1
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
2
|
Kim JE, Kim TR, Song HJ, Roh YJ, Seol A, Park KH, Park ES, Min KS, Kim KB, Kwack SJ, Jung YS, Hwang DY. Identification of acrolein as a novel diagnostic odor biomarker for 1,2,3-trichloropropane-induced hepatotoxicity in Sprague Dawley rats. Toxicol Res 2024; 40:639-651. [PMID: 39345751 PMCID: PMC11436700 DOI: 10.1007/s43188-024-00253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 10/01/2024] Open
Abstract
Body odor is considered a diagnostic indicator of various infectious and chronic diseases. But, few studies have examined the odor markers for various toxic effects in the mammalian system. This study attempted to identify the novel diagnostic odor biomarkers for chemical-induced hepatotoxicity in animals. The changes in the concentration of odors were analyzed in the urine of Sprague Dawley (SD) rats treated with two dosages (100 or 200 mg/kg) of 1,2,3-trichloropropane (TCP) using gas chromatography-mass spectrometry (GC-MS). The TCP treatment induced significant toxicity, including a decrease in body weight, an increase in serum biochemical factors, and histopathological changes in the liver of SD rats. During this hepatotoxicity, the concentrations of six odors (ethyl alcohol, acrolein (2-propenal), methanesulfonyl chloride, methyl ethyl ketone, cyclotrisiloxane, and 2-heptanone) in urine changed significantly after the TCP treatment. Among them, acrolein, an acrid and pungent compound, showed the highest rate of increase in the TCP-treated group compared to the Vehicle-treated group. In addition, this increase in acrolein was accompanied by enhanced spermine oxidase (SMOX) expression, an acrolein metabolic enzyme, and the increased level of IL-6 transcription as a regulator factor that induces SMOX production. The correlation between acrolein and other parameters was conformed using correlagram analyses. These results provide scientific evidence that acrolein have potential as a novel diagnostic odor biomarker for TCP-induced hepatotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00253-0.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Tae Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Ki Ho Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Eun Seo Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Kyeong Seon Min
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, 31116 Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, 51140 Republic of Korea
| | - Young Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| |
Collapse
|
3
|
Suzukawa M, Ohta K, Sugimoto M, Ohshima N, Kobayashi N, Tashimo H, Tanimoto Y, Itano J, Kimura G, Takata S, Nakano T, Yamashita T, Ikegame S, Hyodo K, Abe M, Chibana K, Kamide Y, Sasaki K, Hashimoto H. Identification of exhaled volatile organic compounds that characterize asthma phenotypes: A J-VOCSA study. Allergol Int 2024; 73:524-531. [PMID: 38658257 DOI: 10.1016/j.alit.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Asthma is characterized by phenotypes of different clinical, demographic, and pathological characteristics. Identifying the profile of exhaled volatile organic compounds (VOCs) in asthma phenotypes may facilitate establishing biomarkers and understanding asthma background pathogenesis. This study aimed to identify exhaled VOCs that characterize severe asthma phenotypes among patients with asthma. METHODS This was a multicenter cross-sectional study of patients with severe asthma in Japan. Clinical data were obtained from medical records, and questionnaires were collected. Exhaled breath was sampled and subjected to thermal desorption gas chromatography-mass spectrometry (GC/MS). RESULTS Using the decision tree established in the previous nationwide asthma cohort study, 245 patients with asthma were divided into five phenotypes and subjected to exhaled VOC analysis with 50 healthy controls (HCs). GC/MS detected 243 VOCs in exhaled breath samples, and 142 frequently detected VOCs (50% of all samples) were used for statistical analyses. Cluster analysis assigning the groups with similar VOC profile patterns showed the highest similarities between phenotypes 3 and 4 (early-onset asthma phenotypes), followed by the similarities between phenotypes 1 and 2 (late-onset asthma phenotypes). Comparisons between phenotypes 1-5 and HC revealed 19 VOCs, in which only methanesulfonic anhydride showed p < 0.05 adjusted by false discovery rate (FDR). Comparison of these phenotypes yielded several VOCs showing different trends (p < 0.05); however, no VOCs showed p < 0.05 adjusted by FDR. CONCLUSIONS Exhaled VOC profiles may be useful for distinguishing asthma and asthma phenotypes; however, these findings need to be validated, and their pathological roles should be clarified.
Collapse
Affiliation(s)
- Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, Tokyo, Japan.
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan; Human Metabolome Technologies, Inc., Yamagata, Japan
| | - Nobuharu Ohshima
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Nobuyuki Kobayashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Tashimo
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Yasushi Tanimoto
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Junko Itano
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Goro Kimura
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Shohei Takata
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Takako Nakano
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Takafumi Yamashita
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Satoshi Ikegame
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Kentaro Hyodo
- National Hospital Organization Ibarakihigashi National Hospital, Ibaraki, Japan
| | - Masahiro Abe
- National Hospital Organization Ehime Medical Center, Ehime, Japan
| | - Kenji Chibana
- National Hospital Organization Okinawa National Hospital, Okinawa, Japan
| | - Yosuke Kamide
- National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Kazunori Sasaki
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan; Human Metabolome Technologies, Inc., Yamagata, Japan
| | - Hiroya Hashimoto
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
4
|
Parnas M, McLane-Svoboda AK, Cox E, McLane-Svoboda SB, Sanchez SW, Farnum A, Tundo A, Lefevre N, Miller S, Neeb E, Contag CH, Saha D. Precision detection of select human lung cancer biomarkers and cell lines using honeybee olfactory neural circuitry as a novel gas sensor. Biosens Bioelectron 2024; 261:116466. [PMID: 38850736 DOI: 10.1016/j.bios.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Human breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion. We also validated this brain-based sensing technology by detecting human non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines using the 'smell' of the cell cultures. Different lung cancer biomarkers evoked distinct spiking response dynamics in the honeybee antennal lobe neurons indicating that those neurons encoded biomarker-specific information. By investigating lung cancer biomarker-evoked population neuronal responses from the honeybee antennal lobe, we classified individual human lung cancer biomarkers successfully (88% success rate). When we mixed six lung cancer biomarkers at different concentrations to create 'synthetic lung cancer' vs. 'synthetic healthy' human breath, honeybee population neuronal responses were able to classify those complex breath mixtures reliably with exceedingly high accuracy (93-100% success rate with a leave-one-trial-out classification method). Finally, we employed this sensor to detect human NSCLC and SCLC cell lines and we demonstrated that honeybee brain olfactory neurons could distinguish between lung cancer vs. healthy cell lines and could differentiate between different NSCLC and SCLC cell lines successfully (82% classification success rate). These results indicate that the honeybee olfactory system can be used as a sensitive biological gas sensor to detect human lung cancer.
Collapse
Affiliation(s)
- Michael Parnas
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Autumn K McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Elyssa Cox
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Summer B McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Simon W Sanchez
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Alexander Farnum
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anthony Tundo
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noël Lefevre
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sydney Miller
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Neeb
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Brascia D, De Iaco G, Panza T, Signore F, Carleo G, Zang W, Sharma R, Riahi P, Scott J, Fan X, Marulli G. Breathomics: may it become an affordable, new tool for early diagnosis of non-small-cell lung cancer? An exploratory study on a cohort of 60 patients. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 39:ivae149. [PMID: 39226187 PMCID: PMC11379464 DOI: 10.1093/icvts/ivae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES Analysis of breath, specifically the patterns of volatile organic compounds (VOCs), has shown the potential to distinguish between patients with lung cancer (LC) and healthy individuals (HC). However, the current technology relies on complex, expensive and low throughput analytical platforms, which provide an offline response, making it unsuitable for mass screening. A new portable device has been developed to enable fast and on-site LC diagnosis, and its reliability is being tested. METHODS Breath samples were collected from patients with histologically proven non-small-cell lung cancer (NSCLC) and healthy controls using Tedlar bags and a Nafion filter attached to a one-way mouthpiece. These samples were then analysed using an automated micro portable gas chromatography device that was developed in-house. The device consisted of a thermal desorption tube, thermal injector, separation column, photoionization detector, as well as other accessories such as pumps, valves and a helium cartridge. The resulting chromatograms were analysed using both chemometrics and machine learning techniques. RESULTS Thirty NSCLC patients and 30 HC entered the study. After a training set (20 NSCLC and 20 HC) and a testing set (10 NSCLC and 10 HC), an overall specificity of 83.3%, a sensitivity of 86.7% and an accuracy of 85.0% to identify NSCLC patients were found based on 3 VOCs. CONCLUSIONS These results are a significant step towards creating a low-cost, user-friendly and accessible tool for rapid on-site LC screening. CLINICAL REGISTRATION NUMBER ClinicalTrials.gov Identifier: NCT06034730.
Collapse
Affiliation(s)
- Debora Brascia
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giulia De Iaco
- Thoracic Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area, University Hospital of Bari, Bari, Italy
| | - Teodora Panza
- Thoracic Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area, University Hospital of Bari, Bari, Italy
| | - Francesca Signore
- Thoracic Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area, University Hospital of Bari, Bari, Italy
| | - Graziana Carleo
- Thoracic Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area, University Hospital of Bari, Bari, Italy
| | - Wenzhe Zang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ruchi Sharma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Riahi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jared Scott
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Giuseppe Marulli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
6
|
Fan X, Zhong R, Liang H, Zhong Q, Huang H, He J, Chen Y, Wang Z, Xie S, Jiang Y, Lin Y, Chen S, Liang W, He J. Exhaled VOC detection in lung cancer screening: a comprehensive meta-analysis. BMC Cancer 2024; 24:775. [PMID: 38937687 PMCID: PMC11212189 DOI: 10.1186/s12885-024-12537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Lung cancer (LC), characterized by high incidence and mortality rates, presents a significant challenge in oncology. Despite advancements in treatments, early detection remains crucial for improving patient outcomes. The accuracy of screening for LC by detecting volatile organic compounds (VOCs) in exhaled breath remains to be determined. METHODS Our systematic review, following PRISMA guidelines and analyzing data from 25 studies up to October 1, 2023, evaluates the effectiveness of different techniques in detecting VOCs. We registered the review protocol with PROSPERO and performed a systematic search in PubMed, EMBASE and Web of Science. Reviewers screened the studies' titles/abstracts and full texts, and used QUADAS-2 tool for quality assessment. Then performed meta-analysis by adopting a bivariate model for sensitivity and specificity. RESULTS This study explores the potential of VOCs in exhaled breath as biomarkers for LC screening, offering a non-invasive alternative to traditional methods. In all studies, exhaled VOCs discriminated LC from controls. The meta-analysis indicates an integrated sensitivity and specificity of 85% and 86%, respectively, with an AUC of 0.93 for VOC detection. We also conducted a systematic analysis of the source of the substance with the highest frequency of occurrence in the tested compounds. Despite the promising results, variability in study quality and methodological challenges highlight the need for further research. CONCLUSION This review emphasizes the potential of VOC analysis as a cost-effective, non-invasive screening tool for early LC detection, which could significantly improve patient management and survival rates.
Collapse
Affiliation(s)
- Xianzhe Fan
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Qiu Zhong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Hongtai Huang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Juan He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yang Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zixun Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Songlin Xie
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yu Jiang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuechun Lin
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Sitong Chen
- ChromX Health Co., Ltd, Guangzhou, Guangdong, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
7
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
8
|
Zhou M, Wang Q, Lu X, Zhang P, Yang R, Chen Y, Xia J, Chen D. Exhaled breath and urinary volatile organic compounds (VOCs) for cancer diagnoses, and microbial-related VOC metabolic pathway analysis: a systematic review and meta-analysis. Int J Surg 2024; 110:1755-1769. [PMID: 38484261 PMCID: PMC10942174 DOI: 10.1097/js9.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND The gradual evolution of the detection and quantification of volatile organic compounds (VOCs) has been instrumental in cancer diagnosis. The primary objective of this study was to assess the diagnostic potential of exhaled breath and urinary VOCs in cancer detection. As VOCs are indicative of tumor and human metabolism, our work also sought to investigate the metabolic pathways linked to the development of cancerous tumors. MATERIALS AND METHODS An electronic search was performed in the PubMed database. Original studies on VOCs within exhaled breath and urine for cancer detection with a control group were included. A meta-analysis was conducted using a bivariate model to assess the sensitivity and specificity of the VOCs for cancer detection. Fagan's nomogram was designed to leverage the findings from our diagnostic analysis for the purpose of estimating the likelihood of cancer in patients. Ultimately, MetOrigin was employed to conduct an analysis of the metabolic pathways associated with VOCs in relation to both human and/or microbiota. RESULTS The pooled sensitivity, specificity and the area under the curve for cancer screening utilizing exhaled breath and urinary VOCs were determined to be 0.89, 0.88, and 0.95, respectively. A pretest probability of 51% can be considered as the threshold for diagnosing cancers with VOCs. As the estimated pretest probability of cancer exceeds 51%, it becomes more appropriate to emphasize the 'ruling in' approach. Conversely, when the estimated pretest probability of cancer falls below 51%, it is more suitable to emphasize the 'ruling out' approach. A total of 14, 14, 6, and 7 microbiota-related VOCs were identified in relation to lung, colorectal, breast, and liver cancers, respectively. The enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in the aforementioned tumor types. CONCLUSIONS The analysis of exhaled breath and urinary VOCs showed promise for cancer screening. In addition, the enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in four tumor types, namely lung, colorectum, breast and liver. These findings hold significant implications for the prospective clinical application of multiomics correlation in disease management and the exploration of potential therapeutic targets.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Qinghua Wang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Xinyi Lu
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| |
Collapse
|
9
|
Sasiene ZJ, LeBrun ES, Schaller E, Mach PM, Taylor R, Candelaria L, Glaros TG, Baca J, McBride EM. Real-time breath analysis towards a healthy human breath profile. J Breath Res 2024; 18:026003. [PMID: 38198707 DOI: 10.1088/1752-7163/ad1cf1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (p< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.
Collapse
Affiliation(s)
- Zachary Joseph Sasiene
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Erick Scott LeBrun
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Eric Schaller
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Phillip Michael Mach
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Robert Taylor
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Lionel Candelaria
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Trevor Griffiths Glaros
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Justin Baca
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Ethan Matthew McBride
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| |
Collapse
|
10
|
Xing Q, Zhang L, Liu H, Zhu C, Yao M. Exhaled VOC Biomarkers from Rats Injected with PMs from Thirty-One Major Cities in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20510-20520. [PMID: 38039547 DOI: 10.1021/acs.est.3c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Particulate matter (PMs) of different origins can cause diverse health effects. Here, a homemade box was used to facilitate real-time measurements of breath-borne volatile organic compounds (VOCs) by gas chromatography-ion mobility spectrometry. We have tracked exhaled VOC changes in 228 Wistar rats that were injected with water-soluble PM suspension filtrates (after 0.45 μm) from 31 China cities for 1 h to up to 1-6 days during the experiments. Rats exposed to the filtrates exhibited significant changes in breath-borne VOCs within hours, featuring dynamic fluctuations in the levels of acetone, butan-2-one, heptan-2-one-M, acetic acid-M, and ethanol. Subsequently, on the fifth to sixth day after the injection, there was a notable increase in the proportion of aldehydes (including hexanal-M, hexanal-D, pentanal, heptanal-M, and (E)-2-hexenal). The 10 dynamic VOC fingerprint patterns mentioned earlier showcased the capability to indirectly differentiate urban PM toxicity and categorize the 31 cities into four distinct groups based on their health effects. This study provides valuable insights into the mechanisms of exhaled VOCs and underscores their critical role as biomarkers for differentiating the toxicity of different PMs and detecting the early signs of potential diseases. The results from this work also provide a scientific basis for city-specific air pollution control and policy development.
Collapse
Affiliation(s)
- Qisong Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huaying Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyu Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Le T, Priefer R. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta 2023; 265:124767. [PMID: 37327663 DOI: 10.1016/j.talanta.2023.124767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
Although there are new approaches in both cancer treatment and diagnosis, overall mortality is a major concern. New technologies have attempted to look at breath volatile organic compounds (VOCs) detection to diagnose cancer. Gas Chromatography and Mass Spectrometry (GC - MS) have remained the gold standard of VOC analysis for decades, but it has limitations in differentiating VOCs between cancer subtypes. To increase efficacy and accuracy, new methods to analyze these breath VOCs have been introduced, such as Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry (SPME/GC-MS), Selected Ion Flow Tube - Mass Spectrometry (SIFT-MS), Proton Transfer Reaction - Mass Spectrometry (PRT-MS), Ion Mobility Spectrometry (IMS), and Colorimetric Sensors. This article highlights new technologies that have been studied and applied in the detection and quantification of breath VOCs for possible cancer diagnoses.
Collapse
Affiliation(s)
- Tien Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States.
| |
Collapse
|
12
|
Cao H, Shi H, Tang J, Xu Y, Ling Y, Lu X, Yang Y, Zhang X, Wang H. Ultrasensitive discrimination of volatile organic compounds using a microfluidic silicon SERS artificial intelligence chip. iScience 2023; 26:107821. [PMID: 37731613 PMCID: PMC10507157 DOI: 10.1016/j.isci.2023.107821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Current gaseous sensors hardly discriminate trace volatile organic compounds at the ppt level. Herein, we present an integrated platform for simultaneously enabling rapid preconcentration, reliable surface-enhanced Raman scattering, (SERS) detection and automatic identification of trace aldehydes at the ppt level. For rapid preconcentration, we demonstrate that the nozzle-like microfluidic concentrator allows the enrichment of rare gaseous analytes by five-fold in only 0.01 ms. The enriched gas is subsequently captured and detected by an integrated silicon-based SERS chip, which is made of zeolitic imidazolate framework-8 coated silver nanoparticles grown in situ on a silicon wafer. After SERS measurement, a fully connected deep neural network is built to extract faint features in the spectral dataset and discriminate volatile organic compound classes. We demonstrate that six kinds of gaseous aldehydes at 100 ppt could be detected and classified with an identification accuracy of ∼80.9% by using this platform.
Collapse
Affiliation(s)
- Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huayi Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiaojie Zhang
- Department of Experimental Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
13
|
Banga I, Paul A, Poudyal DC, Muthukumar S, Prasad S. Recent Advances in Gas Detection Methodologies with a Special Focus on Environmental Sensing and Health Monitoring Applications─A Critical Review. ACS Sens 2023; 8:3307-3319. [PMID: 37540230 DOI: 10.1021/acssensors.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
With the expansion of the Internet-of-Things (IoT), the use of gas sensors in the field of wearable technology, smart devices, and smart homes has increased manifold. These gas sensors have two key applications─one is the detection of gases present in the environment and the other is the detection of Volatile Organic Compounds (VOCs) that are found in the breath. In this review, we focus systematically on the advancements in the field of various spectroscopic methods such as mass spectrometry-based analysis and point-of-care approach to detect VOCs and gases for environmental monitoring and disease diagnosis. Additionally, we highlight the development of smart sensors that work on the principle of electrochemical detection and provide examples of the same through an extensive literature review. At the end of this review, we highlight various challenges and future perspectives.
Collapse
Affiliation(s)
- Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Anirban Paul
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Durgasha C Poudyal
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- EnLiSense LLC, 1813 Audubon Pondway, Allen, Texas 75013, United States
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- EnLiSense LLC, 1813 Audubon Pondway, Allen, Texas 75013, United States
| |
Collapse
|
14
|
Xu J, Xu Y, Li J, Zhao J, Jian X, Xu J, Gao Z, Song YY. Construction of High-Active SERS Cavities in a TiO 2 Nanochannels-Based Membrane: A Selective Device for Identifying Volatile Aldehyde Biomarkers. ACS Sens 2023; 8:3487-3497. [PMID: 37643286 DOI: 10.1021/acssensors.3c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The accurate, sensitive, and selective on-site screening of volatile aldehyde biomarkers for lung cancer is of utmost significance for preclinical cancer diagnosis and treatment. Applying surface-enhanced Raman scattering (SERS) for gas sensing remains difficult due to the small Raman cross section of most gaseous molecules and interference from other components in exhaled breath. Using an Au asymmetrically coated TiO2 nanochannel membrane (Au/TiO2 NM) as the substrate, a ZIF-8-covered Au/TiO2 NM SERS sensing substrate is designed for the detection of exhaled volatile organic compounds (VOCs). Au/TiO2 NM provides uniformly amplified Raman signals for trace measurements in this design. Importantly, the interfacial nanocavities between Au nanoparticles (NPs) and metal-organic frameworks (MOFs) served as gaseous confinement cavities, which is the key to enhancing the capture and adsorption ability toward gaseous analytes. Both ends of the membrane are left open, allowing gas molecules to pass through. This facilitates the diffusion of gaseous molecules and efficient capture of the target analyte. Using benzaldehyde as a typical gas marker model of lung cancer, the Schiff base reaction with a Raman-active probe molecule 4-aminothiophene (4-ATP) pregrafted on Au NPs enabled trace and multicomponent detection. Moreover, the combination of machine learning (ML) and Raman spectroscopy eliminates subjective assessments of gaseous aldehyde species with the use of a single feature peak, allowing for more accurate identification. This membrane sensing device offers a promising design for the development of a desktop SERS analysis system for lung cancer point-of-care testing (POCT).
Collapse
Affiliation(s)
- Jing Xu
- College of Science, Northeastern University, Shenyang 110819, China
| | - Ying Xu
- College of Science, Northeastern University, Shenyang 110819, China
| | - Junhan Li
- College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Xiaoxia Jian
- College of Science, Northeastern University, Shenyang 110819, China
| | - Jingwen Xu
- College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
15
|
Azorín C, López-Juan AL, Aparisi F, Benedé JL, Chisvert A. Determination of hexanal and heptanal in saliva samples by an adapted magnetic headspace adsorptive microextraction for diagnosis of lung cancer. Anal Chim Acta 2023; 1271:341435. [PMID: 37328243 DOI: 10.1016/j.aca.2023.341435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023]
Abstract
In this work, an analytical method for the determination of two endogenous aldehydes (hexanal and heptanal) as lung cancer biomarkers in saliva samples is presented for the first time. The method is based on a modification of magnetic headspace adsorptive microextraction (M-HS-AME) followed by gas chromatography coupled to mass spectrometry (GC-MS). For this purpose, an external magnetic field generated by a neodymium magnet is used to hold the magnetic sorbent (i.e., CoFe2O4 magnetic nanoparticles embedded into a reversed-phase polymer) in the headspace of a microtube to extract the volatilized aldehydes. Subsequently, the analytes are desorbed in the appropriate solvent and the extract is injected into the GC-MS system for separation and determination. Under the optimized conditions, the method was validated and showed good analytical features in terms of linearity (at least up to 50 ng mL-1), limits of detection (0.22 and 0.26 ng mL-1 for hexanal and heptanal, respectively), and repeatability (RSD ≤12%). This new approach was successfully applied to saliva samples from healthy volunteers and those with lung cancer, obtaining notably differences between both groups. These results reveal the prospect of the method as potential diagnostic tool for lung cancer by saliva analysis. This work contributes to the Analytical Chemistry field presenting a double novelty: on the one hand, the use of M-HS-AME in bioanalysis is unprecedentedly proposed, thus expanding the analytical potential of this technique, and, on the other hand, the determination of hexanal and heptanal is carried out in saliva samples for the first time.
Collapse
Affiliation(s)
- Cristian Azorín
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Andreu L López-Juan
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Francisco Aparisi
- Medical Oncology service. Biomarkers and Precision Medicine Unit (UBYMP). La Fe Hospital. La Fe Health Research Institute (IISLAFE), Valencia, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain.
| |
Collapse
|
16
|
Huang W, Ding Q, Wang H, Wu Z, Luo Y, Shi W, Yang L, Liang Y, Liu C, Wu J. Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat Commun 2023; 14:5221. [PMID: 37633989 PMCID: PMC10460451 DOI: 10.1038/s41467-023-40953-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
Timely and remote biomarker detection is highly desired in personalized medicine and health protection but presents great challenges in the devices reported so far. Here, we present a cost-effective, flexible and self-powered sensing device for H2S biomarker analysis in various application scenarios based on the structure of galvanic cells. The sensing mechanism is attributed to the change in electrode potential resulting from the chemical adsorption of gas molecules on the electrode surfaces. Intrinsically stretchable organohydrogels are used as solid-state electrolytes to enable stable and long-term operation of devices under stretching deformation or in various environments. The resulting open-circuit sensing device exhibits high sensitivity, low detection limit, and excellent selectivity for H2S. Its application in the non-invasive halitosis diagnosis and identification of meat spoilage is demonstrated, emerging great commercial value in portable medical electronics and food security. A wireless sensory system has also been developed for remote H2S monitoring with the participation of Bluetooth and cloud technologies. This work breaks through the shortcomings in the traditional chemiresistive sensors, offering a direction and theoretical foundation for designing wearable sensors catering to other stimulus detection requirements.
Collapse
Affiliation(s)
- Wenxi Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Yujie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
17
|
Vanstraelen S, Jones DR, Rocco G. Breathprinting analysis and biomimetic sensor technology to detect lung cancer. J Thorac Cardiovasc Surg 2023; 166:357-361.e1. [PMID: 36997463 DOI: 10.1016/j.jtcvs.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Affiliation(s)
- Stijn Vanstraelen
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
18
|
Abstract
Screening with low-dose computed tomography has been shown to decrease lung cancer mortality. However, the issues of low detection rates and false positive results remain, highlighting the need for adjunctive tools in lung cancer screening. To this end, researchers have investigated easily applicable, minimally invasive tests with high validity. We herein review some of the more promising novel markers utilizing plasma, sputum, and airway samples.
Collapse
Affiliation(s)
- Ju Ae Park
- Department of General Surgery, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Kei Suzuki
- Inova Thoracic Surgery, Schar Cancer Institute, 8081 Innovation Park Drive, Fairfax, VA 22031, USA.
| |
Collapse
|
19
|
Lv JJ, Li XY, Shen YC, You JX, Wen MZ, Wang JB, Yang XT. Assessing volatile organic compounds exposure and chronic obstructive pulmonary diseases in US adults. Front Public Health 2023; 11:1210136. [PMID: 37475768 PMCID: PMC10354632 DOI: 10.3389/fpubh.2023.1210136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Background Volatile organic compounds (VOCs) are a large group of chemicals widely used in People's Daily life. There is increasing evidence of the cumulative toxicity of VOCs. However, the association between VOCs and the risk of COPD has not been reported. Objective We comprehensively evaluated the association between VOCs and COPD. Methods Our study included a total of 1,477 subjects from the National Health and Nutrition Examination Survey, including VOCs, COPD, and other variables in the average US population. Multiple regression models and smooth-curve fitting (penalty splines) were constructed to examine potential associations, and stratified analyses were used to identify high-risk groups. Results We found a positive association between blood benzene and blood o-xylene concentrations and COPD risk and identified a concentration relationship between the two. That is, when the blood benzene and O-xylene concentrations reached 0.28 ng/mL and 0.08 ng/mL, respectively, the risk of COPD was the highest. In addition, we found that gender, age, and MET influence the relationship, especially in women, young people, and people with low MET. Significance This study revealed that blood benzene and blood o-xylene were independently and positively correlated with COPD risk, suggesting that long-term exposure to benzene and O-xylene may cause pulmonary diseases, and providing a new standard of related blood VOCs concentration for the prevention of COPD.
Collapse
Affiliation(s)
- Jia-jie Lv
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-yu Li
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-chen Shen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-xiong You
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-zhe Wen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-bing Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-tao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Swift SJ, Sixtová N, Omezzine Gnioua M, Španěl P. A SIFT-MS study of positive and negative ion chemistry of the ortho-, meta- and para-isomers of cymene, cresol, and ethylphenol. Phys Chem Chem Phys 2023. [PMID: 37377058 DOI: 10.1039/d3cp02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is a soft ionisation technique based on gas phase ion-molecule reaction kinetics for the quantification of trace amounts of volatile organic compound vapours. One of its previous limitations is difficulty in resolving isomers, although this can now be overcome using different reactivities of several available reagent cations and anions (H3O+, NO+, O2+˙, O-˙, OH-, O2-˙, NO2-, NO3-). Thus, the ion-molecule reactions of these eight ions with all isomers of the aromatic compounds cymene, cresol and ethylphenol were studied to explore the possibility of their immediate identification and quantification without chromatographic separation. Rate coefficients and product ion branching ratios determined experimentally for the 72 reactions are reported. DFT calculations of their energetics confirmed the feasibility of the suggested reaction pathways. All positive ion reactions proceeded fast but largely did not discriminate between the isomers. The reactivity of the anions was much more varied. In all cases, OH- reacts by proton transfer forming (M-H); NO2- and NO3- were unreactive. The differences observed for product ion branching ratios can be used to identify isomers approximately.
Collapse
Affiliation(s)
- Stefan J Swift
- J. Heyrovsky Institute of Physical Chemistry of CAS, v.v.i, Dolejškova 2155/3, 182 23 Prague, Czechia.
| | - Nikola Sixtová
- J. Heyrovsky Institute of Physical Chemistry of CAS, v.v.i, Dolejškova 2155/3, 182 23 Prague, Czechia.
| | - Maroua Omezzine Gnioua
- J. Heyrovsky Institute of Physical Chemistry of CAS, v.v.i, Dolejškova 2155/3, 182 23 Prague, Czechia.
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 120 00 Prague, Czechia
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of CAS, v.v.i, Dolejškova 2155/3, 182 23 Prague, Czechia.
| |
Collapse
|
21
|
Walsh CM, Fadel MG, Jamel SH, Hanna GB. Breath Testing in the Surgical Setting: Applications, Challenges, and Future Perspectives. Eur Surg Res 2023; 64:315-322. [PMID: 37311421 PMCID: PMC10614239 DOI: 10.1159/000531504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND The potential for exhaled breath to be a valuable diagnostic tool is often overlooked as it can be difficult to imagine how a barely visible sample of breath could hold such a rich source of information about the state of our health. However, technological advances over the last 50 years have enabled us to detect volatile organic compounds (VOCs) present in exhaled breath, and this provides the key to understanding the wealth of information contained within these readily available samples. SUMMARY VOCs are produced as a by-product of metabolism; hence, changes in the underlying physiological processes will be reflected in the exact composition of VOCs in exhaled breath. It has been shown that characteristic changes occur in the breath VOC profile associated with certain diseases including cancer, which may enable the non-invasive detection of cancer at primary care level for patients with vague symptoms. The use of breath testing as a diagnostic tool has many advantages. It is non-invasive and quick, and the test is widely accepted by patients and clinicians. However, breath samples provide a snapshot of the VOCs present in a particular patient at a given point in time, so this can be heavily influenced by external factors such as diet, smoking, and the environment. These must all be accounted for when attempting to draw conclusions about disease status. This review focuses on the current applications for breath testing in the field of surgery, as well as discussing the challenges encountered with developing a breath test in a clinical environment. The future of breath testing in the surgical setting is also discussed, including the translation of breath research into clinical practice. KEY MESSAGES Analysis of VOCs in exhaled breath can identify the presence of underlying disease including cancer as well as other infectious or inflammatory conditions. Despite the patient factors, environmental factors, storage, and transport considerations that must be accounted for, breath testing demonstrates ideal characteristics for a triage test, being non-invasive, simple, and universally acceptable to patients and clinicians. Many novel biomarkers and diagnostic tests fail to translate into clinical practice because their potential clinical application does not align with the requirements and unmet needs of the healthcare sector. Non-invasive breath testing, however, has the great potential to revolutionise the early detection of diseases, such as cancer, in the surgical setting for patients with vague symptoms.
Collapse
Affiliation(s)
- Caoimhe M Walsh
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael G Fadel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sara H Jamel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
22
|
Xu Y, Dong X, Qin C, Wang F, Cao W, Li J, Yu Y, Zhao L, Tan F, Chen W, Li N, He J. Metabolic biomarkers in lung cancer screening and early diagnosis (Review). Oncol Lett 2023; 25:265. [PMID: 37216157 PMCID: PMC10193366 DOI: 10.3892/ol.2023.13851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Late diagnosis is one of the major contributing factors to the high mortality rate of lung cancer, which is now the leading cause of cancer-associated mortality worldwide. At present, low-dose CT (LDCT) screening in the high-risk population, in which lung cancer incidence is higher than that of the low-risk population is the predominant diagnostic strategy. Although this has efficiently reduced lung cancer mortality in large randomized trials, LDCT screening has high false-positive rates, resulting in excessive subsequent follow-up procedures and radiation exposure. Complementation of LDCT examination with biofluid-based biomarkers has been documented to increase efficacy, and this type of preliminary screening can potentially reduce potential radioactive damage to low-risk populations and the burden of hospital resources. Several molecular signatures based on components of the biofluid metabolome that can possibly discriminate patients with lung cancer from healthy individuals have been proposed over the past two decades. In the present review, advancements in currently available technologies in metabolomics were reviewed, with particular focus on their possible application in lung cancer screening and early detection.
Collapse
Affiliation(s)
- Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xuesi Dong
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chao Qin
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fei Wang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Cao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jiang Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yiwen Yu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liang Zhao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
23
|
Issitt T, Reilly M, Sweeney ST, Brackenbury WJ, Redeker KR. GC/MS analysis of hypoxic volatile metabolic markers in the MDA-MB-231 breast cancer cell line. Front Mol Biosci 2023; 10:1178269. [PMID: 37251079 PMCID: PMC10210155 DOI: 10.3389/fmolb.2023.1178269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hypoxia in disease describes persistent low oxygen conditions, observed in a range of pathologies, including cancer. In the discovery of biomarkers in biological models, pathophysiological traits present a source of translatable metabolic products for the diagnosis of disease in humans. Part of the metabolome is represented by its volatile, gaseous fraction; the volatilome. Human volatile profiles, such as those found in breath, are able to diagnose disease, however accurate volatile biomarker discovery is required to target reliable biomarkers to develop new diagnostic tools. Using custom chambers to control oxygen levels and facilitate headspace sampling, the MDA-MB-231 breast cancer cell line was exposed to hypoxia (1% oxygen) for 24 h. The maintenance of hypoxic conditions in the system was successfully validated over this time period. Targeted and untargeted gas chromatography mass spectrometry approaches revealed four significantly altered volatile organic compounds when compared to control cells. Three compounds were actively consumed by cells: methyl chloride, acetone and n-Hexane. Cells under hypoxia also produced significant amounts of styrene. This work presents a novel methodology for identification of volatile metabolisms under controlled gas conditions with novel observations of volatile metabolisms by breast cancer cells.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Matthew Reilly
- Department of Biology, University of York, York, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J. Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | |
Collapse
|
24
|
Zhang M, Li M, Bai F, Yao W, You L, Liu D. Effect of Fat to Lean Meat Ratios on the Formation of Volatile Compounds in Mutton Shashliks. Foods 2023; 12:foods12101929. [PMID: 37238747 DOI: 10.3390/foods12101929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the release of volatile compounds in mutton shashliks (named as FxLy, x-fat cubes: 0-4; y-lean cubes: 4-0) with different fat-lean ratios before and during consumption, respectively. In total, 67 volatile compounds were identified in shashliks using gas chromatography/mass spectrometry. Aldehyde, alcohol, and ketone were the major volatile substances, accounting for more than 75% of the total volatile compounds. There were significant differences in the volatile compounds of mutton shashliks with different fat-lean ratios. With the increase of the fat content, the types and content of volatile substances released also increase. However, when the percentage of fat exceeded 50%, the number of furans and pyrazine, which were characteristic of the volatile compounds of roasted meat, was decreased. The release of volatiles during the consumption of mutton shashliks was measured using the exhaled breath test and the results showed that adding an appropriate amount of fat (<50%) helps to enrich the volatile compound components in the mouth. However, shashliks with higher fat-lean ratios (>2:2) shorten the mastication duration and weaken the breakdown of bolus particles in the consumption process, which is not conducive to the release potential of volatile substances. Therefore, setting the fat to lean ratio to 2:2 is the best choice for making mutton shashliks, as it (F2L2) can provide rich flavor substances for mutton shashliks before and during consumption.
Collapse
Affiliation(s)
- Mingcheng Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Mingyang Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fangfang Bai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Wensheng Yao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Litang You
- Anshan Jiuguhe Food Co., Ltd., Anshan 114100, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, China
| |
Collapse
|
25
|
Lee S, Kim M, Ahn BJ, Jang Y. Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: A perspective review. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131555. [PMID: 37156042 DOI: 10.1016/j.jhazmat.2023.131555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Volatile organic compounds (VOCs) are gaseous chemicals found in ambient air and exhaled breath. In particular, highly reactive aldehydes are frequently found in polluted air and have been linked to various diseases. Thus, extensive studies have been carried out to elucidate disease-specific aldehydes released from the body to develop potential biomarkers for diagnostic purposes. Mammals possess innate sensory systems, such as receptors and ion channels, to detect these VOCs and maintain physiological homeostasis. Recently, electronic biosensors such as the electronic nose have been developed for disease diagnosis. This review aims to present an overview of natural sensory receptors that can detect reactive aldehydes, as well as electronic noses that have the potential to diagnose certain diseases. In this regard, this review focuses on eight aldehydes that are well-defined as biomarkers in human health and disease. It offers insights into the biological aspects and technological advances in detecting aldehyde-containing VOCs. Therefore, this review will aid in understanding the role of aldehyde-containing VOCs in human health and disease and the technological advances for improved diagnosis.
Collapse
Affiliation(s)
- Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea; Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea.
| |
Collapse
|
26
|
Fenn D, Lilien TA, Hagens LA, Smit MR, Heijnen NF, Tuip-de Boer AM, Neerincx AH, Golebski K, Bergmans DC, Schnabel RM, Schultz MJ, Maitland-van der Zee AH, Brinkman P, Bos LD. Validation of volatile metabolites of pulmonary oxidative injury: a bench to bedside study. ERJ Open Res 2023; 9:00427-2022. [PMID: 36949963 PMCID: PMC10026006 DOI: 10.1183/23120541.00427-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Background Changes in exhaled volatile organic compounds (VOCs) can be used to discriminate between respiratory diseases, and increased concentrations of hydrocarbons are commonly linked to oxidative stress. However, the VOCs identified are inconsistent between studies, and translational studies are lacking. Methods In this bench to bedside study, we captured VOCs in the headspace of A549 epithelial cells after exposure to hydrogen peroxide (H2O2), to induce oxidative stress, using high-capacity polydimethylsiloxane sorbent fibres. Exposed and unexposed cells were compared using targeted and untargeted analysis. Breath samples of invasively ventilated intensive care unit patients (n=489) were collected on sorbent tubes and associated with the inspiratory oxygen fraction (F IO2 ) to reflect pulmonary oxidative stress. Headspace samples and breath samples were analysed using gas chromatography and mass spectrometry. Results In the cell, headspace octane concentration was decreased after oxidative stress (p=0.0013), while the other VOCs were not affected. 2-ethyl-1-hexanol showed an increased concentration in the headspace of cells undergoing oxidative stress in untargeted analysis (p=0.00014). None of the VOCs that were linked to oxidative stress showed a significant correlation with F IO2 (Rs range: -0.015 to -0.065) or discriminated between patients with F IO2 ≥0.6 or below (area under the curve range: 0.48 to 0.55). Conclusion Despite a comprehensive translational approach, validation of known and novel volatile biomarkers of oxidative stress was not possible in patients at risk of pulmonary oxidative injury. The inconsistencies observed highlight the difficulties faced in VOC biomarker validation, and that caution is warranted in the interpretation of the pathophysiological origin of discovered exhaled breath biomarkers.
Collapse
Affiliation(s)
- Dominic Fenn
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Corresponding author: Dominic Fenn ()
| | - Thijs A. Lilien
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Paediatric Intensive Care, Amsterdam, Netherlands
| | - Laura A. Hagens
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | - Marry R. Smit
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | - Nanon F.L. Heijnen
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Anita M. Tuip-de Boer
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
| | - Anne H. Neerincx
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Korneliusz Golebski
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, Netherlands
| | - Dennis C.J.J. Bergmans
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Ronny M. Schnabel
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marcus J. Schultz
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | | | - Paul Brinkman
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Lieuwe D.J. Bos
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| |
Collapse
|
27
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
28
|
Farnum A, Parnas M, Hoque Apu E, Cox E, Lefevre N, Contag CH, Saha D. Harnessing insect olfactory neural circuits for detecting and discriminating human cancers. Biosens Bioelectron 2023; 219:114814. [PMID: 36327558 DOI: 10.1016/j.bios.2022.114814] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
There is overwhelming evidence that presence of cancer alters cellular metabolic processes, and these changes are manifested in emitted volatile organic compound (VOC) compositions of cancer cells. Here, we take a novel forward engineering approach by developing an insect olfactory neural circuit-based VOC sensor for cancer detection. We obtained oral cancer cell culture VOC-evoked extracellular neural responses from in vivo insect (locust) antennal lobe neurons. We employed biological neural computations of the antennal lobe circuitry for generating spatiotemporal neuronal response templates corresponding to each cell culture VOC mixture, and employed these neuronal templates to distinguish oral cancer cell lines (SAS, Ca9-22, and HSC-3) vs. a non-cancer cell line (HaCaT). Our results demonstrate that three different human oral cancers can be robustly distinguished from each other and from a non-cancer oral cell line. By using high-dimensional population neuronal response analysis and leave-one-trial-out methodology, our approach yielded high classification success for each cell line tested. Our analyses achieved 76-100% success in identifying cell lines by using the population neural response (n = 194) collected for the entire duration of the cell culture study. We also demonstrate this cancer detection technique can distinguish between different types of oral cancers and non-cancer at different time-matched points of growth. This brain-based cancer detection approach is fast as it can differentiate between VOC mixtures within 250 ms of stimulus onset. Our brain-based cancer detection system comprises a novel VOC sensing methodology that incorporates entire biological chemosensory arrays, biological signal transduction, and neuronal computations in a form of a forward-engineered technology for cancer VOC detection.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael Parnas
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Elyssa Cox
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noël Lefevre
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
29
|
Schmidt F, Kohlbrenner D, Malesevic S, Huang A, Klein SD, Puhan MA, Kohler M. Mapping the landscape of lung cancer breath analysis: A scoping review (ELCABA). Lung Cancer 2023; 175:131-140. [PMID: 36529115 DOI: 10.1016/j.lungcan.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide due to its late-stage detection. Lung cancer screening, including low-dose computed tomography (low-dose CT), provides an initial clinical solution. Nevertheless, further innovations and refinements would help to alleviate remaining limitations. The non-invasive, gentle, and fast nature of breath analysis (BA) makes this technology highly attractive to supplement low-dose CT for an improved screening algorithm. However, BA has not taken hold in everyday clinical practice. One reason might be the heterogeneity and variety of BA methods. This scoping review is a comprehensive summary of study designs, breath analytical methods, and suggested biomarkers in lung cancer. Furthermore, this synthesis provides a framework with core outcomes for future studies in lung cancer BA. This work supports future research for evidence synthesis, meta-analysis, and translation into clinical routine workflows.
Collapse
Affiliation(s)
- Felix Schmidt
- University of Zurich, Faculty of Medicine, Zurich, Switzerland; University Hospital Zurich, Department of Pulmonology, Zurich, Switzerland.
| | - Dario Kohlbrenner
- University of Zurich, Faculty of Medicine, Zurich, Switzerland; University Hospital Zurich, Department of Pulmonology, Zurich, Switzerland
| | - Stefan Malesevic
- University of Zurich, Faculty of Medicine, Zurich, Switzerland; University Hospital Zurich, Department of Pulmonology, Zurich, Switzerland
| | - Alice Huang
- University Hospital Zurich, Department of Medical Oncology and Hematology, Zurich, Switzerland
| | - Sabine D Klein
- University of Zurich, University Library, Zurich, Switzerland
| | - Milo A Puhan
- University of Zurich, Epidemiology, Biostatistics and Prevention Institute, Zurich, Switzerland
| | - Malcolm Kohler
- University of Zurich, Faculty of Medicine, Zurich, Switzerland; University Hospital Zurich, Department of Pulmonology, Zurich, Switzerland; University of Zurich, Zurich Centre for Integrative Human Physiology, Zurich, Switzerland
| |
Collapse
|
30
|
Bi F, Zhao Z, Yang Y, Gao W, Liu N, Huang Y, Zhang X. Chlorine-Coordinated Pd Single Atom Enhanced the Chlorine Resistance for Volatile Organic Compound Degradation: Mechanism Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17321-17330. [PMID: 36332104 DOI: 10.1021/acs.est.2c06886] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of catalysts with high chlorine resistance for volatile organic compound (VOC) degradation is of great significance to achieve air purification. Herein, Pd@ZrO2 catalysts with monodispersed Pd atoms coordinated with Cl were prepared using an in situ grown Zr-based metal-organic framework (MOF) as the sacrifice templates to enhance the chlorine resistance for VOC elimination. The residual Cl species from the Zr-MOF coordinated with Pd, forming Pd1-Cl species during the pyrolysis. Meanwhile, abundant oxygen vacancies (VO) were generated, which enhanced the adsorption and activation of gaseous oxygen molecules, accelerating the degradation of VOCs. In addition, the Pd@ZrO2 catalysts exhibited satisfactory water resistance, long-term stability, and great resistance to CO and dichloromethane (DCM) for VOC elimination. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results elucidated that the generation of Pd1-Cl species in Pd@ZrO2 suppressed the absorption of DCM, releasing more active sites for toluene and its intermediate adsorption. Simultaneously, the monodispersed Pd atoms and VO improved the reactivity of gaseous oxygen molecule adsorption and dissociation, boosting the deep decomposition of toluene and its intermediates. This work may provide a new strategy for rationally designing high-chlorine resistance catalysts for VOC elimination to improve the atmospheric environment.
Collapse
Affiliation(s)
- Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenyuan Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Weikang Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ning Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuandong Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
31
|
Jongkhumkrong J, Thaveesangsakulthai I, Sukbangnop W, Kulsing C, Sooksimuang T, Aonbangkhen C, Sahasithiwat S, Sriprasart T, Palaga T, Chantaravisoot N, Tomapatanaget B. Helicene-Hydrazide Encapsulated Ethyl Cellulose as a Potential Fluorescence Sensor for Highly Specific Detection of Nonanal in Aqueous Solutions and a Proof-of-Concept Clinical Study in Lung Fluid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49495-49507. [PMID: 36301188 DOI: 10.1021/acsami.2c11064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Over the past years, lung cancer has been one of the vital cancer-related mortalities worldwide and has inevitably exhibited the highest death rate with the subsequent need for facile and convenient diagnosis approaches to identify the severity of cancer. Previous research has reported long-chain aldehyde compounds such as hexanal, heptanal, octanal, and nonanal as potential biomarkers of lung cancer. Herein, the helicene dye-encapsulated ethyl cellulose (EC@dye-NH) nanosensors have been applied for the potentially sensitive and specific detection of long-chain aldehydes in aqueous media. The sensors contain the intrinsic hydrazide group of dye-NH, which is capable of reacting an aldehyde group via imine formation and the EC backbone. This offers the synergistic forces of hydrophobic interactions with alkyl long-chain aldehydes, which could induce self-assembly encapsulation of EC@dye-NH nanosensors and strong fluorescence responses. The addition of long-chain aldehyde would induce the complete micellar-like nanoparticle formation within 15 min in acetate buffer pH 5.0. The limit of detection (LOD) values of EC@dye-NH nanosensors toward heptanal, octanal, and nonanal were 40, 100, and 10 μM, respectively, without interference from the lung fluid matrices and short-chain aldehydes. For practical applicability, this sensing platform was developed for quantification of the long-chain aldehydes in lung fluid samples with 98-101% recoveries. This EC@dye-NH nanosensor was applied to quantify nonanal contents in lung fluid samples. The results of this method based on EC@dye-NH nanosensors were then validated using standard gas chromatography-mass spectrometry (GC-MS), which gave results consistent with the proposed method. With intracellular imaging application, the EC@dye-NH nanosensors demonstrated excellent intracellular uptake and strong green fluorescence emission upon introducing the nonanal into the lung cancer cells (A549). Thus, the developed nanosensing approach served as the potential fluorescent probes in medical and biological fields, especially for lung cancer disease diagnosis based on highly selective and sensitive detection of long-chain aldehydes.
Collapse
Affiliation(s)
- Jinnawat Jongkhumkrong
- Supramolecular Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | | | - Wannee Sukbangnop
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani12120, Thailand
| | - Chadin Kulsing
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani12120, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani12120, Thailand
| | - Thitiwat Sriprasart
- Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-interfaces, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Chulalongkorn University Faculty of Medicine, Bangkok10330, Thailand
| | - Boosayarat Tomapatanaget
- Supramolecular Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
32
|
Azim A, Rezwan FI, Barber C, Harvey M, Kurukulaaratchy RJ, Holloway JW, Howarth PH. Measurement of Exhaled Volatile Organic Compounds as a Biomarker for Personalised Medicine: Assessment of Short-Term Repeatability in Severe Asthma. J Pers Med 2022; 12:1635. [PMID: 36294774 PMCID: PMC9604907 DOI: 10.3390/jpm12101635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
The measurement of exhaled volatile organic compounds (VOCs) in exhaled breath (breathomics) represents an exciting biomarker matrix for airways disease, with early research indicating a sensitivity to airway inflammation. One of the key aspects to analytical validity for any clinical biomarker is an understanding of the short-term repeatability of measures. We collected exhaled breath samples on 5 consecutive days in 14 subjects with severe asthma who had undergone extensive clinical characterisation. Principal component analysis on VOC abundance across all breath samples revealed no variance due to the day of sampling. Samples from the same patients clustered together and there was some separation according to T2 inflammatory markers. The intra-subject and between-subject variability of each VOC was calculated across the 70 samples and identified 30.35% of VOCs to be erratic: variable between subjects but also variable in the same subject. Exclusion of these erratic VOCs from machine learning approaches revealed no apparent loss of structure to the underlying data or loss of relationship with salient clinical characteristics. Moreover, cluster evaluation by the silhouette coefficient indicates more distinct clustering. We are able to describe the short-term repeatability of breath samples in a severe asthma population and corroborate its sensitivity to airway inflammation. We also describe a novel variance-based feature selection tool that, when applied to larger clinical studies, could improve machine learning model predictions.
Collapse
Affiliation(s)
- Adnan Azim
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Faisal I. Rezwan
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Clair Barber
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Matthew Harvey
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Ramesh J. Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Newport PO30 5TG, UK
| | - John W. Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Peter H. Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
33
|
Keogh RJ, Riches JC. The Use of Breath Analysis in the Management of Lung Cancer: Is It Ready for Primetime? Curr Oncol 2022; 29:7355-7378. [PMID: 36290855 PMCID: PMC9600994 DOI: 10.3390/curroncol29100578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Breath analysis is a promising non-invasive method for the detection and management of lung cancer. Exhaled breath contains a complex mixture of volatile and non-volatile organic compounds that are produced as end-products of metabolism. Several studies have explored the patterns of these compounds and have postulated that a unique breath signature is emitted in the setting of lung cancer. Most studies have evaluated the use of gas chromatography and mass spectrometry to identify these unique breath signatures. With recent advances in the field of analytical chemistry and machine learning gaseous chemical sensing and identification devices have also been created to detect patterns of odorant molecules such as volatile organic compounds. These devices offer hope for a point-of-care test in the future. Several prospective studies have also explored the presence of specific genomic aberrations in the exhaled breath of patients with lung cancer as an alternative method for molecular analysis. Despite its potential, the use of breath analysis has largely been limited to translational research due to methodological issues, the lack of standardization or validation and the paucity of large multi-center studies. It is clear however that it offers a potentially non-invasive alternative to investigations such as tumor biopsy and blood sampling.
Collapse
|
34
|
Fouka E, Domvri K, Gkakou F, Alevizaki M, Steiropoulos P, Papakosta D, Porpodis K. Recent insights in the role of biomarkers in severe asthma management. Front Med (Lausanne) 2022; 9:992565. [PMID: 36226150 PMCID: PMC9548530 DOI: 10.3389/fmed.2022.992565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Contemporary asthma management requires a proactive and individualized approach, combining precision diagnosis and personalized treatment. The introduction of biologic therapies for severe asthma to everyday clinical practice, increases the need for specific patient selection, prediction of outcomes and monitoring of these costly and long-lasting therapies. Several biomarkers have been used in asthma in disease identification, prediction of asthma severity and prognosis, and response to treatment. Novel advances in the area of personalized medicine regarding disease phenotyping and endotyping, encompass the development and application of reliable biomarkers, accurately quantified using robust and reproducible methods. The availability of powerful omics technologies, together with integrated and network-based genome data analysis, and microbiota changes quantified in serum, body fluids and exhaled air, will lead to a better classification of distinct phenotypes or endotypes. Herein, in this review we discuss on currently used and novel biomarkers for the diagnosis and treatment of asthma.
Collapse
Affiliation(s)
- Evangelia Fouka
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Evangelia Fouka
| | - Kalliopi Domvri
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Foteini Gkakou
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Alevizaki
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Despoina Papakosta
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
- Konstantinos Porpodis
| |
Collapse
|
35
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
36
|
Alafeef M, Pan D. Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS NANO 2022; 16:11545-11576. [PMID: 35921264 PMCID: PMC9364978 DOI: 10.1021/acsnano.2c01697] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 05/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a transmitted respiratory disease caused by the infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although humankind has experienced several outbreaks of infectious diseases, the COVID-19 pandemic has the highest rate of infection and has had high levels of social and economic repercussions. The current COVID-19 pandemic has highlighted the limitations of existing virological tests, which have failed to be adopted at a rate to properly slow the rapid spread of SARS-CoV-2. Pandemic preparedness has developed as a focus of many governments around the world in the event of a future outbreak. Despite the largely widespread availability of vaccines, the importance of testing has not diminished to monitor the evolution of the virus and the resulting stages of the pandemic. Therefore, developing diagnostic technology that serves as a line of defense has become imperative. In particular, that test should satisfy three criteria to be widely adopted: simplicity, economic feasibility, and accessibility. At the heart of it all, it must enable early diagnosis in the course of infection to reduce spread. However, diagnostic manufacturers need guidance on the optimal characteristics of a virological test to ensure pandemic preparedness and to aid in the effective treatment of viral infections. Nanomaterials are a decisive element in developing COVID-19 diagnostic kits as well as a key contributor to enhance the performance of existing tests. Our objective is to develop a profile of the criteria that should be available in a platform as the target product. In this work, virus detection tests were evaluated from the perspective of the COVID-19 pandemic, and then we generalized the requirements to develop a target product profile for a platform for virus detection.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
- Biomedical Engineering Department, Jordan
University of Science and Technology, Irbid 22110,
Jordan
| | - Dipanjan Pan
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
37
|
Gong X, Shi S, Zhang D, Gamez G. Quantitative Analysis of Exhaled Breath Collected on Filter Substrates via Low-Temperature Plasma Desorption/Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1518-1529. [PMID: 35792104 DOI: 10.1021/jasms.2c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breath analysis has attracted increasing attention in recent years due to its great potential for disease diagnostics at early stages and for clinical drug monitoring. There are several recent examples of successful development of real-time, in vivo quantitative analysis of exhaled breath metabolites via mass spectrometry. On the other hand, current mass spectrometer accessibility limitations restrict point-of-care applications. Here now, an offline method is developed for quantitative analysis of exhaled breath collected on inexpensive filter substrates for direct desorption and ionization by using low-temperature plasma-mass spectrometry (LTP-MS). In particular, different operating conditions of the ionization source were systematically studied to optimize desorption/ionization by using glycerol, a low volatility compound. Applications with respect to propofol, γ-valprolactone, and nicotine analysis in exhaled breath are demonstrated in this study. The effects of several filter substrate properties, including filter material and pore size, on the analyte signal were characterized. Cellulose filter papers performed best with the present analytes. In addition, filters with smaller pores enabled a more efficient sample collection. Furthermore, sample-collection flow rate was determined to have a very significant effect, with slower flow rates yielding the best results. It was also found that filters loaded with sample can be successfully stored in glass vials with no observable sample loss even after 3 days. Limits of detection under optimized conditions are shown to be competitive or significantly better compared with relevant techniques and with additional benefits of cost-efficiency and sample storage capabilities.
Collapse
Affiliation(s)
- Xiaoxia Gong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Songyue Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
38
|
Palladium-Doped Single-Walled Carbon Nanotubes as a New Adsorbent for Detecting and Trapping Volatile Organic Compounds: A First Principle Study. NANOMATERIALS 2022; 12:nano12152572. [PMID: 35957007 PMCID: PMC9370723 DOI: 10.3390/nano12152572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 01/27/2023]
Abstract
Volatile organic compounds (VOCs) are in the vapor state in the atmosphere and are considered pollutants. Density functional theory (DFT) calculations with the wb97xd exchange correlation functional and the 6-311+G(d,p) basis set are carried out to explore the potential possibility of palladium-doped single-walled carbon nanotubes (Pd/SWCNT-V), serving as the resource for detecting and/or adsorbing acetonitrile (ACN), styrene (STY), and perchloroethylene (PCE) molecules as VOCs. The suggested adsorbent in this study is discussed with structural parameters, frontier molecular orbital theory, molecular electrical potential surfaces (MEPSs), natural bond orbital (NBO) analyses, and the density of states. Furthermore, following the Bader theory of atoms in molecules (AIM), the topological properties of the electron density contributions for intermolecular interactions are analyzed. The obtained results show efficient VOC loading via a strong chemisorption process with a mean adsorption energy of −0.94, −1.27, and −0.54 eV for ACN, STY, and PCE, respectively. Our results show that the Pd/SWCNT-V can be considered a good candidate for VOC removal from the environment.
Collapse
|
39
|
Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV. Volatile Organic Compounds in Exhaled Breath as Biomarkers of Lung Cancer: Advances and Potential Problems. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s106193482207005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Choueiry F, Barham A, Zhu J. Analyses of lung cancer-derived volatiles in exhaled breath and in vitro models. Exp Biol Med (Maywood) 2022; 247:1179-1190. [PMID: 35410512 PMCID: PMC9335511 DOI: 10.1177/15353702221082634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and cancer-related deaths in the world. Early diagnosis of pulmonary tumors results in improved survival compared to diagnosis with more advanced disease, yet early disease is not reliably indicated by symptoms. Despite of the improved testing and monitoring techniques for lung cancer in the past decades, most diagnostic tests, such as sputum cytology or tissue biopsies, are invasive and risky, rendering them unfeasible for large population screening. The non-invasive analysis of exhaled breath has gained attentions as an innovative screening method to measure chemical alterations within the human volatilome profile as a result of oncogenesis. More importantly, volatile organic compounds (VOCs) have been correlated to the pathophysiology of disease since the source of volatile compounds relies mostly on endogenous metabolic processes that are altered as a result of disease onset. Therefore, studying VOCs emitted from human breath may assist lung cancer diagnosis, treatment monitoring, and other surveillance of this devastating disease. In this mini review, we evaluated recent human studies that have attempted to identify lung cancer-derived volatiles in exhaled breath of patients. We also examined reported volatiles in cell cultures of lung cancer to better understand the origins of cancer-associated VOCs. We highlight the metabolic processes of lung cancer that could be responsible for the endogenous synthesis of these VOCs and pinpoint the protein-encoding genes involved in these pathways. Finally, we highlight the potential value of a breath test in lung cancer and propose prominent areas for future research required for the incorporation of VOCs-based testing into clinical settings.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA
| | - Addison Barham
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA,James Comprehensive Cancer Center, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA,Jiangjiang Zhu.
| |
Collapse
|
41
|
Yin Y, Shi L, Zhang S, Duan X, Zhang J, Sun H, Wang S. Two−dimensional nanomaterials confined single atoms: New opportunities for environmental remediation. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Lipid Peroxidation Produces a Diverse Mixture of Saturated and Unsaturated Aldehydes in Exhaled Breath That Can Serve as Biomarkers of Lung Cancer-A Review. Metabolites 2022; 12:metabo12060561. [PMID: 35736492 PMCID: PMC9229171 DOI: 10.3390/metabo12060561] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The peroxidation of unsaturated fatty acids is a widely recognized metabolic process that creates a complex mixture of volatile organic compounds including aldehydes. Elevated levels of reactive oxygen species in cancer cells promote random lipid peroxidation, which leads to a variety of aldehydes. In the case of lung cancer, many of these volatile aldehydes are exhaled and are of interest as potential markers of the disease. Relevant studies reporting aldehydes in the exhaled breath of lung cancer patients were collected for this review by searching the PubMed and SciFindern databases until 25 May 2022. Information on breath test results, including the biomarker collection, preconcentration, and quantification methods, was extracted and tabulated. Overall, 44 studies were included spanning a period of 34 years. The data show that, as a class, aldehydes are significantly elevated in the breath of lung cancer patients at all stages of the disease relative to healthy control subjects. The type of aldehyde detected and/or deemed to be a biomarker is highly dependent on the method of exhaled breath sampling and analysis. Unsaturated aldehydes, detected primarily when derivatized during preconcentration, are underrepresented as biomarkers given that they are also likely products of lipid peroxidation. Pentanal, hexanal, and heptanal were the most reported aldehydes in studies of exhaled breath from lung cancer patients.
Collapse
|
43
|
Smirnova E, Mallow C, Muschelli J, Shao Y, Thiboutot J, Lam A, Rule AM, Crainiceanu C, Yarmus L. Predictive performance of selected breath volatile organic carbon compounds in stage 1 lung cancer. Transl Lung Cancer Res 2022; 11:1009-1018. [PMID: 35832450 PMCID: PMC9271440 DOI: 10.21037/tlcr-21-953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Background Lung cancer remains the leading cause of cancer deaths accounting for almost 25% of all cancer deaths. Breath-based volatile organic compounds (VOCs) have been studied in lung cancer but previous studies have numerous limitations. We conducted a prospective matched case to control study of the ability of preidentified VOC performance in the diagnosis of stage 1 lung cancer (S1LC). Methods Study participants were enrolled in a matched case to two controls study. A case was defined as a patient with biopsy-confirmed S1LC. Controls included a matched control, by risk factors, and a housemate control who resided in the same residence as the case. We included 88 cases, 88 risk-matched, and 49 housemate controls. Each participant exhaled into a Tedlar® bag which was analyzed using gas chromatography-mass spectrometry. For each study participant’s breath sample, the concentration of thirteen previously identified VOCs were quantified and assessed using area under the curve in the detection of lung cancer. Results Four VOCs were above the limit of detection in more than 10% of the samples. Acetoin was the only compound that was significantly associated with S1LC. Acetoin concentration below the 10th percentile (0.026 µg/L) in the training data had accuracy of 0.610 (sensitivity =0.649; specificity =0.583) in the test data. In multivariate logistic models, the best performing models included Acetoin alone (AUC =0.650). Conclusions Concentration of Acetoin in exhaled breath has low discrimination performance for S1LC cases and controls, while there was not enough evidence for twelve additional published VOCs.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher Mallow
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, USA
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Yuan Shao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey Thiboutot
- Section of Interventional Pulmonology, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andres Lam
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lonny Yarmus
- Section of Interventional Pulmonology, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
Singh SU, Chatterjee S, Lone SA, Ho HH, Kaswan K, Peringeth K, Khan A, Chiang YW, Lee S, Lin ZH. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Mikrochim Acta 2022; 189:236. [PMID: 35633385 PMCID: PMC9146825 DOI: 10.1007/s00604-022-05317-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
Given the huge economic burden caused by chronic and acute diseases on human beings, it is an urgent requirement of a cost-effective diagnosis and monitoring process to treat and cure the disease in their preliminary stage to avoid severe complications. Wearable biosensors have been developed by using numerous materials for non-invasive, wireless, and consistent human health monitoring. Graphene, a 2D nanomaterial, has received considerable attention for the development of wearable biosensors due to its outstanding physical, chemical, and structural properties. Moreover, the extremely flexible, foldable, and biocompatible nature of graphene provide a wide scope for developing wearable biosensor devices. Therefore, graphene and its derivatives could be trending materials to fabricate wearable biosensor devices for remote human health management in the near future. Various biofluids and exhaled breath contain many relevant biomarkers which can be exploited by wearable biosensors non-invasively to identify diseases. In this article, we have discussed various methodologies and strategies for synthesizing and pattering graphene. Furthermore, general sensing mechanism of biosensors, and graphene-based biosensing devices for tear, sweat, interstitial fluid (ISF), saliva, and exhaled breath have also been explored and discussed thoroughly. Finally, current challenges and future prospective of graphene-based wearable biosensors have been evaluated with conclusion. Graphene is a promising 2D material for the development of wearable sensors. Various biofluids (sweat, tears, saliva and ISF) and exhaled breath contains many relevant biomarkers which facilitate in identify diseases. Biosensor is made up of biological recognition element such as enzyme, antibody, nucleic acid, hormone, organelle, or complete cell and physical (transducer, amplifier), provide fast response without causing organ harm.
Collapse
Affiliation(s)
- Santoshi U Singh
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Subhodeep Chatterjee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shahbaz Ahmad Lone
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Hsuan Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kiran Peringeth
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arshad Khan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center On Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
45
|
Exhaled Breath Volatile Organic Compound Analysis for the Detection of Lung Cancer- A Systematic Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-dab04j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid and effective diagnostic method is essential for lung cancer since it shows symptoms only at its advanced stage. Research is being carried out in the area of exhaled breath analysis for the diagnosis of various pulmonary diseases including lung cancer. In this method exhaled breath volatile organic compounds (VOC) are analyzed with various techniques such as gas chromatography-mass spectrometry, ion mobility spectrometry, and electronic noses. The VOC analysis is suitable for lung cancer detection since it is non-invasive, fast, and also a low-cost method. In addition, this technique can detect primary stage nodules. This paper presents a systematic review of the various method employed by researchers in the breath analysis field. The articles were selected through various search engines like EMBASE, Google Scholar, Pubmed, and Google. In the initial screening process, 214 research papers were selected using various inclusion and exclusion criteria and finally, 55 articles were selected for the review. The results of the reviewed studies show that detection of lung cancer can be effectively done using the VOC analysis of exhaled breath. The results also show that this method can be used for detecting the different stages and histology of lung cancer. The exhaled breath VOC analysis technique will be popular in the future, bypassing the existing imaging techniques. This systematic review conveys the recent research opportunities, obstacles, difficulties, motivations, and suggestions associated with the breath analysis method for lung cancer detection.
Collapse
|
46
|
Janssens E, Mol Z, Vandermeersch L, Lagniau S, Vermaelen KY, van Meerbeeck JP, Walgraeve C, Marcq E, Lamote K. Headspace Volatile Organic Compound Profiling of Pleural Mesothelioma and Lung Cancer Cell Lines as Translational Bridge for Breath Research. Front Oncol 2022; 12:851785. [PMID: 35600344 PMCID: PMC9120820 DOI: 10.3389/fonc.2022.851785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
IntroductionMalignant pleural mesothelioma (MPM) is a lethal cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds (VOCs) in breath proved to be potential biomarkers for MPM diagnosis, but translational studies are needed to elucidate which VOCs originate from the tumor itself and thus are specifically related to MPM cell metabolism.MethodsAn in vitro model was set-up to characterize the headspace VOC profiles of six MPM and two lung cancer cell lines using thermal desorption-gas chromatography-mass spectrometry. A comparative analysis was carried out to identify VOCs that could discriminate between MPM and lung cancer, as well as between the histological subtypes within MPM (epithelioid, sarcomatoid and biphasic).ResultsVOC profiles were identified capable of distinguishing MPM (subtypes) and lung cancer cells with high accuracy. Alkanes, aldehydes, ketones and alcohols represented many of the discriminating VOCs. Discrepancies with clinical findings were observed, supporting the need for studies examining breath and tumor cells of the same patients and studying metabolization and kinetics of in vitro discovered VOCs in a clinical setting.ConclusionWhile the relationship between in vitro and in vivo VOCs is yet to be established, both could complement each other in generating a clinically useful breath model for MPM.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Zoë Mol
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Sabrina Lagniau
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Karim Y. Vermaelen
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Christophe Walgraeve
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- *Correspondence: Kevin Lamote,
| |
Collapse
|
47
|
Moon YK, Kim KB, Jeong SY, Lee JH. Designing oxide chemiresistors for detecting volatile aromatic compounds: recent progresses and future perspectives. Chem Commun (Camb) 2022; 58:5439-5454. [PMID: 35415739 DOI: 10.1039/d2cc01563c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxide chemiresistors have mostly been used to detect reactive gases such as ethanol, acetone, formaldehyde, nitric dioxide, and carbon monoxide. However, the selective and sensitive detection of volatile aromatic compounds such as benzene, toluene, and xylene, which are extremely toxic and harmful, using oxide chemiresistors remains challenging because of the molecular stability of benzene rings containing chemicals. Moreover, the performance of the sensing materials is insufficient to detect trace concentration levels of volatile aromatic compounds, which lead to harmful effects on human beings. Here, the strategies for designing highly selective and sensitive volatile aromatic compound gas sensors using oxide chemiresistors were suggested and reviewed. Key approaches include the use of thermal activation, design of sensing materials with high catalytic activity, the utilization of catalytic microreactors and bilayer structures with catalytic overlayer, and the pretreatment of analyte gases or post analysis of sensing signals. In addition, future perspectives from the viewpoint of designing sensing materials and sensor structures for high-performance and robust volatile aromatic compounds gas sensors are provided. Finally, we discuss possible applications of the sensors and sensor arrays.
Collapse
Affiliation(s)
- Young Kook Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ki Beom Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Seong-Yong Jeong
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
48
|
Wang P, Huang Q, Meng S, Mu T, Liu Z, He M, Li Q, Zhao S, Wang S, Qiu M. Identification of lung cancer breath biomarkers based on perioperative breathomics testing: A prospective observational study. EClinicalMedicine 2022; 47:101384. [PMID: 35480076 PMCID: PMC9035731 DOI: 10.1016/j.eclinm.2022.101384] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breathomics testing has been considered a promising method for detection and screening for lung cancer. This study aimed to identify breath biomarkers of lung cancer through perioperative dynamic breathomics testing. METHODS The discovery study was prospectively conducted between Sept 1, 2020 and Dec 31, 2020 in Peking University People's Hospital in China. High-pressure photon ionisation time-of-flight mass spectrometry was used for breathomics testing before surgery and 4 weeks after surgery. 28 volatile organic compounds (VOCs) were selected as candidates based on a literature review. VOCs that changed significantly postoperatively in patients with lung cancer were selected as potential breath biomarkers. An external validation was conducted to evaluate the performance of these VOCs for lung cancer diagnosis. Multivariable logistic regression was used to establish diagnostic models based on selected VOCs. FINDINGS In the discovery study of 84 patients with lung cancer, perioperative breathomics demonstrated 16 VOCs as lung cancer breath biomarkers. They were classified as aldehydes, hydrocarbons, ketones, carboxylic acids, and furan. In the external validation study including 157 patients with lung cancer and 368 healthy individuals, patients with lung cancer showed elevated spectrum peak intensity of the 16 VOCs after adjusting for age, sex, smoking, and comorbidities. The diagnostic model including 16 VOCs achieved an area under the curve (AUC) of 0.952, sensitivity of 89.2%, specificity of 89.1%, and accuracy of 89.1% in lung cancer diagnosis. The diagnostic model including the top eight VOCs achieved an AUC of 0.931, sensitivity of 86.0%, specificity of 87.2%, and accuracy of 86.9%. INTERPRETATION Perioperative dynamic breathomics is an effective approach for identifying lung cancer breath biomarkers. 16 lung cancer-related breath VOCs (aldehydes, hydrocarbons, ketones, carboxylic acids, and furan) were identified and validated. Further studies are warranted to investigate the underlying mechanisms of identified VOCs. FUNDING National Natural Science Foundation of China (82173386) and Peking University People's Hospital Scientific Research Development Founds (RDH2021-07).
Collapse
Affiliation(s)
- Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Qi Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450003, China
| | - Shushi Meng
- Department of Thoracic Surgery, Beijing Haidian Hospital, Beijing 100080, China
| | - Teng Mu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450003, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Mengqi He
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing 100074, China
| | - Qingyun Li
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing 100074, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450003, China
- Corresponding authors at: Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450003, China.
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
- Corresponding authors at: Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing 100074, China
- Corresponding authors at: Department of Thoracic Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| |
Collapse
|
49
|
Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14092127. [PMID: 35565258 PMCID: PMC9099958 DOI: 10.3390/cancers14092127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The current pathway for the investigation of possible colorectal cancer includes the use of colonoscopy. This is an invasive and unpleasant procedure, and currently, a large number of those performed are normal. Previous research has demonstrated that urinary volatile organic compounds (VOCs) can be used to detect cancer, including colorectal cancer. However, these studies have only taken place in patients already known to have cancer. This study aimed to assess the role of urinary VOC analysis in the NHS two weeks wait for cancer pathway. Three analytical techniques were used to analyze urine samples of 558 patients during the standard NHS assessment pathway. It demonstrated that gas chromatography-mass spectrometry (GCMS) has excellent sensitivity and specificity for the identification of cancer and polyps in this patient group. These results show a potential role for urinary VOC analysis in the NHS cancer screening pathway, to reduce the need for invasive colonoscopy testing. Abstract Colorectal symptoms are common but only infrequently represent serious pathology, including colorectal cancer (CRC). A large number of invasive tests are presently performed for reassurance. We investigated the feasibility of urinary volatile organic compound (VOC) testing as a potential triage tool in patients fast-tracked for assessment for possible CRC. A prospective, multi-center, observational feasibility study was performed across three sites. Patients referred to NHS fast-track pathways for potential CRC provided a urine sample that underwent Gas Chromatography-Mass Spectrometry (GC-MS), Field Asymmetric Ion Mobility Spectrometry (FAIMS), and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analysis. Patients underwent colonoscopy and/or CT colonography and were grouped as either CRC, adenomatous polyp(s), or controls to explore the diagnostic accuracy of VOC output data supported by an artificial neural network (ANN) model. 558 patients participated with 23 (4%) CRC diagnosed. 59% of colonoscopies and 86% of CT colonographies showed no abnormalities. Urinary VOC testing was feasible, acceptable to patients, and applicable within the clinical fast track pathway. GC-MS showed the highest clinical utility for CRC and polyp detection vs. controls (sensitivity = 0.878, specificity = 0.882, AUROC = 0.896) but it is labour intensive. Urinary VOC testing and analysis are feasible within NHS fast-track CRC pathways. Clinically meaningful differences between patients with cancer, polyps, or no pathology were identified suggesting VOC analysis may have future utility as a triage tool.
Collapse
|
50
|
Yu Q, Chen J, Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review. BIOSENSORS 2022; 12:bios12040223. [PMID: 35448283 PMCID: PMC9028493 DOI: 10.3390/bios12040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions.
Collapse
Affiliation(s)
- Qiwen Yu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Jing Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310051, China;
| | - Wei Fu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Kanhar Ghulam Muhammad
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yi Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Wenxin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Linxin Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Di Wang
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| | - Xing Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| |
Collapse
|