1
|
Yang Q, Zhang Q, Yi S, Zhang S, Yi S, Zhou X, Qin Z, Chen B, Luo J. Novel germline variants in KMT2C in Chinese patients with Kleefstra syndrome-2. Front Neurol 2024; 15:1340458. [PMID: 38356881 PMCID: PMC10864639 DOI: 10.3389/fneur.2024.1340458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Kleefstra syndrome (KLEFS) refers to a rare inherited neurodevelopmental disorder characterized by intellectual disability (ID), language and motor delays, behavioral abnormalities, abnormal facial appearance, and other variable clinical features. KLEFS is subdivided into two subtypes: Kleefstra syndrome-1 (KLEFS1, OMIM: 610253), caused by a heterozygous microdeletion encompassing the Euchromatic Histone Lysine Methyltransferase 1 (EHMT1) gene on chromosome 9q34.3 or pathogenic variants in the EHMT1 gene, and Kleefstra syndrome-2 (KLEFS2, OMIM: 617768), caused by pathogenic variants in the KMT2C gene. More than 100 cases of KLEFS1 have been reported with pathogenic variants in the EHMT1 gene. However, only 13 patients with KLEFS2 have been reported to date. In the present study, five unrelated Chinese patients were diagnosed with KLEFS2 caused by KMT2C variants through whole-exome sequencing (WES). We identified five different variants of the KMT2C gene in these patients: c.9166C>T (p.Gln3056*), c.9232_9247delCAGCGATCAGAACCGT (p.Gln3078fs*13), c.5068dupA (p.Arg1690fs*10), c.10815_10819delAAGAA (p.Lys3605fs*7), and c.6911_6912insA (p.Met2304fs*8). All five patients had a clinical profile similar to that of patients with KLEFS2. To analyze the correlation between the genotype and phenotype of KLEFS2, we examined 18 variants and their associated phenotypes in 18 patients with KLEFS2. Patients carrying KMT2C variants presented with a wide range of phenotypic defects and an extremely variable phenotype. We concluded that the core phenotypes associated with KMT2C variants were intellectual disability, facial dysmorphisms, language and motor delays, behavioral abnormalities, hypotonia, short stature, and weight loss. Additionally, sex may be one factor influencing the outcome. Our findings expand the phenotypic and genetic spectrum of KLEFS2 and help to clarify the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Biyan Chen
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
2
|
The Genetics of Intellectual Disability. Brain Sci 2023; 13:brainsci13020231. [PMID: 36831774 PMCID: PMC9953898 DOI: 10.3390/brainsci13020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Intellectual disability (ID) has a prevalence of ~2-3% in the general population, having a large societal impact. The underlying cause of ID is largely of genetic origin; however, identifying this genetic cause has in the past often led to long diagnostic Odysseys. Over the past decades, improvements in genetic diagnostic technologies and strategies have led to these causes being more and more detectable: from cytogenetic analysis in 1959, we moved in the first decade of the 21st century from genomic microarrays with a diagnostic yield of ~20% to next-generation sequencing platforms with a yield of up to 60%. In this review, we discuss these various developments, as well as their associated challenges and implications for the field of ID, which highlight the revolutionizing shift in clinical practice from a phenotype-first into genotype-first approach.
Collapse
|
3
|
Demirhan O, Hergüner Ö, Tunç E. A Cytogenetic Study of Turkish Children with Global Developmental Delay. J Pediatr Genet 2022. [DOI: 10.1055/s-0042-1758872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractGlobal developmental delay (GDD)/intellectual disability (ID) is common in children and its etiology is unknown in many cases. Chromosomal abnormalities are predominant genetic causes of GDD/ID. The aim of this study is to determine the genetic risk factors that may be involved in the etiology of GDD/ID. In this study, 810 children with moderate to severe, clinically unexplained GDD/ID for whom cytogenetic analysis were performed were retrospectively rescreened. The results showed that GDD/ID affected more females than males (2 girls:1 boy). A total of 54 children (6.7%) with GDD showed chromosomal aberrations (CAs): 59.3% of these CAs were structural aberrations, and the rest were numerical aberrations (40.7%). Specifically, inversions, deletions, and reciprocal and robertsonian translocations, which were detected in 1, 0.7, 0.8, and 0.4% of the children, respectively, constituted important categories of structural CAs. Among numerical CAs, classic Turner and mosaics were detected in 1.2% of all children. Trisomy 21 and mosaic trisomy 21 were detected in 1% of the children. Marker chromosomes and 47,XXY karyotypes were found in two children each. Our results suggest that female sex is more affected by CAs among GDD/ID cases, and cytogenetic analysis is useful in the etiological diagnosis of GDD/ID.
Collapse
Affiliation(s)
- Osman Demirhan
- Department of Medical Biology and Genetics, Faculty of Medicine, Çukurova University, Balcali-Adana, Turkey
| | - Özlem Hergüner
- Department of Child Neurology, Faculty of Medicine, Çukurova University, Balcali-Adana, Turkey
| | - Erdal Tunç
- Department of Medical Biology and Genetics, Faculty of Medicine, Çukurova University, Balcali-Adana, Turkey
| |
Collapse
|
4
|
Wu D, Li R. Case Report: Long-Term Treatment and Follow-Up of Kleefstra Syndrome-2. Front Pediatr 2022; 10:881838. [PMID: 35685914 PMCID: PMC9172761 DOI: 10.3389/fped.2022.881838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mutations in the KMT2C gene can cause Kleefstra syndrome-2 (KLEFS2). CASE In this study, we analyzed the clinical, genetic testing, and 10-year follow-up data of a child with KLEFS2 treated at the Child Healthcare Department, Children's Hospital of Nanjing Medical University, Nanjing. The case of KLEFS2 presented feeding difficulty and developmental delay, both intervened by nutritional support and family rehabilitation. Obvious attention deficit hyperactivity disorder (ADHD) occurred in preschool and school-age children and was managed by behavioral and pharmaceutical interventions. CONCLUSION Features of KLEFS2 include feeding difficulty and developmental delays in an early age, as well as ADHD in preschool and school age. Satisfactory outcomes are not achieved in early nutritional support for correcting malnutrition and pharmaceutical intervention for relieving ADHD, but both measures can counter developmental delay.
Collapse
Affiliation(s)
- Dandan Wu
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Li
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Kwapisz M, Morillon A. Subtelomeric Transcription and its Regulation. J Mol Biol 2020; 432:4199-4219. [PMID: 32035903 PMCID: PMC7374410 DOI: 10.1016/j.jmb.2020.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
The subtelomeres, highly heterogeneous repeated sequences neighboring telomeres, are transcribed into coding and noncoding RNAs in a variety of organisms. Telomereproximal subtelomeric regions produce non-coding transcripts i.e., ARRET, αARRET, subTERRA, and TERRA, which function in telomere maintenance. The role and molecular mechanisms of the majority of subtelomeric transcripts remain unknown. This review depicts the current knowledge and puts into perspective the results obtained in different models from yeasts to humans.
Collapse
Affiliation(s)
- Marta Kwapisz
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248, Paris, France.
| |
Collapse
|
6
|
Laberthonnière C, Magdinier F, Robin JD. Bring It to an End: Does Telomeres Size Matter? Cells 2019; 8:E30. [PMID: 30626097 PMCID: PMC6356554 DOI: 10.3390/cells8010030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Telomeres are unique nucleoprotein structures. Found at the edge of each chromosome, their main purpose is to mask DNA ends from the DNA-repair machinery by formation of protective loops. Through life and cell divisions, telomeres shorten and bring cells closer to either cell proliferation crisis or senescence. Beyond this mitotic clock role attributed to the need for telomere to be maintained over a critical length, the very tip of our DNA has been shown to impact transcription by position effect. TPE and a long-reach counterpart, TPE-OLD, are mechanisms recently described in human biology. Still in infancy, the mechanism of action of these processes and their respective genome wide impact remain to be resolved. In this review, we will discuss recent findings on telomere dynamics, TPE, TPE-OLD, and lessons learnt from model organisms.
Collapse
Affiliation(s)
| | - Frédérique Magdinier
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, 13385 Marseille, France.
| | - Jérôme D Robin
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, 13385 Marseille, France.
| |
Collapse
|
7
|
Eissa N, Al-Houqani M, Sadeq A, Ojha SK, Sasse A, Sadek B. Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder. Front Neurosci 2018; 12:304. [PMID: 29867317 PMCID: PMC5964170 DOI: 10.3389/fnins.2018.00304] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
Autistic Spectrum Disorder (ASD) is a complex neurodevelopmental brain disorder characterized by two core behavioral symptoms, namely impairments in social communication and restricted/repetitive behavior. The molecular mechanisms underlying ASD are not well understood. Recent genetic as well as non-genetic animal models contributed significantly in understanding the pathophysiology of ASD, as they establish autism-like behavior in mice and rats. Among the genetic causes, several chromosomal mutations including duplications or deletions could be possible causative factors of ASD. In addition, the biochemical basis suggests that several brain neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), gamma-amino butyric acid (GABA), acetylcholine (ACh), glutamate (Glu) and histamine (HA) participate in the onset and progression of ASD. Despite of convincible understanding, risperidone and aripiprazole are the only two drugs available clinically for improving behavioral symptoms of ASD following approval by Food and Drug Administration (FDA). Till date, up to our knowledge there is no other drug approved for clinical usage specifically for ASD symptoms. However, many novel drug candidates and classes of compounds are underway for ASD at different phases of preclinical and clinical drug development. In this review, the diversity of numerous aetiological factors and the alterations in variety of neurotransmitter generation, release and function linked to ASD are discussed with focus on drugs currently used to manage neuropsychiatric symptoms related to ASD. The review also highlights the clinical development of drugs with emphasis on their pharmacological targets aiming at improving core symptoms in ASD.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Al-Houqani
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adel Sadeq
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Alsahli S, Arold ST, Alfares A, Alhaddad B, Al Balwi M, Kamsteeg EJ, Al-Twaijri W, Alfadhel M. KIF16B is a candidate gene for a novel autosomal-recessive intellectual disability syndrome. Am J Med Genet A 2018; 176:1602-1609. [PMID: 29736960 DOI: 10.1002/ajmg.a.38723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Intellectual disability (ID) and global developmental delay are closely related; the latter is reserved for children under the age of 5 years as it is challenging to reliably assess clinical severity in this population. ID is a common condition, with up to 1%-3% of the population being affected and leading to a huge social and economic impact. ID is attributed to genetic abnormalities most of the time; however, the exact role of genetic involvement in ID is yet to be determined. Whole exome sequencing (WES) has gained popularity in the workup for ID, and multiple studies have been published examining the diagnostic yield in identification of the disease-causing variant (16%-55%), with the genetic involvement increasing as intelligence quotient decreases. WES has also accelerated novel disease gene discovery in this field. We identified a novel biallelic variant in the KIF16B gene (NM_024704.4:c.3611T > G) in two brothers that may be the cause of their phenotype.
Collapse
Affiliation(s)
- Saud Alsahli
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Ahmed Alfares
- Department of Pathology and Laboratory Medicine, King Abdul Aziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Department of Pediatrics, Qassim University, Almulyda, Saudi Arabia
| | - Bader Alhaddad
- Institute of Human Genetics, , Technische Universität München, Munich, Germany
| | - Mohammed Al Balwi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdul Aziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Erik-Jan Kamsteeg
- Genome Diagnostics Nijmegen, Department of Medical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Waleed Al-Twaijri
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Li S, Dou X, Gao R, Ge X, Qian M, Wan L. A remark on copy number variation detection methods. PLoS One 2018; 13:e0196226. [PMID: 29702671 PMCID: PMC5922522 DOI: 10.1371/journal.pone.0196226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.
Collapse
Affiliation(s)
- Shuo Li
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Xialiang Dou
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Ruiqi Gao
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Xinzhou Ge
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Minping Qian
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Lin Wan
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhao JJ, Halvardson J, Zander CS, Zaghlool A, Georgii‐Hemming P, Månsson E, Brandberg G, Sävmarker HE, Frykholm C, Kuchinskaya E, Thuresson A, Feuk L. Exome sequencing reveals NAA15 and PUF60 as candidate genes associated with intellectual disability. Am J Med Genet B Neuropsychiatr Genet 2018; 177:10-20. [PMID: 28990276 PMCID: PMC5765476 DOI: 10.1002/ajmg.b.32574] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 07/05/2017] [Indexed: 11/07/2022]
Abstract
Intellectual Disability (ID) is a clinically heterogeneous condition that affects 2-3% of population worldwide. In recent years, exome sequencing has been a successful strategy for studies of genetic causes of ID, providing a growing list of both candidate and validated ID genes. In this study, exome sequencing was performed on 28 ID patients in 27 patient-parent trios with the aim to identify de novo variants (DNVs) in known and novel ID associated genes. We report the identification of 25 DNVs out of which five were classified as pathogenic or likely pathogenic. Among these, a two base pair deletion was identified in the PUF60 gene, which is one of three genes in the critical region of the 8q24.3 microdeletion syndrome (Verheij syndrome). Our result adds to the growing evidence that PUF60 is responsible for the majority of the symptoms reported for carriers of a microdeletion across this region. We also report variants in several genes previously not associated with ID, including a de novo missense variant in NAA15. We highlight NAA15 as a novel candidate ID gene based on the vital role of NAA15 in the generation and differentiation of neurons in neonatal brain, the fact that the gene is highly intolerant to loss of function and coding variation, and previously reported DNVs in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jin J. Zhao
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Jonatan Halvardson
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Cecilia S. Zander
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Ammar Zaghlool
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Patrik Georgii‐Hemming
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden,Department of Molecular Medicine and SurgeryKarolinska InstituteKarolinska University Hospital SolnaStockholmSweden
| | - Else Månsson
- Department of PediatricsÖrebro University HospitalÖrebroSweden
| | | | | | - Carina Frykholm
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics, and Department of Clinical MedicineLinköping UniversityLinköpingSweden
| | - Ann‐Charlotte Thuresson
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Lars Feuk
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| |
Collapse
|
11
|
Mohan S, Koshy T, Vekatachalam P, Nampoothiri S, Yesodharan D, Gowrishankar K, Kumar J, Ravichandran L, Joseph S, Chandrasekaran A, Paul SFD. Subtelomeric rearrangements in Indian children with idiopathic intellectual disability/developmental delay: Frequency estimation & clinical correlation using fluorescence in situ hybridization (FISH). Indian J Med Res 2017; 144:206-214. [PMID: 27934799 PMCID: PMC5206871 DOI: 10.4103/0971-5916.195031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
Background & objectives: Subtelomeres are prone to deleterious rearrangements owing to their proximity to unique sequences on the one end and telomeric repetitive sequences, which increase their tendency to recombine, on the other end. These subtelomeric rearrangements resulting in segmental aneusomy are reported to contribute to the aetiology of idiopathic intellectual disability/developmental delay (ID/DD). We undertook this study to estimate the frequency of subtelomeric rearrangements in children with ID/DD. Methods: One hundred and twenty seven children with idiopathic ID/DD were tested for subtelomeric rearrangements using karyotyping and FISH. Blood samples were cultured, harvested, fixed and GTG-banded using the standard protocols. Results: Rearrangements involving the subtelomeres were observed in 7.8 per cent of the tested samples. Detection of rearrangements visible at the resolution of the karyotype constituted 2.3 per cent, while those rearrangements detected only with FISH constituted 5.5 per cent. Five deletions and five unbalanced translocations were detected. Analysis of parental samples wherever possible was informative regarding the inheritance of the rearrangement. Interpretation & conclusions: The frequency of subtelomeric rearrangements observed in this study was within the reported range of 0-35 per cent. All abnormal genotypes were clinically correlated. Further analysis with array technologies presents a future prospect. Our results suggest the need to test individuals with ID/DD for subtelomeric rearrangements using sensitive methods such as FISH.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of Human Genetics, Sri Ramachandra University, Porur, India
| | - Teena Koshy
- Department of Human Genetics, Sri Ramachandra University, Porur, India
| | | | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences, Kochi, India
| | - Dhanya Yesodharan
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences, Kochi, India
| | - Kalpana Gowrishankar
- Department of Medical Genetics, CHILDS Trust Medical Research Foundation, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, India
| | - Jeevan Kumar
- Department of Medical Genetics, CHILDS Trust Medical Research Foundation, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, India
| | | | - Santhosh Joseph
- Department of Radiology, Sri Ramachandra University, Porur, India
| | | | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra University, Porur, India
| |
Collapse
|
12
|
Screening for Subtelomeric Rearrangements in Thai Patients with Intellectual Disabilities Using FISH and Review of Literature on Subtelomeric FISH in 15,591 Cases with Intellectual Disabilities. GENETICS RESEARCH INTERNATIONAL 2016; 2016:9153740. [PMID: 27822388 PMCID: PMC5086359 DOI: 10.1155/2016/9153740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/02/2023]
Abstract
We utilized fluorescence in situ hybridization (FISH) to screen for subtelomeric rearrangements in 82 Thai patients with unexplained intellectual disability (ID) and detected subtelomeric rearrangements in 5 patients. Here, we reported on a patient with der(20)t(X;20)(p22.3;q13.3) and a patient with der(3)t(X;3)(p22.3;p26.3). These rearrangements have never been described elsewhere. We also reported on a patient with der(10)t(7;10)(p22.3;q26.3), of which the same rearrangement had been reported in one literature. Well-recognized syndromes were detected in two separated patients, including 4p deletion syndrome and 1p36 deletion syndrome. All patients with subtelomeric rearrangements had both ID and multiple congenital anomalies (MCA) and/or dysmorphic features (DF), except the one with der(20)t(X;20), who had ID alone. By using FISH, the detection rate of subtelomeric rearrangements in patients with both ID and MCA/DF was 8.5%, compared to 2.9% of patients with only ID. Literature review found 28 studies on the detection of subtelomeric rearrangements by FISH in patients with ID. Combining data from these studies and our study, 15,591 patients were examined and 473 patients with subtelomeric rearrangements were determined. The frequency of subtelomeric rearrangements detected by FISH in patients with ID was 3%. Terminal deletions were found in 47.7%, while unbalanced derivative chromosomes were found in 47.9% of the rearrangements.
Collapse
|
13
|
Liu L, Li K, Fu X, Chung C, Zhang K. A Forward Look At Noninvasive Prenatal Testing. Trends Mol Med 2016; 22:958-968. [PMID: 27726956 DOI: 10.1016/j.molmed.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 02/05/2023]
Abstract
Genomic abnormalities are a leading cause of birth defects and pregnancy complications, including in utero growth retardation and risk of miscarriage. Traditional invasive methods detecting such genomic abnormalities pose a relative risk to mother and unborn fetus. Non-invasive prenatal testing (NIPT) is a method that determines the genomic status of a fetus in utero by analyzing circulating fetal DNA in maternal plasma or serum. This review comes at a time when more and more physicians and hospitals might be using NIPT; there is great potential in extending this technology to other diagnostic applications. We discuss here the most current advances in diagnostic NIPT, its applications and limitations, as well as the development of future technology and possible clinical applications.
Collapse
Affiliation(s)
- Li Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Kang Li
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Sichuan 610041, China; Guangzhou Elite Health Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China
| | - Xin Fu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Institute for Genomic Medicine and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92328, USA
| | - Christopher Chung
- Institute for Genomic Medicine and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92328, USA
| | - Kang Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Institute for Genomic Medicine and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92328, USA.
| |
Collapse
|
14
|
Vermeesch JR, Melotte C, Froyen G, Van Vooren S, Dutta B, Maas N, Vermeulen S, Menten B, Speleman F, De Moor B, Van Hummelen P, Marynen P, Fryns JP, Devriendt K. Molecular Karyotyping: Array CGH Quality Criteria for Constitutional Genetic Diagnosis. J Histochem Cytochem 2016; 53:413-22. [PMID: 15750031 DOI: 10.1369/jhc.4a6436.2005] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Array CGH (comparative genomic hybridization) enables the identification of chromosomal copy number changes. The availability of clone sets covering the human genome opens the possibility for the widespread use of array CGH for both research and diagnostic purposes. In this manuscript we report on the parameters that were critical for successful implementation of the technology, assess quality criteria, and discuss the potential benefits and pitfalls of the technology for improved pre- and postnatal constitutional genetic diagnosis. We propose to name the genome-wide array CGH “molecular karyotyping,” in analogy with conventional karyotyping that uses staining methods to visualize chromosomes.
Collapse
|
15
|
O'Neill LP, Murray LE. Anxiety and depression symptomatology in adult siblings of individuals with different developmental disability diagnoses. RESEARCH IN DEVELOPMENTAL DISABILITIES 2016; 51-52:116-125. [PMID: 26820453 DOI: 10.1016/j.ridd.2015.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 11/12/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Factors predicting the emotional well-being of adult siblings of those with developmental disability (DD) remain under-researched. In this study adult siblings of individuals with Down's syndrome (DS), autism (ASD), Prader-Willi syndrome (PWS) and those with DD but with unknown aetiology (DUA) were compared with each other and a closely-matched control group to ascertain if sibling disability type made a difference to anxiety and/or depression levels. Also considered was the interactive effect of gender, age, parental and sibling educational attainment levels, socio-economic status and birth order on anxiety and depression outcomes. With the exception of siblings of those with DS, adult siblings of those with ASD, PWS and DUA reported significantly higher levels of anxiety and depression than the control group. There were some predictive effects of the demographic variables upon anxiety and depression but none common to all disability types and no moderating effects of demographic factors were found. Consequently other solutions must be found as to why this important group of people have elevated rates of anxiety and depression in comparison to the general population.
Collapse
Affiliation(s)
- Linda P O'Neill
- Department of Psychology, University of Chester, Parkgate Road, Chester CH1 4BJ, UK.
| | - Lindsay E Murray
- Department of Psychology, University of Chester, Parkgate Road, Chester CH1 4BJ, UK.
| |
Collapse
|
16
|
Reyes-Palomares A, Bueno A, Rodríguez-López R, Medina MÁ, Sánchez-Jiménez F, Corpas M, Ranea JAG. Systematic identification of phenotypically enriched loci using a patient network of genomic disorders. BMC Genomics 2016; 17:232. [PMID: 26980139 PMCID: PMC4792099 DOI: 10.1186/s12864-016-2569-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/07/2016] [Indexed: 11/29/2022] Open
Abstract
Background Network medicine is a promising new discipline that combines systems biology approaches and network science to understand the complexity of pathological phenotypes. Given the growing availability of personalized genomic and phenotypic profiles, network models offer a robust integrative framework for the analysis of "omics" data, allowing the characterization of the molecular aetiology of pathological processes underpinning genetic diseases. Methods Here we make use of patient genomic data to exploit different network-based analyses to study genetic and phenotypic relationships between individuals. For this method, we analyzed a dataset of structural variants and phenotypes for 6,564 patients from the DECIPHER database, which encompasses one of the most comprehensive collections of pathogenic Copy Number Variations (CNVs) and their associated ontology-controlled phenotypes. We developed a computational strategy that identifies clusters of patients in a synthetic patient network according to their genetic overlap and phenotype enrichments. Results Many of these clusters of patients represent new genotype-phenotype associations, suggesting the identification of newly discovered phenotypically enriched loci (indicative of potential novel syndromes) that are currently absent from reference genomic disorder databases such as ClinVar, OMIM or DECIPHER itself. Conclusions We provide a high-resolution map of pathogenic phenotypes associated with their respective significant genomic regions and a new powerful tool for diagnosis of currently uncharacterized mutations leading to deleterious phenotypes and syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2569-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Armando Reyes-Palomares
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain. .,CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain. .,Present address: The European Molecular Biology Laboratory Heidelberg, 69117, Heidelberg, Germany.
| | - Aníbal Bueno
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain
| | - Rocío Rodríguez-López
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain
| | - Francisca Sánchez-Jiménez
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain
| | - Manuel Corpas
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Juan A G Ranea
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain. .,CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain.
| |
Collapse
|
17
|
Abstract
Genetic factors play a major part in intellectual disability (ID), but genetic studies have been complicated for a long time by the extreme clinical and genetic heterogeneity. Recently, progress has been made using different next-generation sequencing approaches in combination with new functional readout systems. This approach has provided novel insights into the biological pathways underlying ID, improved the diagnostic process and offered new targets for therapy. In this Review, we highlight the insights obtained from recent studies on the role of genetics in ID and its impact on diagnosis, prognosis and therapy. We also discuss the future directions of genetics research for ID and related neurodevelopmental disorders.
Collapse
|
18
|
Abstract
Gene expression is a process of DNA sequence reading into protein synthesis. In cases of problems in DNA repair/apoptosis mechanisms, cells accumulate genomic abnormalities and pass them through generations of cells. The accumulation of mutations causes diseases and even tumors. In addition to cancer, many other neurologic conditions have been associated with genetic mutations. Some trials are testing patients with epigenetic treatments. Epigenetic therapy must be used with caution because epigenetic processes and changes happen constantly in normal cells, giving rise to drug off-target effects. Scientists are making progress in specifically targeting abnormal cells with minimal damage to normal ones.
Collapse
Affiliation(s)
- Marina Lipkin Vasquez
- Molecular Biology Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Resende 156, 2nd Floor, Centro, Rio de Janeiro CEP 20231-092, Brazil.
| | | |
Collapse
|
19
|
Guilherme RS, Hermetz KE, Varela PT, Perez ABA, Meloni VA, Rudd MK, Kulikowski LD, Melaragno MI. Terminal 18q deletions are stabilized by neotelomeres. Mol Cytogenet 2015; 8:32. [PMID: 25969696 PMCID: PMC4427916 DOI: 10.1186/s13039-015-0135-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND All human chromosomes are capped by tandem repeat (TTAGGG)n sequences that protect them against end-to-end fusion and are essential to chromosomal replication and integrity. Therefore, after a chromosomal breakage, the deleted chromosomes must be stabilized by retaining the telomere or acquiring a new cap, by telomere healing or telomere capture. There are few reports with molecular approaches on the mechanisms involved in stabilization of 18q terminal deletions. RESULTS In this study we analyzed nine patients with 18q terminal deletion identified by G-banding and genomic array. FISH using PNA probe revealed telomeric signals in all deleted chromosomes tested. We fine-mapped breakpoints with customized arrays and sequenced six terminal deletion junctions. In all six deleted chromosomes sequenced, telomeric sequences were found directly attached to the breakpoints. Little or no microhomology was found at the breakpoints and none of the breaks sequenced were located in low copy repeat (LCR) regions, though repetitive elements were found around the breakpoints in five patients. One patient presented a more complex rearrangement with two deleted segments and an addition of 17 base pairs (bp). CONCLUSIONS We found that all six deleted chromosomes sequenced were probably stabilized by the healing mechanism leading to a neotelomere formation.
Collapse
Affiliation(s)
- Roberta Santos Guilherme
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Northeast, GA 30322, Atlanta, USA
| | - Patrícia Teixeira Varela
- Department of Biophysics, Universidade Federal de São Paulo, Rua Três de Maio 100, CEP 04023-900, São Paulo, Brazil
| | - Ana Beatriz Alvarez Perez
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - Vera Ayres Meloni
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Northeast, GA 30322, Atlanta, USA
| | - Leslie Domenici Kulikowski
- Department of Pathology, Laboratório de Citogenômica, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar 255, CEP 05403-000, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| |
Collapse
|
20
|
Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of genetic techniques: past, present, and beyond. BIOMED RESEARCH INTERNATIONAL 2015; 2015:461524. [PMID: 25874212 PMCID: PMC4385642 DOI: 10.1155/2015/461524] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/05/2014] [Indexed: 12/05/2022]
Abstract
Genetics is the study of heredity, which means the study of genes and factors related to all aspects of genes. The scientific history of genetics began with the works of Gregor Mendel in the mid-19th century. Prior to Mendel, genetics was primarily theoretical whilst, after Mendel, the science of genetics was broadened to include experimental genetics. Developments in all fields of genetics and genetic technology in the first half of the 20th century provided a basis for the later developments. In the second half of the 20th century, the molecular background of genetics has become more understandable. Rapid technological advancements, followed by the completion of Human Genome Project, have contributed a great deal to the knowledge of genetic factors and their impact on human life and diseases. Currently, more than 1800 disease genes have been identified, more than 2000 genetic tests have become available, and in conjunction with this at least 350 biotechnology-based products have been released onto the market. Novel technologies, particularly next generation sequencing, have dramatically accelerated the pace of biological research, while at the same time increasing expectations. In this paper, a brief summary of genetic history with short explanations of most popular genetic techniques is given.
Collapse
Affiliation(s)
- Asude Alpman Durmaz
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| | - Emin Karaca
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology, Warsaw University Faculty of Medicine, 61 02-091 Warsaw, Poland
| | - Gokce Toruner
- Institute of Genomic Medicine, UMDNJ-NJ Medical School, Newark, NJ 07103, USA
| | - Jacqueline Schoumans
- Department of Medical Genetics, Cancer Cytogenetic Unit, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Ozgur Cogulu
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| |
Collapse
|
21
|
Priyadarshana WJRM, Sofronov G. Multiple Break-Points Detection in Array CGH Data via the Cross-Entropy Method. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:487-498. [PMID: 26357234 DOI: 10.1109/tcbb.2014.2361639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Array comparative genome hybridization (aCGH) is a widely used methodology to detect copy number variations of a genome in high resolution. Knowing the number of break-points and their corresponding locations in genomic sequences serves different biological needs. Primarily, it helps to identify disease-causing genes that have functional importance in characterizing genome wide diseases. For human autosomes the normal copy number is two, whereas at the sites of oncogenes it increases (gain of DNA) and at the tumour suppressor genes it decreases (loss of DNA). The majority of the current detection methods are deterministic in their set-up and use dynamic programming or different smoothing techniques to obtain the estimates of copy number variations. These approaches limit the search space of the problem due to different assumptions considered in the methods and do not represent the true nature of the uncertainty associated with the unknown break-points in genomic sequences. We propose the Cross-Entropy method, which is a model-based stochastic optimization technique as an exact search method, to estimate both the number and locations of the break-points in aCGH data. We model the continuous scale log-ratio data obtained by the aCGH technique as a multiple break-point problem. The proposed methodology is compared with well established publicly available methods using both artificially generated data and real data. Results show that the proposed procedure is an effective way of estimating number and especially the locations of break-points with high level of precision. Availability: The methods described in this article are implemented in the new R package breakpoint and it is available from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=breakpoint.
Collapse
|
22
|
Mehdipour P, Javan F, Savad S, Karbassian H, Atri M. Personalized evolutionary hypothesis in genomics and auxiliary lymph node through diverse subtelomeric signal profile. Cell Biol Int 2015; 43:1353-1364. [PMID: 25644206 DOI: 10.1002/cbin.10448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Few available data on the genomic-somatic evolution in breast cancer create limitation to provide the appropriate clinical managements. As an example, human subtelomeres (ST) are diverse-prone and variable targets. STs, as hot spots, have positive and negative impacts on the status of health and malady. We showed higher subtelomere signal copy number (SCN) of specific chromosomes in genomics than in auxiliary lymph node (ALN). Dissimilarity of signal intensity (SI) is found for all chromosomes. Significantly higher SI in genomics than in ALN cells were specified as chromosomes 5, 6, 9-12, 16-19 for weak; 1, 5-9, 19, X for medium; and 2, 5, 9, 10, 16, 18 for strong SI. For lacking, and presence of one and two SCNs; p/q ratio reflected differences for all chromosomes; but, 2, 3, 5, 7, 8, 10, 16, 18, 20, and X chromosomes were involved for three SCN. Chromosomes 1, 4, 9, 12, 17-19 lacked three SCN in ALN and lymphocytes. Weak SI ratio was higher in p- than in q-arm in majority of chromosomes. Manner of evolution and diversity in p- and q-arms is expressive of a novel definition as two diverse domains with a personalized insight. These data have been accompanied by periodic charts as ST array profiles which provide specific and individualized pattern in breast neoplasm. Such profiling at genomics level could be considered as a prediction through the patients' life. Moreover, subtelomere territory by interacting with protein expression of Ki67, cyclin D1, and cyclin E; and molecular targets including telomere length at genomics and somatic level provides package of information to bridge cancer cell biology to the cancer clinic as "puzzling paradigm."
Collapse
Affiliation(s)
- Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
23
|
Martin CL, Ledbetter DH. Molecular cytogenetic analysis of telomere rearrangements. CURRENT PROTOCOLS IN HUMAN GENETICS 2015; 84:8.11.1-8.11.15. [PMID: 25599669 PMCID: PMC4410364 DOI: 10.1002/0471142905.hg0811s84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genomic imbalances involving the telomeric regions of human chromosomes, which contain the highest gene concentration in the genome, are proposed to have severe phenotypic consequences. For this reason, it is important to identify telomere rearrangements and assess their contribution to human pathology. This unit describes the structure and function of human telomeres and outlines several methodologies that can be employed to study these unique regions of human chromosomes. It is a revision of the original version of the unit published in 2000, now including an introductory section describing advances in the discipline that have taken place since the original publication.
Collapse
Affiliation(s)
- Christa Lese Martin
- Autism and Developmental Medicine Institute, Geisinger Health System, Danville, Pennsylvania
| | - David H Ledbetter
- Autism and Developmental Medicine Institute, Geisinger Health System, Danville, Pennsylvania
| |
Collapse
|
24
|
Campbell CL, Collins RT, Zarate YA. Severe neonatal presentation of Kleefstra syndrome in a patient with hypoplastic left heart syndrome and 9q34.3 microdeletion. ACTA ACUST UNITED AC 2014; 100:985-90. [DOI: 10.1002/bdra.23324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Candace L. Campbell
- University of Arkansas for Medical Sciences; Department of Pediatrics; Little Rock Arkansas
- University of Arkansas for Medical Sciences; Division of Cardiology; Little Rock Arkansas
| | - R. Thomas Collins
- University of Arkansas for Medical Sciences; Department of Pediatrics; Little Rock Arkansas
- University of Arkansas for Medical Sciences; Division of Cardiology; Little Rock Arkansas
- University of Arkansas for Medical Sciences; Department of Internal Medicine; Little Rock Arkansas
| | - Yuri A. Zarate
- University of Arkansas for Medical Sciences; Department of Pediatrics; Little Rock Arkansas
- University of Arkansas for Medical Sciences; Division of Genetics; Little Rock Arkansas
| |
Collapse
|
25
|
Behjati F, Ghasemi Firouzabadi S, Sajedi F, Kahrizi K, Najafi M, Ebrahimizade Ghasemlou B, Shafeghati Y, Behnia F, Mohammadi Arya AR, Karimi H, Hadipour F, Hadipour Z, Jamali P, Kariminejad R, Darvish H, Bahman I, Bagherizadeh E, Najmabadi H, Vameghi R. Identification of Chromosome Abnormalities in Subtelomeric Regions Using Multiplex Ligation Dependent Probe Amplification (MLPA) Technique in 100 Iranian Patients With Idiopathic Mental Retardation. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 15:e8221. [PMID: 24693374 PMCID: PMC3950786 DOI: 10.5812/ircmj.8221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/14/2013] [Indexed: 11/16/2022]
Abstract
Background Mental retardation/Developmental delay (MR/DD) is present in 1 - 3% of the general
population (1, 2). MR is defined as a significant impairment of both cognitive (IQ <
70) and social adaptive functions, with onset before 18 years of age. Objectives The purpose was to determine the results of subtelomeric screening by the Multiplex
Ligation Dependent Probe Amplification (MLPA) Technique in 100 selected patients with
idiopathic mental retardation (IMR) in Iran. Materials and Methods A number of 100 patients with IMR, normal karyotypes and negative fragile-X and
metabolic tests were screened for subtelomeric abnormalities using MLPA technique. Results Nine of 100 patients showed subtelomeric abnormalities with at least one of the two
MLPA kits. Deletion in a single region was found in 3 patients, and in two different
subtelomeric regions in 1 patient. Duplication was only single and was present in 2
patients. Three patients were found to have both a deletion and duplication.MLPA testing
in the parental samples of 7 patients which was accessible showed that 4 patients were
de novo, 2 patients had inherited from a clinically normal mother, and one had inherited
from a clinically normal father. Screening with the two MLPA kits (SALSA P036 and SALSA
P070) proved abnormality in only five of the 9 patients. Conclusions So, the prevalence rate of abnormal subtelomeres using MLPA technique in patients with
idiopathic MR in our study was 5 - 9%, the higher limit referring to the positive
results of one of the two MLPA kits, and the lower limit representing the results of
positive double-checking with the two MLPA kits.
Collapse
Affiliation(s)
- Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and
Rehabilitation Sciences, Tehran, IR Iran
| | | | - Firoozeh Sajedi
- Pediatric Neurorehabilitation Research Center, University
of Social Welfare and Rehabilitation Sciences, Tehran, IR Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and
Rehabilitation Sciences, Tehran, IR Iran
| | - Mostafa Najafi
- Genetics Research Center, University of Social Welfare and
Rehabilitation Sciences, Tehran, IR Iran
| | | | - Yousef Shafeghati
- Genetics Research Center, University of Social Welfare and
Rehabilitation Sciences, Tehran, IR Iran
- Sarem Cell Research Center, Sarem Hospital, Tehran, IR
Iran
| | - Fatemeh Behnia
- Department of Occupational Therapy, University of Social
Welfare and Rehabilitation Sciences, Tehran, IR Iran
| | | | | | | | - Zahra Hadipour
- Sarem Cell Research Center, Sarem Hospital, Tehran, IR
Iran
| | | | | | - Hossein Darvish
- Department of Medical Genetics, Shahid Beheshti University
of Medical Sciences, Tehran, IR Iran
| | - Ideh Bahman
- Genetics Research Center, University of Social Welfare and
Rehabilitation Sciences, Tehran, IR Iran
| | | | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and
Rehabilitation Sciences, Tehran, IR Iran
| | - Roshanak Vameghi
- Pediatric Neurorehabilitation Research Center, University
of Social Welfare and Rehabilitation Sciences, Tehran, IR Iran
- Corresponding author: Roshanak Vameghi, Pediatric
Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation
Sciences, Tehran, IR Iran. Tel/Fax: +9821-22180099, E-mail:
| |
Collapse
|
26
|
Multiplex ligation-dependent probe amplification to subtelomeric rearrangements in idiopathic intellectual disability in Colombia. Pediatr Neurol 2014; 50:250-4. [PMID: 24412240 DOI: 10.1016/j.pediatrneurol.2013.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 10/06/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND A cause cannot be determined in 30% to 50% of patients with intellectual disability. Determining the etiology of intellectual disability is important and useful for pediatric neurologists, geneticists, pediatricians, and patients' families because it allows assessment of recurrence risk, appropriate genetic counseling, and focus on treatment options and prognosis. This study aims to determine the prevalence, origin, and characterization of subtelomeric rearrangements through the Multiplex Ligation-Dependent Probe Amplification method in pediatric patients with idiopathic intellectual disability. METHODS A cross-sectional descriptive study was undertaken with patients seen in consultation at the neuropediatrics or genetic service of the Central Military Hospital, the Mercy' Hospital, or the Genetics Institute National University of Colombia. Patients were diagnosed with idiopathic intellectual disability between December 2010 and September 2011 and underwent a complete medical history, physical examination, and assessment to rule out other etiologies of intellectual disability. Then we applied the genetic test of Multiplex Ligation-Dependent Probe Amplification to each patient's sample of peripheral blood to determine subtelomeric rearrangements. RESULTS We studied a group of 119 patients with idiopathic intellectual disability; Multiplex Ligation-Dependent Probe Amplification showed subtelomeric rearrangements in five. In the group with subtelomeric rearrangements, the most frequent results were de novo rearrangements (80%), deletion type (60%), moderate and severe intellectual disability (80%), minor phenotypic abnormalities (80%), and family history of neurological disorders (80%). No dependence relationship was observed between subtelomeric rearrangements and family history of neurological disorders, family history of intellectual disability, severity of intellectual disability, phenotypic abnormalities, and consanguinity. CONCLUSIONS This study determined a prevalence of subtelomeric rearrangements of 4.2% in a group of Colombian pediatric patients with idiopathic intellectual disability using the genetic test Multiplex Ligation-Dependent Probe Amplification.
Collapse
|
27
|
Byeon JH, Shin E, Kim GH, Lee K, Hong YS, Lee JW, Eun BL. Application of array-based comparative genomic hybridization to pediatric neurologic diseases. Yonsei Med J 2014; 55:30-6. [PMID: 24339284 PMCID: PMC3874920 DOI: 10.3349/ymj.2014.55.1.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Array comparative genomic hybridization (array-CGH) is a technique used to analyze quantitative increase or decrease of chromosomes by competitive DNA hybridization of patients and controls. This study aimed to evaluate the benefits and yield of array-CGH in comparison with conventional karyotyping in pediatric neurology patients. MATERIALS AND METHODS We included 87 patients from the pediatric neurology clinic with at least one of the following features: developmental delay, mental retardation, dysmorphic face, or epilepsy. DNA extracted from patients and controls was hybridized on the Roche NimbleGen 135K oligonucleotide array and compared with G-band karyotyping. The results were analyzed with findings reported in recent publications and internet databases. RESULTS Chromosome imbalances, including 9 cases detected also by G-band karyotyping, were found in 28 patients (32.2%), and at least 19 of them seemed to be causally related to the abnormal phenotypes. Regarding each clinical symptom, 26.2% of 42 developmental delay patients, 44.4% of 18 mental retardation patients, 42.9% of 28 dysmorphic face patients, and 34.6% of 26 epilepsy patients showed abnormal array results. CONCLUSION Although there were relatively small number of tests in patients with pediatric neurologic disease, this study demonstrated that array-CGH is a very useful tool for clinical diagnosis of unknown genome abnormalities performed in pediatric neurology clinics.
Collapse
Affiliation(s)
- Jung Hye Byeon
- Department of Pediatrics, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 152-703, Korea.
| | | | | | | | | | | | | |
Collapse
|
28
|
Behjati F, Firouzabadi SG, Kariminejad R, Vameghi R, Sajedi F, Shafaghati Y, Ghasemlou BE, Shojaei A, Jamali P, Bahman I, Najmabadi H. Genomic characterization of some Iranian children with idiopathic mental retardation using array comparative genomic hybridization. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:443-8. [PMID: 24497710 PMCID: PMC3897140 DOI: 10.4103/0971-6866.124373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Mental retardation (MR) has a prevalence of 1-3% and genetic causes are present in more than 50% of patients. Chromosomal abnormalities are one of the most common genetic causes of MR and are responsible for 4-28% of mental retardation. However, the smallest loss or gain of material visible by standard cytogenetic is about 4 Mb and for smaller abnormalities, molecular cytogenetic techniques such as array comparative genomic hybridization (array CGH) should be used. It has been shown that 15-25% of idiopathic MR (IMR) has submicroscopic rearrangements detectable by array CGH. In this project, the genomic abnormalities were investigated in 32 MR patients using this technique. MATERIALS AND METHODS Patients with IMR with dysmorphism were investigated in this study. Karyotype analysis, fragile X and metabolic tests were first carried out on the patients. The copy number variation was then assessed in a total of 32 patients with normal results for the mentioned tests using whole genome oligo array CGH. Multiple ligation probe amplification was carried out as a confirmation test. RESULTS In total, 19% of the patients showed genomic abnormalities. This is reduced to 12.5% once the two patients with abnormal karyotypes (upon re-evaluation) are removed. CONCLUSION The array CGH technique increased the detection rate of genomic imbalances in our patients by 12.5%. It is an accurate and reliable method for the determination of genomic imbalances in patients with IMR and dysmorphism.
Collapse
Affiliation(s)
- Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Roshanak Vameghi
- Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Firouzeh Sajedi
- Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Yousef Shafaghati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Medical Genetics and Sarem Cell Research Center, Sarem Womens’ Hospital, Iran
| | | | - Azadeh Shojaei
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ideh Bahman
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
29
|
Willemsen M, Kleefstra T. Making headway with genetic diagnostics of intellectual disabilities. Clin Genet 2013; 85:101-10. [DOI: 10.1111/cge.12244] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/31/2023]
Affiliation(s)
- M.H. Willemsen
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - T. Kleefstra
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
30
|
Tsuchiya KD, Opheim KE. The Use of Fluorescence In Situ Hybridization in Diagnosing Pediatric Disorders. J Histotechnol 2013. [DOI: 10.1179/his.2004.27.4.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Winnepenninckx B, Rooms L, Kooy RF. Mental Retardation: A Review of the Genetic Causes. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/096979503799104138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
32
|
Oliveira R, Dória S, Madureira C, Lima V, Almeida C, Pinho MJ, Ramalho C, Matoso E, Barros A, Carreira IM, Moura CP. Inv21p12q22del21q22 and intellectual disability. Gene 2013; 517:120-4. [PMID: 23266646 DOI: 10.1016/j.gene.2012.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/02/2012] [Indexed: 11/26/2022]
Abstract
Chromosomal rearrangements are common in humans. Pericentric inversions are among the most frequent aberrations (1-2%). Most inversions are balanced and do not cause problems in carriers unless one of the breakpoints disrupts important functional genes, has near submicroscopic copy number variants or hosts "cryptic" complex chromosomal rearrangements. Pericentric inversions can lead to imbalance in offspring. Less than 3% of Down syndrome patients have duplication as a result of parental pericentric inversion of chromosome 21. We report a family with an apparently balanced pericentric inversion of chromosome 21. The proband, a 23-year-old female was referred for prenatal diagnosis at 16 weeks gestation because of increased nuchal translucency. She has a familial history of Down's syndrome and moderate intellectual disability, a personal history of four spontaneous abortions and learning difficulties. Peripheral blood and amniotic fluid samples were collected to perform proband's and fetus' cytogenetic analyses. Additionally, another six family members were evaluated and cytogenetic analysis was performed. Complementary FISH and MLPA studies were carried out. An apparent balanced chromosome 21 pericentric inversion was observed in four family members, two revealed a recombinant chromosome 21 with partial trisomy, and one a full trisomy 21 with an inverted chromosome 21. Array CGH analysis was performed in the mother and the brother's proband. MLPA and aCGH studies identified a deletion of about 1.7 Mb on the long arm of inverted chromosome 21q22.11. We believe the cause of the intellectual disability/learning difficulties observed in the members with the inversion is related to this deletion. The recombinant chromosome 21 has a partial trisomy including the DSCR with no deletion. The risk for carriers of having a child with multiple malformations/intellectual disability is about 30% depending on whether and how this rearrangement interferes with meiosis.
Collapse
Affiliation(s)
- Renata Oliveira
- Dept. of Human Genetics, Faculty of Medicine, University of Porto/Hospital São João, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nguyen LS, Kim HG, Rosenfeld JA, Shen Y, Gusella JF, Lacassie Y, Layman LC, Shaffer LG, Gécz J. Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet 2013; 22:1816-25. [PMID: 23376982 DOI: 10.1093/hmg/ddt035] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway functions not only to degrade transcripts containing premature termination codons (PTC), but also to regulate the transcriptome. UPF3B and RBM8A, important components of NMD, have been implicated in various forms of intellectual disability (ID) and Thrombocytopenia with Absent Radius (TAR) syndrome, which is also associated with ID. To gauge the contribution of other NMD factors to ID, we performed a comprehensive search for copy number variants (CNVs) of 18 NMD genes among individuals with ID and/or congenital anomalies. We identified 11 cases with heterozygous deletions of the genomic region encompassing UPF2, which encodes for a direct interacting protein of UPF3B. Using RNA-Seq, we showed that the genome-wide consequence of reduced expression of UPF2 is similar to that seen in patients with UPF3B mutations. Out of the 1009 genes found deregulated in patients with UPF2 deletions by at least 2-fold, majority (95%) were deregulated similarly in patients with UPF3B mutations. This supports the major role of deletion of UPF2 in ID. Furthermore, we found that four other NMD genes, UPF3A, SMG6, EIF4A3 and RNPS1 are frequently deleted and/or duplicated in the patients. We postulate that dosage imbalances of these NMD genes are likely to be the causes or act as predisposing factors for neuro-developmental disorders. Our findings further emphasize the importance of NMD pathway(s) in learning and memory.
Collapse
Affiliation(s)
- Lam S Nguyen
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
dos Santos SR, Freire-Maia DV. Absence of subtelomeric rearrangements in selected patients with mental retardation as assessed by multiprobe T FISH. J Negat Results Biomed 2012; 11:16. [PMID: 23259705 PMCID: PMC3546875 DOI: 10.1186/1477-5751-11-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 12/18/2012] [Indexed: 12/08/2022] Open
Abstract
Background Mental retardation (MR) is a heterogeneous condition that affects 2-3% of the general population and is a public health problem in developing countries. Chromosomal abnormalities are an important cause of MR and subtelomeric rearrangements (STR) have been reported in 4-35% of individuals with idiopathic MR or an unexplained developmental delay, depending on the screening tests and patient selection criteria used. Clinical checklists such as that suggested by de Vries et al. have been used to improve the predictive value of subtelomeric screening. Findings Fifteen patients (1–20 years old; five females and ten males) with moderate to severe MR from a genetics outpatient clinic of the Gaffrée and Guinle Teaching Hospital (HUGG) of the Federal University of Rio de Janeiro State (UNIRIO) were screened with Multiprobe T FISH after normal high resolution karyotyping. No subtelomeric rearrangements were detected even though the clinical score of the patients ranged from four to seven. Conclusion In developing countries, FISH-based techniques such as Multiprobe T FISH are still expensive. Although Multiprobe T FISH is a good tool for detecting STR, in this study it did not detect STR in patients with unexplained MR/developmental delay even though these patients had a marked chromosomal imbalance. Our findings also show that clinical scores are not reliable predictors of STR.
Collapse
Affiliation(s)
- Suely Rodrigues dos Santos
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State (DGBM-UNIRIO), Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
35
|
Trabelsi M, Chelly I, Maazoul F, Chaabouni M, Ouertani I, Kraoua L, Khemakhem L, Mrad R, Chaabouni H. Epidemiologic and clinical characteristics of 458 Tunisian patients with intellectual deficiency and a reconsidered diagnostic strategy. Eur J Med Genet 2012; 56:13-9. [PMID: 23142735 DOI: 10.1016/j.ejmg.2012.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 10/10/2012] [Indexed: 11/28/2022]
Abstract
Intellectual Deficiency (ID) is a common neuropsychiatric disorder whose etiopathogenesis still insufficiently understood. In the last decade, several surveys, assessing epidemiologic, clinical and etiologic parameters of ID, have been performed but none of them is realized in a Tunisian population. In this retrospective survey, we propose to study these parameters, in a Tunisian cohort of 458 patients with constitutional ID, and to assess our diagnostic strategy. Data analyses, by the SPSS program, reveal a male predominance, a high level of consanguinity, an advanced mean age of patients, a rare frequentation of specialized institutions by the severely affected patients, and a high frequency of familial forms with predominance of the recessive autosomal ones. The study of clinical parameters and investigations' results shows that 72.1% of our patients present a syndromic ID. For these patients, chromosomal anomalies are rarely described, EEG anomalies were usually non-specific in patients without clinical evidence of epilepsy, and brain anomalies are common in patients with severe ID, neurological symptoms or history of seizures. Aetiology is identified in 13.1% of them whereas it is still unknown in 100% of patients with non-specific ID. This study allows us to better characterize, epidemiologically and clinically, the first large Tunisian cohort of patients with ID and to assess our diagnostic strategy in order to propose a revised one that will improve the diagnostic lead, the care chain and the preventive resources of ID.
Collapse
Affiliation(s)
- Mediha Trabelsi
- Charles Nicolle Hospital, Congenital and Hereditary Diseases Tunis, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen CP, Lin SP, Su YN, Tsai FJ, Wu PC, Town DD, Chen LF, Lee MS, Wang W. Rapid aneuploidy diagnosis of partial trisomy 7q (7q34→qter) and partial monosomy 10q (10q26.12→qter) by array comparative genomic hybridization using uncultured amniocytes. Taiwan J Obstet Gynecol 2012; 51:93-9. [PMID: 22482977 DOI: 10.1016/j.tjog.2012.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2011] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To present rapid aneuploidy diagnosis (RAD) of partial trisomy 7q (7q34→qter) and partial monosomy 10q (10q26.12→qter) by array comparative genomic hybridization (aCGH) using uncultured amniocytes. CASE REPORT A 34-year-old, gravida 2, para 1, woman underwent amniocentesis at 20 weeks of gestation because of a previous mentally retarded child with an unbalanced reciprocal translocation inherited from the carrier father who had a karyotype of 46,XY,t(7;10) (q34;q26.12). Her first child was initially found to have a normal karyotype by routine cytogenetic analysis, but a cryptic chromosomal abnormality was subsequently diagnosed by aCGH. During this pregnancy, RAD by oligonucleotide-based aCGH using uncultured amniocytes revealed a 16.4-Mb duplication of 7q34-q36.3 and a 12.7-Mb deletion of 10q26.12-q26.3. Conventional cytogenetic analysis using cultured amniocytes revealed a karyotype of 46,XX,der(10)t(7;10)(q34;q26.12)pat. The parents elected to terminate the pregnancy. A malformed female fetus was delivered with a high prominent forehead, hypertelorism, epicanthic folds, a broad depressed nasal bridge, a prominent nose with anteverted nostrils, micrognathia, a short neck, large low-set ears, clinodactyly, small big toes, and normal female external genitalia. CONCLUSION aCGH is a useful tool for RAD of subtle chromosomal rearrangements in pregnancy, especially under the circumstance of a previous abnormal child with an unbalanced translocation derived from a parental subtle reciprocal translocation.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Subtelomeric deletions of 1q43q44 and severe brain impairment associated with delayed myelination. J Hum Genet 2012; 57:593-600. [PMID: 22718018 DOI: 10.1038/jhg.2012.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Subtelomeric deletions of 1q44 cause mental retardation, developmental delay and brain anomalies, including abnormalities of the corpus callosum (ACC) and microcephaly in most patients. We report the cases of six patients with 1q44 deletions; two patients with interstitial deletions of 1q44; and four patients with terminal deletions of 1q. One of the patients showed an unbalanced translocation between chromosome 5. All the deletion regions overlapped with previously reported critical regions for ACC, microcephaly and seizures, indicating the recurrent nature of the core phenotypic features of 1q44 deletions. The four patients with terminal deletions of 1q exhibited severe volume loss in the brain as compared with patients who harbored interstitial deletions of 1q44. This indicated that telomeric regions have a role in severe volume loss of the brain. In addition, two patients with terminal deletions of 1q43, beyond the critical region for 1q44 deletion syndrome exhibited delayed myelination. As the deletion regions identified in these patients extended toward centromere, we conclude that the genes responsible for delayed myelination may be located in the neighboring region of 1q43.
Collapse
|
38
|
Beby F, Des Portes V, Till M, Mottolese C, Denis P. Chromosome 6p25 deletion syndrome: report of a case with optic disc coloboma and review of published ophthalmic findings. Ophthalmic Genet 2012; 33:240-8. [PMID: 22497499 DOI: 10.3109/13816810.2012.675396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The 6p25 deletion syndrome is a rare disorder characterized by Dandy-Walker malformation, congenital heart defects, developmental delay, dysmorphic facial features, and malformations of the anterior segment of the eye with a risk for glaucoma. Here we report a child harboring a cryptic de novo 6p25 deletion, bilateral optic disc coloboma and characteristic anterior segment anomalies. We review reported ophthalmic findings in patients with this syndrome. MATERIALS AND METHODS Retrospective case review of a 4-day-old male with Dandy-Walker malformation and cardiac defects who was referred with a suspected diagnosis of iris coloboma. RESULTS The ophthalmic examination showed bilateral corectopia associated with posterior embryotoxon. Fundus examination revealed bilateral optic disc excavation, which was diagnosed as colobomatous because of its configuration and stability over time. Because of the association of posterior embryotoxon with Dandy-Walker malformation, a terminal 6p deletion syndrome was clinically suspected. Array comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) studies revealed a 3.2 Mb deletion at 6p25.2p25.3 including the FOXC1 gene. Neither unaffected parent carried this deletion. CONCLUSIONS Optic disc colobomas may be found in patients carrying a 6p25 deletion. This has the potential to confound assessment of affected children for glaucoma and intracranial hypertension.
Collapse
Affiliation(s)
- Francis Beby
- Department of Paediatric Ophthalmology, Femme Mère-Enfant Hospital, Bron, France.
| | | | | | | | | |
Collapse
|
39
|
Madrigal I, Martinez M, Rodriguez-Revenga L, Carrió A, Milà M. 12p13 rearrangements: 6 Mb deletion responsible for ID/MCA and reciprocal duplication without clinical responsibility. Am J Med Genet A 2012; 158A:1071-6. [PMID: 22488686 DOI: 10.1002/ajmg.a.35287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 12/21/2011] [Indexed: 11/07/2022]
Abstract
Congenital balanced reciprocal translocations are one of the most frequent structural chromosomal aberrations in the population. We report a familial translocation t(12;22)(p13.3;pter) responsible for intellectual disabilities and congenital anomalies characterized by FISH and array CGH. Two patients carried a der(12)t(12;22)(p13.3;pter), resulting in a 6 Mb 12pter deletion. Patients presented with intellectual disabilities, pre- and post-natal growth retardation, ponderal development delay, global hypotonia, feeding problems and dysmorphic features. Two relatives presented with the reciprocal 12pter duplication, which had no clinical manifestations associated. For this translocation, we propose a mechanism based on a non-allelic recombination model, in which recombination of direct oriented segmental duplications between non-homologous chromatids leads to the reciprocal translocation. The characterization of this translocation has been critical for the family. Translocation carriers have a risk of 40% of having offspring carrying unbalanced products. 12p13.3 deletion carriers present with a recognizable syndrome and on the contrary, 12p13.3 duplication carriers present without clinical manifestations. Other published cases of 12p13.3 duplication show that this syndrome has a variable phenotype. It is advisable to delineate the duplication size and to discard other genetic aberrations, in order to give an accurate genetic counseling in patients carrying 12pter duplications.
Collapse
|
40
|
Affiliation(s)
- Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
41
|
Rafati M, Ghadirzadeh MR, Heshmati Y, Adibi H, Keihanidoust Z, Eshraghian MR, Dastan J, Hoseini A, Purhoseini M, Ghaffari SR. "Familial" versus "sporadic" intellectual disability: contribution of subtelomeric rearrangements. Mol Cytogenet 2012; 5:4. [PMID: 22260313 PMCID: PMC3284400 DOI: 10.1186/1755-8166-5-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/19/2012] [Indexed: 01/05/2023] Open
Abstract
Background Cryptic subtelomeric rearrangements have been proposed as a significant cause of sporadic intellectual disability (ID) but the role of such aberrations in familial ID has not yet been studied. As positive family history of ID had been proposed as an important and significant predicting factor of subtelomeric rearrangements, it was assumed that the contribution of subtelomeric aberrations in familial ID would be much more than the sporadic ones. Three hundred and twenty two patients from 102 unrelated families with more than two ID patients in the first degree relatives have been investigated. Assessment of subtelomeric rearrangements were carried out using Multiplex Ligation-Dependent Probe Amplification (MLPA) technique. Detected aberrations were then confirmed by Fluorescence in Situ Hybridization (FISH) method. Results Among the families studied, 27.4% had 4-12, 36.3% had 3 and 36.3% had 2 affected individuals in the first degree relatives. One unbalanced translocation and 4 polymorphic changes were detected. The prevalence of clinically significant subtelomeric rearrangements was 0.98%. Conclusion This is the first investigation of subtelomeric aberrations in a large sample set of familial ID patients. Our results show that the contribution of subtelomeric rearrangements to familial ID is not as much as what had been determined for sporadic ones in the literature. Moreover, this study shows that the positive family history by alone, cannot be the most important and determining indicator of subtelomeric aberrations while it would be a good predicting factor when associated with dysmorphism or congenital malformations. These findings propose that other cryptic chromosomal abnormalities or even single gene disorders may be the main cause of familial ID rather than subtelomeric aberrations.
Collapse
Affiliation(s)
- Maryam Rafati
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Subtelomeres are an incredibly dynamic part of the human genome located at the ends of chromosomes just proximal to telomere repeats. Although subtelomeric variation contributes to normal polymorphism in the human genome and is a by-product of rapid evolution in these regions, rearrangements in subtelomeres can also cause intellectual disabilities and birth defects, making robust methods of detecting copy number variation in chromosome ends a must for cytogenetics labs. In recent years, methods for detecting structural variation in subtelomeres have moved from fluorescence in situ hybridization (FISH) to array technology; however, FISH is still necessary to determine the chromosomal structure of subtelomeric gains and losses identified by arrays.
Collapse
Affiliation(s)
- M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
43
|
Abstract
Hemoglobin disorders consist of two different groups, the structural hemoglobin variants and the thalassemias. The structural hemoglobin variants typically are based on the point mutations in the alpha- or beta-globin chain that results in a single-amino acid substitution in the corresponding globin chain, whereas thalassemias are caused by quantitative reduction in globin chain synthesis. Various techniques are applied for the laboratory investigation of these diseases, among them mass spectrometry (MS) for the detection and identification of structural hemoglobin variants and array techniques for the thalassemias. In this review, we present in the first part the most important mass spectrometric techniques applied in hemoglobin variant detection and identification and discuss several important aspects of this analysis technique in hematology. In the second part, the DNA analysis techniques used in hemoglobin analysis, such as reverse hybridization or microarray-based comparative genomic hybridization (CGH) techniques, are briefly discussed.
Collapse
Affiliation(s)
- Heinz Troxler
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
44
|
Tian H, Yu H, Fu S, Jin R. Primed in situ labeling technique for subtelomeric rearrangements in 70 children with idiopathic mental retardation. ACTA ACUST UNITED AC 2011; 31:834-836. [PMID: 22173508 DOI: 10.1007/s11596-011-0686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Indexed: 10/14/2022]
Abstract
Subtelomeric rearrangements contribute to idiopathic mental retardation (MR), but most children with idiopathic MR do not show any chromosome abnormalities with standard cytogenetic analysis. The primed in situ labeling (PRINS) technique, using an oligonucleotide primer complementary to the telemetric repeat sequences (TTAGGG), can identify chromosome telomeric abnormality (deletion) in idiopathic MR children. In this study, seventy children with idiopathic MR were enrolled and subjected to PRINS. The results showed normal karyotype in all the children, subtelomeric rearrangements (1q del and 4q del) in 2 cases, which was confirmed by fluorescence in situ hybridization (FISH). It was concluded that PRINS is effective for the detection of subtelomeric rearrangements and may become a routine technique for cytogenetical abnormality screening.
Collapse
Affiliation(s)
- Hong Tian
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Siqing Fu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
45
|
Lee JY, Cho YH, Hallford G. Delineation of subtelomeric deletion of the long arm of chromosome 6. Ann Hum Genet 2011; 75:755-64. [PMID: 21950800 DOI: 10.1111/j.1469-1809.2011.00675.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pure subtelomeric deletion of the long arm of chromosome 6 is rare. The frequency of this deletion accounts for approximately 0.05% of subjects with intellectual disability and developmental delay with or without dysmorphic features. Common phenotypes associated with this deletion include intellectual disability, developmental delay, dysmorphic features, seizure, hypotonia, microcephaly and hypoplasia of the corpus callosum. The smallest overlapped region is approximately 0.4 Mb, and contains three known genes. Of these genes, TBP has been considered as a plausible candidate gene for the phenotype in patients with a subtelomeric 6q deletion. Analysis of the breakpoints in 14 cases revealed a potential common breakpoint interval 8.0-9.0 Mb from the chromosome 6q terminus where the FRA6E fragile site exists and the PARK2 gene is located. This suggests that breakage at the FRA6E fragile site may be the mechanism behind chromosome 6q subtelomeric deletion in some of the cases.
Collapse
Affiliation(s)
- Ji-Yun Lee
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | | |
Collapse
|
46
|
Xu Y, Peng B, Fu Y, Amos CI. Genome-wide algorithm for detecting CNV associations with diseases. BMC Bioinformatics 2011; 12:331. [PMID: 21827692 PMCID: PMC3173460 DOI: 10.1186/1471-2105-12-331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/09/2011] [Indexed: 11/10/2022] Open
Abstract
Background SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs) and DNA copy number variations (CNVs). Nonparametric and model-based statistical algorithms have been developed to detect CNVs from SNP data using the marker intensities. However, these algorithms lack specificity to detect small CNVs owing to the high false positive rate when calling CNVs based on the intensity values. Therefore, the resulting association tests lack power even if the CNVs affecting disease risk are common. An alternative procedure called PennCNV uses information from both the marker intensities as well as the genotypes and therefore has increased sensitivity. Results By using the hidden Markov model (HMM) implemented in PennCNV to derive the probabilities of different copy number states which we subsequently used in a logistic regression model, we developed a new genome-wide algorithm to detect CNV associations with diseases. We compared this new method with association test applied to the most probable copy number state for each individual that is provided by PennCNV after it performs an initial HMM analysis followed by application of the Viterbi algorithm, which removes information about copy number probabilities. In one of our simulation studies, we showed that for large CNVs (number of SNPs ≥ 10), the association tests based on PennCNV calls gave more significant results, but the new algorithm retained high power. For small CNVs (number of SNPs <10), the logistic algorithm provided smaller average p-values (e.g., p = 7.54e - 17 when relative risk RR = 3.0) in all the scenarios and could capture signals that PennCNV did not (e.g., p = 0.020 when RR = 3.0). From a second set of simulations, we showed that the new algorithm is more powerful in detecting disease associations with small CNVs (number of SNPs ranging from 3 to 5) under different penetrance models (e.g., when RR = 3.0, for relatively weak signals, power = 0.8030 comparing to 0.2879 obtained from the association tests based on PennCNV calls). The new method was implemented in software GWCNV. It is freely available at http://gwcnv.sourceforge.net, distributed under a GPL license. Conclusions We conclude that the new algorithm is more sensitive and can be more powerful in detecting CNV associations with diseases than the existing HMM algorithm, especially when the CNV association signal is weak and a limited number of SNPs are located in the CNV.
Collapse
Affiliation(s)
- Yaji Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler St,, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
47
|
Wong VCN, Chung B. Value of clinical assessment in the diagnostic evaluation of Global Developmental Delay (GDD) using a Likelihood Ratio Model. Brain Dev 2011; 33:548-57. [PMID: 20965674 DOI: 10.1016/j.braindev.2010.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 12/08/2022]
Abstract
OBJECTIVE A selective approach is recommended for investigating children with GDD. Our objective is to identify clinical markers to improve the diagnostic yield of evaluation of children with GDD. METHOD Children with GDD (delay>2 S.D. in>1 domain) followed up in our centre were reviewed retrospectively. We selected nine clinical markers (sex, severity of GDD, parental consanguinity, family history, behavioral problems, head size, facial dysmorphism, non-facial anomalies and neurological deficits) and looked into the likelihood of finding an underlying etiology during follow-up. RESULTS There were 577 children with 63%, 33% and 4% having mild, moderate and severe grade GDD. An identifiable etiology is detected in 53%. Genetic disease (25%) was the commonest cause identified. We have found that severity of GDD (severe and moderate versus mild grade [LR+=1.92 (95% C.I.=1.49-2.48); LR-=0.72(0.64-0.81)], behavioral problems [LR+=0.24 (95% C.I.=0.17-0.34); LR-=1.67 (1.48-1.88)], facial dysmorphism [LR+=2.66 (95% C.I.=1.10-3.54); LR-=0.65 (0.58-0.73)] and neurological deficits [LR+=2.85 (95% C.I.=2.32-3.50); LR-=0.31(0.25-0.39)] were clinical markers associated with increased chance of identifying an underlying etiology by multivariate analysis. CONCLUSION These four clinical markers are useful in selecting patients with GDD for further diagnostic tests. Using the LR model, clinical markers in the first clinical evaluation of any child with GDD can potentially improve the etiological yield using targeted investigations.
Collapse
Affiliation(s)
- Virginia C N Wong
- Division of Child Neurology/Developmental Paediatrics/Neurohabilitation, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong.
| | | |
Collapse
|
48
|
Verdú Pérez A, García Murillo PL, García Campos O, López Grondona F, Arriola Pereda G, Alcaraz Rousselet MA, Vicente Lago Y, Suela J. [Subtelomeric rearrangements in cryptogenic mental retardation]. An Pediatr (Barc) 2011; 75:365-71. [PMID: 21798831 DOI: 10.1016/j.anpedi.2011.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/31/2011] [Accepted: 06/02/2011] [Indexed: 12/08/2022] Open
Abstract
INTRODUCTION Mental retardation affects 3% of the population, the origin of which cannot be established in 50% of cases. Subtelomeric rearrangements, not detected by routine cytogenetic studies, might explain some cases of unknown cause. PATIENTS AND METHODS A study was conducted on 200 subjects with unexplained mental retardations using multiplex ligation dependent probe amplification (MLPA). Abnormal findings were confirmed by fluorescent in situ hybridization (FISH) and/or comparative genomic hybridization technology (CGH-array). RESULTS A subtelomeric aberration was identified in 9 patients. Eight were «de novo»; one was inherited from a phenotypically normal parent. There was a statistically significant association with the presence of more than one dysmorphic feature or with intrauterine growth retardation, but not with the severity of retardation or epilepsy. CONCLUSIONS Subtelomeric rearrangements explained 4.5% of cases of mental retardation in our series. The presence of more than one dysmorphic feature or intrauterine uterine growth retardation increases the probability of this type of chromosomal aberration.
Collapse
Affiliation(s)
- A Verdú Pérez
- Unidad de Neurología Pediátrica, Hospital Virgen de la Salud, Toledo, España.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Iourov IY, Vorsanova SG, Yurov YB. Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 2011; 9:452-65. [PMID: 19506734 PMCID: PMC2691674 DOI: 10.2174/138920208786241216] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/06/2008] [Accepted: 07/09/2008] [Indexed: 01/08/2023] Open
Abstract
Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears apposite to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from severe neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between genomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic variations and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers perspectives of this dynamically developing field of neurogenetics and genomics.
Collapse
Affiliation(s)
- I Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences
| | | | | |
Collapse
|
50
|
D'Amours G, Kibar Z, Mathonnet G, Fetni R, Tihy F, Désilets V, Nizard S, Michaud JL, Lemyre E. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin Genet 2011; 81:128-41. [PMID: 21496010 DOI: 10.1111/j.1399-0004.2011.01687.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite a wide range of clinical tools, the etiology of mental retardation and multiple congenital malformations remains unknown for many patients. Array-based comparative genomic hybridization (aCGH) has proven to be a valuable tool in these cases, as its pangenomic coverage allows the identification of chromosomal aberrations that are undetectable by other genetic methods targeting specific genomic regions. Therefore, aCGH is increasingly used in clinical genetics, both in the postnatal and the prenatal settings. While the diagnostic yield in the postnatal population has been established at 10-12%, studies investigating fetuses have reported variable results. We used whole-genome aCGH to investigate fetuses presenting at least one major malformation detected on ultrasound, but for whom standard genetic analyses (including karyotype) failed to provide a diagnosis. We identified a clinically significant chromosomal aberration in 8.2% of tested fetuses (4/49), and a result of unclear clinical significance in 12.2% of tested fetuses (6/49). Our results document the value of whole-genome aCGH as a prenatal diagnostic tool and highlight the interpretation difficulties associated with copy number variations of unclear significance.
Collapse
Affiliation(s)
- G D'Amours
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|