1
|
Margot AM, Engels A, Sittinger M, Dehne T, Hemmati-Sadeghi S. Quantitatively measuring the cytotoxicity of viscous hydrogels with direct cell sampling in a micro scale format "MicroDrop" and its comparison to CCK8. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:34. [PMID: 38900233 PMCID: PMC11189981 DOI: 10.1007/s10856-024-06800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Tissue engineering holds promise for developing therapeutic applications using viscous materials e.g. hydrogels. However, assessing the cytotoxicity of such materials with conventional assays can be challenging due to non-specific interactions. To address this, we optimized a live/dead staining method for quantitative evaluation and compared it with the conventional CCK8 assay. Our MicroDrop method involved seeding droplets containing 5000 cells in 10 µl medium on 12-well plates. After allowing them to adhere for 4 h, various viscous samples were applied to the cells and measurements were conducted using a fluorescence microscope immediately and at daily intervals up to 72 h. A sodium dodecyl sulfate (SDS) dilution series compared the MicroDrop with the CCK8 assay. The findings revealed a cell-type specific pattern for 10 mg/ml hyaluronic acid (HA), wherein MC3T3-E1 cells maintained 95% viability until 72 h, while L929 cells experienced a gradual decline to 17%. 2 mg/ml HA exhibited consistent viability above 90% across all time points and cell lines. Similarly, fibrin demonstrated 90% viability across dilutions and time points, except for undiluted samples showing a decrease from 85% to 20%. Gelatin-methacrylol sustained viability above 70% across all time points at both 5% and 10% concentrations. The comparison of the SDS dilution series between viability (MicroDrop) and metabolic activity (CCK8) assay showed a correlation coefficient of 0.95. The study validates the feasibility of the established assay, providing researchers with an efficient tool for assessing cytotoxicity in viscous materials. Additionally, it holds the potential to yield more precise data on well-known hydrogels.
Collapse
Affiliation(s)
- Anna Marie Margot
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Engels
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Tilo Dehne
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Sheshmani S, Mardali M, Shokrollahzadeh S, Bide Y. Starch-derived carbon quantum dots: Unveiling structural insights and photocatalytic potential as a bio-sourced metal-free semiconductor. Int J Biol Macromol 2024; 271:132535. [PMID: 38777015 DOI: 10.1016/j.ijbiomac.2024.132535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The optical appeal and sustainability of carbon quantum dots (CQDs) have led to these nanoparticles swiftly gaining attention and emerging as a new, multifunctional class of nanomaterials. This work centers on the hydrothermal preparation of CQDs utilizing starch, an abundant and renewable biopolymer, as the precursor. Extensive characterization via spectroscopy and microscopy techniques revealed that the starch-derived CQDs exhibit a spherical nanoscale morphology averaging a ∼ 4 nm diameter, demonstrating a red-orange photoluminescence emission. Diffuse reflectance spectroscopic analysis verified their semiconductor behavior, with an estimated direct band gap of 4.1 eV comparable to conventional semiconductors. The prepared CQDs demonstrated considerable promise as metal-free, semiconductor photocatalysts for degrading aqueous dye pollutants under UV irradiation. High photodegradation efficiencies of 45.11 %, 62.94 %, and 91.21 % were achieved for Acid Blue 21, Reactive Blue 94, and Reactive TB 133 dyes, respectively. Systematic investigations of critical process parameters like pH, CQDs dosage, dye concentration, and contact time provided vital insights into the photocatalytic mechanism. The bio-sourced CQD nanomaterials offer a sustainable pathway for effective environmental remediation.
Collapse
Affiliation(s)
- Shabnam Sheshmani
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Mahan Mardali
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Yasamin Bide
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
3
|
Kumar V, Siraj SA, Satapathy DK. Multivapor-Responsive Controlled Actuation of Starch-Based Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3966-3977. [PMID: 38224457 DOI: 10.1021/acsami.3c15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Multivapor-responsive biocompatible soft actuators have immense potential for applications in soft robotics and medical technology. We report fast, fully reversible, and multivapor-responsive controlled actuation of a pure cassava-starch-based film. Notably, this starch-based actuator sustains its actuated state for over 60 min with a continuous supply of water vapor. The durability of the film and repeatability of the actuation performance have been established upon subjecting the film to more than 1400 actuation cycles in the presence of water vapor. The starch-based actuators exhibit intriguing antagonistic actuation characteristics when exposed to different solvent vapors. In particular, they bend upward in response to water vapor and downward when exposed to ethanol vapor. This fascinating behavior opens up new possibilities for controlling the magnitude and direction of actuation by manipulating the ratio of water to ethanol in the binary solution. Additionally, the control of the bending axis of the starch-based actuator, when exposed to water vapor, is achieved by imprinting-orientated patterns on the surface of the starch film. The effect of microstructure, postsynthesis annealing, and pH of the starch solution on the actuation performance of the starch film is studied in detail. Our starch-based actuator can lift 10 times its own weight upon exposure to ethanol vapor. It can generate force ∼4.2 mN upon exposure to water vapor. To illustrate the vast potential of our cassava-starch-based actuators, we have showcased various proof-of-concept applications, ranging from biomimicry to crawling robots, locomotion near perspiring human skin, bidirectional electric switches, ventilation in the presence of toxic vapors, and smart lifting systems. These applications significantly broaden the practical uses of these starch-based actuators in the field of soft robotics.
Collapse
Affiliation(s)
- Vipin Kumar
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Sarah Ahmad Siraj
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
4
|
da Silva RBP, Biguetti CC, Munerato MS, Siqueira RL, Zanotto ED, Kudo GHA, Simionato GB, Bacelar ACZ, Ortiz RC, Ferreira-Junior JS, Rangel-Junior IG, Matsumoto MA. Effects of glass-ceramic produced by the sol-gel route in macrophages recruitment and polarization into bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35340. [PMID: 37929804 DOI: 10.1002/jbm.b.35340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Effective bone substitute biomaterials remain an important challenge in patients with large bone defects. Glass ceramics produced by different synthesis routes may result in changes in the material physicochemical properties and consequently affect the success or failure of the bone healing response. To investigate the differences in the orchestration of the inflammatory and healing process in bone grafting and repair using different glass-ceramic routes production. Thirty male Wistar rats underwent surgical unilateral parietal defects filled with silicate glass-ceramic produced by distinct routes: BS - particulate glass-ceramic produced via the fusion/solidification route, and BG - particulate glass-ceramic produced via the sol-gel route. After 7, 14, and 21 days from biomaterial grafting, parietal bones were removed to be analyzed under H&E and Massons' Trichome staining, and immunohistochemistry for CD206, iNOS, and TGF-β. Our findings demonstrated that the density of lymphocytes and plasma cells was significantly higher in the BS group at 45, and 7 days compared to the BG group, respectively. Furthermore, a significant increase of foreign body giant cells (FBGCs) in the BG group at day 7, compared to BS was found, demonstrating early efficient recruitment of FBGCs against sol-gel-derived glass-ceramic particulate (BS group). According to macrophage profiles, CD206+ macrophages enhanced at the final periods of both groups, being significantly higher at 45 days of BS compared to the BG group. On the other hand, the density of transformation growth factor beta (TGF-β) positive cells on 21 days were the highest in BG, and the lowest in the BS group, demonstrating a differential synergy among groups. Noteworthy, TGF-β+ cells were significantly higher at 21 days of BG compared to the BS group. Glass-ceramic biomaterials can act differently in the biological process of bone remodeling due to their route production, being the sol-gel route more efficient to activate M2 macrophages and specific FBGCs compared to the traditional route. Altogether, these features lead to a better understanding of the effectiveness of inflammatory response for biomaterial degradation and provide new insights for further preclinical and clinical studies involved in bone healing.
Collapse
Affiliation(s)
| | - Claudia Cristina Biguetti
- Regenerative Medicine Laboratory, School of Podiatric Medicine, The University of Texas Rio Grande Valley - UTRGV, Harlingen, Texas, USA
| | | | - Renato Luis Siqueira
- Department of Material Engineering, São Carlos Federal University, São Paulo, Brazil
| | - Edgard Dutra Zanotto
- Department of Material Engineering, São Carlos Federal University, São Paulo, Brazil
| | | | - Gustavo Baroni Simionato
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, Brazil
| | - Ana Carolina Zucon Bacelar
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, Brazil
| | - Rafael Carneiro Ortiz
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, Brazil
| | | | - Idelmo Garcia Rangel-Junior
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, Brazil
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, Brazil
| |
Collapse
|
5
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
6
|
Campea MA, Lofts A, Xu F, Yeganeh M, Kostashuk M, Hoare T. Disulfide-Cross-Linked Nanogel-Based Nanoassemblies for Chemotherapeutic Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37192117 DOI: 10.1021/acsami.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although nanoparticle-based chemotherapeutic strategies have gained in popularity, the efficacy of such therapies is still limited in part due to the different nanoparticle sizes needed to best accommodate different parts of the drug delivery pathway. Herein, we describe a nanogel-based nanoassembly based on the entrapment of ultrasmall starch nanoparticles (size 10-40 nm) within disulfide-crosslinked chondroitin sulfate-based nanogels (size 150-250 nm) to address this challenge. Upon exposure of the nanoassembly to the reductive tumor microenvironment, the chondroitin sulfate-based nanogel can degrade to release the doxorubicin-loaded starch nanoparticles in the tumor to facilitate improved intratumoral penetration. CT26 colon carcinoma spheroids could be efficiently penetrated by the nanoassembly (resulting in 1 order of magnitude higher DOX-derived fluorescence inside the spheroid relative to free DOX), while in vivo experiments showed that doxorubicin-loaded nanoassemblies reduced tumor sizes by 6× relative to saline controls and 2× relative to free DOX after 21 days. Together, these data suggest that nanogel-based nanoassemblies are a viable option for improving the efficacy and safety of nanoparticle-based drug delivery vehicles treating cancer.
Collapse
Affiliation(s)
- Matthew A Campea
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Andrew Lofts
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Mina Yeganeh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Meghan Kostashuk
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
7
|
Herrera-Ibarra E, Salazar-Hernández M, Talavera-López A, Solis-Marcial OJ, Hernandez-Soto R, Ruelas-Leyva JP, Hernández JA. Preparation of Surgical Thread from a Bioplastic Based on Nopal Mucilage. Polymers (Basel) 2023; 15:polym15092112. [PMID: 37177256 PMCID: PMC10181096 DOI: 10.3390/polym15092112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Currently, natural materials represent a sustainable option for the manufacture of biopolymers with numerous industrial applications and characteristics comparable with synthetic materials. Nopal mucilage (NM) is an excellent natural resource for the synthesis of bioplastics (BPs). In the present research, the fabrication of biopolymers by using NM is addressed. Changes in the plasticizer (sorbitol and cellulose) concentration, in addition to the implementation of two sources of starch (corn starch (CS) and potato starch (PS)) to obtain the surgical thread, were analyzed. The NM extracted was close to 14% with ethanol. During the characterization of the extract, properties such as moisture, humidity, viscosity, and functional groups, among others, were determined. In the CS and PS analysis, different structures of the polymeric chains were observed. BP degradation with different solvents was performed. Additionally, the addition of sorbitol and cellulose for the BP mixtures presenting the highest resistance to solvent degradation and less solubility to water was conducted. The obtained thread had a uniform diameter, good elasticity, and low capillarity compared to other prototypes reported in the literature.
Collapse
Affiliation(s)
| | - Mercedes Salazar-Hernández
- Departamento de Ingeniería en Minas, Metalurgia y Geología, División de Ingenierías, Universidad de Guanajuato, Guanajuato 36025, Mexico
| | - Alfonso Talavera-López
- Unidad Académica de Ciencias Químicas, Campus UAZ siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | | | | | - Jose P Ruelas-Leyva
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80030, Mexico
| | - José A Hernández
- UPIIG, del Instituto Politécnico Nacional, Guanajuato 36275, Mexico
| |
Collapse
|
8
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
9
|
Mohamed EE, Abdel-Moneim A, Ahmed OM, Zoheir KM, Eldin ZE, El-Shahawy AA. Anticancer activity of a novel naringin‒dextrin nanoformula: Preparation, characterization, and in vitro induction of apoptosis in human hepatocellular carcinoma cells by inducing ROS generation, DNA fragmentation, and cell cycle arrest. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Lima ACDS, Afonso MRA, Rodrigues S, Aquino ACD. Flowability of spray‐dried sapodilla pulp powder. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | | | - Sueli Rodrigues
- Department of Food Engineering Federal University of Ceará Fortaleza CE Brazil
| | | |
Collapse
|
11
|
Ghanbarei S, Sattarahmady N, Zarghampoor F, Azarpira N, Hossein-Aghdaie M. Effects of labeling human mesenchymal stem cells with superparamagnetic zinc-nickel ferrite nanoparticles on cellular characteristics and adipogenesis/osteogenesis differentiation. Biotechnol Lett 2021; 43:1659-1673. [PMID: 33934256 DOI: 10.1007/s10529-021-03134-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/15/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE An attractive cell source for stem cell-based therapy are WJ-MSCs. Hence, tracking WJ-MSCs using non-invasive imaging procedures (such as MRI) and contrast agents (Zn0.5Ni0.5Fe2O4, NFNPs) are required to evaluate cell distribution, migration, and differentiation. RESULTS Results showed that the bare and dextrin-coated NFNPs were internalized inside the WJ-MSCs and had no effect on the cell viability, proliferation, apoptosis, karyotyping, and morphology of WJ-MSCs up to 125 µg/mL. Besides, treated WJ-MSCs were differentiated into osteo/adipocyte-like cells. The expression of RUNX 2, SPP 1 (P < 0.05), and OCN (P > 0.05) genes in the WJ-MSCs treated with dextrin-coated NFNPs was higher than the untreated WJ-MSCs; and the expression of CFD, LPL, and PPAR-γ genes was reduced in WJ-MSCs treated with both NFNPs in comparison with the untreated WJ-MSCs (P > 0.05). CONCLUSION Overall, results showed that dextrin-coated NFNPs had no adverse effect on the cellular characteristics, proliferation, and differentiation of WJ-MSCs, and suggesting their potential clinical efficacy.
Collapse
Affiliation(s)
- Solaleh Ghanbarei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.,Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,The Nanobiology and Nanomedicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Zarghampoor
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Khalili St, Mohamad Rasoolalah Research Tower, 7th floor, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Khalili St, Mohamad Rasoolalah Research Tower, 7th floor, Shiraz, Iran.
| | | |
Collapse
|
12
|
Vo TMT, Mondal S, Nguyen VT, Park S, Choi J, Bui NT, Oh J. Rice starch coated iron oxide nanoparticles: A theranostic probe for photoacoustic imaging-guided photothermal cancer therapy. Int J Biol Macromol 2021; 183:55-67. [PMID: 33857520 DOI: 10.1016/j.ijbiomac.2021.04.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
In recent years, suitable bioactive materials coated nanoparticles have attracted substantial attention in the field of biomedical applications. The present study emphasizes experimental details for the synthesis of boiling rice starch extract (BRE) coated iron oxide nanoparticles (IONPs) to treat cancer by photoacoustic imaging (PAI)-guided chemo-photothermal therapy. The solvothermal method was used to synthesize IONPs. The physical immobilization method helps to coat BRE-loaded doxorubicin (DOX) molecules on the iron oxide surface. In vitro drug release was estimated in basic (pH 9.0), neutral (pH 7.2), and acidic (pH 4.5) media for varying time periods using ultraviolet-visible spectroscopy. The chemical and physical properties of the synthesized spherical BRE-IONPs were characterized using sophisticated analytical instrumentation. A magnetic saturation experiment was performed with BRE-IONPs for evaluating possible hyperthermia in targeted drug delivery. The biological activity of the synthesized BRE-IONPs was investigated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and acridine orange/propidium iodide fluorescence cell viability study. BRE-IONPs showed excellent photothermal stability, with a high photothermal conversion efficiency (η = 29.73%), biocompatible property, and high near-infrared region absorption for PAI-guided PTT treatment. This study will provide a better understanding of rice starch as a suitable bioactive coating material for possible theranostic applications.
Collapse
Affiliation(s)
- Thi Mai Thien Vo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Ngoc Thang Bui
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
13
|
Facile fabrication of phospholipid-functionalized nanofiber-based barriers with enhanced anti-adhesion efficiency. Colloids Surf B Biointerfaces 2021; 203:111728. [PMID: 33819819 DOI: 10.1016/j.colsurfb.2021.111728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Electrospun nanofibrous membranes (NFMs) have attracted considerable attention as a potential physical barrier for reducing postoperative adhesion. However, no anti-adhesion barrier can completely prevent adhesion formation. In this study, phospholipid-functionalized NFMs were readily fabricated by one-step electrospinning to obtain nanofiber-based barriers with enhanced wettability and anti-adhesion efficiency. The optimized phospholipid NFMs were shown to have a fiber diameter of 831 nm ± 135 nm that is drastically decreasing, high porosity of 87.6 % ± 1.1 %, and superior hydrophilicity. Moreover, the phospholipid NFMs with excellent cytocompatibility exhibited fibroblasts being significantly reduced (≈ 51 %) after incubation of 3 days compared to that of the NFMs (≈ 96 %), confirming long-lasting anti-adhesion capability against fibroblasts. Meanwhile, less cell adhesion and proliferation of Raw 264.7 macrophages on NFM-10Lec indicated its superior anti-inflammatory effects. Thus, the facile phospholipid-functionalized nanofibers provided a promising strategy for anti-adhesion applications.
Collapse
|
14
|
Ghalei S, Li J, Douglass M, Garren M, Handa H. Synergistic Approach to Develop Antibacterial Electrospun Scaffolds Using Honey and S-Nitroso-N-acetyl Penicillamine. ACS Biomater Sci Eng 2021; 7:517-526. [DOI: 10.1021/acsbiomaterials.0c01411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Jianwen Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| |
Collapse
|
15
|
Zhang Y, Wu M, Tan D, Liu Q, Xia R, Chen M, Liu Y, Xue L, Lei Y. A dissolving and glucose-responsive insulin-releasing microneedle patch for type 1 diabetes therapy. J Mater Chem B 2021; 9:648-657. [DOI: 10.1039/d0tb02133d] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A dissolving microneedle patch for responsive insulin release and type 1 diabetes therapy.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Power and Mechanical Engineering & The Institute of Technological Science
- Wuhan University
- Wuhan
- China
| | - Mingxin Wu
- School of Power and Mechanical Engineering & The Institute of Technological Science
- Wuhan University
- Wuhan
- China
| | - Di Tan
- School of Power and Mechanical Engineering & The Institute of Technological Science
- Wuhan University
- Wuhan
- China
| | - Quan Liu
- School of Power and Mechanical Engineering & The Institute of Technological Science
- Wuhan University
- Wuhan
- China
| | - Re Xia
- School of Power and Mechanical Engineering & The Institute of Technological Science
- Wuhan University
- Wuhan
- China
| | - Min Chen
- Department of Internal Medicine & Geriatrics
- Wuhan University Zhongnan Hospital
- Wuhan 430071
- China
| | - Yuangang Liu
- College of Chemical Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Longjian Xue
- School of Power and Mechanical Engineering & The Institute of Technological Science
- Wuhan University
- Wuhan
- China
| | - Yifeng Lei
- School of Power and Mechanical Engineering & The Institute of Technological Science
- Wuhan University
- Wuhan
- China
| |
Collapse
|
16
|
Laubach J, Joseph M, Brenza T, Gadhamshetty V, Sani RK. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J Control Release 2021; 329:971-987. [DOI: 10.1016/j.jconrel.2020.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
17
|
Amorphous silibinin nanoparticles loaded into porous starch to enhance remarkably its solubility and bioavailability in vivo. Colloids Surf B Biointerfaces 2020; 198:111474. [PMID: 33257158 DOI: 10.1016/j.colsurfb.2020.111474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
In the present study, the silibinin (SLB) was loaded into porous starch (PS) in the form of nanoparticles (SNPS) by the liquid antisolvent precipitation (LAP) method, so as to improve its solubility and bioavailability. Firstly, the different experimental parameters on drug loading (DL) of the SLB in the LAP process were optimized through the single-factor experiments. Under the optimum conditions, the DL and the encapsulation efficiency (EE) of the SNPS were 9.49 ± 0.37 % and 89.93 ± 0.64 %, respectively. Compared with free SLB and SLB nanoparticles (SN), the SNPS had a higher solubility, and was about 180.81 ± 5.32 μg/mL in artificial gastric juice (AGJ) and was about 88.91 ± 4.14 μg/mL in artificial intestinal juice (AIJ), respectively. The in vitro release study demonstrated a slow and sustained ± release of SLB from the SNPS with the SN and free SLB as controls. The pharmacokinetic results showed that the Cmax and AUC(0-t) of the SNPS (87.71 ± 7.24 μg/L, 439.55 ± 8.76 μg/L*h) increased when compared with the SN (60.31 ± 8.98 μg/L, 206.51 ± 12.24 μg/L*h) and free SLB (26.08 ± 1.43 μg/L, 102.63 ± 7.15 μg/L*h), showing its ability to improve SLB's pharmacokinetic properties.
Collapse
|
18
|
A Review on Thermoplastic or Thermosetting Polymeric Matrices Used in Polymeric Composites Manufactured with Banana Fibers from the Pseudostem. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent manufacturing advancements have led to the fabrication of polymeric composites (PC) reinforced with fibers. However, to reduce the impact on the environment, efforts have been made to replace synthetic fibers (SF) by natural fibers (NF) in many applications. NF, e.g., as banana fibers (BF) possess higher cellulose content, a higher degree of polymerization of cellulose, and a lower microfibrillar angle (MFA), which are crucial factors for the mechanical properties (MP), namely tensile modulus (TM) and tensile strength (TS), and many other properties that make them suitable for the reinforcement of PC. This review paper presents an attempt to highlight some recent findings on the MP of PC reinforced with unmodified or modified BF (UBF, MBF), which were incorporated into unmodified or modified (synthetic (SPM) or a bio (BPM)) polymeric matrices (UPM, MPM). The experimental results from previous studies are presented in terms of the variation in the percentage of the MP and show that BF can improve the MP of PC. The results of such studies suggest the possibility to extend the application of PC reinforced with BF (PCBF) in a wide range, namely from automotive to biomedical fields. The meanings of all the acronyms are listed in the abbreviations section.
Collapse
|
19
|
G. Pinto D, Rodrigues J, Bernardo L. A Review on Thermoplastic or Thermosetting Polymeric Matrices Used in Polymeric Composites Manufactured with Banana Fibers from the Pseudostem. APPLIED SCIENCES-BASEL 2020. [DOI: https://doi.org/10.3390/app10093023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent manufacturing advancements have led to the fabrication of polymeric composites (PC) reinforced with fibers. However, to reduce the impact on the environment, efforts have been made to replace synthetic fibers (SF) by natural fibers (NF) in many applications. NF, e.g., as banana fibers (BF) possess higher cellulose content, a higher degree of polymerization of cellulose, and a lower microfibrillar angle (MFA), which are crucial factors for the mechanical properties (MP), namely tensile modulus (TM) and tensile strength (TS), and many other properties that make them suitable for the reinforcement of PC. This review paper presents an attempt to highlight some recent findings on the MP of PC reinforced with unmodified or modified BF (UBF, MBF), which were incorporated into unmodified or modified (synthetic (SPM) or a bio (BPM)) polymeric matrices (UPM, MPM). The experimental results from previous studies are presented in terms of the variation in the percentage of the MP and show that BF can improve the MP of PC. The results of such studies suggest the possibility to extend the application of PC reinforced with BF (PCBF) in a wide range, namely from automotive to biomedical fields. The meanings of all the acronyms are listed in the abbreviations section.
Collapse
|
20
|
Human‐lymphocyte cell friendly starch–hydroxyapatite biodegradable composites: Hydrophilic mechanism, mechanical, and structural impact. J Appl Polym Sci 2019. [DOI: 10.1002/app.48913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Zhang M, Pu X, Chen X, Yin G. In-vivo performance of plasma-sprayed CaO-MgO-SiO 2-based bioactive glass-ceramic coating on Ti-6Al-4V alloy for bone regeneration. Heliyon 2019; 5:e02824. [PMID: 31763479 PMCID: PMC6861571 DOI: 10.1016/j.heliyon.2019.e02824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
The CaO-MgO-SiO2-based bioactive glass-ceramic coating (named M2) on Ti-6Al-4V alloy has been proven to behave well in vitro. But how to make full sense of its performances in terms of osteogenesis and osseointegration in vivo matters very much. For this, the M2-coated Ti-6Al-4V cylinders were prepared by atmospheric plasma spraying (APS) and implanted into New Zealand rabbit for 1, 2 and 3 months, respectively, by setting commercial HA-coated Ti-6Al-4V as the control. It is encouraging that, the two groups bonded with the surrounding tissues stably and newly formed bone grew towards or around the implants after 3-month implantation according to radiographic images. From the histological sections, it is obvious that, compared to the control, the M2-coated implant was more favorable for the osteogenesis and neo-vascularisation in the whole experimental process and demonstrated a better osseointegration with the host bone, indicating the former possessed better osteoconductivity, osteoinductivity and osteogenic ability. The study indicated that the M2-coated Ti-6Al-4V implant exerted a great potential to substitute the commercial HA-coated Ti-6Al-4V implant in repairing load-bearing bone defects.
Collapse
Affiliation(s)
- Mengjiao Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
22
|
Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties. Int J Mol Sci 2019; 20:E5092. [PMID: 31615111 PMCID: PMC6834193 DOI: 10.3390/ijms20205092] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022] Open
Abstract
Natural occurring polymers, or biopolymers, represent a huge part of our planet biomass. They are formed by long chains of monomers of the same type or a combination of different ones. Polysaccharides are biopolymers characterized by complex secondary structures performing several roles in plants, animals, and microorganisms. Because of their versatility and biodegradability, some of them are extensively used for packaging, food, pharmaceutical, and biomedical industries as sustainable and renewable materials. In the recent years, their manipulation at the nanometric scale enormously increased the range of potential applications, boosting an interdisciplinary research attempt to exploit all the potential advantages of nanostructured polysaccharides. Biomedical investigation mainly focused on nano-objects aimed at drug delivery, tissue repair, and vaccine adjuvants. The achievement of all these applications requires the deep knowledge of polysaccharide nanomaterials' interactions with the immune system, which orchestrates the biological response to any foreign substance entering the body. In the present manuscript we focused on natural polysaccharides of high commercial importance, namely, starch, cellulose, chitin, and its deacetylated form chitosan, as well as the seaweed-derived carrageenan and alginate. We reviewed the available information on their biocompatibility, highlighting the importance of their physicochemical feature at the nanoscale for the modulation of the immune system.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, Lima 32, Peru.
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, Lima 32, Peru.
| | - Anissa Pisani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31,16146 Genova, Italy.
| | - Francesca Gatto
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
23
|
Ceylan Tuncaboylu D, Abdurrahmanoglu S, Gazioglu I. Rheological characterization of starch gels: A biomass based sorbent for removal of polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF HAZARDOUS MATERIALS 2019; 371:406-414. [PMID: 30870645 DOI: 10.1016/j.jhazmat.2019.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Environmental awareness increased the demand for the biomass based materials with superior properties instead of petroleum products. This study aims to prepare starch networks as sorbents for the removal of polycyclic aromatic hydrocarbons (PAHs). Two types of crosslinker, epichlorohydrine (ECH) and glutaraldehyde (GA), were choosed for the preparation of Gel-E and Gel-G networks, respectively. Rheological, swelling and morphological properties of the resulted materials were investigated as a function of various reaction parameters as starch, crosslinker and base concentration and also reaction temperature. The rheological measurements showed that while network formation of Gel-E hydrogels was strongly affected by the NaOH and starch concentration, the strength of the Gel-G hydrogels mainly depends on the crosslinker amount. Starch networks showed high PAH sorption capacities up to 1.42 g per gram sorbent with three model PAH molecules. Although PAH sorption capacities of the Gel-E networks are higher than those of Gel-G gels due to the pore sizes differences of the gel samples, both of them are promising materials as biosorbent for the PAH sorption applications due to the relatively high sorption capacities, low cost and simple preparation methods.
Collapse
Affiliation(s)
| | | | - Isil Gazioglu
- Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey
| |
Collapse
|
24
|
Mastalska-Popławska J, Sikora M, Izak P, Góral Z. Applications of starch and its derivatives in bioceramics. J Biomater Appl 2019; 34:12-24. [DOI: 10.1177/0885328219844972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Marek Sikora
- Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Piotr Izak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
| | - Zuzanna Góral
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
| |
Collapse
|
25
|
Karan H, Funk C, Grabert M, Oey M, Hankamer B. Green Bioplastics as Part of a Circular Bioeconomy. TRENDS IN PLANT SCIENCE 2019; 24:237-249. [PMID: 30612789 DOI: 10.1016/j.tplants.2018.11.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 05/07/2023]
Abstract
The rapid accumulation of plastic waste is driving international demand for renewable plastics with superior qualities (e.g., full biodegradability to CO2 without harmful byproducts), as part of an expanding circular bioeconomy. Higher plants, microalgae, and cyanobacteria can drive solar-driven processes for the production of feedstocks that can be used to produce a wide variety of biodegradable plastics, as well as bioplastic-based infrastructure that can act as a long-term carbon sink. The plastic types produced, their chemical synthesis, scaled-up biorefinery concepts (e.g., plant-based methane-to-bioplastic production and co-product streams), bioplastic properties, and uses are summarized, together with the current regulatory framework and the key barriers and opportunities.
Collapse
Affiliation(s)
- Hakan Karan
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, QLD 4072, Australia; Joint first author
| | - Christiane Funk
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden; Joint first author
| | - Martin Grabert
- Montroix Pty Ltd, PO Box 4394, Hawker ACT 2614, Australia
| | - Melanie Oey
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
26
|
Santos-Rosales V, Ardao I, Alvarez-Lorenzo C, Ribeiro N, Oliveira AL, García-González CA. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach. Molecules 2019; 24:molecules24050871. [PMID: 30823685 PMCID: PMC6429194 DOI: 10.3390/molecules24050871] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
Aerogels from natural polymers are endowed with attractive textural and biological properties for biomedical applications due to their high open mesoporosity, low density, and reduced toxicity. Nevertheless, the lack of macroporosity in the aerogel structure and of a sterilization method suitable for these materials restrict their use for regenerative medicine purposes and prompt the research on getting ready-to-implant dual (macro + meso)porous aerogels. In this work, zein, a family of proteins present in materials for tissue engineering, was evaluated as a sacrificial porogen to obtain macroporous starch aerogels. This approach was particularly advantageous since it could be integrated in the conventional aerogel processing method without extra leaching steps. Physicochemical, morphological, and mechanical characterization were performed to study the effect of porogen zein at various proportions (0:1, 1:2, and 1:1 zein:starch weight ratio) on the properties of the obtained starch-based aerogels. From a forward-looking perspective for its clinical application, a supercritical CO₂ sterilization treatment was implemented for these aerogels. The sterilization efficacy and the influence of the treatment on the aerogel final properties were evaluated mainly in terms of absence of microbial growth, cytocompatibility, as well as physicochemical, structural, and mechanical modifications.
Collapse
Affiliation(s)
- Víctor Santos-Rosales
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Inés Ardao
- BioFarma Research group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Nilza Ribeiro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-375 Porto, Portugal.
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-375 Porto, Portugal.
| | - Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Alp E, Damkaci F, Guven E, Tenniswood M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomedicine 2019; 14:1335-1346. [PMID: 30863064 PMCID: PMC6388755 DOI: 10.2147/ijn.s191837] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The efficacy of epigenetic drugs, such as histone deacetylase inhibitors, is often diminished by poor aqueous solubility resulting in limited bioavailability and a low therapeutic index. To overcome the suboptimal therapeutic index, we have developed a biocompatible starch nanoparticle formulation of CG-1521, a histone deacetylase inhibitor in preclinical development for hard-to-treat breast cancers, which improves its bioavailability and half-life. Methods The physicochemical parameters (size, zeta potential, morphology, loading, and release kinetics) of these nanoparticles (CG-NPs) have been optimized and their cytotoxic and apoptotic capacities measured in MCF-7 breast cancer cell line. The mechanism of action of the encapsulated drug was compared with the free drug at molecular level. Results We show that encapsulation of CG-1521 substantially reduces the release rate of drug and provides a significantly enhanced cytotoxic ability of nanoparticles compared with equivalent dose of free CG-1521. CG-NPs induced cell cycle arrest and significant apoptosis in MCF-7 cells in vitro. The biological action of encapsulated drug has the similar impact with free drug on gene expression. Conclusion The findings suggest that encapsulation of CG-1521 into starch nanoparticles can improve drug delivery of histone deacetylase inhibitors for breast cancer therapy without interfering with the mechanism of action of the drug.
Collapse
Affiliation(s)
- Esma Alp
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, Ankara 06800, Turkey.,Department of Chemistry, State University of New York at Oswego, Oswego, NY 13126, USA.,Cancer Research Center, Rensselaer, NY 12144, USA, .,Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA,
| | - Fehmi Damkaci
- Department of Chemistry, State University of New York at Oswego, Oswego, NY 13126, USA
| | - Eylem Guven
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Martin Tenniswood
- Cancer Research Center, Rensselaer, NY 12144, USA, .,Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA,
| |
Collapse
|
28
|
Development of effective nano-biosorbent based on poly m-phenylenediamine grafted dextrin for removal of Pb (II) and methylene blue from water. Carbohydr Polym 2018; 201:539-548. [DOI: 10.1016/j.carbpol.2018.08.091] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022]
|
29
|
Li Y, Zhang Y, Zhao J, Han N, Bian L. Studies on the Adsorption and Thermodynamics of Theophylline, Vitamin C and Bovine Serum Albumin on Microporous Corn Starch. STARCH-STARKE 2018. [DOI: 10.1002/star.201800042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuhua Li
- College of Life Science; Northwest University; Xi'an 710069 China
| | - Yeli Zhang
- College of Life Science; Northwest University; Xi'an 710069 China
| | - Juan Zhao
- College of Life Science; Northwest University; Xi'an 710069 China
| | - Ning Han
- Department of Inspection; Weinan Psychiatric Hospital; Weinan 714000 China
| | - Liujiao Bian
- College of Life Science; Northwest University; Xi'an 710069 China
| |
Collapse
|
30
|
Vijayakumar V, Samal SK, Mohanty S, Nayak SK. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol 2018; 122:137-148. [PMID: 30342131 DOI: 10.1016/j.ijbiomac.2018.10.120] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/26/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
Abstract
Currently, diabetes mellitus (DM) accelerated diabetic foot ulcer (DFU) remains vivacious health problem related with delayed healing and high amputation rates which leads to enormous clinical obligation. Keeping in view of the foregoing, researchers have been made in their efforts to develop novel materials which accelerate delayed wound healing in the diabetic patient and reduce the adversative influences of DFUs. The most prominent materials used for the wound healing application have biocompatibility, low cytotoxicity, excellent biodegradable properties, and antimicrobial activity properties. Utilization of nanoparticles has emerged as a protruding scientific and technological revolution in controlling DFUs. Biopolymers in combination with bioactive nanoparticles having antimicrobial, antibacterial, and anti-inflammatory properties have great potential in wound care to enhance the healing process of diabetic wound infectious. Combination of antibacterial nanoparticles like silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), copper nanoparticles (CuNPs) etc. with polymeric matrix could efficiently inhibit bacterial growth and at the same time fastens the healing process of a wound. This review briefed the recent development of different natural polymers and antibacterial nanoparticles to mitigate the diabetes mellitus based DFU.
Collapse
Affiliation(s)
- Veena Vijayakumar
- School for Advanced Research in Polymers (SARP)-Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology (CIPET), B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| | - Sushanta K Samal
- School for Advanced Research in Polymers (SARP)-Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology (CIPET), B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India.
| | - Smita Mohanty
- School for Advanced Research in Polymers (SARP)-Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology (CIPET), B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| | - Sanjay K Nayak
- School for Advanced Research in Polymers (SARP)-Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology (CIPET), B-25, CNI Complex, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
31
|
Lavan M, Knipp G. Effects of Dendrimer-Like Biopolymers on Physical Stability of Amorphous Solid Dispersions and Drug Permeability Across Caco-2 Cell Monolayers. AAPS PharmSciTech 2018; 19:2459-2471. [PMID: 29869315 DOI: 10.1208/s12249-018-1080-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/16/2018] [Indexed: 11/30/2022] Open
Abstract
The potential applications of dendrimer-like biopolymers (DLB) as stabilizing excipients for amorphous solid dispersion (ASD) of niclosamide, celecoxib, and resveratrol were evaluated based on (1) the formation and physical stability of the ASD and (2) the permeability and flux of the agents across Caco-2 cell monolayers. The evaluation was made by comparing the performance of prototype phytoglycogen derivatives (DLB1, DLB2, and DLB3) with commonly used polymers such as HPMCAS, PVPVA, and Soluplus®. PXRD was used to confirm the formation of the dispersions and detect crystallinity peaks formed during 2- and 4-week storage at 40°C/75% RH. At concentrations below 2 g/mL, the viability of Caco-2 cells remained above 80% for all DLB samples compared to untreated cells in the MTT assay. Permeability studies revealed a repeating pattern in which an increase in the initial concentration (C0) was associated with a concomitant decrease in the apparent permeability (Papp) which we theorize is due to differences in drug-polymer interactions. Niclosamide-DLB1 dispersion had the lowest flux due to a significant reduction in Papp. The high increase in the C0 of celecoxib-DLB2, however, made up for the reduction in the Papp and produced the highest flux values compared to other polymers. Resveratrol-DLB3 had a 5× reduction in Papp, but C0 increased from 25.8 to 176 μg/mL led to a higher flux compared to the crystalline drug without polymer. Collectively, these results provide a "proof-of-concept" basis to demonstrate that DLB excipients have the ability to increase apparent solubility (Solapp), most likely due to drug-binding capacity.
Collapse
|
32
|
Mohapatra S, Asfer M, Anwar M, Ahmed S, Ahmad FJ, Siddiqui AA. Carboxymethyl Assam Bora rice starch coated SPIONs: Synthesis, characterization and in vitro localization in a micro capillary for simulating a targeted drug delivery system. Int J Biol Macromol 2018; 115:920-932. [DOI: 10.1016/j.ijbiomac.2018.04.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
|
33
|
Lei M, Jiang FC, Cai J, Hu S, Zhou R, Liu G, Wang YH, Wang HB, He JR, Xiong XG. Facile microencapsulation of olive oil in porous starch granules: Fabrication, characterization, and oxidative stability. Int J Biol Macromol 2018; 111:755-761. [DOI: 10.1016/j.ijbiomac.2018.01.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/08/2017] [Accepted: 01/08/2018] [Indexed: 01/27/2023]
|
34
|
Sharma S, Bhaskar N, Bose S, Basu B. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility. J Biomater Appl 2018; 32:1450-1463. [PMID: 29621928 DOI: 10.1177/0885328218766742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.
Collapse
Affiliation(s)
- Swati Sharma
- 1 Laboratory for Biomaterials, Materials Research Center, 29120 Indian Institute of Science , Bangalore, India
| | - Nitu Bhaskar
- 1 Laboratory for Biomaterials, Materials Research Center, 29120 Indian Institute of Science , Bangalore, India
| | - Surjasarathi Bose
- 2 Department of Materials Engineering, 29120 Indian Institute of Science , Bangalore, India
| | - Bikaramjit Basu
- 1 Laboratory for Biomaterials, Materials Research Center, 29120 Indian Institute of Science , Bangalore, India.,3 Center for Biosystems Science and Engineering, 29120 Indian Institute of Science , Bangalore, India
| |
Collapse
|
35
|
Kasyapi N, Dinesh Kumar K, Bhowmick AK. Sustainable bionanocomposite from d, l-lactide/δ-valerolactone triblock and bionanowhiskers: Preparation, characterization, and properties. J Appl Polym Sci 2018. [DOI: 10.1002/app.46035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nibedita Kasyapi
- Department of Materials Science and Engineering, School of Engineering and Technology; Indian Institute of Technology Patna; Patna 801103 India
| | - K. Dinesh Kumar
- Department of Materials Science and Engineering, School of Engineering and Technology; Indian Institute of Technology Patna; Patna 801103 India
| | - Anil K. Bhowmick
- Department of Materials Science and Engineering, School of Engineering and Technology; Indian Institute of Technology Patna; Patna 801103 India
| |
Collapse
|
36
|
Zhang Y, Jiang G, Yu W, Liu D, Xu B. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:18-26. [DOI: 10.1016/j.msec.2017.12.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/20/2017] [Accepted: 12/07/2017] [Indexed: 11/24/2022]
|
37
|
Duquette D, Dumont MJ. Influence of Chain Structures of Starch on Water Absorption and Copper Binding of Starch-Graft-Itaconic Acid Hydrogels. STARCH-STARKE 2018. [DOI: 10.1002/star.201700271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Daniel Duquette
- Bioresource Engineering Department, McGill University; 21111 Lakeshore Rd. Ste-Anne-de-Bellevue QC Canada H9×3V9
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University; 21111 Lakeshore Rd. Ste-Anne-de-Bellevue QC Canada H9×3V9
| |
Collapse
|
38
|
Gao Y, Li Y, Hu X, Wu W, Wang Z, Wang R, Zhang L. Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing. Polymers (Basel) 2017; 9:E694. [PMID: 30965994 PMCID: PMC6418593 DOI: 10.3390/polym9120694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Thermoplastic vulcanizate (TPV) combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide) (PLA) and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid) (PBBSI) were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yan Li
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoran Hu
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weidong Wu
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhao Wang
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Runguo Wang
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Liqun Zhang
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
39
|
Akmammedov R, Huysal M, Isik S, Senel M. Preparation and characterization of novel chitosan/zeolite scaffolds for bone tissue engineering applications. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1309539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rovshen Akmammedov
- Faculty of Engineering, Department of Bioengineering, Engineering-Technological University of Turkmenistan named after Oguz han, Ashkabat, Turkmenistan
| | - Merve Huysal
- Biotechnology Research Lab, EMC Technology Inc., Istanbul, Turkey
| | - Sevim Isik
- Department of Medical Biology, Faculty of Medicine, Fatih University, Istanbul, Turkey
| | - Mehmet Senel
- Biotechnology Research Lab, EMC Technology Inc., Istanbul, Turkey
| |
Collapse
|
40
|
Guleria A, Singha AS, Rana RK. Preparation of starch-based biocomposites reinforced with mercerized lignocellulosic fibers: Evaluation of their thermal, morphological, mechanical, and biodegradable properties. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1345558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ashish Guleria
- Department of chemistry, Chandigarh University Gharuan, Mohali (Pb), India
| | - A. S. Singha
- Department of Chemistry, National Institute of Technology Hamirpur (HP) India
| | - Raj K Rana
- Department of Chemistry, National Institute of Technology Hamirpur (HP) India
| |
Collapse
|
41
|
Zakaria NH, Muhammad N, Abdullah MMAB. Potential of Starch Nanocomposites for Biomedical Applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/209/1/012087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Flores-Arriaga JC, de Jesús Pozos-Guillén A, Escobar-García DM, Grandfils C, Cerda-Cristerna BI. Cell viability and hemocompatibility evaluation of a starch-based hydrogel loaded with hydroxyapatite or calcium carbonate for maxillofacial bone regeneration. Odontology 2017; 105:398-407. [PMID: 28386653 DOI: 10.1007/s10266-017-0301-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022]
Abstract
The objective of this study is to evaluate the cell viability and hemocompatibility of starch-based hydrogels for maxillofacial bone regeneration. Seven starch-based hydrogels were prepared: three loaded with 0.5, 1 and 2% calcium carbonate (Sigma Aldrich, St. Louis, MO, USA); three loaded with 2, 3 and 4% hydroxyapatite (Sigma Aldrich); and one not loaded as a control. A 10 M NaOH was then added to induce hydrogel formation. Human osteoblasts were cultured on each hydrogel for 72 h. An MTS assay (Cell Titer96; PROMEGA, Madison, WI, USA) was used to assess cell viability. Hemocompatibility testing was conducted with normal human blood in the following conditions: 100 mg of each hydrogel in contact with 900 µL of whole blood for 15 min at 37 °C under lateral stirring. Higher percentages of cell viability were observed in starch-based hydrogels loaded with hydroxyapatite as compared with the control. The hemolysis test showed a hemolysis level lower than 2%. Activated partial thromboplastin time and prothrombin time were unchanged, while platelet counting showed a slight decrease when compared with controls.
Collapse
|
43
|
Gogoi P, Dutta D, Maji TK. Equilibrium and kinetics study on removal of arsenate ions from aqueous solution by CTAB/TiO 2 and starch/CTAB/TiO 2 nanoparticles: a comparative study. JOURNAL OF WATER AND HEALTH 2017; 15:58-71. [PMID: 28151440 DOI: 10.2166/wh.2016.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a comparative study on the efficacy of TiO2 nanoparticles for arsenate ion removal after modification with CTAB (N-cetyl-N,N,N-trimethyl ammonium bromide) followed by coating with starch biopolymer. The prepared nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), thermogravimetry, scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDX). The removal efficiency was studied as a function of contact time, material dose and initial As(V) concentration. CTAB-modified TiO2 showed the highest arsenate ion removal rate (∼99% from 400 μg/L). Starch-coated CTAB-modified TiO2 was found to be best for regeneration. For a targeted solution of 400 μg/L, a material dose of 2 g/L was found to be sufficient to reduce the As(V) concentration below 10 μg/L. Equilibrium was established within 90 minutes of treatment. The sorption pattern followed a Langmuir monolayer pattern, and the maximum sorption capacity was found to be 1.024 mg/g and 1.423 mg/g after starch coating and after CTAB modification, respectively. The sorption mechanisms were governed by pseudo second order kinetics.
Collapse
Affiliation(s)
- Pankaj Gogoi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India E-mail:
| | - Debasish Dutta
- Department of Chemical Sciences, Tezpur University, Assam 784028, India E-mail:
| | - Tarun Kr Maji
- Department of Chemical Sciences, Tezpur University, Assam 784028, India E-mail:
| |
Collapse
|
44
|
Sun TW, Zhu YJ, Chen F. Highly Flexible Multifunctional Biopaper Comprising Chitosan Reinforced by Ultralong Hydroxyapatite Nanowires. Chemistry 2017; 23:3850-3862. [DOI: 10.1002/chem.201605165] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
45
|
Wu D, Bäckström E, Hakkarainen M. Starch Derived Nanosized Graphene Oxide Functionalized Bioactive Porous Starch Scaffolds. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Duo Wu
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| | - Eva Bäckström
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| |
Collapse
|
46
|
Arif S, Batool A, Khalid N, Ahmed I, Janjua HA. Comparative analysis of stability and biological activities of violacein and starch capped silver nanoparticles. RSC Adv 2017; 7:4468-4478. [DOI: 10.1039/c6ra25806a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
This study highlights the synthesis of starch and violacein capped AgNPs through reducing agents. The violacein capped AgNPs are more stable than starch capped AgNPs and have more potent antimicrobial activities in comparison to starch capped AgNPs.
Collapse
Affiliation(s)
- Sania Arif
- Department of Industrial Biotechnology
- Atta-ur-Rahman School of Applied Biosciences
- National University of Science and Technology (NUST)
- Islamabad
- Pakistan
| | - Aamina Batool
- School of Chemical and Material Engineering
- National University of Science and Technology (NUST)
- Islamabad
- Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences
- University of Management and Technology
- Lahore 54000
- Pakistan
- Centre for Chemistry and Biotechnology
| | - Iftikhar Ahmed
- Institute of Microbial Culture Collection of Pakistan (IMCCP)
- National Agricultural Research Centre (NARC)
- Islamabad-45500
- Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology
- Atta-ur-Rahman School of Applied Biosciences
- National University of Science and Technology (NUST)
- Islamabad
- Pakistan
| |
Collapse
|
47
|
Acrylic bone cement and starch: Botanical variety impact on curing parameters and degradability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1328-34. [DOI: 10.1016/j.msec.2016.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022]
|
48
|
Lee B, Jeong D, Joo SW, Choi JM, Lee JY, Cho E, Park S, Jung S. Preparation of Hydroxypropyl Cyclosophoraose/Dextran Microspheres for the Controlled Release of Ciprofloxacin. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.11001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Benel Lee
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 South Korea
| | - Daham Jeong
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 South Korea
| | - Sang-Woo Joo
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 South Korea
| | - Jae Min Choi
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 South Korea
| | - Jae Yung Lee
- Department of Biological Science; Mokpo National University; Jeonnam 59626 Korea
| | - Eunae Cho
- Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Korea
| | - Seyeon Park
- Department of Applied Chemistry; Dongduk Women's University; Seoul 02748 South Korea
| | - Seunho Jung
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 South Korea
- Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU); Konkuk University; Seoul 05029 Korea
| |
Collapse
|
49
|
Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:301-10. [DOI: 10.1016/j.msec.2016.06.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 05/19/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022]
|
50
|
Bhaskar N, Padmavathy N, Jain S, Bose S, Basu B. Modulated in Vitro Biocompatibility of a Unique Cross-Linked Salicylic Acid-Poly(ε-caprolactone)-Based Biodegradable Polymer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29721-29733. [PMID: 27726328 DOI: 10.1021/acsami.6b10711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, we report the development of a unique architecture by chemically cross-linking salicylic acid (SA)-based poly(anhydride ester) onto a biodegradable amine-functionalized poly(caprolactone) (PCL), using lactic acid as a spacer. The ester and amide linkages in the SA-PCL polymer, synthesized through melt condensation, were confirmed by NMR and FT-IR spectroscopic techniques. The enzymatic and nonenzymatic hydrolytic degradation profile exhibited linear degradation kinetics over an extended time period (>5 weeks). The compatibility and growth of C2C12 myoblast cells were found to be significantly improved on the fast-degrading SA-PCL substrates compared to those over neat PCL and amine-functionalized PCL. Further, the decreased red blood cell damage, illustrated by 0.39% hemolysis activity and a minimal number of platelet adhesion on a SA-PCL polymeric surface confirmed good hemocompatibility of the as-synthesized polymer. Together with a moderate bactericidal property, the spectrum of properties of this novel polymer can be attributed to the synergistic effect of the presence of chemical moieties of SA and amine groups in PCL. In summary, it is considered that a SA-PCL-based cross-linked composite can be utilized as a new biodegradable polymer.
Collapse
Affiliation(s)
- Nitu Bhaskar
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Nagarajan Padmavathy
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Shubham Jain
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Suryasarathi Bose
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|