1
|
Qian Y, Gu Y, Tribukait-Riemenschneider F, Martin I, Shastri VP. Incorporation of Cross-Linked Gelatin Microparticles To Enhance Cell Attachment and Chondrogenesis in Carboxylated Agarose Bioinks for Cartilage Engineering. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40194271 DOI: 10.1021/acsami.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Due to the limited regenerative capacity of injured cartilage, surgical intervention using engineered cellular constructs or autologous cell implantation is the best accredited approach to prevent further degeneration and promote a regenerative microenvironment. Advancements in additive manufacturing present opportunities for graft customization through enhanced scaffold design. In bioprinting, an additive manufacturing process, the "bioink" serves as the medium to carry cells but also as a scaffold by imparting form and mechanical attributes to the printed object. In this study, the impact of cross-linked gelatin microparticles (GMPs) on rheological properties and printability of carboxylated agarose (CA) bioink as well as matrix deposition by human nasal chondrocytes (hNCs) was investigated. The introduction of GMPs yielded stiffer bioink formulations, with lower sol-gel transitions that retained the exceptional printability of CA. GMPs served as foci for the attachment of hNCs, improving cellular distribution and bridging the deposited extracellular matrix. After 4 weeks in chondrogenic culture, GMPs containing printed constructs showed enhanced toughness approaching that of the lower end of the spectrum of native cartilage tissue. The incorporation of proteinaceous microparticles might serve as a general concept to promote cellular function in polysaccharide-based bioinks and opens another avenue for engineering 3D-bioprinted microenvironments.
Collapse
Affiliation(s)
- Yi Qian
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg 79104, Germany
| | - Yawei Gu
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg 79104, Germany
| | | | - Ivan Martin
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg 79104, Germany
- BIOSS─Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
2
|
Ghorbani F, Kim M, Ghalandari B, Zhang M, Varma SN, Schöbel L, Liu C, Boccaccini AR. Architecture of β-lactoglobulin coating modulates bioinspired alginate dialdehyde-gelatine/polydopamine scaffolds for subchondral bone regeneration. Acta Biomater 2024; 181:188-201. [PMID: 38642788 DOI: 10.1016/j.actbio.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
In this study, we developed polydopamine (PDA)-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds for subchondral bone regeneration. These polymeric scaffolds were then coated with β-Lactoglobulin (β-LG) at concentrations of 1 mg/ml and 2 mg/ml. Morphological analysis indicated a homogeneous coating of the β-LG layer on the surface of network-like scaffolds. The β-LG-coated scaffolds exhibited improved swelling capacity as a function of the β-LG concentration. Compared to ADA-GEL/PDA scaffolds, the β-LG-coated scaffolds demonstrated delayed degradation and enhanced biomineralization. Here, a lower concentration of β-LG showed long-lasting stability and superior biomimetic hydroxyapatite mineralization. According to the theoretical findings, the single-state, representing the low concentration of β-LG, exhibited a homogeneous distribution on the surface of the PDA, while the dimer-state (high concentration) displayed a high likelihood of uncontrolled interactions. β-LG-coated ADA-GEL/PDA scaffolds with a lower concentration of β-LG provided a biocompatible substrate that supported adhesion, proliferation, and alkaline phosphatase (ALP) secretion of sheep bone marrow mesenchymal stem cells, as well as increased expression of osteopontin (SPP1) and collagen type 1 (COL1A1) in human osteoblasts. These findings indicate the potential of protein-coated scaffolds for subchondral bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study addresses a crucial aspect of osteochondral defect repair, emphasizing the pivotal role of subchondral bone regeneration. The development of polydopamine-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds, coated with β-Lactoglobulin (β-LG), represents a novel approach to potentially enhance subchondral bone repair. β-LG, a milk protein rich in essential amino acids and bioactive peptides, is investigated for its potential to promote subchondral bone regeneration. This research explores computationally and experimentally the influence of protein concentration on the ordered or irregular deposition, unravelling the interplay between coating structure, scaffold properties, and in-vitro performance. This work contributes to advancing ordered protein coating strategies for subchondral bone regeneration, providing a biocompatible solution with potential implications for supporting subsequent cartilage repair.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom; Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Minjoo Kim
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingjing Zhang
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Swastina Nath Varma
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Lisa Schöbel
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Zadegan S, Vahidi B, Nourmohammadi J, Shojaee A, Haghighipour N. Evaluation of rabbit adipose derived stem cells fate in perfused multilayered silk fibroin composite scaffold for Osteochondral repair. J Biomed Mater Res B Appl Biomater 2024; 112:e35396. [PMID: 38433653 DOI: 10.1002/jbm.b.35396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/30/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Development of osteochondral tissue engineering approaches using scaffolds seeded with stem cells in association with mechanical stimulations has been recently considered as a promising technique for the repair of this tissue. In this study, an integrated and biomimetic trilayered silk fibroin (SF) scaffold containing SF nanofibers in each layer was fabricated. The osteogenesis and chondrogenesis of stem cells seeded on the fabricated scaffolds were investigated under a perfusion flow. 3-Dimethylthiazol-2,5-diphenyltetrazolium bromide assay showed that the perfusion flow significantly enhanced cell viability and proliferation. Analysis of gene expression by stem cells revealed that perfusion flow had significantly upregulated the expression of osteogenic and chondrogenic genes in the bone and cartilage layers and downregulated the hypertrophic gene expression in the intermediate layer of the scaffold. In conclusion, applying flow perfusion on the prepared integrated trilayered SF-based scaffold can support osteogenic and chondrogenic differentiation for repairing osteochondral defects.
Collapse
Affiliation(s)
- Sara Zadegan
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Asiyeh Shojaee
- Division of Physiology, Department of Basic Science, Faculty of Veterinary, Amol University of Special Modern Technologies, Amol, Iran
| | | |
Collapse
|
4
|
Purbantoro SD, Taephatthanasagon T, Purwaningrum M, Hirankanokchot T, Peralta S, Fiani N, Sawangmake C, Rattanapuchpong S. Trends of regenerative tissue engineering for oral and maxillofacial reconstruction in veterinary medicine. Front Vet Sci 2024; 11:1325559. [PMID: 38450027 PMCID: PMC10915013 DOI: 10.3389/fvets.2024.1325559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Oral and maxillofacial (OMF) defects are not limited to humans and are often encountered in other species. Reconstructing significant tissue defects requires an excellent strategy for efficient and cost-effective treatment. In this regard, tissue engineering comprising stem cells, scaffolds, and signaling molecules is emerging as an innovative approach to treating OMF defects in veterinary patients. This review presents a comprehensive overview of OMF defects and tissue engineering principles to establish proper treatment and achieve both hard and soft tissue regeneration in veterinary practice. Moreover, bench-to-bedside future opportunities and challenges of tissue engineering usage are also addressed in this literature review.
Collapse
Affiliation(s)
- Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teeanutree Taephatthanasagon
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Thanyathorn Hirankanokchot
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Jalandhra GK, Molley TG, Hung TT, Roohani I, Kilian KA. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions. Acta Biomater 2023; 156:75-87. [PMID: 36055612 DOI: 10.1016/j.actbio.2022.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Osteochondral tissue has a complex hierarchical structure spanning subchondral bone to articular cartilage. Biomaterials approaches to mimic and repair these interfaces have had limited success, largely due to challenges in fabricating composite hard-soft interfaces with living cells. Biofabrication approaches have emerged as attractive methods to form osteochondral analogues through additive assembly of hard and soft components. We have developed a unique printing platform that is able to integrate soft and hard materials concurrently through freeform printing of mineralized constructs within tunable microgel suspensions containing living cells. A library of microgels based on gelatin were prepared, where the stiffness of the microgels and a liquid "filler" phase can be tuned for bioprinting while simultaneously directing differentiation. Tuning microgel stiffness and filler content differentially directs chondrogenesis and osteogenesis within the same construct, demonstrating how this technique can be used to fabricate osteochondral interfaces in a single step. Printing of a rapidly setting calcium phosphate cement, so called "bone-ink" within a cell laden suspension bath further guides differentiation, where the cells adjacent to the nucleated hydroxyapatite phase undergo osteogenesis with cells in the surrounding medium undergoing chondrogenesis. In this way, bone analogues with hierarchical structure can be formed within cell-laden gradient soft matrices to yield multiphasic osteochondral constructs. This technique provides a versatile one-pot biofabrication approach without harsh post-processing which will aid efforts in bone disease modelling and tissue engineering. STATEMENT OF SIGNIFICANCE: This paper demonstrates the first example of a biofabrication approach to rapidly form osteochondral constructs in a single step under physiological conditions. Key to this advance is a tunable suspension of extracellular matrix microgels that are packed together with stem cells, providing a unique and modular scaffolding for guiding the simultaneous formation of bone and cartilage tissue. The physical properties of the suspension allow direct writing of a ceramic "bone-ink", resulting in an ordered structure of microscale hydrogels, living cells, and bone mimics in a single step. This platform reveals a simple approach to making complex skeletal tissue for disease modelling, with the possibility of repairing and replacing bone-cartilage interfaces in the clinic using a patient's own cells.
Collapse
Affiliation(s)
- Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW 2052
| | - Iman Roohani
- School of Chemistry, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; School of Chemistry, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052.
| |
Collapse
|
6
|
Guilak F, Estes BT, Moutos FT. Functional tissue engineering of articular cartilage for biological joint resurfacing-The 2021 Elizabeth Winston Lanier Kappa Delta Award. J Orthop Res 2022; 40:1721-1734. [PMID: 34812518 PMCID: PMC9124734 DOI: 10.1002/jor.25223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
Biological resurfacing of entire articular surfaces represents a challenging strategy for the treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. Here, we present the culmination of multiple avenues of interdisciplinary research leading to the development and testing of bioartificial cartilage for tissue-engineered resurfacing of the hip joint. The work is based on a novel three-dimensional weaving technology that is infiltrated with specific bioinductive materials and/or genetically-engineered stem cells. A variety of design approaches have been tested in vitro, showing biomimetic cartilage-like properties as well as the capability for long-term tunable and inducible drug delivery. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function. To date, these approaches have shown excellent preclinical success in a variety of animal studies, including the resurfacing of a large osteochondral defect in the canine hip, and are now well-poised for clinical translation.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA,Shriners Hospitals for Children – St. Louis, St. Louis, MO, USA,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA,Cytex Therapeutics, Inc., Durham, NC, USA
| | | | | |
Collapse
|
7
|
Begines B, Arevalo C, Romero C, Hadzhieva Z, Boccaccini AR, Torres Y. Fabrication and Characterization of Bioactive Gelatin-Alginate-Bioactive Glass Composite Coatings on Porous Titanium Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15008-15020. [PMID: 35316017 PMCID: PMC8990524 DOI: 10.1021/acsami.2c01241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 05/10/2023]
Abstract
In this research work, the fabrication of biphasic composite implants has been investigated. Porous, commercially available pure Ti (50 vol % porosity and pore distributions of 100-200, 250-355, and 355-500 μm) has been used as a cortical bone replacement, while different composites based on a polymer blend (gelatin and alginate) and bioactive glass (BG) 45S5 have been applied as a soft layer for cartilage tissues. The microstructure, degradation rates, biofunctionality, and wear behavior of the different composites were analyzed to find the best possible coating. Experiments demonstrated the best micromechanical balance for the substrate containing 200-355 μm size range distribution. In addition, although the coating prepared from alginate presented a lower mass loss, the composite containing 50% alginate and 50% gelatin showed a higher elastic recovery, which entails that this type of coating could replicate the functions of the soft tissue in areas of the joints. Therefore, results revealed that the combinations of porous commercially pure Ti and composites prepared from alginate/gelatin/45S5 BG are candidates for the fabrication of biphasic implants not only for the treatment of osteochondral defects but also potentially for any other diseases affecting simultaneously hard and soft tissues.
Collapse
Affiliation(s)
- Belen Begines
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, c/ Profesor García González
2, Seville 41012, Spain
| | - Cristina Arevalo
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
| | - Carlos Romero
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
- Department
of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. de la Universidad 30, Leganés, Madrid 28911, Spain
| | - Zoya Hadzhieva
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Yadir Torres
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
| |
Collapse
|
8
|
Dubey A, Jaiswal S, Lahiri D. Promises of Functionally Graded Material in Bone Regeneration: Current Trends, Properties, and Challenges. ACS Biomater Sci Eng 2022; 8:1001-1027. [PMID: 35201746 DOI: 10.1021/acsbiomaterials.1c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionally graded materials (FGMs) are emerging materials systems, with structures and compositions gradually changing in a particular direction. Consequently, the properties of the materials gradually change in the desired direction to achieve particular nonhomogeneous service demands without abrupting the compositional and behavioral interface at the macroscale. FGMs have been found to have high potential as orthopedic implants; because the functional gradient can be adapted in such a manner that the core of FGM should be compatible with the density and strength of bone, interlayers can maintain the structural integrity and outermost layers would provide bioactivity and corrosion resistance, thus overall tailoring the stress shielding effect. This review article discusses the typical FGM systems existing in nature and the human body, focusing on bone tissue. Further, the reason behind the application of these FGMs systems in orthopedic implants is explored in detail, considering the physical and biological necessities. The substantial focus of the present critical review is devoted to two primary topics related to the usage of FGMs for orthopedic implants: (1) the synthesizing techniques currently available to produce FGMs for load-bearing orthopedic applications and (2) the properties, such as mechanical, structural, and biological behavior of the FGMs. This review article gives an insight into the potential of FGMs for orthopedic applications.
Collapse
Affiliation(s)
- Anshu Dubey
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Satish Jaiswal
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| |
Collapse
|
9
|
Choe R, Devoy E, Kuzemchak B, Sherry M, Jabari E, Packer JD, Fisher JP. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Biofabrication 2022; 14:10.1088/1758-5090/ac5220. [PMID: 35120345 PMCID: PMC8918066 DOI: 10.1088/1758-5090/ac5220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Osteoarthritis is a highly prevalent rheumatic musculoskeletal disorder that commonly affects many joints. Repetitive joint overloading perpetuates the damage to the affected cartilage, which undermines the structural integrity of the osteochondral unit. Various tissue engineering strategies have been employed to design multiphasic osteochondral scaffolds that recapitulate layer-specific biomechanical properties, but the inability to fully satisfy mechanical demands within the joint has limited their success. Through computational modeling and extrusion-based bioprinting, we attempted to fabricate a biphasic osteochondral scaffold with improved shear properties and a mechanically strong interface. A 3D stationary solid mechanics model was developed to simulate the effect of lateral shear force on various thermoplastic polymer/hydrogel scaffolds with a patterned interface. Additionally, interfacial shear tests were performed on bioprinted polycaprolactone (PCL)/hydrogel interface scaffolds. The first simulation showed that the PCL/gelatin methacrylate (GelMA) and PCL/polyethylene glycol diacrylate (PEGDA) scaffolds interlocking hydrogel and PCL at interface in a 1:1 ratio possessed the largest average tensile (PCL/GelMA: 80.52 kPa; PCL/PEGDA: 79.75 kPa) and compressive stress (PCL/GelMA: 74.71 kPa; PCL/PEGDA: 73.83 kPa). Although there were significant differences in shear strength between PCL/GelMA and PCL/PEGDA scaffolds, no significant difference was observed among the treatment groups within both scaffold types. Lastly, the hypothetical simulations of potential biphasic 3D printed scaffolds showed that for every order of magnitude decrease in Young's modulus (E) of the soft bioink, all the scaffolds underwent an exponential increase in average displacement at the cartilage and interface layers. The following work provides valuable insights into the biomechanics of 3D printed osteochondral scaffolds, which will help inform future scaffold designs for enhanced regenerative outcomes.
Collapse
Affiliation(s)
- Robert Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, USA
| | - Eoin Devoy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, USA
| | - Blake Kuzemchak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, USA
| | - Mary Sherry
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, USA
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, USA
| | - Jonathan D. Packer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
10
|
Fu JN, Wang X, Yang M, Chen YR, Zhang JY, Deng RH, Zhang ZN, Yu JK, Yuan FZ. Scaffold-Based Tissue Engineering Strategies for Osteochondral Repair. Front Bioeng Biotechnol 2022; 9:812383. [PMID: 35087809 PMCID: PMC8787149 DOI: 10.3389/fbioe.2021.812383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Over centuries, several advances have been made in osteochondral (OC) tissue engineering to regenerate more biomimetic tissue. As an essential component of tissue engineering, scaffolds provide structural and functional support for cell growth and differentiation. Numerous scaffold types, such as porous, hydrogel, fibrous, microsphere, metal, composite and decellularized matrix, have been reported and evaluated for OC tissue regeneration in vitro and in vivo, with respective advantages and disadvantages. Unfortunately, due to the inherent complexity of organizational structure and the objective limitations of manufacturing technologies and biomaterials, we have not yet achieved stable and satisfactory effects of OC defects repair. In this review, we summarize the complicated gradients of natural OC tissue and then discuss various osteochondral tissue engineering strategies, focusing on scaffold design with abundant cell resources, material types, fabrication techniques and functional properties.
Collapse
Affiliation(s)
- Jiang-Nan Fu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Yang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Ji-Ying Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Rong-Hui Deng
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Ning Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Jia-Kuo Yu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Fu-Zhen Yuan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
11
|
Pereira DR, Silva-Correia J, Oliveira JM, Reis RL, Pandit A. Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112611. [DOI: 10.1016/j.msec.2021.112611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023]
|
12
|
Pitta Kruize C, Panahkhahi S, Putra NE, Diaz-Payno P, van Osch G, Zadpoor AA, Mirzaali MJ. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater Sci Eng 2021. [PMID: 34784181 DOI: 10.1021/acsbiomaterials.1c00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone-to-soft tissue interfaces are responsible for transferring loads between tissues with significantly dissimilar material properties. The examples of connective soft tissues are ligaments, tendons, and cartilages. Such natural tissue interfaces have unique microstructural properties and characteristics which avoid the abrupt transitions between two tissues and prevent formation of stress concentration at their connections. Here, we review some of the important characteristics of these natural interfaces. The native bone-to-soft tissue interfaces consist of several hierarchical levels which are formed in a highly specialized anisotropic fashion and are composed of different types of heterogeneously distributed cells. The characteristics of a natural interface can rely on two main design principles, namely by changing the local microarchitectural features (e.g., complex cell arrangements, and introducing interlocking mechanisms at the interfaces through various geometrical designs) and changing the local chemical compositions (e.g., a smooth and gradual transition in the level of mineralization). Implementing such design principles appears to be a promising approach that can be used in the design, reconstruction, and regeneration of engineered biomimetic tissue interfaces. Furthermore, prominent fabrication techniques such as additive manufacturing (AM) including 3D printing and electrospinning can be used to ease these implementation processes. Biomimetic interfaces have several biological applications, for example, to create synthetic scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Carlos Pitta Kruize
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Sara Panahkhahi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Niko Eka Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Pedro Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Gerjo van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
13
|
Moghaddaszadeh A, Seddiqi H, Najmoddin N, Abbasi Ravasjani S, Klein-Nulend J. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Biomed Mater 2021; 16. [PMID: 34670200 DOI: 10.1088/1748-605x/ac3147] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
Abstract
A challenging approach of three-dimensional (3D)-biomimetic scaffold design for bone tissue engineering is to improve scaffold bioactivity and mechanical properties. We aimed to design and fabricate 3D-polycaprolactone (PCL)-based nanocomposite scaffold containing a high concentration homogeneously distributed carbonated-nanohydroxyapatite (C-nHA)-particles in combination with immobilized-collagen to mimic real bone properties. PCL-scaffolds without/with C-nHA at 30%, 45%, and 60% (wt/wt) were 3D-printed. PCL/C-nHA60%-scaffolds were surface-modified by NaOH-treatment and collagen-immobilization. Physicomechanical and biological properties were investigated experimentally and by finite-element (FE) modeling. Scaffold surface-roughness enhanced by increasing C-nHA (1.7 - 6.1-fold), but decreased by surface-modification (0.6-fold). The contact angle decreased by increasing C-nHA (0.9 - 0.7-fold), and by surface-modification (0.5-fold). The zeta potential decreased by increasing C-nHA (3.2-9.9-fold). Average elastic modulus, compressive strength, and reaction force enhanced by increasing C-nHA and by surface-modification. FE modeling revealed that von Mises stress distribution became less homogeneous by increasing C-nHA, and by surface-modification. Maximal von Mises stress for 2% compression strain in all scaffolds did not exceed yield stress for bulk-material. 3D-printed PCL/C-nHA60% with surface-modification enhanced pre-osteoblast spreading, proliferation, collagen deposition, alkaline phosphatase activity, and mineralization. In conclusion, a novel biomimetic 3D-printed PCL-scaffold containing a high concentration C-nHA with surface-modification was successfully fabricated. It exhibited superior physicomechanical and biological properties, making it a promising biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Ali Moghaddaszadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Seddiqi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, The Netherlands
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, The Netherlands
| |
Collapse
|
14
|
Nordberg RC, Huebner P, Schuchard KG, Mellor LF, Shirwaiker RA, Loboa EG, Spang JT. The evaluation of a multiphasic 3D-bioplotted scaffold seeded with adipose derived stem cells to repair osteochondral defects in a porcine model. J Biomed Mater Res B Appl Biomater 2021; 109:2246-2258. [PMID: 34114736 DOI: 10.1002/jbm.b.34886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/02/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D-bioplotted osteochondral scaffold design that can drive site-specific tissue formation when seeded with adipose-derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model. Osteochondral defects were generated in the trochlear groove of Yucatan minipigs and repaired with scaffolds that either contained or lacked an electrospun tidemark and were either unseeded or seeded with ASC. Implants were monitored via computed tomography (CT) over the course of 4 months of in vivo implantation and compared to both open lesions and autologous explants. ICRS II evaluation indicated that defects with ASC-seeded scaffolds had healing that most closely resembled the aulogous explant. Scaffold-facilitated subchondral bone repair mimicked the structure of native bone tissue, but cartilage matrix staining was not apparent within the scaffold. The open lesions had the highest volumetric infill detected using CT analysis (p < 0.05), but the repair tissue was largely disorganized. The acellular scaffold without a tidemark had significantly more volumetric filling than either the acellular or ASC seeded groups containing a tidemark (p < 0.05), suggesting that the tidemark limited cell infiltration into the cartilage portion of the scaffold. Overall, scaffold groups repaired the defect more successfully than an open lesion but achieved limited repair in the cartilage region. With further optimization, this approach holds potential to treat focal cartilage lesions in a highly personalized manner using a human patient's own ASC cells.
Collapse
Affiliation(s)
- Rachel C Nordberg
- College of Engineering, University of Missouri, Columbia, Missouri, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Pedro Huebner
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,School of Industrial and Systems Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Karl G Schuchard
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Liliana F Mellor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Rohan A Shirwaiker
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Elizabeth G Loboa
- College of Engineering, University of Missouri, Columbia, Missouri, USA.,Office of the Provost, Southern Methodist University, Dallas, Texas, USA
| | - Jeffery T Spang
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Zhang B, Huang J, Narayan RJ. Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B 2021; 8:8149-8170. [PMID: 32776030 DOI: 10.1039/d0tb00688b] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tissue engineering approach for repairing osteochondral (OC) defects involves the fabrication of a biological tissue scaffold that mimics the physiological properties of natural OC tissue (e.g., the gradient transition between the cartilage surface and the subchondral bone). The OC tissue scaffolds described in many research studies exhibit a discrete gradient (e.g., a biphasic or tri/multiphasic structure) or a continuous gradient to mimic OC tissue attributes such as biochemical composition, structure, and mechanical properties. One advantage of a continuous gradient scaffold over biphasic or tri/multiphasic tissue scaffolds is that it more closely mimics natural OC tissue since there is no distinct interface between each layer. Although research studies to this point have yielded good results related to OC regeneration with tissue scaffolds, differences between engineered scaffolds and natural OC tissue remain; due to these differences, current clinical therapies to repair OC defects with engineered scaffolds have not been successful. This paper provides an overview of both discrete and continuous gradient OC tissue scaffolds in terms of cell type, scaffold material, microscale structure, mechanical properties, fabrication methods, and scaffold stimuli. Fabrication of gradient scaffolds with three-dimensional (3D) printing is given special emphasis due to its ability to accurately control scaffold pore geometry. Moreover, the application of computational modeling in OC tissue engineering is considered; for example, efforts to optimize the scaffold structure, mechanical properties, and physical stimuli generated within the scaffold-bioreactor system to predict tissue regeneration are considered. Finally, challenges associated with the repair of OC defects and recommendations for future directions in OC tissue regeneration are proposed.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
16
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
17
|
Morouço P, Fernandes C, Lattanzi W. Challenges and Innovations in Osteochondral Regeneration: Insights from Biology and Inputs from Bioengineering toward the Optimization of Tissue Engineering Strategies. J Funct Biomater 2021; 12:17. [PMID: 33673516 PMCID: PMC7931100 DOI: 10.3390/jfb12010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the extremely high incidence of lesions and diseases in aging population, it is critical to put all efforts into developing a successful implant for osteochondral tissue regeneration. Many of the patients undergoing surgery present osteochondral fissure extending until the subchondral bone (corresponding to a IV grade according to the conventional radiographic classification by Berndt and Harty). Therefore, strategies for functional tissue regeneration should also aim at healing the subchondral bone and joint interface, besides hyaline cartilage. With the ambition of contributing to solving this problem, several research groups have been working intensively on the development of tailored implants that could promote that complex osteochondral regeneration. These implants may be manufactured through a wide variety of processes and use a wide variety of (bio)materials. This review aimed to examine the state of the art regarding the challenges, advantages, and drawbacks of the current strategies for osteochondral regeneration. One of the most promising approaches relies on the principles of additive manufacturing, where technologies are used that allow for the production of complex 3D structures with a high level of control, intended and predefined geometry, size, and interconnected pores, in a reproducible way. However, not all materials are suitable for these processes, and their features should be examined, targeting a successful regeneration.
Collapse
Affiliation(s)
| | | | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
18
|
Jang CH, Cho GW, Song AJ. Effect of Bone Powder/Mesenchymal Stem Cell/BMP2/Fibrin Glue on Osteogenesis in a Mastoid Obliteration Model. In Vivo 2021; 34:1103-1110. [PMID: 32354898 DOI: 10.21873/invivo.11881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM This study aimed to prospectively compare the osteogenesis of bone powder (BP) substances with and without mesenchymal stem cells (MSCs) and evaluate the synergistic effect of topically applied recombinant human bone morphogenic protein-2 (BMP2) on MSC-loaded BP using fibrin glue in a mastoid obliteration model. MATERIALS AND METHODS To determine the expression of osteocyte-specific genes, total RNA was isolated from three MSC groups: Untreated MSCs, MSCs cultured with BP, and MSCs cultured with BP and BMP2. Real-time polymerase chain reaction was carried out with specific primers of osteogenesis-related genes runt-related transcription factor 2, osteocalcin, osteoprotegerin, osterix, alkaline phosphatase, transforming growth factor beta, and type I collagen. Live/dead staining was also performed. To observe the adhesion of MSCs to the BP, MSCs were treated with BP for 2 days and the surface was observed by scanning electron microscopy (SEM). Under general anesthesia, mastoid obliteration was performed in rats using three groups: treated with BP alone, BP/MSCs, and BP/MSC/BMP2. Before decapitation at 8 weeks post operation, in vivo micro computed tomography (micro CT) was performed. The bullae were dissected, fixed, and decalcified. followed by dehydration, paraffin embedding, and staining by hematoxylin and eosin and Masson's trichrome. RESULTS SEM showed the MSCs to be well-attached to the superficial area of the BP. The expression of osteocyte-specific genes was the highest in the MSCs cultured with BP and BMP2, followed by cultured with BP only, and untreated MSCs. The BP/MSC/BMP2 group showed the highest radiodensity of bullae in microCT analysis. The microCT findings revealed that the BP/MSC/BMP2 group showed the most enhanced osteogenesis of the scaffold compared to the other two groups. No significant difference was found in osteoconductive osteogenesis between the control and BP/MSC groups. However, the BP/MSC/BMP2 group showed significantly enhanced osteoconductive osteogenesis and osteoinductive change of the BP as shown by hematoxylin and eosin staining. Histomorphometry of osteogenesis revealed that the difference between the BP/MSC/BMP2 group and the other two groups was statistically significant. CONCLUSION A small amount of BMP2 is necessary during MSC loading to enhance the osteogenesis of BP and avoid complications associated with high doses of BMP2. These results may be applicable to mastoid obliteration in clinical practice.
Collapse
Affiliation(s)
- Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Gwang Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK-21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - An-Ji Song
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK-21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Zhang B, Guo L, Chen H, Ventikos Y, Narayan RJ, Huang J. Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry. J Mech Behav Biomed Mater 2020; 104:103665. [DOI: 10.1016/j.jmbbm.2020.103665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
|
20
|
Zhang B, Cristescu R, Chrisey DB, Narayan RJ. Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. Int J Bioprint 2020; 6:211. [PMID: 32596549 PMCID: PMC7294686 DOI: 10.18063/ijb.v6i1.211] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solvent-based extrusion (SBE) 3D printing is a popular 3D printing method, which enables incorporation of cells during the scaffold printing process. The scaffold can be customized by optimizing the scaffold structure, biomaterial, and cells to mimic the properties of natural tissue. However, several technical challenges prevent SBE 3D printing from translation to clinical use, such as the properties of current biomaterials, the difficulties associated with simultaneous control of multiple biomaterials and cells, and the scaffold-to-scaffold variability of current 3D printed scaffolds. In this review paper, a summary of SBE 3D printing for tissue engineering (TE) is provided. The influences of parameters such as ink biomaterials, ink rheological behavior, cross-linking mechanisms, and printing parameters on scaffold fabrication are considered. The printed scaffold structure, mechanical properties, degradation, and biocompatibility of the scaffolds are summarized. It is believed that a better understanding of the scaffold fabrication process and assessment methods can improve the functionality of SBE-manufactured 3D printed scaffolds.
Collapse
Affiliation(s)
- Bin Zhang
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
21
|
Mellor LF, Nordberg RC, Huebner P, Mohiti-Asli M, Taylor MA, Efird W, Oxford JT, Spang JT, Shirwaiker RA, Loboa EG. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. J Biomed Mater Res B Appl Biomater 2019; 108:2017-2030. [PMID: 31880408 PMCID: PMC7217039 DOI: 10.1002/jbm.b.34542] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022]
Abstract
Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient's existing tissue. The goal of this study was to create a scaffold that would induce site-specific osteogenic and chondrogenic differentiation of human adipose-derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using 3D-bioplotting of biodegradable polycraprolactone (PCL) with either β-tricalcium phosphate (TCP) or decellularized bovine cartilage extracellular matrix (dECM) to drive site-specific hASC osteogenesis and chondrogenesis, respectively. PCL-dECM scaffolds demonstrated elevated matrix deposition and organization in scaffolds seeded with hASC as well as a reduction in collagen I gene expression. 3D-bioplotted PCL scaffolds with 20% TCP demonstrated elevated calcium deposition, endogenous alkaline phosphatase activity, and osteopontin gene expression. Osteochondral scaffolds comprised of hASC-seeded 3D-bioplotted PCL-TCP, electrospun PCL, and 3D-bioplotted PCL-dECM phases were evaluated and demonstrated site-specific osteochondral tissue characteristics. This technique holds great promise as cartilage morbidity is minimized since autologous cartilage harvest is not required, tissue rejection is minimized via use of an abundant and accessible source of autologous stem cells, and biofabrication techniques allow for a precise, customizable methodology to rapidly produce the scaffold.
Collapse
Affiliation(s)
- Liliana F Mellor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Rachel C Nordberg
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| | - Pedro Huebner
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mahsa Mohiti-Asli
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Michael A Taylor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - William Efird
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Julia T Oxford
- Biomolecular Research Center, Boise State University, Boise, Idaho
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Rohan A Shirwaiker
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | - Elizabeth G Loboa
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
22
|
Horner CB, Maldonado M, Tai Y, Rony RMIK, Nam J. Spatially Regulated Multiphenotypic Differentiation of Stem Cells in 3D via Engineered Mechanical Gradient. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45479-45488. [PMID: 31714732 DOI: 10.1021/acsami.9b17266] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Within the osteochondral interface, cellular and extracellular matrix gradients provide a biomechanical and biochemical niche for homeostatic tissue functions. Postnatal joint loading is critical for the development of such tissue gradients, leading to the formation of functional osteochondral tissues composed of superficial, middle, and deep zones of cartilage, and underlying subchondral bone, in a depth-dependent manner. In this regard, a novel, variable core-shell electrospinning strategy was employed to generate spatially controlled strain gradients within three-dimensional scaffolds under dynamic compressive loading, enabling the local strain-magnitude dependent, multiphenotypic stem cell differentiation. Human mesenchymal stem cells (hMSCs) were cultured in electrospun scaffolds with a linear or biphasic mechanical gradient, which was computationally engineered and experimentally validated. The cell/scaffold constructs were subjected to various magnitudes of dynamic compressive strains in a scaffold depth-dependent manner at a frequency of 1 Hz for 2 h daily for up to 42 days in osteogenic media. Spatially upregulated gene expression of chondrogenic markers (ACAN, COL2A1, PRG4) and glycosaminoglycan deposition was observed in the areas of greater compressive strains. In contrast, osteogenic markers (COL1A1, SPARC, RUNX2) and calcium deposition were downregulated in response to high local compressive strains. Dynamic mechanical analysis showed the maintenance of the engineered mechanical gradients only under dynamic culture conditions, confirming the potent role of biomechanical gradients in developing and maintaining a tissue gradient. These results demonstrate that multiphenotypic differentiation of hMSCs can be controlled by regulating local mechanical microenvironments, providing a novel strategy to recapitulate the gradient structure in osteochondral tissues for successful regeneration of damaged joints in vivo and facile development of interfacial tissue models in vitro.
Collapse
Affiliation(s)
- Christopher B Horner
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| | - Maricela Maldonado
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| | - Youyi Tai
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| | - R M Imtiaz Karim Rony
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| | - Jin Nam
- Department of Bioengineering , University of California , Riverside , California 92521 , United States
| |
Collapse
|
23
|
Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon 2019; 5:e02808. [PMID: 31844733 PMCID: PMC6895744 DOI: 10.1016/j.heliyon.2019.e02808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Bone tissue engineering has been widely studied and proposed as a promising platform for correcting the bone defects. The applications of mesenchymal stem cell (MSC)-based bone tissue engineering have been investigated in various in vitro and in vivo models. In this regard, the promising animal bone defect models have been employed for illustrating the bone regenerative capacity of MSC-based bone tissue engineering. However, most studies aimed for clinical applications in human. These evidences suggest a knowledge gap to fulfill the accomplishment for veterinary implementation. In this review, the fundamental concept, knowledge, and technology of MSC-based bone tissue engineering focusing on veterinary applications are summarized. In addition, the potential canine MSCs resources for veterinary bone tissue engineering are reviewed, including canine bone marrow-derived MSCs, canine adipose-derived MSCs, and canine dental tissue-derived MSCs. This review will provide a basic and current information for studies aiming for the utilization of MSC-based bone tissue engineering in veterinary practice.
Collapse
|
24
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Boushell MK, Mosher CZ, Suri GK, Doty SB, Strauss EJ, Hunziker EB, Lu HH. Polymeric mesh and insulin-like growth factor 1 delivery enhance cell homing and graft-cartilage integration. Ann N Y Acad Sci 2019; 1442:138-152. [PMID: 30985969 PMCID: PMC7596880 DOI: 10.1111/nyas.14054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023]
Abstract
Cartilage injury, such as full-thickness lesions, predisposes patients to the premature development of osteoarthritis, a degenerative joint disease. While surgical management of cartilage lesions has improved, long-term clinical efficacy has stagnated, owing to the lack of hyaline cartilage regeneration and inadequate graft-host integration. This study tests the hypothesis that integration of cartilage grafts with native cartilage can be improved by enhancing the migration of chondrocytes across the graft-host interface via the release of chemotactic factor from a degradable polymeric mesh. To this end, a polylactide-co-glycolide/poly-ε-caprolactone mesh was designed to localize the delivery of insulin-like growth factor 1 (IGF-1), a well-established chondrocyte attractant. The release of IGF-1 (100 ng/mg) enhanced cell migration from cartilage explants, and the mesh served as critical structural support for cell adhesion, growth, and production of a cartilaginous matrix in vitro, which resulted in increased integration strength compared with mesh-free repair. Further, this neocartilage matrix was structurally contiguous with native and grafted cartilage when tested in an osteochondral explant model in vivo. These results demonstrate that this combined approach of a cell homing factor and supportive matrix will promote cell-mediated integrative cartilage repair and improve clinical outcomes of cartilage grafts in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Margaret K. Boushell
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | | | - Gurbani K. Suri
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Stephen B. Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, New York
| | - Eric J. Strauss
- Department of Orthopaedic Surgery, NYU Langone Medical Center, New York, New York
| | - Ernst B. Hunziker
- Department of BioMedical Research, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
26
|
Xiao H, Huang W, Xiong K, Ruan S, Yuan C, Mo G, Tian R, Zhou S, She R, Ye P, Liu B, Deng J. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Int J Nanomedicine 2019; 14:2011-2027. [PMID: 30962685 PMCID: PMC6435123 DOI: 10.2147/ijn.s191627] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background One of the main problems associated with the development of osteochondral reparative materials is that the accurate imitation of the structure of the natural osteochondral tissue and fabrication of a suitable scaffold material for osteochondral repair are difficult. The long-term outcomes of single- or bilayered scaffolds are often unsatisfactory because of the absence of a progressive osteochondral structure. Therefore, only scaffolds with gradient pore sizes are suitable for osteochondral repair to achieve better proliferation and differentiation of the stem cells into osteochondral tissues to complete the repair of defects. Methods A silk fibroin (SF) solution, chitosan (CS) solution, and nano-hydroxyapatite (nHA) suspension were mixed at the same weight fraction to obtain osteochondral scaffolds with gradient pore diameters by centrifugation, freeze-drying, and chemical cross-linking. Results The scaffolds prepared in this study are confirmed to have a progressive structure starting from the cartilage layer to bone layer, similar to that of the normal osteochondral tissues. The prepared scaffolds are cylindrical in shape and have high internal porosity. The structure consists of regular and highly interconnected pores with a progressively increasing pore distribution as well as a progressively changing pore diameter. The scaffold strongly absorbs water, and has a suitable degradation rate, sufficient space for cell growth and proliferation, and good resistance to compression. Thus, the scaffold can provide sufficient nutrients and space for cell growth, proliferation, and migration. Further, bone marrow mesenchymal stem cells seeded onto the scaffold closely attach to the scaffold and stably grow and proliferate, indicating that the scaffold has good biocompatibility with no cytotoxicity. Conclusion In brief, the physical properties and biocompatibility of our scaffolds fully comply with the requirements of scaffold materials required for osteochondral tissue engineering, and they are expected to become a new type of scaffolds with gradient pore sizes for osteochondral repair.
Collapse
Affiliation(s)
- Hongli Xiao
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Wenliang Huang
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Kun Xiong
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Shiqiang Ruan
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Cheng Yuan
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Gang Mo
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Renyuan Tian
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Sirui Zhou
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Rongfeng She
- Department of Orthopedics, Guizhou Province People's Hospital, Guiyang 550002, Guizhou Province, People's Republic of China
| | - Peng Ye
- Emergency and Trauma Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China
| | - Bin Liu
- Surgical Laboratory, Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China
| | - Jiang Deng
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| |
Collapse
|
27
|
Ansari S, Khorshidi S, Karkhaneh A. Engineering of gradient osteochondral tissue: From nature to lab. Acta Biomater 2019; 87:41-54. [PMID: 30721785 DOI: 10.1016/j.actbio.2019.01.071] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/22/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The osteochondral tissue is an interface between two distinct tissues: articular cartilage and bone. These two tissues are significantly diverse with regard to their chemical compositions, mechanical properties, structure, electrical properties, and the amount of nutrient and oxygen consumption. Thus, transition from the surface of the articular cartilage to the subchondral bone needs to face several smooth gradients. These gradients are imperative to study to generate a scaffold suitable for the reconstruction of the cartilaginous and osseous layers of a defected osteochondral tissue, simultaneously. The aim of this review is to peruse the alternation of biochemical, biomechanical, structural, electrical, and metabolic properties of the osteochondral tissue moving from the surface of the articular cartilage to the subchondral bone. Moreover, this review also discusses currently developed approaches and ideal techniques with a focus on gradients present in the interface of the cartilage and bone. STATEMENT OF SIGNIFICANCE: The submitted review paper entitled as "Engineering of the gradient osteochondral tissue: from nature to lab" is a complete review with regard to the osteochondral tissue and transition of different properties between the cartilage and bone tissues. Moreover, previous studies on the osteochondral tissue engineering have been reviewed in this paper. This complete information can be a valuable and useful source for current and future researchers and scientists. Considering the scope of the submitted paper, Acta Biomaterialia would be a suitable journal for publishing this article.
Collapse
|
28
|
Abdulghani S, Morouço PG. Biofabrication for osteochondral tissue regeneration: bioink printability requirements. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:20. [PMID: 30689057 DOI: 10.1007/s10856-019-6218-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Biofabrication allows the formation of 3D scaffolds through a precise spatial control. This is of foremost importance when aiming to mimic heterogeneous and anisotropic architecture, such as that of the osteochondral tissue. Osteochondral defects are a supreme challenge for tissue engineering due to the compositional and structural complexity of stratified architecture and contrasting biomechanical properties of the cartilage-bone interface. This review highlights the advancements and retreats witnessed by using developed bioinks for tissue regeneration, taking osteochondral tissue as a challenging example. Methods, materials and requirements for bioprinting were discussed, highlighting the pre and post-processing factors that researchers should consider towards the development of a clinical treatment.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal - Zona Industrial., Marinha Grande, 2430-028, Portugal.
| | - Pedro G Morouço
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal - Zona Industrial., Marinha Grande, 2430-028, Portugal
| |
Collapse
|
29
|
Rowland CR, Glass KA, Ettyreddy AR, Gloss CC, Matthews JRL, Huynh NPT, Guilak F. Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs. Biomaterials 2018; 177:161-175. [PMID: 29894913 PMCID: PMC6082159 DOI: 10.1016/j.biomaterials.2018.04.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 01/25/2023]
Abstract
Cartilage-derived matrix (CDM) has emerged as a promising scaffold material for tissue engineering of cartilage and bone due to its native chondroinductive capacity and its ability to support endochondral ossification. Because it consists of native tissue, CDM can undergo cellular remodeling, which can promote integration with host tissue and enables it to be degraded and replaced by neotissue over time. However, enzymatic degradation of decellularized tissues can occur unpredictably and may not allow sufficient time for mechanically competent tissue to form, especially in the harsh inflammatory environment of a diseased joint. The goal of the current study was to engineer cartilage and bone constructs with the ability to inhibit aberrant inflammatory processes caused by the cytokine interleukin-1 (IL-1), through scaffold-mediated delivery of lentiviral particles containing a doxycycline-inducible IL-1 receptor antagonist (IL-1Ra) transgene on anatomically-shaped CDM constructs. Additionally, scaffold-mediated lentiviral gene delivery was used to facilitate spatial organization of simultaneous chondrogenic and osteogenic differentiation via site-specific transduction of a single mesenchymal stem cell (MSC) population to overexpress either chondrogenic, transforming growth factor-beta 3 (TGF-β3), or osteogenic, bone morphogenetic protein-2 (BMP-2), transgenes. Controlled induction of IL-1Ra expression protected CDM hemispheres from inflammation-mediated degradation, and supported robust bone and cartilage tissue formation even in the presence of IL-1. In the absence of inflammatory stimuli, controlled cellular remodeling was exploited as a mechanism for fusing concentric CDM hemispheres overexpressing BMP-2 and TGF-β3 into a single bi-layered osteochondral construct. Our findings demonstrate that site-specific delivery of inducible and tunable transgenes confers spatial and temporal control over both CDM scaffold remodeling and neotissue composition. Furthermore, these constructs provide a microphysiological in vitro joint organoid model with site-specific, tunable, and inducible protein delivery systems for examining the spatiotemporal response to pro-anabolic and/or inflammatory signaling across the osteochondral interface.
Collapse
Affiliation(s)
- Christopher R Rowland
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | | | | | - Catherine C Gloss
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Jared R L Matthews
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Nguyen P T Huynh
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Duke University, Durham, NC 27710, USA
| | - Farshid Guilak
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Mehta SM, Jin T, Stanciulescu I, Grande-Allen KJ. Engineering biologically extensible hydrogels using photolithographic printing. Acta Biomater 2018; 75:52-62. [PMID: 29803005 DOI: 10.1016/j.actbio.2018.05.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023]
Abstract
Biomaterials for tissue engineering that recapitulate the mechanical response and biological function of native tissue are highly sought after to lessen the burden of damaged or diseased tissue. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels are a popular candidate because of their favorable bioactive properties. However, their mechanical behavior is very dissimilar to that of biological tissue, which behaves in a mechanically anisotropic, nonlinear, and viscoelastic fashion. It has been previously shown that PEGDA hydrogels can be patterned in alternating linear strips of different stiffnesses to generate anisotropic behavior, but these constructs still have a linear stress-strain response. In this study, we imparted nonlinear mechanical properties to PEGDA hydrogels by fabricating composite hydrogel constructs consisting of a stiff sinusoidal reinforcement embedded into a softer base matrix. This was achieved by polymerizing low molecular weight (MW) PEGDA hydrogel precursor into a stiff sinusoidal shape and then polymerizing this construct into a high MW precursor. Samples were generated with different relative stiffness between the two components and a range of sinusoid periodicities to assess the tunability of the resulting stress-strain curve. Tensile testing indicates that the sinusoidal patterning gives rise to nonlinear stress-strain behavior. Varying the relative stiffness was shown to tune the slope of the linear region of the stress-strain curve, and varying periodicity was shown to affect the length of the toe region of this curve. We conclude that composite hydrogels with stiff sinusoidally-patterned reinforcements display mechanical properties more similar to those of biological tissue than uniform or linearly-patterned hydrogels. STATEMENT OF SIGNIFICANCE Hydrogel biomaterials are a popular candidate for engineering constructs that can mimic the properties of native tissue for disease modeling and tissue-engineering applications. Studies have shown that poly(ethylene) glycol diacrylate (PEGDA) hydrogels can be fabricated to display many biological aspects of native tissue. However, they are unable to recapitulate fundamental mechanical properties of such tissue, such as anisotropy and nonlinearity. Photolithographic techniques have been employed to generate anisotropic linear PEGDA hydrogels via patterned reinforcement. The present study indicates that such techniques can be modified to generate PEGDA constructs with a sinusoidal reinforcement that display a strongly nonlinear response to tensile loading. This work sets the stage for more intricate patterning for providing increased control over hydrogel mechanical response.
Collapse
|
31
|
Huynh NPT, Brunger JM, Gloss CC, Moutos FT, Gersbach CA, Guilak F. Genetic Engineering of Mesenchymal Stem Cells for Differential Matrix Deposition on 3D Woven Scaffolds. Tissue Eng Part A 2018; 24:1531-1544. [PMID: 29756533 DOI: 10.1089/ten.tea.2017.0510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tissue engineering approaches for the repair of osteochondral defects using biomaterial scaffolds and stem cells have remained challenging due to the inherent complexities of inducing cartilage-like matrix and bone-like matrix within the same local environment. Members of the transforming growth factor β (TGFβ) family have been extensively utilized in the engineering of skeletal tissues, but have distinct effects on chondrogenic and osteogenic differentiation of progenitor cells. The goal of this study was to develop a method to direct human bone marrow-derived mesenchymal stem cells (MSCs) to deposit either mineralized matrix or a cartilaginous matrix rich in glycosaminoglycan and type II collagen within the same biochemical environment. This differential induction was performed by culturing cells on engineered three-dimensionally woven poly(ɛ-caprolactone) (PCL) scaffolds in a chondrogenic environment for cartilage-like matrix production while inhibiting TGFβ3 signaling through Mothers against DPP homolog 3 (SMAD3) knockdown, in combination with overexpressing RUNX2, to achieve mineralization. The highest levels of mineral deposition and alkaline phosphatase activity were observed on scaffolds with genetically engineered MSCs and exhibited a synergistic effect in response to SMAD3 knockdown and RUNX2 expression. Meanwhile, unmodified MSCs on PCL scaffolds exhibited accumulation of an extracellular matrix rich in glycosaminoglycan and type II collagen in the same biochemical environment. This ability to derive differential matrix deposition in a single culture condition opens new avenues for developing complex tissue replacements for chondral or osteochondral defects.
Collapse
Affiliation(s)
- Nguyen P T Huynh
- 1 Department of Orthopaedic Surgery, Washington University in Saint Louis , Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis , St. Louis, Missouri.,3 Department of Cell Biology, Duke University , Durham, North Carolina
| | | | - Catherine C Gloss
- 1 Department of Orthopaedic Surgery, Washington University in Saint Louis , Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis , St. Louis, Missouri
| | | | - Charles A Gersbach
- 6 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Farshid Guilak
- 1 Department of Orthopaedic Surgery, Washington University in Saint Louis , Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis , St. Louis, Missouri.,5 Cytex Therapeutics, Inc. , Durham, North Carolina
| |
Collapse
|
32
|
Abstract
The connective tissues of the musculoskeletal system can be grouped into fibrous, cartilaginous, and calcified tissues. While each tissue type has a distinct composition and function, the intersections between these tissues result in the formation of complex, composite, and graded junctions. The complexity of these interfaces is a critical aspect of their healthy function, but poses a significant challenge for their repair. In this review, we describe the organization and structure of complex musculoskeletal interfaces, identify emerging technologies for engineering such structures, and outline the requirements for assessing the complex nature of these tissues in the context of recapitulating their function through tissue engineering.
Collapse
Affiliation(s)
- Edward D Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Tamaddon M, Liu C. Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:255-298. [PMID: 29736578 DOI: 10.1007/978-3-319-76735-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Chaozong Liu
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK.
| |
Collapse
|
34
|
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Barbero A, Martin I. Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials 2018; 171:219-229. [PMID: 29705655 DOI: 10.1016/j.biomaterials.2018.04.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Despite the various reported approaches to generate osteochondral composites by combination of different cell types and materials, engineering of templates with the capacity to autonomously and orderly develop into cartilage-bone bi-layered structures remains an open challenge. Here, we hypothesized that the embedding of cells inducible to endochondral ossification (i.e. bone marrow derived mesenchymal stromal cells, BMSCs) and of cells capable of robust and stable chondrogenesis (i.e. nasal chondrocytes, NCs) adjacent to each other in bi-layered hydrogels would develop directly in vivo into osteochondral tissues. Poly(ethylene glycol) (PEG) hydrogels were functionalized with TGFβ3 or BMP-2, enzymatically polymerized encapsulating human BMSCs, combined with a hydrogel layer containing human NCs and ectopically implanted in nude mice without pre-culture. The BMSC-loaded layers reproducibly underwent endochondral ossification and generated ossicles containing bone and marrow. The NC-loaded layers formed cartilage tissues, which (under the influence of BMP-2 but not of TGFβ3 from the neighbouring layer) remained phenotypically stable. The proposed strategy, resulting in orderly connected osteochondral composites, should be further assessed for the repair of osteoarticular defects and will be useful to model developmental processes leading to cartilage-bone interfaces.
Collapse
Affiliation(s)
- Chiara Stüdle
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Queralt Vallmajó-Martín
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Zürich, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexander Haumer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Julien Guerrero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matteo Centola
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Anika Therapeutics Srl, Padua, Italy
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Gadjanski I. Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:143-170. [PMID: 29691821 DOI: 10.1007/978-3-319-76711-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED In order to engineer biomimetic osteochondral (OC) construct, it is necessary to address both the cartilage and bone phase of the construct, as well as the interface between them, in effect mimicking the developmental processes when generating hierarchical scaffolds that show gradual changes of physical and mechanical properties, ideally complemented with the biochemical gradients. There are several components whose characteristics need to be taken into account in such biomimetic approach, including cells, scaffolds, bioreactors as well as various developmental processes such as mesenchymal condensation and vascularization, that need to be stimulated through the use of growth factors, mechanical stimulation, purinergic signaling, low oxygen conditioning, and immunomodulation. This chapter gives overview of these biomimetic OC system components, including the OC interface, as well as various methods of fabrication utilized in OC biomimetic tissue engineering (TE) of gradient scaffolds. Special attention is given to addressing the issue of achieving clinical size, anatomically shaped constructs. Besides such neotissue engineering for potential clinical use, other applications of biomimetic OC TE including formation of the OC tissues to be used as high-fidelity disease/healing models and as in vitro models for drug toxicity/efficacy evaluation are covered. HIGHLIGHTS Biomimetic OC TE uses "smart" scaffolds able to locally regulate cell phenotypes and dual-flow bioreactors for two sets of conditions for cartilage/bone Protocols for hierarchical OC grafts engineering should entail mesenchymal condensation for cartilage and vascular component for bone Immunomodulation, low oxygen tension, purinergic signaling, time dependence of stimuli application are important aspects to consider in biomimetic OC TE.
Collapse
Affiliation(s)
- Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica, Novi Sad, Serbia. .,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, Serbia.
| |
Collapse
|
36
|
Pereira DR, Reis RL, Oliveira JM. Layered Scaffolds for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:193-218. [DOI: 10.1007/978-3-319-76711-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Zhang Y, Guo W, Wang M, Hao C, Lu L, Gao S, Zhang X, Li X, Chen M, Li P, Jiang P, Lu S, Liu S, Guo Q. Co-culture systems-based strategies for articular cartilage tissue engineering. J Cell Physiol 2017; 233:1940-1951. [PMID: 28548713 DOI: 10.1002/jcp.26020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023]
Abstract
Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Chunxiang Hao
- Institute of Anesthesia, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Liang Lu
- Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xueliang Zhang
- Shanxi Traditional Chinese, Taiyuan, People's Republic of China
| | - Xu Li
- School of Medicine, Naikai University, Tianjin, People's Republic of China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Penghao Li
- School of Medicine, Naikai University, Tianjin, People's Republic of China
| | - Peng Jiang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| |
Collapse
|
38
|
Abstract
Osteoarthritis (OA) is a degenerative joint condition characterized by painful cartilage lesions that impair joint mobility. Current treatments such as lavage, microfracture, and osteochondral implantation fail to integrate newly formed tissue with host tissues and establish a stable transition to subchondral bone. Similarly, tissue-engineered grafts that facilitate cartilage and bone regeneration are challenged by how to integrate the graft seamlessly with surrounding host cartilage and/or bone. This review centers on current approaches to promote cartilage graft integration. It begins with an overview of articular cartilage structure and function, as well as degenerative changes to this relationship attributed to aging, disease, and trauma. A discussion of the current progress in integrative cartilage repair follows, focusing on graft or scaffold design strategies targeting cartilage-cartilage and/or cartilage-bone integration. It is emphasized that integrative repair is required to ensure long-term success of the cartilage graft and preserve the integrity of the newly engineered articular cartilage. Studies involving the use of enzymes, choice of cell source, biomaterial selection, growth factor incorporation, and stratified versus gradient scaffolds are therefore highlighted. Moreover, models that accurately evaluate the ability of cartilage grafts to enhance tissue integrity and prevent ectopic calcification are also discussed. A summary and future directions section concludes the review.
Collapse
Affiliation(s)
- Margaret K Boushell
- a Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering , Columbia University , New York , NY , USA
| | - Clark T Hung
- b Cellular Engineering Laboratory , Department of Biomedical Engineering Columbia University , New York , NY , USA
| | - Ernst B Hunziker
- c Department of Orthopaedic Surgery & Department of Clinical Research, Center of Regenerative Medicine for Skeletal Tissues , University of Bern , Bern , Switzerland
| | - Eric J Strauss
- d Department of Orthopaedic Surgery, Langone Medical Center , New York University , New York , NY , USA
| | - Helen H Lu
- a Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering , Columbia University , New York , NY , USA
| |
Collapse
|
39
|
Boushell MK, Khanarian NT, LeGeros RZ, Lu HH. Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization. J Biomed Mater Res A 2017; 105:2694-2702. [PMID: 28547848 DOI: 10.1002/jbm.a.36122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022]
Abstract
The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017.
Collapse
Affiliation(s)
- Margaret K Boushell
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, 10027
| | - Nora T Khanarian
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, 10027
| | - Raquel Z LeGeros
- Calcium Phosphate Research Laboratory, Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, 10010
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, 10027
| |
Collapse
|
40
|
Hsieh YH, Hsieh MF, Fang CH, Jiang CP, Lin B, Lee HM. Osteochondral Regeneration Induced by TGF-β Loaded Photo Cross-Linked Hyaluronic Acid Hydrogel Infiltrated in Fused Deposition-Manufactured Composite Scaffold of Hydroxyapatite and Poly (Ethylene Glycol)-Block-Poly(ε-Caprolactone). Polymers (Basel) 2017; 9:E182. [PMID: 30970861 PMCID: PMC6432077 DOI: 10.3390/polym9050182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to report the fabrication of porous scaffolds with pre-designed internal pores using a fused deposition modeling (FDM) method. Polycaprolactone (PCL) is a suitable material for the FDM method due to the fact it can be melted and has adequate flexural modulus and strength to be formed into a filament. In our study, the filaments of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) having terminal groups of carboxylic acid were deposited layer by layer. Raw materials having a weight ratio of hydroxyapatite (HAp) to polymer of 1:2 was used for FDM. To promote cell adhesion, amino groups of the Arg-Gly-Asp(RGD) peptide were condensed with the carboxylic groups on the surface of the fabricated scaffold. Then the scaffold was infiltrated with hydrogel of glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of TGF-β1 and photo cross-linked on the top of the scaffolds. Serious tests of mechanical and biological properties were performed in vitro. HAp was found to significantly increase the compressive strength of the porous scaffolds. Among three orientations of the filaments, the lay down pattern 0°/90° scaffolds exhibited the highest compressive strength. Fluorescent staining of the cytoskeleton found that the osteoblast-like cells and stem cells well spread on RGD-modified PEG-PCL film indicating a favorable surface for the proliferation of cells. An in vivo test was performed on rabbit knee. The histological sections indicated that the bone and cartilage defects produced in the knees were fully healed 12 weeks after the implantation of the TGF-β1 loaded hydrogel and scaffolds, and regenerated cartilage was hyaline cartilage as indicated by alcian blue and periodic acid-schiff double staining.
Collapse
Affiliation(s)
- Yi-Ho Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li District, Taoyuan City 320, Taiwan.
- Department of Orthopedics, Min-Sheng General Hospital, 168, ChingKuo Rd, Taoyuan 330, Taiwan.
| | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li District, Taoyuan City 320, Taiwan.
| | - Chih-Hsiang Fang
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li District, Taoyuan City 320, Taiwan.
| | - Cho-Pei Jiang
- Department of Power Mechanical Engineering, National Formosa University, Yunlin County 632, Taiwan.
| | - Bojain Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li District, Taoyuan City 320, Taiwan.
- Department of Orthopedics, Taoyuan Armed Forces General Hospital, No. 168, Zhongxing Road, Longtan District, Taoyuan City 325, Taiwan.
| | - Hung-Maan Lee
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li District, Taoyuan City 320, Taiwan.
- Department of Orthopedics, Hualien Tzu Chi General Hospital, No. 707, Sec. 3, Chung Yang Rd, Hualien 970, Taiwan.
| |
Collapse
|
41
|
Hu X, Wang Y, Tan Y, Wang J, Liu H, Wang Y, Yang S, Shi M, Zhao S, Zhang Y, Yuan Q. A Difunctional Regeneration Scaffold for Knee Repair based on Aptamer-Directed Cell Recruitment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605235. [PMID: 28185322 DOI: 10.1002/adma.201605235] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Indexed: 06/06/2023]
Abstract
To solve the challenge of poor knee repair, an aptamer-bilayer scaffold is designed for autologous mesenchymal stem cell (MSC) recruitment and osteochondral regeneration. The scaffold can efficiently recruit MSCs to the defect and induce the directional differentiation of MSCs, thus successfully achieving simultaneous regeneration of cartilage and bone in the knee joint.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yaning Tan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoyang Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Yang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shiyong Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
42
|
Lin X, Wang W, Zhang W, Zhang Z, Zhou G, Cao Y, Liu W. Hyaluronic Acid Coating Enhances Biocompatibility of Nonwoven PGA Scaffold and Cartilage Formation. Tissue Eng Part C Methods 2017; 23:86-97. [PMID: 28056722 DOI: 10.1089/ten.tec.2016.0373] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xunxun Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Zhiyong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| |
Collapse
|
43
|
Chuah YJ, Peck Y, Lau JEJ, Hee HT, Wang DA. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci 2017; 5:613-631. [DOI: 10.1039/c6bm00863a] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Hydrogel based technologies has been extensively employed in both exploratory research and clinical applications to address numerous existing challenges in the regeneration of articular cartilage and intervertebral disc.
Collapse
Affiliation(s)
- Yon Jin Chuah
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yvonne Peck
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jia En Josias Lau
- School of Chemical & Life Sciences
- Singapore Polytechnic
- Singapore 139651
- Singapore
| | - Hwan Tak Hee
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
- Singapore
- Pinnacle Spine & Scoliosis Centre
| | - Dong-An Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
44
|
Osteochondral Tissue Engineering and Regenerative Strategies. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 2016; 107:247-276. [PMID: 27125191 PMCID: PMC5482531 DOI: 10.1016/j.addr.2016.04.015] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Varadraj N Vernekar
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
46
|
Song K, Li W, Wang H, Zhang Y, Li L, Wang Y, Wang H, Wang L, Liu T. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask. ACTA ACUST UNITED AC 2016; 11:065002. [PMID: 27767021 DOI: 10.1088/1748-6041/11/6/065002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biological treatment using engineered osteochondral composites has received growing attention for the repair of cartilage defects. Osteochondral composites combined with a dynamic culture provide great potential for improving the quality of constructs and cartilage regeneration as dynamic conditions mimic the in vivo condition where cells were constantly subjected to mechanical and chemical stimulation. In the present study, biophasic composites were produced in vitro consisting of cell-hydrogel (CH) and cell-cancellous bone (CB) constructs, followed by culturing in a dynamic system in a spinner flask. The aim of this study was to investigate cell behaviors (i.e. cell growth, differentiation, distribution and matrix deposition) cultured in different constructs under static and dynamic circumstances. As a result, we found that mechanical stimulation promoted osteogenic and chondrogenic differentiation of cells as indicated by the increased expression of ALP and glycosaminoglycan (GAG) in either bone or cartilage substitute materials. Dynamic culture yielded a preferable extracellular matrix production, particularly in hydrogel scaffolds. In addition, the enhanced mass transfer contributed to the interface formation, cells infiltration and distribution in the osteochondral composites. This study demonstrates that osteochondral composites incorporated with a dynamic culture improved the performance of the constructs, providing the basis for a promising tool and a better strategy for the rapid fabrication of osteochondral substitutes and regeneration of injured cartilage.
Collapse
Affiliation(s)
- Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China. Author to whom any correspondence should be addressed. State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering of Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bian W, Lian Q, Li D, Wang J, Zhang W, Jin Z, Qiu Y. Morphological characteristics of cartilage-bone transitional structures in the human knee joint and CAD design of an osteochondral scaffold. Biomed Eng Online 2016; 15:82. [PMID: 27418247 PMCID: PMC4944264 DOI: 10.1186/s12938-016-0200-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/15/2016] [Indexed: 11/15/2022] Open
Abstract
Background There is a lack of understanding of the morphological characteristics of the cartilage-bone interface. Materials that are currently being used in tissue engineering do not adequately support the regeneration of bone and cartilage tissues. The present study aimed to explore the morphological characteristics of cartilage-bone transitional structures in the human knee joint and to design a biomimetic osteochondral scaffold based on morphological data. Methods Histology, micro-computed tomography (micro-CT), and scanning electron microscopy (SEM) were used to investigate the microstructure of the cartilage-bone transitional structures. Morphological characteristics and their distribution were obtained and summarized into a biomimetic design. A three-dimensional model of a biomimetic osteochondral scaffold was CAD designed. A prototype of the resulting subchondral bone scaffold was constructed by stereolithography using resin. Results Micro-CT revealed that subchondral bone presented a gradually changing structure from the subchondral to spongy bone tissue. The subchondral bone plate was more compact with ~20 % porosity compared with ~60 % porosity for the spongy bone. Histology and SEM showed that cartilage was stabilized on the subchondral bone plate by conjunctions, imbedding, interlocking, and binding forces generated by collagen fibers. Some scattered defects allow blood vessel invasion and nutritional supply. Conclusions The subchondral bone plate is not an intact plate between the cartilage and bone cavity, and some scattered defects exist that allow blood vessel invasion and nutritional supply. This characteristic was used to design an osteochondral scaffold. This could be used to construct an osteochondral complex that is similar to native bones.
Collapse
Affiliation(s)
- Weiguo Bian
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qin Lian
- State Key Lab for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Dichen Li
- State Key Lab for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jin Wang
- The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710028, Shaanxi, China
| | - Weijie Zhang
- State Key Lab for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Zhongmin Jin
- The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710028, Shaanxi, China
| | - Yusheng Qiu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
48
|
Di Luca A, Lorenzo‐Moldero I, Mota C, Lepedda A, Auhl D, Van Blitterswijk C, Moroni L. Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration. Adv Healthc Mater 2016; 5:1753-63. [PMID: 27109461 DOI: 10.1002/adhm.201600083] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 12/12/2022]
Abstract
Osteochondral regeneration remains nowadays a major problem since the outcome of current techniques is not satisfactory in terms of functional tissue formation and development. A possible solution is the combination of human mesenchymal stem cells (hMSCs) with additive manufacturing technologies to fabricate scaffolds with instructive properties. In this study, the differentiation of hMSCs within a scaffold presenting a gradient in pore shape is presented. The variation in pore shape is determined by varying the angle formed by the fibers of two consequent layers. The fiber deposition patterns are 0-90, which generate squared pores, 0-45, 0-30, and 0-15, that generate rhomboidal pores with an increasing major axis as the deposition angle decreases. Within the gradient construct, squared pores support a better chondrogenic differentiation whereas cells residing in the rhomboidal pores display a better osteogenic differentiation. When cultured under osteochondral conditions the trend in both osteogenic and chondrogenic markers is maintained. Engineering the pore shape, thus creating axial gradients in structural properties, seems to be an instructive strategy to fabricate functional 3D scaffolds that are able to influence hMSCs differentiation for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Andrea Di Luca
- Tissue Regeneration Department University of Twente Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Ivan Lorenzo‐Moldero
- Complex Tissue Regeneration Department MERLN Institute for Technology Inspired Regenerative Medicine Maastricht University 6229 ER Maastricht The Netherlands
| | - Carlos Mota
- Complex Tissue Regeneration Department MERLN Institute for Technology Inspired Regenerative Medicine Maastricht University 6229 ER Maastricht The Netherlands
| | - Antonio Lepedda
- Department of Biomedical Sciences University of Sassari via Muroni 25 Italy
| | - Dietmar Auhl
- AMIBM Aachen‐Maastricht Institute for Biobased Materials Maastricht UniversityPO Box 616 6200 MD Maastricht The Netherlands
| | - Clemens Van Blitterswijk
- Tissue Regeneration Department University of Twente Drienerlolaan 5 7522 NB Enschede The Netherlands
- Complex Tissue Regeneration Department MERLN Institute for Technology Inspired Regenerative Medicine Maastricht University 6229 ER Maastricht The Netherlands
| | - Lorenzo Moroni
- Tissue Regeneration Department University of Twente Drienerlolaan 5 7522 NB Enschede The Netherlands
- Complex Tissue Regeneration Department MERLN Institute for Technology Inspired Regenerative Medicine Maastricht University 6229 ER Maastricht The Netherlands
| |
Collapse
|
49
|
Zhang H, Mao X, Du Z, Jiang W, Han X, Zhao D, Han D, Li Q. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:136-148. [PMID: 27877865 PMCID: PMC5101962 DOI: 10.1080/14686996.2016.1145532] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 01/20/2016] [Indexed: 05/10/2023]
Abstract
We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PRChina
- Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PRChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PRChina
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PRChina
| | - Zijing Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PRChina
| | - Wenbo Jiang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PRChina
- Institute of Biomedical Materials, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PRChina
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PRChina
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PRChina
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PRChina
- Corresponding author.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PRChina
| |
Collapse
|
50
|
Short AR, Koralla D, Deshmukh A, Wissel B, Stocker B, Calhoun M, Dean D, Winter JO. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration. J Mater Chem B 2015; 3:7818-7830. [PMID: 26693013 PMCID: PMC4675359 DOI: 10.1039/c5tb01043h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current "gold standard" treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects.
Collapse
Affiliation(s)
- Aaron R. Short
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Deepthi Koralla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ameya Deshmukh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Wissel
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Stocker
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Mark Calhoun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - David Dean
- Department of Plastic Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Jessica O. Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|