ANO5, SCFD1, and SIGLEC9 (coloc.abf-PPH4 = 0.848, 0.984, and 0.945, respectively) shared the same variant with amyotrophic lateral sclerosis, further substantiating potential role of these proteins as a therapeutic target. There are interactive relationships between the potential proteins and existing targets of amyotrophic lateral sclerosis. Our findings suggested that elevated levels of ANO5, SCFD1, and SIGLEC9 are connected with an increased risk of amyotrophic lateral sclerosis and might be promising therapeutic targets. However, further exploration is necessary to fully understand the underlying mechanisms involved.
Collapse
Affiliation(s)
- Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangyuan Shi
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China.
| | - Pengfei Xu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Fang Ren
- Department of Laboratory, Jimo District Qingdao Hospital of Traditional Chinese Medicine, Qingdao, China
| | - Chunlin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
31
|
Liu X, Zhang X, Chang T, Zhao Z, Zhang Y, Yang X, Lu M. Causal relationships between genetically predicted particulate air pollutants and neurodegenerative diseases: A two-sample Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116960. [PMID: 39208585 DOI: 10.1016/j.ecoenv.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Accumulating observational studies have linked particulate air pollutants to neurodegenerative diseases (NDDs). However, the causal links and the direction of their associations remain unclear. Therefore, we adopted a two-sample Mendelian randomization (TSMR) design using the GWAS-based genetic instruments of particulate air pollutants (PM2.5 and PM10) from the UK Biobank to explore their causal influence on four common neurodegenerative diseases. Estimates of causative relationships were generated by the Inverse variance weighted (IVW) method with multiple sensitive analyses. The heterogeneity and pleiotropy tests were additionally performed to verify whether our findings were robust. Genetically predicted PM2.5 and PM10 could elevate the occurrence of AD (odds ratio [OR] = 2.22, 95 % confidence interval [CI] 1.53-3.22, PIVW = 2.85×10-5, PFalsediscovery rate[FDR]= 2.85×10-4 and OR = 2.41, 95 % CI: 1.26-4.60, PIVW = 0.008, PFDR=0.039, respectively). The results were robust in sensitive analysis. However, no evidence of causality was found for other NDDs. Our present study suggests that PM2.5 and PM10 have a detrimental effect on AD, which indicates that improving air quality to prevent AD may have pivotal public health implications.
Collapse
Affiliation(s)
- Xinjie Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuening Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tongmin Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengle Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
32
|
Jin W, Boss J, Bakulski KM, Goutman SA, Feldman EL, Fritsche LG, Mukherjee B. Improving prediction models of amyotrophic lateral sclerosis (ALS) using polygenic, pre-existing conditions, and survey-based risk scores in the UK Biobank. J Neurol 2024; 271:6923-6934. [PMID: 39249108 DOI: 10.1007/s00415-024-12644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function, and a cure for this devastating disease remains elusive. This study aimed to identify pre-disposing genetic, phenotypic, and exposure-related factors for amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential. METHODS Utilizing data from the UK (United Kingdom) Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: "GWAS Hits PRS" and "PRS-CS," reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score ("PXS") captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates. RESULTS Both PRSs modestly predicted ALS diagnosis but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The "PXS" did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved the prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a fourfold higher ALS risk (95% CI [2.04, 7.73]) versus those in the 40%-60% range. DISCUSSION By leveraging UK Biobank data, our study uncovers pre-disposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.
Collapse
Affiliation(s)
- Weijia Jin
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
33
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Jiaxuan Wu
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine University of Ottawa Ottawa Ontario Canada
- China-Canada Centre of Research for Digestive Diseases University of Ottawa Ottawa Ontario Canada
| | - Guang Ji
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Yanqi Dang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| |
Collapse
|
34
|
Chalitsios CV, Ley H, Gao J, Turner MR, Thompson AG. Apolipoproteins, lipids, lipid-lowering drugs and risk of amyotrophic lateral sclerosis and frontotemporal dementia: a meta-analysis and Mendelian randomisation study. J Neurol 2024; 271:6956-6969. [PMID: 39230722 PMCID: PMC11447100 DOI: 10.1007/s00415-024-12665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have clinical, pathological and genetic overlapping. Lipid pathways are implicated in ALS. This study examined the effect of blood lipid levels on ALS, FTD risk, and survival in ALS. METHODS A systematic review and meta-analysis of high and low-density lipoprotein cholesterol (HDL-c and LDL-c), total cholesterol, triglycerides, apolipoproteins B and A1 levels with ALS was performed. Two-sample Mendelian randomisation (MR) analysis sought the causal effects of these exposures on ALS, FTD, and survival in ALS. The effect of lipid-lowering drugs was also examined using genetic proxies for targets of lipid-lowering medications. RESULTS Three cohort studies met the inclusion criteria for meta-analysis. Meta-analysis indicated an association between higher LDL-c (HRper mmol/L = 1.07, 95%CI:1.02-1.12;I 2 =18%) and lower HDL-c (HRper mmol/L = 0.83, 95%CI:0.74-0.94;I 2 =0%) with an increased risk of ALS. MR suggested causal effects of higher LDL-c (ORIVW = 1.085, 95%:CI 1.008-1.168, pFDR = 0.0406), total cholesterol (ORIVW = 1.081, 95%:CI 1.013-1.154, pFDR = 0.0458) and apolipoprotein B (ORIVW = 1.104, 95%:CI 1.041-1.171, pFDR = 0.0061) increasing ALS risk, and higher apolipoprotein B level increasing FTD risk (ORIVW = 1.424, 95%CI 1.072-1.829, pFDR = 0.0382). Reducing LDL-c through APOB inhibition was associated with lower ALS (ORIVW = 0.84, 95%CI 0.759-0.929, pFDR = 0.00275) and FTD risk (ORIVW = 0.581, 95%CI 0.387-0.874, pFDR = 0.0362). CONCLUSION These data support the influence of LDL-c and total cholesterol on ALS risk and apolipoprotein B on the risk of ALS and FTD. Potential APOB inhibition might decrease the risk of sporadic ALS and FTD. Further work in monogenic forms of ALS and FTD is necessary to determine whether blood lipids influence penetrance and phenotype.
Collapse
Affiliation(s)
- Christos V Chalitsios
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK
| | - Harriet Ley
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK
| | - Jiali Gao
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK.
| |
Collapse
|
35
|
Pang D, Yu Y, Zhao B, Huang J, Cui Y, Li T, Li C, Shang H. The Long Non-Coding RNA NR3C2-8:1 Promotes p53-Mediated Apoptosis through the miR-129-5p/USP10 Axis in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2024; 61:7466-7480. [PMID: 38388775 DOI: 10.1007/s12035-024-04059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is a form of apoptosis, but the mechanisms underlying this neuronal cell death remain unclear. Numerous studies demonstrate abnormally elevated and active p53 in the central nervous system of ALS patients. Activation of p53-regulated pro-apoptotic signaling pathways may trigger motor neuron death. We previously reported decreased expression of the long non-coding RNA NR3C2-8:1 (Lnc-NR3C) in leukocytes of ALS patients. Here, we show lnc-NR3C promotes p53-mediated cell death in ALS by upregulating USP10 and promoting lnc-NR3C-triggered p53 activation, resulting in cell death. Conversely, lnc-NR3C knockdown inhibited USP10-triggered p53 activation, thereby protecting cells against oxidative stress. As a competitive endogenous RNA, lnc-NR3C competitively binds miR-129-5p, regulating the usp10/p53 axis. Elucidating the link between Lnc-NR3C and the USP10/p53 axis in an ALS cell model reveals a role for long non-coding RNAs in activating apoptosis. This provides new therapeutic opportunities in ALS.
Collapse
Affiliation(s)
- Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Yujiao Yu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Tengfei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China.
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
36
|
O'Brien D, Shaw PJ. New developments in the diagnosis and management of motor neuron disease. Br Med Bull 2024:ldae010. [PMID: 39343443 DOI: 10.1093/bmb/ldae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Motor neuron disease (MND) is a devastating neurodegenerative disease characterized by progressive muscle weakness. SOURCES OF DATA PubMed, MEDLINE, and Cochrane databases were searched for articles to March 2024. Searches involved the terms 'motor neuron disease' or 'amyotrophic lateral sclerosis' and 'epidemiology', 'diagnosis', 'clinical', 'genetic', 'management', 'treatment', or 'trial'. AREAS OF AGREEMENT Evidence-based management involves riluzole, multidisciplinary care, provision of noninvasive ventilation and gastrostomy, and symptomatic treatments. Tofersen should be offered to treat SOD1-MND. AREAS OF CONTROVERSY Edaravone and Relyvrio are approved treatments in the USA, but insufficient evidence was found to support approval in the UK and Europe. GROWING POINTS The discovery of neurofilaments as MND biomarkers, growth of platform trials and development of novel therapies provide optimism for more powerful neuroprotective therapies. AREAS TIMELY FOR DEVELOPING RESEARCH Further work should focus on the elucidation of environmental causes of MND, gene-environment interactions, and advanced cellular models of disease.
Collapse
Affiliation(s)
- David O'Brien
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 285 Glossop Road, Sheffield S10 2HQ, United Kingdom
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 285 Glossop Road, Sheffield S10 2HQ, United Kingdom
| |
Collapse
|
37
|
Everett WH, Bucelli RC. Tofersen for SOD1 ALS. Neurodegener Dis Manag 2024; 14:149-160. [PMID: 39330700 PMCID: PMC11524200 DOI: 10.1080/17582024.2024.2402216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition affecting the motor system. The heterogenous nature of ALS complicates trial design. Genetic forms of ALS present an opportunity to intervene in a less heterogeneous population. ALS associated with gain of function mutations in SOD1 make 'knock-down' strategies an attractive therapeutic approach. Tofersen, an antisense oligonucleotide that reduces expression of SOD1 via RNAase mediated degradation of SOD1 mRNA, has shown robust effects on ALS biomarkers. While a Phase III trial of tofersen failed to meet its primary end point, open label extension data suggests that tofersen slows progression of SOD1 ALS.
Collapse
Affiliation(s)
- William H Everett
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO63110, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH43210, USA
| | - Robert C Bucelli
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO63110, USA
| |
Collapse
|
38
|
Li J, Gao C, Wang Q, Liu J, Xie Z, Zhao Y, Yu M, Zheng Y, Lv H, Zhang W, Yuan Y, Meng L, Deng J, Wang Z. Elevated serum circulating cell-free mitochondrial DNA in amyotrophic lateral sclerosis. Eur J Neurol 2024:e16493. [PMID: 39324867 DOI: 10.1111/ene.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND AND PURPOSE The substantial role of inflammation in amyotrophic lateral sclerosis (ALS) is gaining support from recent research. Studies indicate that circulating cell-free mitochondrial DNA (ccf-mtDNA) can activate the immune system and is associated with neurodegenerative diseases. This research was designed to quantify ccf-mtDNA levels in the serum of ALS patients. METHODS The medical records of ALS patients were reviewed. Serum ccf-mtDNA levels of patients with ALS (n = 62) and age-matched healthy controls (n = 46) were measured and compared. Additionally, serum interleukin-6 (IL-6) levels were measured using an enzyme-linked immunosorbent assay in 26 ALS patients. Correlations between variables were analyzed. RESULTS Serum ccf-mtDNA was notably higher in the patients with ALS. When stratified by genotype, the superoxide dismutase 1 (SOD1) mutation group showed the greatest increase in ccf-mtDNA levels relative to other ALS patients. Among all 108 individuals, a cut-off set at 1.1 × 105 mtDNA copies on a receiver-operating characteristic curve identified patients with ALS with 80.7% sensitivity and 50.0% specificity; the area under the curve was 0.69 (p < 0.001). Furthermore, serum ccf-mtDNA levels correlated negatively with the progression rate of ALS (ΔFS; rs = -0.26, p = 0.044), but not the ALSFRS-R score (rs = 0.06, p = 0.625). Importantly, the correlation between ccf-mtDNA and ΔFS was more pronounced in the SOD1 mutation group (rs = -0.62, p = 0.018). Lastly, a significant positive association was observed between serum ccf-mtDNA levels and IL-6 levels in ALS (r s= 0.41, p = 0.038). CONCLUSION Our study found increased serum ccf-mtDNA in ALS patients, suggesting a link to inflammatory processes and disease mechanism. Moreover, ccf-mtDNA could be an indicator for ALS progression, especially in those with the SOD1 mutation.
Collapse
Affiliation(s)
- Jieyu Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chao Gao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yawen Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
39
|
Abati E, Gagliardi D, Manini A, Del Bo R, Ronchi D, Meneri M, Beretta F, Sarno A, Rizzo F, Monfrini E, Di Fonzo A, Pellecchia MT, Brusati A, Silani V, Comi GP, Ratti A, Verde F, Ticozzi N, Corti S. Investigating the prevalence of MFN2 mutations in amyotrophic lateral sclerosis: insights from an Italian cohort. Brain Commun 2024; 6:fcae312. [PMID: 39315308 PMCID: PMC11417610 DOI: 10.1093/braincomms/fcae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
The MFN2 gene encodes mitofusin 2, a key protein for mitochondrial fusion, transport, maintenance and cell communication. MFN2 mutations are primarily linked to Charcot-Marie-Tooth disease type 2A. However, a few cases of amyotrophic lateral sclerosis and amyotrophic lateral sclerosis/frontotemporal dementia phenotypes with concomitant MFN2 mutations have been previously reported. This study examines the clinical and genetic characteristics of an Italian cohort of amyotrophic lateral sclerosis patients with rare, non-synonymous MFN2 mutations. A group of patients (n = 385) diagnosed with amyotrophic lateral sclerosis at our Neurology Units between 2008 and 2023 underwent comprehensive molecular testing, including MFN2. After excluding pathogenic mutations in the main amyotrophic lateral sclerosis-related genes (i.e. C9orf72, SOD1, FUS and TARDBP), MFN2 variants were classified based on the American College of Medical Genetics and Genomics guidelines, and demographic and clinical data of MFN2-mutated patients were retrieved. We identified 12 rare, heterozygous, non-synonymous MFN2 variants in 19 individuals (4.9%). Eight of these variants, carried by nine patients (2.3%), were either pathogenic, likely pathogenic or variants of unknown significance according to the American College of Medical Genetics and Genomics guidelines. Among these patients, four exhibited a familial pattern of inheritance. The observed phenotypes included classic and bulbar amyotrophic lateral sclerosis, amyotrophic lateral sclerosis/frontotemporal dementia, flail arm, flail leg and progressive muscular atrophy. Median survival after disease onset was extremely variable, ranging from less than 1 to 13 years. This study investigates the prevalence of rare, non-synonymous MFN2 variants within an Italian cohort of amyotrophic lateral sclerosis patients, who have been extensively investigated, enhancing our knowledge of the underlying phenotypic spectrum. Further research is needed to understand whether MFN2 mutations contribute to motor neuron disease and to what extent. Improving our knowledge regarding the genetic basis of amyotrophic lateral sclerosis is crucial both in a diagnostic and therapeutic perspective.
Collapse
Affiliation(s)
- Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Arianna Manini
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Megi Meneri
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Beretta
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Università degli Studi di Firenze, 50139 Firenze, Italy
| | - Annalisa Sarno
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Federica Rizzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Edoardo Monfrini
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, Università degli Studi di Salerno, 84081Salerno, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Vincenzo Silani
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122 Milan, Italy
| |
Collapse
|
40
|
Li L, Chen R, Zhang H, Li J, Huang H, Weng J, Tan H, Guo T, Wang M, Xie J. The epigenetic modification of DNA methylation in neurological diseases. Front Immunol 2024; 15:1401962. [PMID: 39376563 PMCID: PMC11456496 DOI: 10.3389/fimmu.2024.1401962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Methylation, a key epigenetic modification, is essential for regulating gene expression and protein function without altering the DNA sequence, contributing to various biological processes, including gene transcription, embryonic development, and cellular functions. Methylation encompasses DNA methylation, RNA methylation and histone modification. Recent research indicates that DNA methylation is vital for establishing and maintaining normal brain functions by modulating the high-order structure of DNA. Alterations in the patterns of DNA methylation can exert significant impacts on both gene expression and cellular function, playing a role in the development of numerous diseases, such as neurological disorders, cardiovascular diseases as well as cancer. Our current understanding of the etiology of neurological diseases emphasizes a multifaceted process that includes neurodegenerative, neuroinflammatory, and neurovascular events. Epigenetic modifications, especially DNA methylation, are fundamental in the control of gene expression and are critical in the onset and progression of neurological disorders. Furthermore, we comprehensively overview the role and mechanism of DNA methylation in in various biological processes and gene regulation in neurological diseases. Understanding the mechanisms and dynamics of DNA methylation in neural development can provide valuable insights into human biology and potentially lead to novel therapies for various neurological diseases.
Collapse
Affiliation(s)
- Linke Li
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Rui Chen
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hui Zhang
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hao Huang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Huan Tan
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Mengyuan Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery of Ministry of Education (MOE), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pediatrics, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
41
|
Okada K, Ito D, Morimoto S, Kato C, Oguma Y, Warita H, Suzuki N, Aoki M, Kuramoto J, Kobayashi R, Shinozaki M, Ikawa M, Nakahara J, Takahashi S, Nishimoto Y, Shibata S, Okano H. Multiple lines of evidence for disruption of nuclear lamina and nucleoporins in FUS amyotrophic lateral sclerosis. Brain 2024:awae224. [PMID: 39312484 DOI: 10.1093/brain/awae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/10/2024] [Accepted: 06/09/2024] [Indexed: 09/25/2024] Open
Abstract
Advanced pathological and genetic approaches have revealed that mutations in fused in sarcoma/translated in liposarcoma (FUS/TLS), which is pivotal for DNA repair, alternative splicing, translation and RNA transport, cause familial amyotrophic lateral sclerosis (ALS). The generation of suitable animal models for ALS is essential for understanding its pathogenesis and developing therapies. Therefore, we used CRISPR-Cas9 to generate FUS-ALS mutation in the non-classical nuclear localization signal (NLS), H517D (mouse position: H509D) and genome-edited mice. Fus WT/H509D mice showed progressive motor impairment (accelerating rotarod and DigiGait system) with age, which was associated with the loss of motor neurons and disruption of the nuclear lamina and nucleoporins and DNA damage in spinal cord motor neurons. We confirmed the validity of our model by showing that nuclear lamina and nucleoporin disruption were observed in lower motor neurons differentiated from patient-derived human induced pluripotent stem cells (hiPSC-LMNs) with FUS-H517D and in the post-mortem spinal cord of patients with ALS. RNA sequence analysis revealed that most nuclear lamina and nucleoporin-linking genes were significantly decreased in FUS-H517D hiPSC-LMNs. This evidence suggests that disruption of the nuclear lamina and nucleoporins is crucial for ALS pathomechanisms. Combined with patient-derived hiPSC-LMNs and autopsy samples, this mouse model might provide a more reliable understanding of ALS pathogenesis and might aid in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Memory Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yuki Oguma
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Yoshinori Nishimoto
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
- Laboratory for Marmoset Models of Neural Diseases, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| |
Collapse
|
42
|
Yang JL, Wu JY, Liu JJ, Zheng GQ. Herbal medicines for SOD1 G93A mice of amyotrophic lateral sclerosis: preclinical evidence and possible immunologic mechanism. Front Immunol 2024; 15:1433929. [PMID: 39355247 PMCID: PMC11442286 DOI: 10.3389/fimmu.2024.1433929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Currently, there is no cure or effective treatment for Amyotrophic Lateral Sclerosis (ALS). The mechanisms underlying ALS remain unclear, with immunological factors potentially playing a significant role. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), a systematic review of preclinical studies was conducted, searching seven databases including PubMed, covering literature from the inception of the databases to April 10, 2024. Methodological quality of the included literature was assessed using CAMARADES, while the risk of bias in the included studies was evaluated using SYRCLE's ROB tool. Review Manager 5.4.1 statistical software was used for meta-analysis of the outcomes. The scoping review followed the Joanna Briggs Institute Methodological Guidelines and reporting of this review followed the PRISMA-extension for Scoping Reviews (PRISMA -ScR) checklist to explore the immunological mechanisms of Herbal Medicine (HM) in treating ALS. This systematic review and meta-analysis involved 18 studies with a total of 443 animals. The studies scored between 4 to 8 for methodological quality and 3 to 7 for risk of bias, both summing up to 10.A remarkable effects of HM in ALS mice, including onset time(Standardized Mean Difference(SMD): 1.75, 95% Confidence Interval(CI) (1.14 ~ 2.36), Z = 5.60, P < 0.01), survival time(SMD = 1.42, 95% CI (0.79 ~ 2.04), Z = 4.44, P < 0.01), stride length(SMD=1.90, 95% CI (1.21 to 2.59), Z = 5.39, P < 0.01) and duration time (Mean Difference(MD)=6.79, 95% CI [-0.28, 13.87], Z=1.88, P =0.06), showing HM's certain efficiency in treating ALS mice. The scoping review ultimately included 35 articles for review. HMs may treat ALS through mechanisms such as combating oxidative stress, excitatory amino acid toxicity, and calcium cytotoxicity, understanding and exploring the mechanisms will bring hope to patients. Individual herbs and their formulations within HM address ALS through a variety of immune pathways, including safeguarding the blood-brain barrier, countering neuroinflammation, impeding complement system activation, mitigating natural killer cell toxicity, and regulating T cell-mediated immune pathways. The preclinical evidence supports the utilization of HM as a conventional treatment for ALS mice. Growing evidence indicates that HM may potentially delay neurological degeneration in ALS by activating diverse signaling pathways, especially immune pathways.
Collapse
Affiliation(s)
| | | | | | - Guo-Qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
43
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
44
|
Wang Y, Ju R, Jiang J, Mao L, Li X, Deng M. Concomitant presence of a novel ARPP21 variant and CNVs in Chinese familial amyotrophic lateral sclerosis-frontotemporal dementia patients. Neurol Sci 2024:10.1007/s10072-024-07759-3. [PMID: 39271636 DOI: 10.1007/s10072-024-07759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder marked by the degeneration of motor neurons and progressive muscle weakness. Heredity plays an important part in the pathogenesis of ALS. Recently, with the emergence of the oligogenic pathogenic mechanism in ALS and the ongoing discovery of new mutated genes and genomic variants, there is an emerging need for larger-scale and more comprehensive genetic screenings in higher resolution. In this study, we performed whole-genome sequencing (WGS) on 34 familial ALS probands lacking the most common disease-causing mutations to explore the genetic landscape of Chinese ALS patients further. Among them, we identified a novel ARPP21 c.1231G > A (p.Glu411Lys) variant and two copy number variations (CNVs) affecting the PFN1 and RBCK1 genes in a patient with ALS-frontotemporal dementia (FTD). This marks the first report of an ARPP21 variant in Chinese ALS-FTD patients, providing fresh evidence for the association between ARPP21 and ALS. Our findings also underscore the potential role of CNVs in ALS-FTD, suggesting that the cumulative effect of multiple rare variants may contribute to disease onset. Furthermore, compared to the averages in our cohort and the reported Chinese ALS population, this patient displayed a shorter survival time and more rapid disease progression, suggesting the possibility of an oligogenic mechanism in disease pathogenesis. Further research will contribute to a deeper understanding of the rare mutations and their interactions, thus advancing our understanding of the genetic mechanisms underlying ALS and ALS-FTD.
Collapse
Affiliation(s)
- Yiying Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Runqing Ju
- The Affiliated High School of Peking University Dalton Academy, Beijing, 100190, China
| | - Jingsi Jiang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Le Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaogang Li
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
45
|
Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Karsuntseva EK, Chadin AV, Reshetov IV, Stepanova OV, Chekhonin VP. The Use of Neurotrophic Factors as a Promising Strategy for the Treatment of Neurodegenerative Diseases (Review). Bull Exp Biol Med 2024:10.1007/s10517-024-06218-5. [PMID: 39266924 DOI: 10.1007/s10517-024-06218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 09/14/2024]
Abstract
The review considers the use of exogenous neurotrophic factors in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and others. This group of diseases is associated with the death of neurons and dysfunction of the nervous tissue. Currently, there is no effective therapy for neurodegenerative diseases, and their treatment remains a serious problem of modern medicine. A promising strategy is the use of exogenous neurotrophic factors. Targeted delivery of these factors to the nervous tissue can improve survival of neurons during the development of neurodegenerative processes and ensure neuroplasticity. There are methods of direct injection of neurotrophic factors into the nervous tissue, delivery using viral vectors, as well as the use of gene cell products. The effectiveness of these approaches has been studied in numerous experimental works and in a number of clinical trials. Further research in this area could provide the basis for the creation of an alternative treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- G A Fursa
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S S Andretsova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Shishkina
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A D Voronova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E K Karsuntseva
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Academy of Postgraduate Education, Federal Research and Clinical Center of Specialized Types of Health Care and Medical Technology of the Federal Medical and Biological Agency, Moscow, Russia
| | - O V Stepanova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
46
|
Wang R, Chen L, Zhang Y, Sun B, Liang M. Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis. Life (Basel) 2024; 14:1125. [PMID: 39337908 PMCID: PMC11433357 DOI: 10.3390/life14091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease. Current detection methods can only confirm the diagnosis at the onset of the disease, missing the critical window for early treatment. Recent studies using animal models have found that detecting changes in miRNA sites can predict the onset and severity of the disease in its early stages, facilitating early diagnosis and treatment. miRNAs show expression changes in motor neurons that connect the brain, spinal cord, and brain stem, as well as in the skeletal muscle in mouse models of ALS. Clinically, expression changes in some miRNAs in patients align with those in mouse models, such as the upregulation of miR-29b in the brain and the upregulation of miR-206 in the skeletal muscle. This study provides an overview of some miRNA study findings in humans as well as in animal models, including SOD1, FUS, TDP-43, and C9orf72 transgenic mice and wobbler mice, highlighting the potential of miRNAs as diagnostic markers for ALS. miR-21 and miR-206 are aberrantly expressed in both mouse model and patient samples, positioning them as key potential diagnostic markers in ALS. Additionally, miR-29a, miR-29b, miR-181a, and miR-142-3p have shown aberrant expression in both types of samples and show promise as clinical targets for ALS. Finally, miR-1197 and miR-486b-5p have been recently identified as aberrantly expressed miRNAs in mouse models for ALS, although further studies are needed to determine their viability as diagnostic targets.
Collapse
Affiliation(s)
- Ruili Wang
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | - Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | | | | | | |
Collapse
|
47
|
Gianferrari G, Cuoghi Costantini R, Crippa V, Carra S, Bonetto V, Pansarasa O, Cereda C, Zucchi E, Martinelli I, Simonini C, Vicini R, Fini N, Trojsi F, Passaniti C, Ticozzi N, Doretti A, Diamanti L, Fiamingo G, Conte A, Dalla Bella E, D'Errico E, Scarian E, Pasetto L, Antoniani F, Galli V, Casarotto E, D'Amico R, Poletti A, Mandrioli J. Colchicine treatment in amyotrophic lateral sclerosis: safety, biological and clinical effects in a randomized clinical trial. Brain Commun 2024; 6:fcae304. [PMID: 39291166 PMCID: PMC11406549 DOI: 10.1093/braincomms/fcae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
In preclinical studies, the anti-inflammatory drug colchicine, which has never been tested in amyotrophic lateral sclerosis, enhanced the expression of autophagy factors and inhibited accumulation of transactive response DNA-binding protein 43 kDa, a known histopathological marker of amyotrophic lateral sclerosis. This multicentre, randomized, double-blind trial enrolled patients with probable or definite amyotrophic lateral sclerosis who experienced symptom onset within the past 18 months. Patients were randomly assigned in a 1:1:1 ratio to receive colchicine at a dose of 0.005 mg/kg/day, 0.01 mg/kg/day or placebo for a treatment period of 30 weeks. The number of positive responders, defined as patients with a decrease lesser than 4 points in the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised total score during the 30-week treatment period, was the primary outcome. Disease progression, survival, safety and quality of life at the end of treatment were the secondary clinical outcomes. Secondary biological outcomes included changes from baseline to treatment end of stress granule and autophagy responses, transactive response DNA-binding protein 43 kDa, neurofilament accumulation and extracellular vesicle secretion, between the colchicine and placebo groups. Fifty-four patients were randomized to receive colchicine (n = 18 for each colchicine arm) or placebo (n = 18). The number of positive responders did not differ between the placebo and colchicine groups: 2 out of 18 patients (11.1%) in the placebo group, 5 out of 18 patients (27.8%) in the colchicine 0.005 mg/kg/day group (odds ratio = 3.1, 97.5% confidence interval 0.4-37.2, P = 0.22) and 1 out of 18 patients (5.6%) in the colchicine 0.01 mg/kg/day group (odds ratio = 0.5, 97.5% confidence interval 0.01-10.2, P = 0.55). During treatment, a slower Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised decline was detected in patients receiving colchicine 0.005 mg/kg/day (mean difference = 0.53, 97.5% confidence interval 0.07-0.99, P = 0.011). Eight patients experienced adverse events in placebo arm (44.4%), three in colchicine 0.005 mg/kg/day (16.7%) and seven in colchicine 0.01 mg/kg/day arm (35.9%). The differences in adverse events were not statistically significant. In conclusion, colchicine treatment was safe for amyotrophic lateral sclerosis patients. Further studies are required to better understand mechanisms of action and clinical effects of colchicine in this condition.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
| | - Riccardo Cuoghi Costantini
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena 41121, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20122, Italy
- Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan 20122, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Valentina Bonetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare diseases, 'V. Buzzi' Children's Hospital, Milan 20154, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
- Neurosciences PhD Program, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
| | - Roberto Vicini
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena 41121, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, ALS Center, Università degli Studi della Campania L. Vanvitelli, Naples 80138, Italy
| | - Carla Passaniti
- Department of Advanced Medical and Surgical Sciences, ALS Center, Università degli Studi della Campania L. Vanvitelli, Naples 80138, Italy
| | - Nicola Ticozzi
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan 20122, Italy
| | - Alberto Doretti
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Luca Diamanti
- Neuroncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Giuseppe Fiamingo
- Neuroncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Amelia Conte
- Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Adult NEMO Clinical Center, Unit of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Eustachio D'Errico
- Department of Basic Medical Sciences, ALS Center, Neurosciences and Sense Organs, University of Bari, Bari 70124, Italy
| | - Eveljn Scarian
- Cellular Model and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Laura Pasetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Francesco Antoniani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Veronica Galli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20122, Italy
- Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan 20122, Italy
| | - Roberto D'Amico
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena 41121, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena 41124, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari 'Rodolfo Paoletti', Università degli Studi di Milano, Milan 20122, Italy
- Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan 20122, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena 41126, Italy
| |
Collapse
|
48
|
Wu T, Hu Y, Tang LV. Gene therapy for polygenic or complex diseases. Biomark Res 2024; 12:99. [PMID: 39232780 PMCID: PMC11375922 DOI: 10.1186/s40364-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Gene therapy utilizes nucleic acid drugs to treat diseases, encompassing gene supplementation, gene replacement, gene silencing, and gene editing. It represents a distinct therapeutic approach from traditional medications and introduces novel strategies for genetic disorders. Over the past two decades, significant advancements have been made in the field of gene therapy, leading to the approval of various gene therapy drugs. Gene therapy was initially employed for treating genetic diseases and cancers, particularly monogenic conditions classified as orphan diseases due to their low prevalence rates; however, polygenic or complex diseases exhibit higher incidence rates within populations. Extensive research on the etiology of polygenic diseases has unveiled new therapeutic targets that offer fresh opportunities for their treatment. Building upon the progress achieved in gene therapy for monogenic diseases and cancers, extending its application to polygenic or complex diseases would enable targeting a broader range of patient populations. This review aims to discuss the strategies of gene therapy, methods of gene editing (mainly CRISPR-CAS9), and carriers utilized in gene therapy, and highlight the applications of gene therapy in polygenic or complex diseases focused on applications that have either entered clinical stages or are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| | - Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| |
Collapse
|
49
|
Chu HS, Oh J. Family Caregivers' Experiences of People With Amyotrophic Lateral Sclerosis Undergoing Gastrostomy Tube Feeding. J Neurosci Nurs 2024:01376517-990000000-00109. [PMID: 39231437 DOI: 10.1097/jnn.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
ABSTRACT INTRODUCTION: In amyotrophic lateral sclerosis (ALS) patients with impaired swallowing function, gastrostomy tube (G-tube) placement is recommended, but significantly increases the caregiving burden on families. This study aimed to describe the experiences of family caregivers of patients with ALS receiving home enteral nutrition through a G-tube. METHOD: Using purposive sampling, 8 family caregivers participated in the study. Data collection was conducted between February 2021 and October 2022 at a university hospital in Seoul, Korea. Semistructured face-to-face interviews were used to collect data until saturation. Data were analyzed using Krippendorff's content analysis approach. RESULTS: Qualitative analysis of the data revealed 3 main themes regarding caregiving. The emerging themes included psychological distress, unmet practical needs, and the struggle to provide care. CONCLUSION: After a G-tube placement, family caregivers experience various emotional stresses and have numerous unmet practical needs. Healthcare professionals caring for people with ALS receiving enteral nutrition should provide a tailored support program that addresses the specific needs of these family caregivers.
Collapse
|
50
|
Petri S. Targeting C9orf72 in people with ALS. Lancet Neurol 2024; 23:850-852. [PMID: 39059406 DOI: 10.1016/s1474-4422(24)00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|