1
|
Ganguly R, Chu JO, Lee CS, Choi CH. Solvent-Free Fabrication of Anisotropic Microparticles with Precise 3D Shape Control Using Dipping-Based Micromolding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5391-5400. [PMID: 38416015 DOI: 10.1021/acs.langmuir.3c03878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We present an innovative solvent-free micromolding technique for rapidly fabricating complex polymer microparticles with three-dimensional (3D) shapes utilizing a surface tension-induced dipping process. Our fabrication process involves loading a photocurable solution into micromolds through mold dipping. The loaded solution, induced by surface tension, undergoes spatial deformation upon mold removal caused by surface forces, ultimately acquiring an anisotropic shape before photopolymerization. Results show that the amount of photocurable solution loaded depends on the degree of capillary penetration, which can be adjusted by varying the dipping time and mold height. It enables the production of polymer particles with precisely controlled 3D shapes without diluting them with volatile organic solvents. Sequential micromolding enables the spatial stacking of the polymer domain through a bottom-up approach, facilitating the creation of complex multicompartmental microparticles with independently controlled compartments. Finally, we demonstrated the successful simultaneous conjugation of multiple model-fluorescent proteins through the biofunctionalization of microparticles, indicating functional stability and effective conjugation of hydrophilic molecules such as proteins. We also extend our capacity to create bicompartmental microparticles with distinct functionalities in each compartment, revealing spatially controlled functional structures. In summary, these findings demonstrate a straightforward, rapid, and reliable method for producing highly uniform complex particles with precise control over the 3D shape and compartmentalization, all accomplished without the use of organic solvents.
Collapse
Affiliation(s)
- Reya Ganguly
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jin-Ok Chu
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Hyung Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
2
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
3
|
Sadeghzadeh H, Dianat-Moghadam H, Del Bakhshayesh AR, Mohammadnejad D, Mehdipour A. A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem Cell Res Ther 2023; 14:194. [PMID: 37542279 PMCID: PMC10403948 DOI: 10.1186/s13287-023-03426-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Many problems related to disorders and defects of bone tissue caused by aging, diseases, and injuries have been solved by the multidisciplinary research field of regenerative medicine and tissue engineering. Numerous sciences, especially nanotechnology, along with tissue engineering, have greatly contributed to the repair and regeneration of tissues. Various studies have shown that the presence of magnetic nanoparticles (MNPs) in the structure of composite scaffolds increases their healing effect on bone defects. In addition, the induction of osteogenic differentiation of mesenchymal stem cells (MSCs) in the presence of these nanoparticles has been investigated and confirmed by various studies. Therefore, in the present article, the types of MNPs, their special properties, and their application in the healing of damaged bone tissue have been reviewed. Also, the molecular effects of MNPs on cell behavior, especially in osteogenesis, have been discussed. Finally, the present article includes the potential applications of MNP-containing nanocomposite scaffolds in bone lesions and injuries. In summary, this review article highlights nanocomposite scaffolds containing MNPs as a solution for treating bone defects in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hadi Sadeghzadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryush Mohammadnejad
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Yudin VV, Shurygina MP, Egorikhina MN, Aleynik DY, Linkova DD, Charykova IN, Kovylin RS, Chesnokov SA. Pore Structure Tuning of Poly-EGDMA Biomedical Material by Varying the O-Quinone Photoinitiator. Polymers (Basel) 2023; 15:polym15112558. [PMID: 37299356 DOI: 10.3390/polym15112558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Porous polymer monoliths with thicknesses of 2 and 4 mm were obtained via polymerization of ethylene glycol dimethacrylate (EGDMA) under the influence visible-light irradiation in the presence of a 70 wt% 1-butanol porogenic agent and o-quinone photoinitiators. The o-quinones used were: 3,5-di-tret-butyl-benzoquinone-1,2 (35Q), 3,6-di-tret-butyl-benzoquinone-1,2 (36Q), camphorquinone (CQ), and 9,10-phenanthrenequinone (PQ). Porous monoliths were also synthesized from the same mixture but using 2,2'-azo-bis(iso-butyronitrile) (AIBN) at 100 °C instead o-quinones. According to the results of scanning electron microscopy, all the resulting samples were conglomerates of spherical, polymeric particles with pores between them. Use of mercury porometry showed that the interconnected pore systems of all the polymers were open. The average pore size, Dmod, in such polymers strongly depended on both the nature of the initiator and the method of initiation of polymerization. For polymers obtained in the presence of AIBN, the Dmod value was as low as 0.8 μm. For polymers obtained via photoinitiation in the presence of 36Q, 35Q, CQ, and PQ, the Dmod values were significantly greater, i.e., 9.9, 6.4, 3.6, and 3.7 μm, respectively. The compressive strength and Young's modulus of the porous monoliths increased symbatically in the series PQ < CQ < 36Q < 35Q < AIBN with decreasing proportions of large pores (over 12 μm) in their polymer structures. The photopolymerization rate of the EGDMA and 1-butanol, 30:70 wt% mixture was maximal for PQ and minimal for 35Q. All polymers tested were non-cytotoxic. Based on the data from MTT testing, it can be noted that the polymers obtained via photoinitiation were characterized by their positive effect on the proliferative activity of human dermal fibroblasts. This makes them promising osteoplastic materials for clinical trials.
Collapse
Affiliation(s)
- Vladimir V Yudin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinina, 603950 Nizhny Novgorod, Russia
| | - Margarita P Shurygina
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinina, 603950 Nizhny Novgorod, Russia
| | - Marfa N Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| | - Diana Ya Aleynik
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| | - Daria D Linkova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| | - Irina N Charykova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| | - Roman S Kovylin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinina, 603950 Nizhny Novgorod, Russia
| | - Sergey A Chesnokov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinina, 603950 Nizhny Novgorod, Russia
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Sangkatip R, Jongwuttanaruk K, Sriseubsai W. Gelatin/Na 2Ti 3O 7 Nanocomposite Scaffolds: Mechanical Properties and Characterization for Tissue Engineering Applications. Polymers (Basel) 2023; 15:polym15102322. [PMID: 37242897 DOI: 10.3390/polym15102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Materials and manufacturing technologies are necessary for tissue engineering and developing temporary artificial extracellular matrices. In this study, scaffolds were fabricated from freshly synthesized titanate (Na2Ti3O7) and its precursor titanium dioxide and their properties were investigated. The scaffolds with improved properties were then mixed with gelatin to form a scaffold material using the freeze-drying technique. To determine the optimal composition for the compression test of the nanocomposite scaffold, a mixture design with three factors of gelatin, titanate, and deionized water was used. Then, the scaffold microstructures were examined by scanning electron microscopy (SEM) to determine the porosity of the nanocomposite scaffolds. The scaffolds were fabricated as a nanocomposite and determined their compressive modulus values. The results showed that the porosity of the gelatin/Na2Ti3O7 nanocomposite scaffolds ranged from 67% to 85%. When the mixing ratio was 100:0, the degree of swelling was 22.98%. The highest swelling ratio of 85.43% was obtained when the freeze-drying technique was applied to the mixture of gelatin and Na2Ti3O7 with a mixing ratio of 80:20. The specimens formed (gelatin:titanate = 80:20) exhibited a compressive modulus of 30.57 kPa. The sample with a composition of 15.10% gelatin, 2% Na2Ti3O7, and 82.9% DI water, processed by the mixture design technique, showed the highest yield of 30.57 kPa in the compression test.
Collapse
Affiliation(s)
- Rittichai Sangkatip
- Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Kaona Jongwuttanaruk
- Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Wipoo Sriseubsai
- Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
6
|
Chowdhury T, Cressiot B, Parisi C, Smolyakov G, Thiébot B, Trichet L, Fernandes FM, Pelta J, Manivet P. Circulating Tumor Cells in Cancer Diagnostics and Prognostics by Single-Molecule and Single-Cell Characterization. ACS Sens 2023; 8:406-426. [PMID: 36696289 DOI: 10.1021/acssensors.2c02308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circulating tumor cells (CTCs) represent an interesting source of biomarkers for diagnosis, prognosis, and the prediction of cancer recurrence, yet while they are extensively studied in oncobiology research, their diagnostic utility has not yet been demonstrated and validated. Their scarcity in human biological fluids impedes the identification of dangerous CTC subpopulations that may promote metastatic dissemination. In this Perspective, we discuss promising techniques that could be used for the identification of these metastatic cells. We first describe methods for isolating patient-derived CTCs and then the use of 3D biomimetic matrixes in their amplification and analysis, followed by methods for further CTC analyses at the single-cell and single-molecule levels. Finally, we discuss how the elucidation of mechanical and morphological properties using techniques such as atomic force microscopy and molecular biomarker identification using nanopore-based detection could be combined in the future to provide patients and their healthcare providers with a more accurate diagnosis.
Collapse
Affiliation(s)
- Tafsir Chowdhury
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | | | - Cleo Parisi
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France.,Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Georges Smolyakov
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | | | - Léa Trichet
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Francisco M Fernandes
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Juan Pelta
- CY Cergy Paris Université, CNRS, LAMBE, 95000 Cergy, France.,Université Paris-Saclay, Université d'Evry, CNRS, LAMBE, 91190 Evry, France
| | - Philippe Manivet
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France.,Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| |
Collapse
|
7
|
Shahverdi M, Seifi S, Akbari A, Mohammadi K, Shamloo A, Movahhedy MR. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Sci Rep 2022; 12:19935. [PMID: 36402790 PMCID: PMC9675866 DOI: 10.1038/s41598-022-24275-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Fabrication of well-ordered and bio-mimetic scaffolds is one of the most important research lines in tissue engineering. Different techniques have been utilized to achieve this goal, however, each method has its own disadvantages. Recently, melt electrowriting (MEW) as a technique for fabrication of well-organized scaffolds has attracted the researchers' attention due to simultaneous use of principles of additive manufacturing and electrohydrodynamic phenomena. In previous research studies, polycaprolactone (PCL) has been mostly used in MEW process. PCL is a biocompatible polymer with characteristics that make it easy to fabricate well-arranged structures using MEW device. However, the mechanical properties of PCL are not favorable for applications like bone tissue engineering. Furthermore, it is of vital importance to demonstrate the capability of MEW technique for processing a broad range of polymers. To address aforementioned problems, in this study, three ten-layered box-structured well-ordered scaffolds, including neat PLA, neat PCL, and PLA/PCL composite are fabricated using an MEW device. Printing of the composite PLA/PCL scaffold using the MEW device is conducted in this study for the first time. The MEW device used in this study is a commercial fused deposition modeling (FDM) 3D printer which with some changes in its setup and configuration becomes prepared for being used as an MEW device. Since in most of previous studies, a setup has been designed and built for MEW process, the use of the FDM device can be considered as one of the novelties of this research. The printing parameters are adjusted in a way that scaffolds with nearly equal pore sizes in the range of 140 µm to 150 µm are fabricated. However, PCL fibers are mostly narrower (diameters in the range of 5 µm to 15 µm) than PLA fibers with diameters between 15 and 25 µm. Unlike the MEW process of PCL, accurate positioning of PLA fibers is difficult which can be due to higher viscosity of PLA melt compared to PCL melt. The printed composite PLA/PCL scaffold possesses a well-ordered box structure with improved mechanical properties and cell-scaffold interactions compared to both neat PLA and PCL scaffolds. Besides, the composite scaffold exhibits a higher swelling ratio than the neat PCL scaffold which can be related to the presence of less hydrophobic PLA fibers. This scaffold demonstrates an anisotropic behavior during uniaxial tensile test in which its Young's modulus, ultimate tensile stress, and strain to failure all depend on the direction of the applied tensile force. This anisotropy makes the composite PLA/PCL scaffold an exciting candidate for applications in heart tissue engineering. The results of in-vitro cell viability test using L929 mouse murine fibroblast and human umbilical vein endothelial (HUVEC) cells demonstrate that all of the printed scaffolds are biocompatible. In particular, the composite scaffold presents the highest cell viability value among the fabricated scaffolds. All in all, the composite PLA/PCL scaffold shows that it can be a promising substitution for neat PCL scaffold used in previous MEW studies.
Collapse
Affiliation(s)
- Mohammad Shahverdi
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Saeed Seifi
- Nano BioTechnology Laboratory, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Akbari
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Kaivan Mohammadi
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
| | - Amir Shamloo
- Nano BioTechnology Laboratory, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Reza Movahhedy
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| |
Collapse
|
8
|
Takase H, Suga K, Matsune H, Umakoshi H, Shiomori K. Preferential adsorption of L-tryptophan by L-phospholipid coated porous polymer particles. Colloids Surf B Biointerfaces 2022; 216:112535. [PMID: 35594752 DOI: 10.1016/j.colsurfb.2022.112535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Chiral selective adsorption of L-amino acid, tryptophan (Trp) was achieved using phospholipid membrane-coated porous polymer particles (PPPs). PPPs with numerous pores were prepared by in situ polymerization of divinylbenzene, and then coated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, L-phospholipid) via the impregnation method. Elemental mapping of energy dispersive X-ray (EDX) analysis revealed that DPPC molecules were distributed to the surface and the inner part of PPPs, where almost all the DPPC molecules applied for impregnation were deposited on PPPs. The phospholipid membrane properties of DPPC-PPPs were characterized using the fluorescence probe 6-lauroyl-2-dimethylaminonaphthalene (Laurdan). The results show that DPPC-PPPs possessed a lipid membrane-like environment similar to pure DPPC liposomes, especially at temperatures below 35 °C. DPPC-PPPs slightly adsorbed L-Trp and D-Trp at 45 °C, while DPPC-PPPs significantly adsorbed L-Trp but not D-Trp at 30 °C: enantio excess (e.e.) was 75.0%. The time course of Trp adsorption was investigated: for both enantiomers, similar adsorption behaviors were observed for 30 h, thus suggesting surface adsorption onto DPPC-PPPs. L-Trp adsorption continued after 30 h, suggesting that L-Trp could be distributed in the inner part of DPPC-PPPs. Interestingly, the reused DPPC-PPPs featured improved adsorption performance, suggesting that the deposited DPPC membranes on PPPs could act as chiral selectors for L-Trp. The optical resolution of L-/D-Trp was performed using DPPC-PPPs, resulting in the e.e. of D-Trp was > 60%. Thus, DPPC-PPPs have the potential of chiral selective adsorption of L-amino acid, which can be used as chiral separation materials.
Collapse
Affiliation(s)
- Hayato Takase
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan; Department of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hideki Matsune
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Koichiro Shiomori
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan.
| |
Collapse
|
9
|
Li K, Ding J, Guo Y, Wu H, Wang W, Ji J, Pei Q, Gong C, Ji Z, Wang X. Direct Ink Writing of Phenylethynyl End-Capped Oligoimide/SiO2 to Additively Manufacture High-Performance Thermosetting Polyimide Composites. Polymers (Basel) 2022; 14:polym14132669. [PMID: 35808714 PMCID: PMC9269254 DOI: 10.3390/polym14132669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
The three-dimensional (3D) printing of a SiO2-filled thermosetting polyimide (SiO2@TSPI) composite with outstanding performance is realized via the direct ink writing (DIW) of polyamide acid (PAA) composite ink and thermal treatment conducted thereafter. The composite ink consists of phenylethynyl-terminated PAA and silica nanoparticles, where the SiO2 nanoparticles serve as the rheology modifier that is necessary for the DIW technique to obtain self-supporting feedstock during 3D printing and the reinforcement filler that is used to enhance the performance of the final composite. As a result, printed parts with complex geometry and robust thermal stability are obtained. Due to the extrusion-based DIW technique, the printed structures exhibit anisotropic mechanical strength that highly depends on printing roads. This simple and convenient means of realizing 3D structures of thermosetting polyimides is a promising strategy in aerospace and other fields.
Collapse
Affiliation(s)
- Keda Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (K.L.); (J.D.); (H.W.); (W.W.); (J.J.); (Q.P.)
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Jinghong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (K.L.); (J.D.); (H.W.); (W.W.); (J.J.); (Q.P.)
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yuxiong Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Hongchao Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (K.L.); (J.D.); (H.W.); (W.W.); (J.J.); (Q.P.)
| | - Wenwen Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (K.L.); (J.D.); (H.W.); (W.W.); (J.J.); (Q.P.)
| | - Jiaqi Ji
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (K.L.); (J.D.); (H.W.); (W.W.); (J.J.); (Q.P.)
| | - Qi Pei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (K.L.); (J.D.); (H.W.); (W.W.); (J.J.); (Q.P.)
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Chenliang Gong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (K.L.); (J.D.); (H.W.); (W.W.); (J.J.); (Q.P.)
- Correspondence: (C.G.); (Z.J.); (X.W.)
| | - Zhongying Ji
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
- Correspondence: (C.G.); (Z.J.); (X.W.)
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
- Correspondence: (C.G.); (Z.J.); (X.W.)
| |
Collapse
|
10
|
Sorze A, Valentini F, Dorigato A, Pegoretti A. Salt leaching as a green method for the production of polyethylene foams for thermal energy storage applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandro Sorze
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Francesco Valentini
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| |
Collapse
|
11
|
Ren Q, Zhu X, Li W, Wu M, Cui S, Ling Y, Ma X, Wang G, Wang L, Zheng W. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. Int J Biol Macromol 2022; 205:740-748. [PMID: 35331790 DOI: 10.1016/j.ijbiomac.2022.03.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Porous poly (lactic acid) (PLA)-based scaffolds have been widely used as a promising product in tissue engineering. However, it is still a challenge to prepare the PLA-based scaffolds with high expansion ratio, good hydrophilicity, and excellent cytocompatibility by a green and cost-effective fabrication approach. Herein, we prepared porous PLA-based scaffolds using carbon dioxide (CO2) as the physical foaming agent. To improve the hydrophilicity and foaming behavior of PLA, poly (ethylene glycol) (PEG) was selected as a good additive to blend with PLA. It revealed that the introduction of PEG could improve the foaming behavior of PLA and promote the formation of opening cells via reducing the matrix strength of PLA. The obtained 3D PLA/PEG scaffolds exhibited high expansion ratio (9.1), high open-cell content (95.2%), and super-hydrophilicity (water contact angle 0°). Additionally, the mouse fibroblast NIH/3T3 cells with live/dead cell fluorescence staining assay was utilized to examine the biocompatibility of PLA/PEG scaffolds. The result demonstrated that the proliferation ratio of NIH/3 T3 cells on the surface of PLA/PEG scaffolds was higher than that of PLA scaffolds, indicating that the highly interconnected cell structure was conducive to cell adhesion and attachment. Consequently, such hydrophilic open-cell structure obtained by adding PEG into PLA possesses great potential for use in tissue engineering.
Collapse
Affiliation(s)
- Qian Ren
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyu Zhu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Wanwan Li
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Minghui Wu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Advanced Materials and Composites Department, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315000, China
| | - Shijie Cui
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Yihan Ling
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Xuehua Ma
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, CAS, Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Chinese Academy of Science (CAS), Ningbo 315201, China.
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China.
| | - Long Wang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Lee SY, Jeon S, Kwon YW, Kwon M, Kang MS, Seong KY, Park TE, Yang SY, Han DW, Hong SW, Kim KS. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. SCIENCE ADVANCES 2022; 8:eabn1646. [PMID: 35427152 PMCID: PMC9012471 DOI: 10.1126/sciadv.abn1646] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/25/2022] [Indexed: 06/02/2023]
Abstract
Wound healing is the dynamic tissue regeneration process replacing devitalized and missing tissue layers. With the development of photomedicine techniques in wound healing, safe and noninvasive photobiomodulation therapy is receiving attention. Effective wound management in photobiomodulation is challenged, however, by limited control of the geometrical mismatches on the injured skin surface. Here, adhesive hyaluronic acid-based gelatin nanofibrous membranes integrated with multiple light-emitting diode (LED) arrays are developed as a skin-attachable patch. The nanofibrous wound dressing is expected to mimic the three-dimensional structure of the extracellular matrix, and its adhesiveness allows tight coupling between the wound sites and the flexible LED patch. Experimental results demonstrate that our medical device accelerates the initial wound healing process by the synergetic effects of the wound dressing and LED irradiation. Our proposed technology promises progress for wound healing management and other biomedical applications.
Collapse
Affiliation(s)
- So Yun Lee
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Young Woo Kwon
- Department of Nano-fusion Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Eon Park
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Yu D, Lei X, Zhu H. Modification of polyetheretherketone (PEEK) physical features to improve osteointegration. J Zhejiang Univ Sci B 2022; 23:189-203. [PMID: 35261215 DOI: 10.1631/jzus.b2100622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polyetheretherketone (PEEK) has been widely applied in orthopedics because of its excellent mechanical properties, radiolucency, and biocompatibility. However, the bioinertness and poor osteointegration of PEEK have greatly limited its further application. Growing evidence proves that physical factors of implants, including their architecture, surface morphology, stiffness, and mechanical stimulation, matter as much as the composition of their surface chemistry. This review focuses on the multiple strategies for the physical modification of PEEK implants through adjusting their architecture, surface morphology, and stiffness. Many research findings show that transforming the architecture and incorporating reinforcing fillers into PEEK can affect both its mechanical strength and cellular responses. Modified PEEK surfaces at the macro scale and micro/nano scale have positive effects on cell-substrate interactions. More investigations are necessary to reach consensus on the optimal design of PEEK implants and to explore the efficiency of various functional implant surfaces. Soft-tissue integration has been ignored, though evidence shows that physical modifications also improve the adhesion of soft tissue. In the future, ideal PEEK implants should have a desirable topological structure with better surface hydrophilicity and optimum surface chemistry.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyue Lei
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
14
|
Hasanzadeh R, Azdast T, Mojaver M, Darvishi MM, Park CB. Cost-effective and reproducible technologies for fabrication of tissue engineered scaffolds: The state-of-the-art and future perspectives. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Darie-Niță RN, Râpă M, Frąckowiak S. Special Features of Polyester-Based Materials for Medical Applications. Polymers (Basel) 2022; 14:951. [PMID: 35267774 PMCID: PMC8912343 DOI: 10.3390/polym14050951] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
This article presents current possibilities of using polyester-based materials in hard and soft tissue engineering, wound dressings, surgical implants, vascular reconstructive surgery, ophthalmology, and other medical applications. The review summarizes the recent literature on the key features of processing methods and potential suitable combinations of polyester-based materials with improved physicochemical and biological properties that meet the specific requirements for selected medical fields. The polyester materials used in multiresistant infection prevention, including during the COVID-19 pandemic, as well as aspects covering environmental concerns, current risks and limitations, and potential future directions are also addressed. Depending on the different features of polyester types, as well as their specific medical applications, it can be generally estimated that 25-50% polyesters are used in the medical field, while an increase of at least 20% has been achieved since the COVID-19 pandemic started. The remaining percentage is provided by other types of natural or synthetic polymers; i.e., 25% polyolefins in personal protection equipment (PPE).
Collapse
Affiliation(s)
- Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Stanisław Frąckowiak
- Faculty of Environmental Engineering, University of Science and Technology, 50-013 Wrocław, Poland;
| |
Collapse
|
16
|
Ganguly R, Choi Y, Lee CS, Choi CH. Tuning three-dimensional (3D) shapes of polymeric microparticles by geometry-driven control of mold swelling and capillarity in micromolds. J Colloid Interface Sci 2021; 600:373-381. [PMID: 34023698 DOI: 10.1016/j.jcis.2021.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
We report a simple method for producing polymeric microparticles with controlled three-dimensional (3D) shapes from two-dimensional (2D) micromolds via mold geometry-mediated tunable mold swelling and capillarity. Specifically, the photocurable solution confined in the mold with diverse geometries is spatially deformed by the addition of the wetting fluid, which triggers the mold swelling and capillarity; this allows the production of highly uniform microparticles with complex shape via photopolymerization. The results show that the swelling-induced mold deflection is varied depending on the mold geometry with different side lengths, allowing a tunable deformation of the photocurable solution and forming non-spherical particles with a convex top. The capillarity of the wetting fluid is also determined by the mold geometry with different corner angles, leading to the directional movement of the photocurable solution via Laplace pressure-driven flow and facilitating the production of spherical particles with or without shape imprinting. Furthermore, we demonstrate a capability to further enhance the mold swelling by varying mold composition, expanding their controllability in 3D shape, and enabling simultaneous production of spherical and non-spherical particles using a single mold.
Collapse
Affiliation(s)
- Reya Ganguly
- Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yoon Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea.
| |
Collapse
|
17
|
Xie K, Wang N, Guo Y, Zhao S, Tan J, Wang L, Li G, Wu J, Yang Y, Xu W, Chen J, Jiang W, Fu P, Hao Y. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study. Bioact Mater 2021; 8:140-152. [PMID: 34541392 PMCID: PMC8424517 DOI: 10.1016/j.bioactmat.2021.06.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) alloys that have both antibacterial and osteogenic properties are suitable candidates for orthopedic implants. However, the fabrication of ideal Mg implants suitable for bone repair remains challenging because it requires implants with interconnected pore structures and personalized geometric shapes. In this study, we fabricated a porous 3D-printed Mg-Nd-Zn-Zr (denoted as JDBM) implant with suitable mechanical properties using selective laser melting technology. The 3D-printed JDBM implant exhibited cytocompatibility in MC3T3-E1 and RAW267.4 cells and excellent osteoinductivity in vitro. Furthermore, the implant demonstrated excellent antibacterial ratios of 90.0% and 92.1% for methicillin-resistant S. aureus (MRSA) and Escherichia coli, respectively. The 3D-printed JDBM implant prevented MRSA-induced implant-related infection in a rabbit model and showed good in vivo biocompatibility based on the results of histological evaluation, blood tests, and Mg2+ deposition detection. In addition, enhanced inflammatory response and TNF-α secretion were observed at the bone-implant interface of the 3D-printed JDBM implants during the early implantation stage. The high Mg2+ environment produced by the degradation of 3D-printed JDBM implants could promote M1 phenotype of macrophages (Tnf, iNOS, Ccl3, Ccl4, Ccl5, Cxcl10, and Cxcl2), and enhance the phagocytic ability of macrophages. The enhanced immunoregulatory effect generated by relatively fast Mg2+ release and implant degradation during the early implantation stage is a potential antibacterial mechanism of Mg-based implant. Our findings indicate that 3D-printed porous JDBM implants, having both antibacterial property and osteoinductivity, hold potential for future orthopedic applications. Porous JDBM implants promising mechanical properties was fabricated by selective laser melting. 3D-printed JDBM implant exhibited excellent antibacterial property, osteoinductivity, and biocompatibility. Temporally enhanced immunoregulatory effect in early stage was a potential antibacterial mechanism of Mg-based implant.
Collapse
Affiliation(s)
- Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Nanqing Wang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, 100044, Beijing, China
| | - Shuang Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jia Tan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guoyuan Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Junxiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yangzi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenyu Xu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Chen
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Penghuai Fu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
18
|
Trofimchuk ES, Potseleev VV, Khavpachev MA, Moskvina MA, Nikonorova NI. Polylactide-Based Porous Materials: Synthesis, Hydrolytic Degradation Features, and Application Areas. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Ghahramani P, Eldyasti A, Leung SN. Open‐cell polyvinylidene fluoride foams as carriers to promote biofilm growth for biological wastewater treatment. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Pardis Ghahramani
- Department of Mechanical Engineering Lassonde School of Engineering, York University Toronto Ontario Canada
| | - Ahmed Eldyasti
- Department of Civil Engineering Lassonde School of Engineering, York University Toronto Ontario Canada
| | - Siu N. Leung
- Department of Mechanical Engineering Lassonde School of Engineering, York University Toronto Ontario Canada
| |
Collapse
|
20
|
Beenken KE, Campbell MJ, Ramirez AM, Alghazali K, Walker CM, Jackson B, Griffin C, King W, Bourdo SE, Rifkin R, Hecht S, Meeker DG, Anderson DE, Biris AS, Smeltzer MS. Evaluation of a bone filler scaffold for local antibiotic delivery to prevent Staphylococcus aureus infection in a contaminated bone defect. Sci Rep 2021; 11:10254. [PMID: 33986462 PMCID: PMC8119729 DOI: 10.1038/s41598-021-89830-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
We previously reported the development of an osteogenic bone filler scaffold consisting of degradable polyurethane, hydroxyapatite, and decellularized bovine bone particles. The current study was aimed at evaluating the use of this scaffold as a means of local antibiotic delivery to prevent infection in a bone defect contaminated with Staphylococcus aureus. We evaluated two scaffold formulations with the same component ratios but differing overall porosity and surface area. Studies with vancomycin, daptomycin, and gentamicin confirmed that antibiotic uptake was concentration dependent and that increased porosity correlated with increased uptake and prolonged antibiotic release. We also demonstrate that vancomycin can be passively loaded into either formulation in sufficient concentration to prevent infection in a rabbit model of a contaminated segmental bone defect. Moreover, even in those few cases in which complete eradication was not achieved, the number of viable bacteria in the bone was significantly reduced by treatment and there was no radiographic evidence of osteomyelitis. Radiographs and microcomputed tomography (µCT) analysis from the in vivo studies also suggested that the addition of vancomycin did not have any significant effect on the scaffold itself. These results demonstrate the potential utility of our bone regeneration scaffold for local antibiotic delivery to prevent infection in contaminated bone defects.
Collapse
Affiliation(s)
- Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mara J Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aura M Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Karrar Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Christopher M Walker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bailey Jackson
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Christopher Griffin
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - William King
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Shawn E Bourdo
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Rebecca Rifkin
- Department of Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Silke Hecht
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Daniel G Meeker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David E Anderson
- Department of Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA.
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
21
|
Radhouani H, Correia S, Gonçalves C, Reis RL, Oliveira JM. Synthesis and Characterization of Biocompatible Methacrylated Kefiran Hydrogels: Towards Tissue Engineering Applications. Polymers (Basel) 2021; 13:1342. [PMID: 33923932 PMCID: PMC8072540 DOI: 10.3390/polym13081342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogel application feasibility is still limited mainly due to their low mechanical strength and fragile nature. Therefore, several physical and chemical cross-linking modifications are being used to improve their properties. In this research, methacrylated Kefiran was synthesized by reacting Kefiran with methacrylic anhydride (MA). The developed MA-Kefiran was physicochemically characterized, and its biological properties evaluated by different techniques. Chemical modification of MA-Kefiran was confirmed by 1H-NMR and FTIR and GPC-SEC showed an average Mw of 793 kDa (PDI 1.3). The mechanical data obtained revealed MA-Kefiran to be a pseudoplastic fluid with an extrusion force of 11.21 ± 2.87 N. Moreover, MA-Kefiran 3D cryogels were successfully developed and fully characterized. Through micro-CT and SEM, the scaffolds revealed high porosity (85.53 ± 0.15%) and pore size (33.67 ± 3.13 μm), thick pore walls (11.92 ± 0.44 μm) and a homogeneous structure. Finally, MA-Kefiran revealed to be biocompatible by presenting no hemolytic activity and an improved cellular function of L929 cells observed through the AlamarBlue® assay. By incorporating methacrylate groups in the Kefiran polysaccharide chain, a MA-Kefiran product was developed with remarkable physical, mechanical, and biological properties, resulting in a promising hydrogel to be used in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Hajer Radhouani
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Susana Correia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| |
Collapse
|
22
|
Guo Z, Poot AA, Grijpma DW. Advanced polymer-based composites and structures for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Understanding of how the properties of medical grade lactide based copolymer scaffolds influence adipose tissue regeneration: Sterilization and a systematic in vitro assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112020. [PMID: 33947531 DOI: 10.1016/j.msec.2021.112020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/22/2023]
Abstract
Aliphatic polyesters are the synthetic polymers most commonly used in the development of resorbable medical implants/devices. Various three-dimensional (3D) scaffolds have been fabricated from these polymers and used in adipose tissue engineering. However, their systematic evaluation altogether lacks, which makes it difficult to select a suitable degradable polymer to design 3D resorbable implants and/or devices able to effectively mimic the properties of adipose tissue. Additionally, the impact of sterilization methods on the medical devices, if any, must be taken into account. We evaluate and compare five different medical-grade resorbable polyesters with l-lactide content ranging from 50 to 100 mol% and exhibiting different physiochemical properties depending on the comonomer (d-lactide, ε-caprolactone, glycolide, and trimethylene carbonate). The salt-leaching technique was used to prepare 3D microporous scaffolds. A comprehensive assessment of physical, chemical, and mechanical properties of the scaffolds was carried out in PBS at 37 °C. The cell-material interactions and the ability of the scaffolds to promote adipogenesis of human adipose tissue-derived stem cells were assessed in vitro. The diverse physical and mechanical properties of the scaffolds, due to the different composition of the copolymers, influenced human adipose tissue-derived stem cells proliferation and differentiation. Scaffolds made from polymers which were above their glass transition temperature and with low degree of crystallinity showed better proliferation and adipogenic differentiation of stem cells. The effect of sterilization techniques (electron beam and ethylene oxide) on the polymer properties was also evaluated. Results showed that scaffolds sterilized with the ethylene oxide method better retained their physical and chemical properties. Overall, the presented research provides (i) a detailed understanding to select a degradable polymer that has relevant properties to augment adipose tissue regeneration and can be further used to fabricate medical devices/implants; (ii) directions to prefer a sterilization method that does not change polymer properties.
Collapse
|
24
|
van Bochove B, Grijpma DW. Mechanical properties of porous photo-crosslinked poly(trimethylene carbonate) network films. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Takeuchi K, Takama N, Kinoshita R, Okitsu T, Kim B. Flexible and porous microneedles of PDMS for continuous glucose monitoring. Biomed Microdevices 2020; 22:79. [PMID: 33141313 DOI: 10.1007/s10544-020-00532-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Microneedle (MN) is a key technology of the biomedical engineering field due to its capability of accessing the biological information in a minimally invasive manner. One of the huge demands for next-generation healthcare monitoring is continuous monitoring, especially of blood glucose concentration. For this, MN should be kept inserted into the human skin for a certain period of time, enduring stresses induced by daily human motion and at the same time measuring biomarkers in ISF. However, conventional MNs for biosensing are not suitable for a long term insertion due to the rigid structure and biological risks of MN breakage. In this study, a novel MN structure is proposed and investigated by combining flexible "sponge-like" porous PDMS matrix and coating by biodissolving hyaluronic acid (HA). The fabricated porous MNs coated with HA show ideal mechanical characteristics, by which the MNs are rigid enough to penetrate the skin and become flexible after insertion into the skin. It is also shown that the MN array successfully extracts ISF in vitro and in vivo not by capillary action but by repeated compressions. The results show the applicability of the flexible MNs to continuous blood glucose monitoring.
Collapse
Affiliation(s)
- Kai Takeuchi
- Institute of Industrial Science, The University of Tokyo, Komaba, Tokyo, 1538505, Japan.
| | - Nobuyuki Takama
- Institute of Industrial Science, The University of Tokyo, Komaba, Tokyo, 1538505, Japan
| | - Rie Kinoshita
- Institute of Industrial Science, The University of Tokyo, Komaba, Tokyo, 1538505, Japan
| | - Teru Okitsu
- Institute of Industrial Science, The University of Tokyo, Komaba, Tokyo, 1538505, Japan
| | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Komaba, Tokyo, 1538505, Japan
| |
Collapse
|
26
|
Bertrand AA, Malapati SH, Yamaguchi DT, Lee JC. The Intersection of Mechanotransduction and Regenerative Osteogenic Materials. Adv Healthc Mater 2020; 9:e2000709. [PMID: 32940024 PMCID: PMC7864218 DOI: 10.1002/adhm.202000709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Indexed: 12/23/2022]
Abstract
Mechanical signals play a central role in cell fate determination and differentiation in both physiologic and pathologic circumstances. Such signals may be delivered using materials to generate discrete microenvironments for the purposes of tissue regeneration and have garnered increasing attention in recent years. Unlike the addition of progenitor cells or growth factors, delivery of a microenvironment is particularly attractive in that it may reduce the known untoward consequences of the former two strategies, such as excessive proliferation and potential malignant transformation. Additionally, the ability to spatially modulate the fabrication of materials allows for the creation of multiple microenvironments, particularly attractive for regenerating complex tissues. While many regenerative materials have been developed and tested for augmentation of specific cellular responses, the intersection between cell biology and material interactions have been difficult to dissect due to the complexity of both physical and chemical interactions. Specifically, modulating materials to target individual signaling pathways is an avenue of interdisciplinary research that may lead to a more effective method of optimizing regenerative materials. In this work, the aim is to summarize the major mechanotransduction pathways for osteogenic differentiation and to consolidate the known materials and material properties that activate such pathways.
Collapse
Affiliation(s)
- Anthony A. Bertrand
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Sri Harshini Malapati
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Dean T. Yamaguchi
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
- UCLA Molecular Biology Institute, Los Angeles, California
| |
Collapse
|
27
|
Comparison of Scaffolds Fabricated via 3D Printing and Salt Leaching: In Vivo Imaging, Biodegradation, and Inflammation. Polymers (Basel) 2020; 12:polym12102210. [PMID: 32993178 PMCID: PMC7599662 DOI: 10.3390/polym12102210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
In this work, we prepared fluorescently labeled poly(ε-caprolactone-ran-lactic acid) (PCLA-F) as a biomaterial to fabricate three-dimensional (3D) scaffolds via salt leaching and 3D printing. The salt-leached PCLA-F scaffold was fabricated using NaCl and methylene chloride, and it had an irregular, interconnected 3D structure. The printed PCLA-F scaffold was fabricated using a fused deposition modeling printer, and it had a layered, orthogonally oriented 3D structure. The printed scaffold fabrication method was clearly more efficient than the salt leaching method in terms of productivity and repeatability. In the in vivo fluorescence imaging of mice and gel permeation chromatography of scaffolds removed from rats, the salt-leached PCLA scaffolds showed slightly faster degradation than the printed PCLA scaffolds. In the inflammation reaction, the printed PCLA scaffolds induced a slightly stronger inflammation reaction due to the slower biodegradation. Collectively, we can conclude that in vivo biodegradability and inflammation of scaffolds were affected by the scaffold fabrication method.
Collapse
|
28
|
Zhao P, Wang J, Li Y, Wang X, Chen C, Liu G. Microfluidic Technology for the Production of Well-Ordered Porous Polymer Scaffolds. Polymers (Basel) 2020; 12:E1863. [PMID: 32825098 PMCID: PMC7564514 DOI: 10.3390/polym12091863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Advances in tissue engineering (TE) have revealed that porosity architectures, such as pore shape, pore size and pore interconnectivity are the key morphological properties of scaffolds. Well-ordered porous polymer scaffolds, which have uniform pore size, regular geometric shape, high porosity and good pore interconnectivity, facilitate the loading and distribution of active biomolecules, as well as cell adhesion, proliferation and migration. However, these are difficult to prepare by traditional methods and the existing well-ordered porous scaffold preparation methods require expensive experimental equipment or cumbersome preparation steps. Generally, droplet-based microfluidics, which generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels, has emerged as a versatile tool for generation of well-ordered porous materials. This short review details this novel method and the latest developments in well-ordered porous scaffold preparation via microfluidic technology. The pore structure and properties of microfluidic scaffolds are discussed in depth, laying the foundation for further research and application in TE. Furthermore, we outline the bottlenecks and future developments in this particular field, and a brief outlook on the future development of microfluidic technique for scaffold fabrication is presented.
Collapse
Affiliation(s)
- Pei Zhao
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianchun Wang
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yan Li
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
| | - Chengmin Chen
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangxia Liu
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
29
|
Siddiq A, Kennedy AR. Compression moulding and injection over moulding of porous PEEK components. J Mech Behav Biomed Mater 2020; 111:103996. [PMID: 32763774 DOI: 10.1016/j.jmbbm.2020.103996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023]
Abstract
A simple and adaptable process for the production of porous PEEK has been demonstrated herein, which uses compression moulding to infiltrate molten PEEK into of a packed bed of salt beads. The process has the capacity to vary the pore size and porosity within the range suitable for materials to replace bone, but compressive testing showed the stiffness to be well below the target to match trabecular bone. This issue was addressed by creating a hybrid structure, integrating "pillars" of solid PEEK into the porous structure, by the injection over-moulding of compression moulded PEEK-salt inserts that contained drilled holes. Good bonding between the moulding and the insert was demonstrated and it was found that as little as 35 mm2 of support, in the form of PEEK "pillars" was required to achieve the target performance.
Collapse
Affiliation(s)
- A Siddiq
- Faculty of Engineering, University of Nottingham, Nottingham, NG2 7JU, UK
| | - A R Kennedy
- Engineering Department, Lancaster University, Lancaster, LA1 4YW, UK.
| |
Collapse
|
30
|
Haider A, Haider S, Rao Kummara M, Kamal T, Alghyamah AAA, Jan Iftikhar F, Bano B, Khan N, Amjid Afridi M, Soo Han S, Alrahlah A, Khan R. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110698. [PMID: 32204012 DOI: 10.1016/j.msec.2020.110698] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO2), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
32
|
Wen J, Pan M, Yuan J, Wang J, Zhu L, Jia Z, Song S. Facile fabrication of dual-crosslinked single network heterostructural polyurethane hydrogels with superior mechanical and fluorescent performance. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Pattanashetti NA, Hiremath C, Naik SR, Heggannavar GB, Kariduraganavar MY. Development of nanofibrous scaffolds by varying the TiO2 content in crosslinked PVA for bone tissue engineering. NEW J CHEM 2020. [DOI: 10.1039/c9nj05118j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of TiO2 incorporated crosslinked PVA scaffolds with required characteristics for bone tissue engineering.
Collapse
|
34
|
Mendibil X, Ortiz R, Sáenz de Viteri V, Ugartemendia JM, Sarasua JR, Quintana I. High Throughput Manufacturing of Bio-Resorbable Micro-Porous Scaffolds Made of Poly(L-lactide-co-ε-caprolactone) by Micro-Extrusion for Soft Tissue Engineering Applications. Polymers (Basel) 2019; 12:E34. [PMID: 31878300 PMCID: PMC7023538 DOI: 10.3390/polym12010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022] Open
Abstract
Porous scaffolds made of elastomeric materials are of great interest for soft tissue engineering. Poly(L-lactide-co-ε-caprolactone) (PLCL) is a bio-resorbable elastomeric copolymer with tailorable properties, which make this material an appropriate candidate to be used as scaffold for vascular, tendon, and nerve healing applications. Here, extrusion was applied to produce porous scaffolds of PLCL, using NaCl particles as a leachable agent. The effects of the particle proportion and size on leaching performance, dimensional stability, mechanical properties, and ageing of the scaffolds were analyzed. The efficiency of the particle leaching and scaffold swelling when wet were observed to be dependent on the porogenerator proportion, while the secant moduli and ultimate tensile strengths were dependent on the pore size. Porosity, swelling, and mechanical properties of the extruded scaffolds were tailorable, varying with the proportion and size of porogenerator particles and showed similar values to human soft tissues like nerves and veins (E = 7-15 MPa, σu = 7 MPa). Up to 300-mm length micro-porous PLCL tube with 400-µm thickness wall was extruded, proving extrusion as a high-throughput manufacturing process to produce tubular elastomeric bio-resorbable porous scaffolds of unrestricted length with tunable mechanical properties.
Collapse
Affiliation(s)
| | - Rocío Ortiz
- IK4-TEKNIKER, C/IñakiGoenaga 5, 20600 Eibar, Spain; (X.M.)
| | | | - Jone M. Ugartemendia
- Department of Mining-Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), 48013 Bilbao, Spain (J.-R.S.)
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), 48013 Bilbao, Spain (J.-R.S.)
| | - Iban Quintana
- IK4-TEKNIKER, C/IñakiGoenaga 5, 20600 Eibar, Spain; (X.M.)
| |
Collapse
|
35
|
Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel) 2019; 6:E113. [PMID: 31847117 PMCID: PMC6955903 DOI: 10.3390/bioengineering6040113] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.
Collapse
Affiliation(s)
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands; (D.F.); (U.S.)
| |
Collapse
|
36
|
Urciuolo F, Casale C, Imparato G, Netti PA. Bioengineered Skin Substitutes: the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds. J Clin Med 2019; 8:E2083. [PMID: 31805652 PMCID: PMC6947552 DOI: 10.3390/jcm8122083] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
The formation of severe scars still represents the result of the closure process of extended and deep skin wounds. To address this issue, different bioengineered skin substitutes have been developed but a general consensus regarding their effectiveness has not been achieved yet. It will be shown that bioengineered skin substitutes, although representing a valid alternative to autografting, induce skin cells in repairing the wound rather than guiding a regeneration process. Repaired skin differs from regenerated skin, showing high contracture, loss of sensitivity, impaired pigmentation and absence of cutaneous adnexa (i.e., hair follicles and sweat glands). This leads to significant mobility and aesthetic concerns, making the development of more effective bioengineered skin models a current need. The objective of this review is to determine the limitations of either commercially available or investigational bioengineered skin substitutes and how advanced skin tissue engineering strategies can be improved in order to completely restore skin functions after severe wounds.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II P.le Tecchio 80, 80125 Naples, Italy
| | - Costantino Casale
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Paolo A. Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II P.le Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
37
|
Heidarzadeh N, del Valle LJ, Franco L, Puiggalí J. Improvement of Biodegradability and Biocompatibility of Electrospun Scaffolds of Poly(butylene terephthalate) by Incorporation of Sebacate Units. Macromol Res 2019. [DOI: 10.1007/s13233-020-8009-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Liu X, Wu H, Lu F, Li Q, Xu Z. Fabrication of porous bovine pericardium scaffolds incorporated with bFGF for tissue engineering applications. Xenotransplantation 2019; 27:e12568. [PMID: 31693254 DOI: 10.1111/xen.12568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/28/2019] [Accepted: 10/13/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The design and fabrication of porous scaffolds are important issues for tissue engineering applications. In this study, we attempted to fabricate porous scaffolds using bovine pericardium (BP) and examined whether these scaffolds were beneficial for cell ingrowth and bioactive factors delivery. METHODS A vacuum-freeze-thawing-Triton X-100 (VFTT) protocol was used to fabricate porous BP scaffolds. The porous and mechanical properties were assessed using histology, scanning electron microscopy, and mechanical assay. The fabricated scaffolds were seeded with mesenchymal stem cells (MSCs), and cell ingrowth was evaluated. Basic fibroblast growth factor (bFGF) was subsequently incorporated into the fabricated scaffolds. The bioactive factor delivery capacity was evaluated using loading and release studies. The bioactivity of released bFGF was assessed using a rat subcutaneous model. RESULTS The BP scaffolds fabricated by the VFTT protocol displayed interconnected porous structures with porosity of 6.82 ± 1.36%.There were no significant differences in thickness, ultimate load, Young's modulus, and ultimate tensile strength between the fabricated porous BP scaffolds and native BPs (all P > .05). However, the water content of BPs was slightly reduced after VFTT treatment (P < .05). Cell ingrowth analysis showed that the seeded MSCs penetrated into the porous BP scaffolds with time of culture, while MSCs were limited to the surface layers of native BPs. Furthermore, bFGF was observed to be effectively loaded onto and released from the porous BP scaffolds. The released bFGF increased the phosphorylation levels of Akt, ERK 1/2, and MEK1/2, promoted host MSC recruitment, and inhibited myofibroblast differentiation in vivo. CONCLUSIONS The porous BP scaffolds fabricated using a VFTT protocol were promising natural scaffolds for tissue engineering applications, since they had considerable mechanical properties as native BPs, supplied porous channels for cell ingrowth, and possessed bioactive factors delivery capability.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hao Wu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qin Li
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Jahid MA, Hu J, Thakur S. Novel approach of making porous polyurethane membrane and its properties for apparel application. J Appl Polym Sci 2019. [DOI: 10.1002/app.48566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Md Anwar Jahid
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| | - Jinlian Hu
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| | - Suman Thakur
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| |
Collapse
|
40
|
Patel DK, Lim KT. Biomimetic Polymer-Based Engineered Scaffolds for Improved Stem Cell Function. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2950. [PMID: 31514460 PMCID: PMC6766224 DOI: 10.3390/ma12182950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Scaffolds are considered promising materials for tissue engineering applications due to their unique physiochemical properties. The high porosity and adequate mechanical properties of the scaffolds facilitate greater cell adhesion, proliferation, and differentiation. Stem cells are frequently applied in tissue engineering applications due to their excellent potential. It has been noted that cell functions are profoundly affected by the nature of the extracellular matrix (ECM). Naturally derived ECM contains the bioactive motif that also influences the immune response of the organism. The properties of polymer scaffolds mean they can resemble the native ECM and can regulate cellular responses. Various techniques such as electrospinning and 3D printing, among others, are frequently used to fabricate polymer scaffolds, and their cellular responses are different with each technique. Furthermore, enhanced cell viability, as well as the differentiation ability of stem cells on the surface of scaffolds, opens a fascinating approach to the formation of ECM-like environments for tissue engineering applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon-24341, Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-24341, Korea.
| |
Collapse
|
41
|
Kleger N, Cihova M, Masania K, Studart AR, Löffler JF. 3D Printing of Salt as a Template for Magnesium with Structured Porosity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903783. [PMID: 31353635 DOI: 10.1002/adma.201903783] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Porosity is an essential feature in a wide range of applications that combine light weight with high surface area and tunable density. Porous materials can be easily prepared with a vast variety of chemistries using the salt-leaching technique. However, this templating approach has so far been limited to the fabrication of structures with random porosity and relatively simple macroscopic shapes. Here, a technique is reported that combines the ease of salt leaching with the complex shaping possibilities given by additive manufacturing (AM). By tuning the composition of surfactant and solvent, the salt-based paste is rheologically engineered and printed via direct ink writing into grid-like structures displaying structured pores that span from the sub-millimeter to the macroscopic scale. As a proof of concept, dried and sintered NaCl templates are infiltrated with magnesium (Mg), which is typically highly challenging to process by conventional AM techniques due to its highly oxidative nature and high vapor pressure. Mg scaffolds with well-controlled, ordered porosity are obtained after salt removal. The tunable mechanical properties and the potential to be predictably bioresorbed by the human body make these Mg scaffolds attractive for biomedical implants and demonstrate the great potential of this additive technique.
Collapse
Affiliation(s)
- Nicole Kleger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Martina Cihova
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Kunal Masania
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
42
|
Kankala RK, Zhao J, Liu CG, Song XJ, Yang DY, Zhu K, Wang SB, Zhang YS, Chen AZ. Highly Porous Microcarriers for Minimally Invasive In Situ Skeletal Muscle Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901397. [PMID: 31066236 PMCID: PMC6750270 DOI: 10.1002/smll.201901397] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/12/2019] [Indexed: 05/19/2023]
Abstract
Microscale cell carriers have recently garnered enormous interest in repairing tissue defects by avoiding substantial open surgeries using implants for tissue regeneration. In this study, the highly open porous microspheres (HOPMs) are fabricated using a microfluidic technique for harboring proliferating skeletal myoblasts and evaluating their feasibility toward cell delivery application in situ. These biocompatible HOPMs with particle sizes of 280-370 µm possess open pores of 10-80 µm and interconnected paths. Such structure of the HOPMs conveniently provide a favorable microenvironment, where the cells are closely arranged in elongated shapes with the deposited extracellular matrix, facilitating cell adhesion and proliferation, as well as augmented myogenic differentiation. Furthermore, in vivo results in mice confirm improved cell retention and vascularization, as well as partial myoblast differentiation. These modular cell-laden microcarriers potentially allow for in situ tissue construction after minimally invasive delivery providing a convenient means for regeneration medicine.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jia Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiao-Jie Song
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, P. R. China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
43
|
Rohman G, Ramtani S, Changotade S, Langueh C, Lutomski D, Roussigné Y, Tétard F, Caupin F, Djemia P. Characterization of elastomeric scaffolds developed for tissue engineering applications by compression and nanoindentation tests, μ-Raman and μ-Brillouin spectroscopies. BIOMEDICAL OPTICS EXPRESS 2019; 10:1649-1659. [PMID: 31086698 PMCID: PMC6485004 DOI: 10.1364/boe.10.001649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/10/2019] [Accepted: 02/17/2019] [Indexed: 05/03/2023]
Abstract
In tissue engineering, porous biodegradable scaffolds are developed with morphological, chemical and mechanical properties to promote cell response. Therefore, the scaffold characterization at a (sub)micrometer and (bio)molecular level is paramount since cells are sensitive to the chemical signals, the rigidity, and the spatial structuring of their microenvironment. In addition to the analysis at room temperature by conventional quasi-static (0.1-45 Hz) mechanical tests, the ultrasonic (10 MHz) and μ-Brillouin inelastic light scattering (13 GHz) were used in this study to assess the dynamical viscoelastic parameters at different frequencies of elastomeric scaffolds. Time-temperature superposition principle was used to increase the high frequency interval (100 MHz-100 THz) of Brillouin experiments providing a mean to analyse the viscoelastic behavior with the fractional derivative viscoelastic model. Moreover, the μ-Raman analysis carried out simultaneously during the μ-Brillouin experiment, gave the local chemical composition.
Collapse
Affiliation(s)
- Géraldine Rohman
- Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d’Agents Thérapeutiques CSPBAT UMR7244 CNRS, Université Paris 13, Villetaneuse ,
France
- Institut Interdisciplinaire des Sciences Expérimentales, Université Paris 13, Villetaneuse,
France
| | - Salah Ramtani
- Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d’Agents Thérapeutiques CSPBAT UMR7244 CNRS, Université Paris 13, Villetaneuse ,
France
- Institut Interdisciplinaire des Sciences Expérimentales, Université Paris 13, Villetaneuse,
France
| | - Sylvie Changotade
- Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d’Agents Thérapeutiques CSPBAT UMR7244 CNRS, Université Paris 13, Villetaneuse ,
France
- Institut Interdisciplinaire des Sciences Expérimentales, Université Paris 13, Villetaneuse,
France
| | - Credson Langueh
- Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d’Agents Thérapeutiques CSPBAT UMR7244 CNRS, Université Paris 13, Villetaneuse ,
France
- Institut Interdisciplinaire des Sciences Expérimentales, Université Paris 13, Villetaneuse,
France
| | - Didier Lutomski
- Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d’Agents Thérapeutiques CSPBAT UMR7244 CNRS, Université Paris 13, Villetaneuse ,
France
- Institut Interdisciplinaire des Sciences Expérimentales, Université Paris 13, Villetaneuse,
France
| | - Yves Roussigné
- Laboratoire des Sciences des Procédés et des Matériaux LSPM-CNRS 3407, Sorbonne Paris Cité, Villetaneuse,
France
| | - Florent Tétard
- Laboratoire des Sciences des Procédés et des Matériaux LSPM-CNRS 3407, Sorbonne Paris Cité, Villetaneuse,
France
| | - Fréderic Caupin
- Université de Lyon, Université Claude Bernard, Lyon 1, CNRS, Institut Lumiére Matiére, F-69622,
Villeurbanne, France
| | - Philippe Djemia
- Institut Interdisciplinaire des Sciences Expérimentales, Université Paris 13, Villetaneuse,
France
- Laboratoire des Sciences des Procédés et des Matériaux LSPM-CNRS 3407, Sorbonne Paris Cité, Villetaneuse,
France
| |
Collapse
|
44
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
45
|
Takeuchi K, Takama N, Kim B, Sharma K, Paul O, Ruther P. Microfluidic chip to interface porous microneedles for ISF collection. Biomed Microdevices 2019; 21:28. [PMID: 30847695 DOI: 10.1007/s10544-019-0370-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Porous microneedles (MNs) are expected to be applied for diagnostic microfluidic devices such as blood glucose monitoring as they enable a pain-free penetration of human skin and the extraction of interstitial fluids. However, conventional microfluidic systems require additional steps to separate the liquid from a porous structure used for fluid extraction. In this study, we developed a microfluidic system with a hydrodynamically designed interface between a porous MN array and microchannels to enable a direct analysis of liquids extracted by the porous MN array. The microfluidic chip with an interface for the MN array was successfully realized by standard MEMS processes, enabling a liquid flow through the whole microfluidic structure. The porous MN array was fabricated by the salt leaching and molding method, which was integrated with the chip and demonstrated the successful extraction of liquids from an agarose gel-based skin phantom.
Collapse
Affiliation(s)
- Kai Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Nobuyuki Takama
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kirti Sharma
- Department of Microsystems Engineering (IMTEK), and Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| | - Oliver Paul
- Department of Microsystems Engineering (IMTEK), and Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), and Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| |
Collapse
|
46
|
Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery. Colloids Surf B Biointerfaces 2019; 175:26-35. [DOI: 10.1016/j.colsurfb.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/04/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022]
|
47
|
van Bochove B, Grijpma DW. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:77-106. [DOI: 10.1080/09205063.2018.1553105] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bas van Bochove
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre University of Twente, Enschede, The Netherlands
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Centre, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Wang S, Li L, Su D, Robin K, Brown KA. Patterning Porosity in Hydrogels by Arresting Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34604-34610. [PMID: 30207685 DOI: 10.1021/acsami.8b11530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Independent control over phase separation and photo-cross-linking allows the structure and porosity of hydrogels to be patterned in a single photolithographic step. This observation is based upon a temperature-triggered spinodal decomposition of a ternary mixture of water, salt, and polymer into a salt-rich aqueous phase and a polymer-rich phase. Importantly, subsequent exposure to light arrests the phase separation, allowing the porosity state to be frozen in a cross-linked hydrogel network. Tuning the delay between the application of heat and illumination allows the pore size to be tuned between 400 nm and 4 μm. By utilizing gray-scale photomasks, a single process can be used to define regions of pure hydrogel, porous hydrogel with a programmed average pore size, and blank substrate with no hydrogel. In addition to representing a combination of top-down and bottom-up processes that enables the realization of complex samples, the simplicity of this process and the versatility of the resultant patterns could provide a useful capability for the definition of hydrogel samples for the development of advanced biomaterials.
Collapse
Affiliation(s)
- Sen Wang
- Division of Materials Science & Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Le Li
- Department of Mechanical Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Deanyone Su
- Department of Electrical and Computer Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kevin Robin
- Edward M. Kennedy Academy for Health Careers , Boston , Massachusetts 02115 , United States
| | - Keith A Brown
- Division of Materials Science & Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Department of Mechanical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Physics Department , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
49
|
Xie Y, Lan XR, Bao RY, Lei Y, Cao ZQ, Yang MB, Yang W, Wang YB. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:602-609. [DOI: 10.1016/j.msec.2018.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/13/2018] [Accepted: 05/05/2018] [Indexed: 12/19/2022]
|
50
|
Scalable novel PVDF based nanocomposite foam for direct blood contact and cardiac patch applications. J Mech Behav Biomed Mater 2018; 88:270-280. [PMID: 30196182 DOI: 10.1016/j.jmbbm.2018.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 11/23/2022]
Abstract
Scalable novel beta phase polyvinylidene fluoride-poly(methyl methacrylate) (PVDF-PMMA) polymer blend based nanocomposite foam with hydroxyapatite (HAp) and titanium dioxide (TiO2) as nanofillers (β-PVDF-PMMA/HAp/TiO2) (β-PPHT-f), was prepared by using salt etching assisted solution casting method. The prepared β-PPHT-f nanocomposite material was characterized using XRD, FT-IR, SEM-EDS. The XRD and FTIR results confirmed the formation of β phase of β-PPHT-f. The SEM and EDS results confirmed the formation of high porous structured closed cell type morphology of β-PPHT-f. It also, confirmed the uniform distribution of Ti, Ca, P, N and O, in β-PPHT-f. Contact angle measurements performed using sessile drop method with water and EDTA treated blood (EDTA blood) as probe liquids revealed that β-PPHT-f is hydrophilic with contact angle of 48.2° as well as hemophilic with contact angle of 13.7°. Porosity, fluid absorption and retention investigation by gravimetric analysis revealed that β-PPHT-f was 89.2% porous and can absorb and retain 139.15% and 87.05% of water and blood, respectively. The hemolysis assay performed as per ASTM F756 procedure revealed that β-PPHT-f is non hemolytic. Also, the Leishman stained blood smears prepared from whole blood incubated with β-PPHT-f for 3, 4, 5 and 6 h at 37 °C revealed that the blood cells were not affected by β-PPHT-f, its surface morphology and elemental composition. H9c2 cell line studies on a transparent film prepared using β-PPHT-f revealed that the elemental composition of the nanocomposite favored H9c2 cell adhesion and differentiation. All the characterization results indicate that the newly developed scalable novel β-PPHT-f is hemocompatible and cardiomyocyte compatible, suggesting it as a useful material for direct blood contact and cardiac patch applications.
Collapse
|