1
|
Kaboodkhani R, Mehrabani D, Moghaddam A, Salahshoori I, Khonakdar HA. Tissue engineering in otology: a review of achievements. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1105-1153. [PMID: 38386362 DOI: 10.1080/09205063.2024.2318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Tissue engineering application in otology spans a distance from the pinna to auditory nerve covered with specialized tissues and functions such as sense of hearing and aesthetics. It holds the potential to address the barriers of lack of donor tissue, poor tissue match, and transplant rejection through provision of new and healthy tissues similar to the host and possesses the capacity to renew, to regenerate, and to repair in-vivo and was shown to be a bypasses for any need to immunosuppression. This review aims to investigate the application of tissue engineering in otology and to evaluate the achievements and challenges in external, middle and inner ear sections. Since gaining the recent knowledge and training on use of different scaffolds is essential for otology specialists and who look for the recovery of ear function and aesthetics of patients, it is shown in this review how utilizing tissue engineering and cell transplantation, regenerative medicine can provide advancements in hearing and ear aesthetics to fit different patients' needs.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | | | | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Pathak A, Dhamande MM, Gujjelwar S, Das P, Chheda EV, Puthenkandathil R. Fabrication of Implant-Supported Auricular Prosthesis Using Artificial Intelligence. Cureus 2024; 16:e60267. [PMID: 38872639 PMCID: PMC11170235 DOI: 10.7759/cureus.60267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The absence of any organ of the facial region causes an asymmetrical appearance. This asymmetrical appearance can cause social dilemmas for the patient. The maxillofacial technician, the prosthodontist, and the patient must work closely together to fabricate an epithesis. On the implants, a superstructure is first constructed. Most of it is made up of rings and a bar that joins the implants. The firm acrylic resin base of the epithesis is equipped with clips that serve as the epithesis's retention mechanism. The actual epithesis is made of silicone rubber. The epithesis has to be shaped and colored with extreme caution. An appropriate substitute is an auricular prosthesis that is implant-retained. Microtia, deformity, malformation, and loss of the external ear, either partially or completely, can result from a variety of inherited genetic conditions. To evaluate the symmetry of both ears, artificial intelligence (AI) software is used. An Instagram lens Gridset by crystalwavesxx was used to correct and verify the bilateral symmetry of the patient. This case report primarily focuses on the fabrication of implant-supported auricular prostheses using AI.
Collapse
Affiliation(s)
- Ankita Pathak
- Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mithilesh M Dhamande
- Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Smruti Gujjelwar
- Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pritam Das
- Prosthodontics, Kalinga Institute of Medical Sciences, Bhubaneshwar, IND
| | - Ekta V Chheda
- Prosthodontics, Government Dental College and Hospital, Ahmedabad, IND
| | - Rahul Puthenkandathil
- Prosthodontics and Crown and Bridge, AB Shetty Memorial Institute of Dental Sciences, Mangalore, IND
| |
Collapse
|
3
|
Zielinska D, Fisch P, Moehrlen U, Finkielsztein S, Linder T, Zenobi-Wong M, Biedermann T, Klar AS. Combining bioengineered human skin with bioprinted cartilage for ear reconstruction. SCIENCE ADVANCES 2023; 9:eadh1890. [PMID: 37792948 PMCID: PMC10550230 DOI: 10.1126/sciadv.adh1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Microtia is a congenital disorder that manifests as a malformation of the external ear leading to psychosocial problems in affected children. Here, we present a tissue-engineered treatment approach based on a bioprinted autologous auricular cartilage construct (EarCartilage) combined with a bioengineered human pigmented and prevascularized dermo-epidermal skin substitute (EarSkin) tested in immunocompromised rats. We confirmed that human-engineered blood capillaries of EarSkin connected to the recipient's vasculature within 1 week, enabling rapid blood perfusion and epidermal maturation. Bioengineered EarSkin displayed a stratified epidermis containing mature keratinocytes and melanocytes. The latter resided within the basal layer of the epidermis and efficiently restored the skin color. Further, in vivo tests demonstrated favorable mechanical stability of EarCartilage along with enhanced extracellular matrix deposition. In conclusion, EarCartilage combined with EarSkin represents a novel approach for the treatment of microtia with the potential to circumvent existing limitations and improve the aesthetic outcome of microtia reconstruction.
Collapse
Affiliation(s)
- Dominika Zielinska
- Tissue Biology Research Unit, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Philipp Fisch
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | | | - Thomas Linder
- Klinik für Hals-, Nasen-, Ohren- und Gesichtschirurgie, Luzerner Kantonsspital, Luzern, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Fenberg R, vonWindheim N, Malara M, Ahmed M, Cowen E, Melaragno L, Vankoevering K. Tissue Engineering: Current Technology for Facial Reconstruction. Facial Plast Surg 2023; 39:489-495. [PMID: 37290454 DOI: 10.1055/s-0043-1769808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Facial reconstruction is a complex surgical process that requires intricate three-dimensional (3D) concepts for optimal functional and aesthetic outcomes. Conventional reconstruction of structural facial anomalies, such as those including cartilage or bony defects, typically rely on hand-carving autologous constructs harvested from a separate donor site, and shaping that cartilage or bone into a new structural framework. Tissue engineering has emerged in recent decades as a potential approach to mitigate the need for donor site morbidity while improving precision in the design of reconstructive construct. Computer-aided design and computer-aided manufacturing have allowed for a digital 3D workflow to digitally execute the planned reconstruction in virtual space. 3D printing and other manufacturing techniques can then be utilized to create custom-fabricated scaffolds and guides to improve the reconstructive efficiency. Tissue engineering can be paired with custom 3D-manufactured scaffolds to theoretically create an ideal framework for structural reconstruction. In the past decade, there have been several compelling preclinical studies demonstrating the capacity to induce chondrogenesis or osteogenesis in a custom scaffold. However, to date, these preclinical data have not yet translated into significant clinical experience. This translation has been hindered by a lack of consensus on the ideal materials and cellular progenitors to be utilized in these constructs and a lack of regulatory guidance and control to enable clinical application. In this review, we highlight the current state of tissue engineering in facial reconstruction and exciting potential for future applications as the field continues to advance.
Collapse
Affiliation(s)
- Rachel Fenberg
- School of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Natalia vonWindheim
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Megan Malara
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Maariyah Ahmed
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Erin Cowen
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Luigi Melaragno
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Kyle Vankoevering
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
5
|
Huang Y, Zhao H, Wang Y, Bi S, Zhou K, Li H, Zhou C, Wang Y, Wu W, Peng B, Tang J, Pan B, Wang B, Chen Z, Li Z, Zhang Z. The application and progress of tissue engineering and biomaterial scaffolds for total auricular reconstruction in microtia. Front Bioeng Biotechnol 2023; 11:1089031. [PMID: 37811379 PMCID: PMC10556751 DOI: 10.3389/fbioe.2023.1089031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/21/2023] [Indexed: 10/10/2023] Open
Abstract
Microtia is a congenital deformity of the ear with an incidence of about 0.8-4.2 per 10,000 births. Total auricular reconstruction is the preferred treatment of microtia at present, and one of the core technologies is the preparation of cartilage scaffolds. Autologous costal cartilage is recognized as the best material source for constructing scaffold platforms. However, costal cartilage harvest can lead to donor-site injuries such as pneumothorax, postoperative pain, chest wall scar and deformity. Therefore, with the need of alternative to autologous cartilage, in vitro and in vivo studies of biomaterial scaffolds and cartilage tissue engineering have gradually become novel research hot points in auricular reconstruction research. Tissue-engineered cartilage possesses obvious advantages including non-rejection, minimally invasive or non-invasive, the potential of large-scale production to ensure sufficient donors and controllable morphology. Exploration and advancements of tissue-engineered cartilaginous framework are also emerging in aspects including three-dimensional biomaterial scaffolds, acquisition of seed cells and chondrocytes, 3D printing techniques, inducing factors for chondrogenesis and so on, which has greatly promoted the research process of biomaterial substitute. This review discussed the development, current application and research progress of cartilage tissue engineering in auricular reconstruction, particularly the usage and creation of biomaterial scaffolds. The development and selection of various types of seed cells and inducing factors to stimulate chondrogenic differentiation in auricular cartilage were also highlighted. There are still confronted challenges before the clinical application becomes widely available for patients, and its long-term effect remains to be evaluated. We hope to provide guidance for future research directions of biomaterials as an alternative to autologous cartilage in ear reconstruction, and finally benefit the transformation and clinical application of cartilage tissue engineering and biomaterials in microtia treatment.
Collapse
Affiliation(s)
- Yeqian Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanxing Zhao
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hairui Li
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yudong Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Peng
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Liu Y, Wu W, Seunggi C, Li Z, Huang Y, Zhou K, Wang B, Chen Z, Zhang Z. The application and progress of stem cells in auricular cartilage regeneration: a systematic review. Front Cell Dev Biol 2023; 11:1204050. [PMID: 37564374 PMCID: PMC10409996 DOI: 10.3389/fcell.2023.1204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: The treatment of microtia or acquired ear deformities by surgery is a significant challenge for plastic and ENT surgeons; one of the most difficult points is constructing the scaffold for auricular reconstruction. As a type of cell with multiple differentiation potentials, stem cells play an essential role in the construction of cartilage scaffolds, and therefore have received widespread attention in ear reconstructive research. Methods: A literature search was conducted for peer-reviewed articles between 2005 and 2023 with the following keywords: stem cells; auricular cartilage; ear cartilage; conchal cartilage; auricular reconstruction, regeneration, and reparation of chondrocytes; tissue engineering in the following databases: PubMed, MEDLINE, Cochrane, and Ovid. Results: Thirty-three research articles were finally selected and their main characteristics were summarized. Adipose-derived stem cells (ADSCs), bone marrow mesenchymal stem cells (BMMSCs), perichondrial stem/progenitor cells (PPCs), and cartilage stem/progenitor cells (CSPCs) were mainly used in chondrocyte regeneration. Injecting the stem cells into the cartilage niche directly, co-culturing the stem cells with the auricular cartilage cells, and inducing the cells in the chondrogenic medium in vitro were the main methods that have been demonstrated in the studies. The chondrogenic ability of these cells was observed in vitro, and they also maintained good elasticity and morphology after implantation in vivo for a period of time. Conclusion: ADSC, BMMSC, PPC, and CSPC were the main stem cells that have been researched in craniofacial cartilage reconstruction, the regenerative cartilage performed highly similar to normal cartilage, and the test of AGA and type II collagen content also proved the cartilage property of the neo-cartilage. However, stem cell reconstruction of the auricle is still in the initial stage of animal experiments, transplantation with such scaffolds in large animals is still lacking, and there is still a long way to go.
Collapse
Affiliation(s)
- Yu Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chun Seunggi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yeqian Huang
- West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Donnelly H, Kurjan A, Yong LY, Xiao Y, Lemgruber L, West C, Salmeron-Sanchez M, Dalby MJ. Fibronectin matrix assembly and TGFβ1 presentation for chondrogenesis of patient derived pericytes for microtia repair. BIOMATERIALS ADVANCES 2023; 148:213370. [PMID: 36931082 DOI: 10.1016/j.bioadv.2023.213370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Tissue engineered cartilage for external ear reconstruction of congenital deformities, such as microtia or resulting from trauma, remains a significant challenge for plastic and reconstructive surgeons. Current strategies involve harvesting autologous costal cartilage or expanding autologous chondrocytes ex vivo. However, these procedures often lead to donor site morbidity and a cell source with limited expansion capacity. Stromal stem cells such as perivascular stem cells (pericytes) offer an attractive alternative cell source, as they can be isolated from many human tissues, readily expanded in vitro and possess chondrogenic differentiation potential. Here, we successfully isolate CD146+ pericytes from the microtia remnant from patients undergoing reconstructive surgery (Microtia pericytes; MPs). Then we investigate their chondrogenic potential using the polymer poly(ethyl acrylate) (PEA) to unfold the extracellular matrix protein fibronectin (FN). FN unfolding exposes key growth factor (GF) and integrin binding sites on the molecule, allowing tethering of the chondrogenic GF transforming growth factor beta 1 (TGFβ1). This system leads to solid-phase, matrix-bound, GF presentation in a more physiological-like manner than that of typical chondrogenic induction media (CM) formulations that tend to lead to off-target effects. This simple and controlled material-based approach demonstrates similar chondrogenic potential to CM, while minimising proclivity toward hypertrophy, without the need for complex induction media formulations.
Collapse
Affiliation(s)
- Hannah Donnelly
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Alina Kurjan
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Li Yenn Yong
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Christopher West
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
8
|
Oba T, Okamoto S, Ueno Y, Matsuo M, Tadokoro T, Kobayashi S, Yasumura K, Kagimoto S, Inaba Y, Taniguchi H. In vitro elastic cartilage reconstruction using human auricular perichondrial chondroprogenitor cell-derived micro 3D spheroids. J Tissue Eng 2022; 13:20417314221143484. [PMID: 36582939 PMCID: PMC9793062 DOI: 10.1177/20417314221143484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/19/2022] [Indexed: 12/25/2022] Open
Abstract
Morphologically stable scaffold-free elastic cartilage tissue is crucial for treating external ear abnormalities. However, establishing adequate mechanical strength is challenging, owing to the difficulty of achieving chondrogenic differentiation in vitro; thus, cartilage reconstruction is a complex task. Auricular perichondrial chondroprogenitor cells exhibit high proliferation potential and can be obtained with minimal invasion. Therefore, these cells are an ideal resource for elastic cartilage reconstruction. In this study, we aimed to develop a novel in vitro scaffold-free method for elastic cartilage reconstruction, using human auricular perichondrial chondroprogenitor cells. Inducing chondrogenesis by using microscopic spheroids similar to auricular hillocks significantly increased the chondrogenic potential. The size and elasticity of the tissue were maintained after craniofacial transplantation in immunodeficient mice, suggesting that the reconstructed tissue was morphologically stable. Our novel tissue reconstruction method may facilitate the development of future treatments for external ear abnormalities.
Collapse
Affiliation(s)
- Takayoshi Oba
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan,Department of Orthopaedic Surgery,
Yokohama City University, Kanazawa-ku, Yokohama City, Kanagawa, Japan,Takayoshi Oba, Department of Regenerative
Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura,
Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Satoshi Okamoto
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan
| | - Yasuharu Ueno
- Division of Regenerative Medicine,
Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical
Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Megumi Matsuo
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan
| | - Tomomi Tadokoro
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan
| | - Shinji Kobayashi
- Department of Plastic and
Reconstructive Surgery, Kanagawa Children’s Medical Center, Minami-ku, Yokohama,
Kanagawa, Japan
| | - Kazunori Yasumura
- Department of Plastic and
Reconstructive Surgery, Kanagawa Children’s Medical Center, Minami-ku, Yokohama,
Kanagawa, Japan
| | - Shintaro Kagimoto
- Department of Plastic and
Reconstructive Surgery, Yokohama City University, Kanazawa-ku, Yokohama, Kanagawa,
Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery,
Yokohama City University, Kanazawa-ku, Yokohama City, Kanagawa, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan,Division of Regenerative Medicine,
Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical
Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
9
|
Dwivedi R, Yadav PK, Pandey R, Mehrotra D. Auricular reconstruction via 3D bioprinting strategies: An update. J Oral Biol Craniofac Res 2022; 12:580-588. [PMID: 35968037 DOI: 10.1016/j.jobcr.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Ruby Dwivedi
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Pradeep Kumar Yadav
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Zhao X, Hua Y, Wang T, Ci Z, Zhang Y, Wang X, Lin Q, Zhu L, Zhou G. In vitro Cartilage Regeneration Regulated by a Hydrostatic Pressure Bioreactor Based on Hybrid Photocrosslinkable Hydrogels. Front Bioeng Biotechnol 2022; 10:916146. [PMID: 35832408 PMCID: PMC9273133 DOI: 10.3389/fbioe.2022.916146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Because of the superior characteristics of photocrosslinkable hydrogels suitable for 3D cell-laden bioprinting, tissue regeneration based on photocrosslinkable hydrogels has become an important research topic. However, due to nutrient permeation obstacles caused by the dense networks and static culture conditions, there have been no successful reports on in vitro cartilage regeneration with certain thicknesses based on photocrosslinkable hydrogels. To solve this problem, hydrostatic pressure (HP) provided by the bioreactor was used to regulate the in vitro cartilage regeneration based on hybrid photocrosslinkable (HPC) hydrogel. Chondrocyte laden HPC hydrogels (CHPC) were cultured under 5 MPa HP for 8 weeks and evaluated by various staining and quantitative methods. Results demonstrated that CHPC can maintain the characteristics of HPC hydrogels and is suitable for 3D cell-laden bioprinting. However, HPC hydrogels with concentrations over 3% wt% significantly influenced cell viability and in vitro cartilage regeneration due to nutrient permeation obstacles. Fortunately, HP completely reversed the negative influences of HPC hydrogels at 3% wt%, significantly enhanced cell viability, proliferation, and extracellular matrix (ECM) deposition by improving nutrient transportation and up-regulating the expression of cartilage-specific genes, and successfully regenerated homogeneous cartilage with a thickness over 3 mm. The transcriptome sequencing results demonstrated that HP regulated in vitro cartilage regeneration primarily by inhibiting cell senescence and apoptosis, promoting ECM synthesis, suppressing ECM catabolism, and ECM structure remodeling. Evaluation of in vivo fate indicated that in vitro regenerated cartilage in the HP group further developed after implantation and formed homogeneous and mature cartilage close to the native one, suggesting significant clinical potential. The current study outlines an efficient strategy for in vitro cartilage regeneration based on photocrosslinkable hydrogel scaffolds and its in vivo application.
Collapse
Affiliation(s)
- Xintong Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Tissue Engineering Center of China, Shanghai, China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Tissue Engineering Center of China, Shanghai, China
| | - Tao Wang
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, China
- National Tissue Engineering Center of China, Shanghai, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Wang
- Department of Cosmetic Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Guangdong Zhou, ; Xiaoyun Wang, ; Qiuning Lin,
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guangdong Zhou, ; Xiaoyun Wang, ; Qiuning Lin,
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, China
- National Tissue Engineering Center of China, Shanghai, China
- *Correspondence: Guangdong Zhou, ; Xiaoyun Wang, ; Qiuning Lin,
| |
Collapse
|
11
|
贾 慧, 孙 楷, 刘 晓, 李 勇, 刘 增, 郭 玉. [Scanning electron microscope of the human nasal septum]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:335-337;342. [PMID: 35483681 PMCID: PMC10128257 DOI: 10.13201/j.issn.2096-7993.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Objective:Explore the significance of ultrastructural differences in tissue engineering, 3D printing, and rhinoplasty. Methods: 32 specimens (8 vomers, 8 perpendicular plates of ethmoid bone, 8 maxillary nasal crests, and 8 septal cartilage) of the nasal septum from patients with a nasal deviated septum and chronic sinusitis undergoing septoplasty were selected and examined using scanning electron microscopy. Results: The nasal septum of patients of different ages behaves similarly under the scanning electron microscope, and the bones of different parts of the nasal septum have similarities and differences. Conclusion:By observing the scanning electron micrograph of the nasal septum and analyzing the surface ultrastructure, it provides important information for the development of tissue engineering, assists in the refined modeling of 3D printing technology, and provides more ideal restoration materials for clinical operations.
Collapse
Affiliation(s)
- 慧 贾
- 兰州大学第二医院耳鼻咽喉头颈外科(兰州,730000)Department of Otorhinolaryngology Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - 楷 孙
- 兰州大学材料与能源学院School of Materials and Energy, Lanzhou University
| | - 晓雯 刘
- 兰州大学第二医院耳鼻咽喉头颈外科(兰州,730000)Department of Otorhinolaryngology Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - 勇 李
- 兰州大学第二医院耳鼻咽喉头颈外科(兰州,730000)Department of Otorhinolaryngology Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - 增平 刘
- 兰州大学第二医院耳鼻咽喉头颈外科(兰州,730000)Department of Otorhinolaryngology Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - 玉芬 郭
- 兰州大学第二医院耳鼻咽喉头颈外科(兰州,730000)Department of Otorhinolaryngology Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
- 甘肃省卫生健康委员会HealthCommission of Gansu Province
| |
Collapse
|
12
|
Bhamare N, Tardalkar K, Khadilkar A, Parulekar P, Joshi MG. Tissue engineering of human ear pinna. Cell Tissue Bank 2022; 23:441-457. [PMID: 35103863 DOI: 10.1007/s10561-022-09991-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
Auricular deformities (Microtia) can cause physical, social as well as psychological impacts on a patient's wellbeing. Biofabrication of a complex structure such as ear pinna is not precise with currently available techniques. These limitations can be overcome with the help of tissue engineering. In this article, the authors presented molding and three dimensional (3D) printing to generate a flexible, human size ear pinna. The decellularization of goat ear cartilage protocol and bioink alkaline digestion protocol was followed to yield complete removal of all cellular components without changing the properties of the Extra Cellular Matrix (ECM). Decellularized scaffold used in molding technology and 3D printing technology Computer-Aided Design /Stereolithography (CAD/STL) uses bioink to construct the patient-specific ear. In vivo biocompatibility of the both ear pinnae showed demonstrable recellularization. Histology and scanning electron microscopy analysis revealed the recellularization of cartilage-specific cells and the development of ECM in molded and 3D printed ear pinna after transplantation. Both the techniques provided ideal results for mechanical properties such as elasticity. Vascular Associated Protein expression revealed specific vasculogenic pattern (angiogenesis) in transplanted molded pinna. Chondrocyte specific progenitor cells express CD90+ which highlighted newly developed chondrocytes in both the grafts which indicated that the xenograft was accepted by the rat. Transplantation of molded as well as 3D ear pinna was successful in an animal model and can be available for clinical treatments as a medical object to cure auricular deformities.
Collapse
Affiliation(s)
- Nilesh Bhamare
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, 416 006, Kolhapur, Maharashtra, India.
| | - Kishor Tardalkar
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, 416 006, Kolhapur, Maharashtra, India
| | - Archana Khadilkar
- Department of Biotechnology Engineering, KIT's College of Engineering (Autonomous), Kolhapur, India
| | - Pratima Parulekar
- Department of Biotechnology Engineering, KIT's College of Engineering (Autonomous), Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, 416 006, Kolhapur, Maharashtra, India. .,Stem Plus Biotech Pvt. Ltd.Sangli Miraj Kupwad Commercial Complex, C/S No. 1317/2, Near Shivaji Maharaj Putla, Bus Stand Road,Gaon Bhag, 416416, Sangli, MS, India.
| |
Collapse
|
13
|
Gregory DA, Taylor CS, Fricker AT, Asare E, Tetali SS, Haycock JW, Roy I. Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol Med 2022; 28:331-342. [DOI: 10.1016/j.molmed.2022.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
|
14
|
Li Y, Xun X, Xu Y, Zhan A, Gao E, Yu F, Wang Y, Luo H, Yang C. Hierarchical porous bacterial cellulose scaffolds with natural biomimetic nanofibrous structure and a cartilage tissue-specific microenvironment for cartilage regeneration and repair. Carbohydr Polym 2022; 276:118790. [PMID: 34823800 DOI: 10.1016/j.carbpol.2021.118790] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 10/16/2021] [Indexed: 12/20/2022]
Abstract
The limited three-dimensional (3D) nano-scale pore structure and lack of biological function hamper the application of bacterial cellulose (BC) in cartilage tissue engineering. To address this challenge, 3D hierarchical porous BC/decellularized cartilage extracellular matrix (DCECM) scaffolds with structurally and biochemically biomimetic cartilage regeneration microenvironment were fabricated by freeze-drying technique after EDC/NHS chemical crosslinking. The BC/DCECM scaffolds exhibited excellent mechanical properties, water superabsorbency and shape-memory properties. Compared with the BC control, the BC/DCECM scaffolds exhibited enhanced cell adhesion and proliferation. Cartilage regeneration in vitro and in vivo indicated that the BC/DCECM scaffolds achieved satisfactory neocartilage tissue regeneration with superior original shape fidelity, exterior natural cartilage-like appearance and histologically cartilage-specific lacuna formation and ECM deposition. Furthermore, the BC/DCECM scaffolds achieved superior repair outcomes, as hyaline cartilage-like tissue formed within the defect sites. The present study constitutes a strong step toward the further application of BC in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong middle Road, Shanghai 200001, China
| | - Xiaowei Xun
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Anqi Zhan
- Institute of Plastic Surgery, Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology, Weifang Medical University, Shandong 261053, China
| | - Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong middle Road, Shanghai 200001, China.
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Chunxi Yang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong middle Road, Shanghai 200001, China.
| |
Collapse
|
15
|
Hou M, Bai B, Tian B, Ci Z, Liu Y, Zhou G, Cao Y. Cartilage Regeneration Characteristics of Human and Goat Auricular Chondrocytes. Front Bioeng Biotechnol 2022; 9:766363. [PMID: 34993186 PMCID: PMC8724709 DOI: 10.3389/fbioe.2021.766363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although cartilage regeneration technology has achieved clinical breakthroughs, whether auricular chondrocytes (AUCs) represent optimal seed cells to achieve stable cartilage regeneration is not clear. In this study, we systematically explore biological behaviors of human- and goat-derived AUCs during in vitro expansion as well as cartilage regeneration in vitro and in vivo. To eliminate material interference, a cell sheet model was used to evaluate the feasibility of dedifferentiated AUCs to re-differentiate and regenerate cartilage in vitro and in vivo. We found that the dedifferentiated AUCs could re-differentiate and regenerate cartilage sheets under the chondrogenic medium system, and the generated chondrocyte sheets gradually matured with increased in vitro culture time (2, 4, and 8 weeks). After the implantation of cartilage sheets with different in vitro culture times in nude mice, optimal neocartilage was formed in the group with 2 weeks in vitro cultivation. After in vivo implantation, ossification only occurred in the group with goat-regenerated cartilage sheet of 8 weeks in vitro cultivation. These results, which were confirmed in human and goat AUCs, suggest that AUCs are ideal seed cells for the clinical translation of cartilage regeneration under the appropriate culture system and culture condition.
Collapse
Affiliation(s)
- Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Baoshuai Bai
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Baoxing Tian
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Yu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| |
Collapse
|
16
|
Ho CL, Huang LLH, Shieh SJ. Perichondrial progenitor cells promote proliferation and chondrogenesis of mature chondrocytes. Regen Biomater 2022; 9:rbab078. [PMID: 35702349 PMCID: PMC9187916 DOI: 10.1093/rb/rbab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/14/2022] Open
Abstract
Autologous chondrocytes (C cells) are effective sources of cell therapy for engineering cartilage tissue to repair chondral defects, such as degenerative arthritis. The expansion of cells with C cell characteristics has become a major challenge due to inadequate donor sites and poor proliferation of mature C cells. The perichondrial progenitor cells (P cells) from the cambium layer of the perichondrium possessed significantly higher mesenchymal stem cell markers than C cells. In the transwell co-culture system, P cells increased the passaging capacity of C cells from P6 to P9, and the cell number increased 128 times. This system increased the percentage of Alcian blue-positive C cells from 40% in P6 to 62% in P9, contributing about 198 times more Alcian blue-positive C cells than the control group. C cells co-cultured with P cells also exhibited higher proliferation than C cells cultured with P cell-conditioned medium. Similar results were obtained in nude mice that were subcutaneously implanted with C cells, P cells or a mixture of the two cell types, in which the presence of both cells enhanced neocartilage formation in vivo. In aggregate, P cells enhanced the proliferation of C cells in a dose–dependent manner and prolonged the longevity of mature C cells for clinical applications.
Collapse
Affiliation(s)
- Chien-Liang Ho
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Medical Center, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lynn L H Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shyh-Jou Shieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Medical Center, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Tang P, Song P, Peng Z, Zhang B, Gui X, Wang Y, Liao X, Chen Z, Zhang Z, Fan Y, Li Z, Cen Y, Zhou C. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112423. [PMID: 34702546 DOI: 10.1016/j.msec.2021.112423] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023]
Abstract
The current gold standard for auricular reconstruction after microtia or ear trauma is the autologous cartilage graft with an autologous skin flap overlay. Harvesting autologous cartilage requires an additional surgery that may result in donor area complications. In addition, autologous cartilage is limited and the auricular reconstruction requires complex sculpting, which requires excellent clinical skill and is very time consuming. This work explores the use of 3D printing technology to fabricate bioactive artificial auricular cartilage using chondrocyte-laden gelatin methacrylate (GelMA) and polylactic acid (PLA) for auricle reconstruction. In this study, chondrocytes were loaded within GelMA hydrogel and combined with the 3D-printed PLA scaffolds to biomimetic the biological mechanical properties and personalized shape. The printing accuracy personalized scaffolds, biomechanics and chondrocyte viability and biofunction of artificial auricle have been studied. It was found that chondrocytes were fixed in the PLA auricle scaffolds via GelMA hydrogels and exhibited good proliferative properties and cellular activity. In addition, new chondrocytes and chondrogenic matrix, as well as type II collagen were observed after 8 weeks of implantation. At the same time, the transplanted auricle complex kept full and delicate auricle shape. This study demonstrates the potential of using 3D printing technology to construct in vitro living auricle tissue. It shows a great prospect in the clinical application of auricle regeneration.
Collapse
Affiliation(s)
- Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Ping Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhiyu Peng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Jessop ZM, Hague A, Dobbs TD, Stewart KJ, Whitaker IS. Facial Cartilaginous Reconstruction-A Historical Perspective, State-of-the-Art, and Future Directions. Front Surg 2021; 8:680186. [PMID: 34485372 PMCID: PMC8415446 DOI: 10.3389/fsurg.2021.680186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Importance: Reconstruction of facial deformity poses a significant surgical challenge due to the psychological, functional, and aesthetic importance of this anatomical area. There is a need to provide not only an excellent colour and contour match for skin defects, but also a durable cartilaginous structural replacement for nasal or auricular defects. The purpose of this review is to describe the history of, and state-of-the-art techniques within, facial cartilaginous surgery, whilst highlighting recent advances and future directions for this continually advancing specialty. Observations: Limitations of synthetic implants for nasal and auricular reconstruction, such as silicone and porous polyethylene, have meant that autologous cartilage tissue for such cases remains the current gold standard. Similarly, tissue engineering approaches using unrelated cells and synthetic scaffolds have shown limited in vivo success. There is increasing recognition that both the intrinsic and extrinsic microenvironment are important for tissue engineering and synthetic scaffolds fail to provide the necessary cues for cartilage matrix secretion. Conclusions and Relevance: We discuss the first-in-man studies in the context of biomimetic and developmental approaches to engineering durable cartilage for clinical translation. Implementation of engineered autologous tissue into clinical practise could eliminate donor site morbidity and represent the next phase of the facial reconstruction evolution.
Collapse
Affiliation(s)
- Zita M. Jessop
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Adam Hague
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Thomas D. Dobbs
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Kenneth J. Stewart
- Department of Plastic and Reconstructive Surgery, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Iain S. Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| |
Collapse
|
19
|
Bhamare N, Tardalkar K, Parulekar P, Khadilkar A, Joshi M. 3D printing of human ear pinna using cartilage specific ink. Biomed Mater 2021; 16. [PMID: 34280915 DOI: 10.1088/1748-605x/ac15b0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 11/11/2022]
Abstract
Biofabrication of a complex structure such as ear pinna is not precise with currently available techniques. Auricular deformities (e.g. microtia) can cause physical, social as well as psychological impacts on a patient's wellbeing. Currently available surgical techniques and transplantation methods have many limitations that can be overcome with the help of 3D bioprinting technology. Printable bioink enriched with cartilage-specific extracellular matrix (ECM) synthesis was done by digesting goat ear pinna cartilage and polymerized by adding polyvinyl alcohol and gelatine. Rheological analysis and Fourier-transform infrared spectroscopy were used for the characterization of bioink to get desired viscosity and polymerization. Human ear pinna was printed using extrusion method and computer-aided design, stereolithography software which facilitated the automated printing in relatively less time without continuous monitoring. Thermal degradation of pinna was checked by thermal gravimetric analysis. Biodegradability and swelling of ear pinna were observed for understanding the nature of pinna and the impact of external factors. Reconstructed pinna's biocompatibility was proved byin ovoandin vivostudies. The occurrence of angiogenesis in the grafted ear manifested the capacity of proliferation and engraftment of cartilage cells. Histology and SEM analysis revealed the recellularization and the synthesis of ECM components such as glycosaminoglycan and collagen in transplanted 3D printed ear pinna. The expression of CD90+ which indicated newly synthesized cartilage in the transplanted 3D printed ear pinna. The absence expression of CD14+ also indicated acceptance of xenogenic transplanted 3D printed ear pinna. Transplantation of 3D ear pinna was successful in an animal model and can be utilized as tissue engineered ear bank.
Collapse
Affiliation(s)
- Nilesh Bhamare
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, Maharashtra 416 006, India
| | - Kishor Tardalkar
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, Maharashtra 416 006, India
| | - Pratima Parulekar
- Department of Biotechnology Engineering, KIT's College of Engineering (Autonomous), Gokul-Shirgaon, Maharashtra, India 416 234
| | - Archana Khadilkar
- Department of Biotechnology Engineering, KIT's College of Engineering (Autonomous), Gokul-Shirgaon, Maharashtra, India 416 234
| | - Meghnad Joshi
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, Maharashtra 416 006, India.,Stem Plus Biotech Pvt. Ltd, Sangli, Miraj, Kupwad Commercial Complex, C/S No. 1317/2, Near Shivaji Maharaj Putla, Bus Stand Road, Gaon Bhag, Sangli 416 416, Maharashtra, India
| |
Collapse
|
20
|
Chiesa-Estomba CM, Aiastui A, González-Fernández I, Hernáez-Moya R, Rodiño C, Delgado A, Garces JP, Paredes-Puente J, Aldazabal J, Altuna X, Izeta A. Three-Dimensional Bioprinting Scaffolding for Nasal Cartilage Defects: A Systematic Review. Tissue Eng Regen Med 2021; 18:343-353. [PMID: 33864626 PMCID: PMC8169726 DOI: 10.1007/s13770-021-00331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, three-dimensional (3D)-printing of tissue-engineered cartilaginous scaffolds is intended to close the surgical gap and provide bio-printed tissue designed to fit the specific geometric and functional requirements of each cartilage defect, avoiding donor site morbidity and offering a personalizing therapy. METHODS To investigate the role of 3D-bioprinting scaffolding for nasal cartilage defects repair a systematic review of the electronic databases for 3D-Bioprinting articles pertaining to nasal cartilage bio-modelling was performed. The primary focus was to investigate cellular source, type of scaffold utilization, biochemical evaluation, histological analysis, in-vitro study, in-vivo study, animal model used, length of research, and placement of experimental construct and translational investigation. RESULTS From 1011 publications, 16 studies were kept for analysis. About cellular sources described, most studies used primary chondrocyte cultures. The cartilage used for cell isolation was mostly nasal septum. The most common biomaterial used for scaffold creation was polycaprolactone alone or in combination. About mechanical evaluation, we found a high heterogeneity, making it difficult to extract any solid conclusion. Regarding biological and histological characteristics of each scaffold, we found that the expression of collagen type I, collagen Type II and other ECM components were the most common patterns evaluated through immunohistochemistry on in-vitro and in-vivo studies. Only two studies made an orthotopic placement of the scaffolds. However, in none of the studies analyzed, the scaffold was placed in a subperichondrial pocket to rigorously simulate the cartilage environment. In contrast, scaffolds were implanted in a subcutaneous plane in almost all of the studies included. CONCLUSION The role of 3D-bioprinting scaffolding for nasal cartilage defects repair is growing field. Despite the amount of information collected in the last years and the first surgical applications described recently in humans. Further investigations are needed due to the heterogeneity on mechanical evaluation parameters, the high level of heterotopic scaffold implantation and the need for quantitative histological data.
Collapse
Affiliation(s)
- Carlos M Chiesa-Estomba
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain.
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | | | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Claudia Rodiño
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Alba Delgado
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Juan P Garces
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Department of Pathology, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Jacobo Paredes-Puente
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Javier Aldazabal
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Xabier Altuna
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| |
Collapse
|
21
|
Evaluation of Auricular Cartilage Reconstruction Using a 3-Dimensional Printed Biodegradable Scaffold and Autogenous Minced Auricular Cartilage. Ann Plast Surg 2021; 85:185-193. [PMID: 32118635 DOI: 10.1097/sap.0000000000002313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Auricular cartilage reconstruction represents one of the greatest challenges for otolaryngology-head and neck surgery. The native structure and composition of the auricular cartilage can be achieved by combining a suitable chondrogenic cell source with an appropriate scaffold. In reconstructive surgery for cartilage tissue, autogenous cartilage is considered to be the best chondrogenic cell source. Polycaprolactone is mainly used as a tissue-engineered scaffold owing to its mechanical properties, miscibility with a large range of other polymers, and biodegradability. In this study, scaffolds with or without autogenous minced auricular cartilage were implanted bilaterally in rabbits for auricular regeneration. Six weeks (n = 4) and 16 weeks (n = 4) after implantation, real-time quantitative reverse transcription polymerase chain reaction and histology were used to assess the regeneration of the auricular cartilage. Quantitative reverse transcription polymerase chain reaction analysis revealed that the messenger RNA expression of aggrecan, collagen I, and collagen II was higher in scaffolds with 50% minced cartilage than the scaffold-only groups or scaffolds with 30% minced cartilage (P < 0.05). Furthermore, histological analysis demonstrated significantly superior cartilage regeneration in scaffolds with the minced cartilage group compared with the scaffold-only and control groups (P < 0.05). Autogenous cartilage can be easily obtained and loaded onto a scaffold to promote the presence of chondrogenic cells, allowing for an improvement of the reconstruction of auricular cartilage. Here, the regeneration of auricular cartilage was also successful in the 50% minced cartilage group. The results presented in this study could have clinical implications, as they demonstrate the potential of a 1-stage process for auricular reconstruction.
Collapse
|
22
|
Otto IA, Capendale PE, Garcia JP, de Ruijter M, van Doremalen RFM, Castilho M, Lawson T, Grinstaff MW, Breugem CC, Kon M, Levato R, Malda J. Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities. Mater Today Bio 2021; 9:100094. [PMID: 33665603 PMCID: PMC7903133 DOI: 10.1016/j.mtbio.2021.100094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine–based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell–laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction. First application of human auricular cartilage progenitor cells for bioprinting. Dual-printing of hybrid ear-shaped constructs with excellent shape fidelity over time. Strategy and design ensured adequate deposition of cartilage-like matrix throughout large auricular constructs.
Collapse
Affiliation(s)
- I A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - P E Capendale
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J P Garcia
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - M de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - R F M van Doremalen
- Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Enschede, the Netherlands.,Bureau Science & Innovation, Deventer Hospital, Deventer, the Netherlands
| | - M Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - T Lawson
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - M W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - C C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, the Netherlands
| | - M Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, the Netherlands
| |
Collapse
|
23
|
Bagher Z, Asgari N, Bozorgmehr P, Kamrava SK, Alizadeh R, Seifalian A. Will Tissue-Engineering Strategies Bring New Hope for the Reconstruction of Nasal Septal Cartilage? Curr Stem Cell Res Ther 2020; 15:144-154. [PMID: 31830895 DOI: 10.2174/1574888x14666191212160757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023]
Abstract
The nasal septal cartilage plays an important role in the growth of midface and as a vertical strut preventing the collapse of the nasal bones. The repair of nasal cartilage defects remains a major challenge in reconstructive surgery. The tissue engineering strategy in the development of tissue has opened a new perspective to generate functional tissue for transplantation. Given the poor regenerative properties of cartilage and a limited amount of autologous cartilage availability, intense interest has evoked for tissue engineering approaches for cartilage development to provide better outcomes for patients who require nasal septal reconstruction. Despite numerous attempts to substitute the shapely hyaline cartilage in the nasal cartilages, many significant challenges remained unanswered. The aim of this research was to carry out a critical review of the literature on research work carried out on the development of septal cartilage using a tissue engineering approach, concerning different cell sources, scaffolds and growth factors, as well as its clinical pathway and trials have already been carried out.
Collapse
Affiliation(s)
- Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Negin Asgari
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Parisa Bozorgmehr
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) The London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
24
|
Development of a Method for Scaffold-Free Elastic Cartilage Creation. Int J Mol Sci 2020; 21:ijms21228496. [PMID: 33187369 PMCID: PMC7698291 DOI: 10.3390/ijms21228496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Microtia is a congenital aplasia of the auricular cartilage. Conventionally, autologous costal cartilage grafts are collected and shaped for transplantation. However, in this method, excessive invasion occurs due to limitations in the costal cartilage collection. Due to deformation over time after transplantation of the shaped graft, problems with long-term morphological maintenance exist. Additionally, the lack of elasticity with costal cartilage grafts is worth mentioning, as costal cartilage is a type of hyaline cartilage. Medical plastic materials have been transplanted as alternatives to costal cartilage, but transplant rejection and deformation over time are inevitable. It is imperative to create tissues for transplantation using cells of biological origin. Hence, cartilage tissues were developed using a biodegradable scaffold material. However, such materials suffer from transplant rejection and biodegradation, causing the transplanted cartilage tissue to deform due to a lack of elasticity. To address this problem, we established a method for creating elastic cartilage tissue for transplantation with autologous cells without using scaffold materials. Chondrocyte progenitor cells were collected from perichondrial tissue of the ear cartilage. By using a multilayer culture and a three-dimensional rotating suspension culture vessel system, we succeeded in creating scaffold-free elastic cartilage from cartilage progenitor cells.
Collapse
|
25
|
Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydr Polym 2020; 248:116776. [DOI: 10.1016/j.carbpol.2020.116776] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
|
26
|
Abstract
The field of Tissue Engineering and Regenerative Medicine has evolved rapidly over the past thirty years. This review will summarize its history, current status and direction through the lens of clinical need, its progress through science in the laboratory and application back into patients. We can take pride in the fact that much effort and progress began with the surgical problems of children and that many surgeons in the pediatric surgical specialties have become pioneers and investigators in this new field of science, engineering, and medicine. Although the field has yet to fulfill its great promise, there have been several examples where a therapy has progressed from the first idea to human application within a short span of time and, in many cases, it has been applied in the surgical care of children.
Collapse
|
27
|
Cartilage tissue engineering for craniofacial reconstruction. Arch Plast Surg 2020; 47:392-403. [PMID: 32971590 PMCID: PMC7520235 DOI: 10.5999/aps.2020.01095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Severe cartilage defects and congenital anomalies affect millions of people and involve considerable medical expenses. Tissue engineering offers many advantages over conventional treatments, as therapy can be tailored to specific defects using abundant bioengineered resources. This article introduces the basic concepts of cartilage tissue engineering and reviews recent progress in the field, with a focus on craniofacial reconstruction and facial aesthetics. The basic concepts of tissue engineering consist of cells, scaffolds, and stimuli. Generally, the cartilage tissue engineering process includes the following steps: harvesting autologous chondrogenic cells, cell expansion, redifferentiation, in vitro incubation with a scaffold, and transfer to patients. Despite the promising prospects of cartilage tissue engineering, problems and challenges still exist due to certain limitations. The limited proliferation of chondrocytes and their tendency to dedifferentiate necessitate further developments in stem cell technology and chondrocyte molecular biology. Progress should be made in designing fully biocompatible scaffolds with a minimal immune response to regenerate tissue effectively.
Collapse
|
28
|
Jovic TH, Stewart K, Kon M, Whitaker IS. "Auricular reconstruction: A sociocultural, surgical and scientific perspective". J Plast Reconstr Aesthet Surg 2020; 73:1424-1433. [PMID: 32565140 DOI: 10.1016/j.bjps.2020.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 01/21/2023]
Abstract
The functional and sociocultural role of the auricle has been prevalent in art, literature and history for millennia. It is no surprise, therefore, that auricular anomalies can be associated with affective disorders and impaired academic performance in children. The challenge of auricular reconstruction has captured the attention of surgical innovators for millennia with the earliest records of auricular reconstruction documented in the Edwin Smith Surgical Papyrus dating back to 3000 BCE. Since the 19th century, however, the interest in the ambition partial and total auricular reconstruction witnessed a rebirth, with refinements in frame construction, projection and skin coverage improving exponentially over the last two centuries. The gold standard auricular reconstruction practices today have their roots in these historical milestones, and form a solid foundation for the introduction of technological advancements such as 3D bioprinting and composite tissue allotransplantation into future auricular reconstruction practice. The aim of this review is to outline the sociocultural role of the auricle, the history and evolution of auricular reconstruction surgery and to provide an insight into potential future avenues of restoring auricular form and function.
Collapse
Affiliation(s)
- Thomas H Jovic
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University, United Kingdom; Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Ken Stewart
- Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Moshe Kon
- International Society of Auricular Reconstruction (President); Department of Plastic and Reconstructive Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University, United Kingdom; Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom.
| |
Collapse
|
29
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
30
|
Yu W, Zhu Y, Li H, He Y. Injectable Quercetin-Loaded Hydrogel with Cartilage-Protection and Immunomodulatory Properties for Articular Cartilage Repair. ACS APPLIED BIO MATERIALS 2020; 3:761-771. [PMID: 35019280 DOI: 10.1021/acsabm.9b00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Articular cartilage plays an important role in human body. How to repair articular cartilage defects when they appear due to various factors has always been a major clinical challenge. Recently, studies have shown that slowing the degradation of cartilage extracellular matrix (ECM) and modulating the inflammatory response of the host thereby promoting cartilage tissue regeneration are important in the cartilage repair process. In this study, a drug-loaded injectable hydrogel was constructed for repairing articular cartilage. This hydrogel could not only maintain the phenotype of chondrocytes but also regulate the inflammatory response of the host. The injectable sodium alginate (SA)/bioglass (BG) hydrogel was mixed with the injectable thermal-responsive SA/agarose (AG)/quercetin (Que) hydrogel to obtain an injectable hydrogel containing both Que and BG (Que-BG hydrogel) for articular cartilage regeneration. The Que-BG hydrogel has a proper swelling ratio that can promote integration between the formed tissue and host tissue, and it allows Que to release slowly in situ to improve its bioavailability. The Que-BG hydrogel could upregulate SRY-box 9 (SOX9), aggrecan (ACAN), and collagen type II alpha 1 chain (COL2A1) of normal chondrocytes to maintain the normal chondrocyte phenotype. In addition, it could promote macrophage M2 polarization, reduce inflammation, and inhibit ECM degradation by downregulating the expression of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-13 (MMP13), and matrix metalloproteinase-1 (MMP1) in degenerative chondrocytes. After injecting the Que-BG hydrogel into a rat cartilage defect model, the formed tissue was observed to be similar to the normal tissue and was highly integrated with the surrounding tissue. Therefore, the injectable Que-BG hydrogel improves Que bioavailability, maintains chondrocyte phenotype, inhibits ECM degradation, and reduces inflammatory response.
Collapse
Affiliation(s)
- Weihan Yu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China.,Department of Orthopedics, Shanghai General Hospital, Shanghai 200080, China
| | - Yanlun Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Haiyan Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China.,Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, Shanghai 201599, China
| |
Collapse
|
31
|
Ruiz-Cantu L, Gleadall A, Faris C, Segal J, Shakesheff K, Yang J. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110578. [PMID: 32228894 DOI: 10.1016/j.msec.2019.110578] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022]
Abstract
The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.
Collapse
Affiliation(s)
- Laura Ruiz-Cantu
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew Gleadall
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, University of Loughborough, Loughborough LE113TU, UK
| | - Callum Faris
- Department of Otorhinolaryngology and Facial Plastic Reconstructive Surgery, Poole Hospital, Poole BH15 2JB, UK
| | - Joel Segal
- Advanced Manufacturing Technology Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Kevin Shakesheff
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jing Yang
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
32
|
Wu Y, Heikal L, Ferns G, Ghezzi P, Nokhodchi A, Maniruzzaman M. 3D Bioprinting of Novel Biocompatible Scaffolds for Endothelial Cell Repair. Polymers (Basel) 2019; 11:E1924. [PMID: 31766610 PMCID: PMC6960937 DOI: 10.3390/polym11121924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to develop and evaluate an optimized 3D bioprinting technology in order to fabricate novel scaffolds for the application of endothelial cell repair. Various biocompatible and biodegradable macroporous scaffolds (D = 10 mm) with interconnected pores (D = ~500 µm) were fabricated using a commercially available 3D bioprinter (r3bEL mini, SE3D, USA). The resolution of the printing layers was set at ~100 µm for all scaffolds. Various compositions of polylactic acid (PLA), polyethylene glycol (PEG) and pluronic F127 (F127) formulations were prepared and optimized to develop semi-solid viscous bioinks. Either dimethyloxalylglycine (DMOG) or erythroprotein (EPO) was used as a model drug and loaded in the viscous biocompatible ink formulations with a final concentration of 30% (w/w). The surface analysis of the bioinks via a spectroscopic analysis revealed a homogenous distribution of the forming materials throughout the surface, whereas SEM imaging of the scaffolds showed a smooth surface with homogenous macro-porous texture and precise pore size. The rheological and mechanical analyses showed optimum rheological and mechanical properties of each scaffold. As the drug, DMOG, is a HIF-1 inducer, its release from the scaffolds into PBS solution was measured indirectly using a bioassay for HIF-1α. This showed that the release of DMOG was sustained over 48 h. The release of DMOG was enough to cause a significant increase in HIF-1α levels in the bioassay, and when incubated with rat aortic endothelial cells (RAECs) for 2 h resulted in transcriptional activation of a HIF-1α target gene (VEGF). The optimum time for the increased expression of VEGF gene was approximately 30 min and was a 3-4-fold increase above baseline. This study provides a proof of concept, that a novel bioprinting platform can be exploited to develop biodegradable composite scaffolds for potential clinical applications in endothelial cell repair in cardiovascular disease (CVD), or in other conditions in which endothelial damage occurs.
Collapse
Affiliation(s)
- Yan Wu
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK;
| | - Lamia Heikal
- Brighton and Sussex Medical School, Brighton BN1 9RH, UK or (G.F.); (P.G.)
- Faculty of Pharmacy, Department of Pharmaceutics, Alexandria University, El Sultan Hussein St AZARITA-Qesm Al Attarin, Alexandria Governorate 21521, Egypt
| | - Gordon Ferns
- Brighton and Sussex Medical School, Brighton BN1 9RH, UK or (G.F.); (P.G.)
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton BN1 9RH, UK or (G.F.); (P.G.)
| | - Ali Nokhodchi
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK;
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
33
|
Abstract
PURPOSE The significant shortcomings associated with current autologous reconstructive options for auricular deformities have inspired great interest in a tissue engineering solution. A major obstacle in the engineering of human auricular cartilage is the availability of sufficient autologous human chondrocytes. A clinically obtainable amount of auricular cartilage tissue (ie, 1 g) only yields approximately 10 million cells, where 25 times this amount is needed for the fabrication of a full-scale pediatric ear. It is thought that repeated passaging of chondrocytes leads to dedifferentiation and loss of the chondrogenic potential. However, little to no data exist regarding the ideal number of times that human auricular chondrocytes (HAuCs) can be passaged in a manner that maximizes the cellular expansion while minimizing dedifferentiation. METHODS Human auricular chondrocytes were isolated from discarded otoplasty specimens. The HAuCs were then expanded, and cells from passages 3, 4, and 5 were encapsulated into discs 8 mm in diameter made from type I collagen hydrogels with a cell density of 25 million cells/mL. The constructs were implanted subcutaneously in the dorsa of nude mice and harvested after 1 and 3 months for analysis. RESULTS Constructs containing passages 3, 4, and 5 chondrocytes all maintained their original cylindrical geometry. After 3 months in vivo, the diameters of the P3, P4, and P5 discs were 69 ± 9%, 67 ± 10%, and 73 ± 15% of their initial diameter, respectively. Regardless of the passage number, all constructs developed a glossy white cartilaginous appearance, similar to native auricular cartilage. Histologic analysis demonstrated development of an organized perichondrium composed of collagen, a rich proteoglycan matrix, cellular lacunae, and a dense elastin fibrin network by Safranin-O and Verhoeff stain. Biochemical analysis confirmed similar amounts of proteoglycan and hydroxyproline content in late passage constructs when compared with native auricular cartilage. CONCLUSIONS These data indicate that late passage HAuCs (up to passage 5) form elastic cartilage that is histologically, biochemically, and biomechanically similar to native human elastic cartilage and have the potential to be used for auricular cartilage engineering.
Collapse
|
34
|
Liao J, Chen Y, Chen J, He B, Qian L, Xu J, Wang A, Li Q, Xie H, Zhou J. Auricle shaping using 3D printing and autologous diced cartilage. Laryngoscope 2019; 129:2467-2474. [PMID: 30843613 PMCID: PMC6850318 DOI: 10.1002/lary.27752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To reconstruct the auricle using a porous, hollow, three-dimensional (3D)-printed mold and autologous diced cartilage mixed with platelet-rich plasma (PRP). METHODS Materialise Magics v20.03 was used to design a 3D, porous, hollow auricle mold. Ten molds were printed by selective laser sintering with polyamide. Cartilage grafts were harvested from one ear of a New Zealand rabbit, and PRP was prepared using 10 mL of auricular blood from the same animal. Ear cartilage was diced into 0.5- to 2.0-mm pieces, weighed, mixed with PRP, and then placed inside the hollow mold. Composite grafts were then implanted into the backs of respective rabbits (n = 10) for 4 months. The shape and composition of the diced cartilage were assessed histologically, and biomechanical testing was used to determine stiffness. RESULTS The 3D-printed auricle molds were 0.6-mm thick and showed connectivity between the internal and external surfaces, with round pores of 0.1 to 0.3 cm. After 4 months, the diced cartilage pieces had fused into an auricular shape with high fidelity to the anthropotomy. The weight of the diced cartilage was 5.157 ± 0.230 g (P > 0.05, compared with preoperative). Histological staining showed high chondrocyte viability and the production of collagen II, glycosaminoglycans, and other cartilaginous matrix components. In unrestricted compression tests, auricle stiffness was 0.158 ± 0.187 N/mm, similar to that in humans. CONCLUSION Auricle grafts were constructed successfully through packing a 3D-printed, porous, hollow auricle mold with diced cartilage mixed with PRP. The auricle cartilage contained viable chondrocytes, appropriate extracellular matrix components, and good mechanical properties. LEVELS OF EVIDENCE NA. Laryngoscope, 129:2467-2474, 2019.
Collapse
Affiliation(s)
- Junlin Liao
- Departments of Medical Cosmetology, The First Affiliated Hospital, University of South China, Hengyang.,Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha
| | - Yong Chen
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha.,Emergency Department, The First Hospital of Changsha, Changsha
| | - Jia Chen
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha
| | - Bin He
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha.,Departments of Burn and Plastic Surgery, Ningxiang People's Hospital, Ningxiang, Hunan
| | - Li Qian
- Departments of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha
| | - Jiaqin Xu
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha.,Departments of Burn and Plastic Surgery, Hainan People's Hospital, Haikou, Hainan
| | - Aijun Wang
- Department of Surgery, Davis Health System, University of California, Sacramento, California, U.S.A
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Jiaotong University Medical School, Ninth People's Hospital, Shanghai, People's Republic of China
| | - Hongju Xie
- Departments of Medical Cosmetology, The First Affiliated Hospital, University of South China, Hengyang
| | - Jianda Zhou
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha
| |
Collapse
|
35
|
Chiu LLY, Weber JF, Waldman SD. Engineering of scaffold-free tri-layered auricular tissues for external ear reconstruction. Laryngoscope 2019; 129:E272-E283. [DOI: 10.1002/lary.27823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/15/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Loraine L. Y. Chiu
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| | - Joanna F. Weber
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| |
Collapse
|
36
|
Zopf DA, Flanagan CL, Mitsak AG, Brennan JR, Hollister SJ. Pore architecture effects on chondrogenic potential of patient-specific 3-dimensionally printed porous tissue bioscaffolds for auricular tissue engineering. Int J Pediatr Otorhinolaryngol 2018; 114:170-174. [PMID: 30262359 PMCID: PMC6196359 DOI: 10.1016/j.ijporl.2018.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study aims to determine the effect of auricular scaffold microarchitecture on chondrogenic potential in an in vivo animal model. METHODS DICOM computed tomography (CT) images of a human auricle were segmented to create an external anatomic envelope. Image-based design was used to generate 1) orthogonally interconnected spherical pores and 2) randomly interspersed pores, and each were repeated in three dimensions to fill the external auricular envelope. These auricular scaffolds were then 3D printed by laser sintering poly-l-caprolactone, seeded with primary porcine auricular chondrocytes in a hyaluronic acid/collagen hydrogel and cultured in a pro-chondrogenic medium. The auricular scaffolds were then implanted subcutaneously in rats and explanted after 4 weeks for analysis with Safranin O and Hematoxylin and Eosin staining. RESULTS Auricular constructs with two micropore architectures were rapidly manufactured with high fidelity anatomic appearance. Subcutaneous implantation of the scaffolds resulted in excellent external appearance of both anterior and posterior auricular surfaces. Analysis on explantation showed that the defined, spherical micropore architecture yielded histologic evidence of more robust chondrogenic tissue formation as demonstrated by Safranin O and Hematoxylin and Eosin staining. CONCLUSIONS Image-based computer-aided design and 3D printing offers an exciting new avenue for the tissue-engineered auricle. In early pilot work, creation of spherical micropores within the scaffold architecture appears to impart greater chondrogenicity of the bioscaffold. This advantage could be related to differences in permeability allowing greater cell migration and nutrient flow, differences in surface area allowing different cell aggregation, or a combination of both factors. The ability to design an anatomically correct scaffold that maintains its structural integrity while also promoting auricular cartilage growth represents an important step towards clinical applicability of this new technology.
Collapse
Affiliation(s)
- David A Zopf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1540 E Hospital Dr., Ann Arbor, MI, 48109, USA.
| | - Colleen L Flanagan
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI, 48109, USA
| | - Anna G Mitsak
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI, 48109, USA
| | - Julia R Brennan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1540 E Hospital Dr., Ann Arbor, MI, 48109, USA
| | - Scott J Hollister
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
37
|
Cohen BP, Bernstein JL, Morrison KA, Spector JA, Bonassar LJ. Tissue engineering the human auricle by auricular chondrocyte-mesenchymal stem cell co-implantation. PLoS One 2018; 13:e0202356. [PMID: 30356228 PMCID: PMC6200177 DOI: 10.1371/journal.pone.0202356] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/01/2018] [Indexed: 01/21/2023] Open
Abstract
Children suffering from microtia have few options for auricular reconstruction. Tissue engineering approaches attempt to replicate the complex anatomy and structure of the ear with autologous cartilage but have been limited by access to clinically accessible cell sources. Here we present a full-scale, patient-based human ear generated by implantation of human auricular chondrocytes and human mesenchymal stem cells in a 1:1 ratio. Additional disc construct surrogates were generated with 1:0, 1:1, and 0:1 combinations of auricular chondrocytes and mesenchymal stem cells. After 3 months in vivo, monocellular auricular chondrocyte discs and 1:1 disc and ear constructs displayed bundled collagen fibers in a perichondrial layer, rich proteoglycan deposition, and elastin fiber network formation similar to native human auricular cartilage, with the protein composition and mechanical stiffness of native tissue. Full ear constructs with a 1:1 cell combination maintained gross ear structure and developed a cartilaginous appearance following implantation. These studies demonstrate the successful engineering of a patient-specific human auricle using exclusively human cell sources without extensive in vitro tissue culture prior to implantation, a critical step towards the clinical application of tissue engineering for auricular reconstruction.
Collapse
Affiliation(s)
- Benjamin P Cohen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jaime L Bernstein
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Kerry A Morrison
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Jason A Spector
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
38
|
Ideal scaffold design for total ear reconstruction using a three‐dimensional printing technique. J Biomed Mater Res B Appl Biomater 2018; 107:1295-1303. [DOI: 10.1002/jbm.b.34222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 11/07/2022]
|
39
|
A comparative study of cartilage engineered constructs in immunocompromised, humanized and immunocompetent mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.regen.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Morrison RJ, Nasser HB, Kashlan KN, Zopf DA, Milner DJ, Flanangan CL, Wheeler MB, Green GE, Hollister SJ. Co-culture of adipose-derived stem cells and chondrocytes on three-dimensionally printed bioscaffolds for craniofacial cartilage engineering. Laryngoscope 2018; 128:E251-E257. [PMID: 29668079 PMCID: PMC6105552 DOI: 10.1002/lary.27200] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Reconstruction of craniofacial cartilagenous defects are among the most challenging surgical procedures in facial plastic surgery. Bioengineered craniofacial cartilage holds immense potential to surpass current reconstructive options, but limitations to clinical translation exist. We endeavored to determine the viability of utilizing adipose-derived stem cell-chondrocyte co-culture and three-dimensional (3D) printing to produce 3D bioscaffolds for cartilage tissue engineering. We describe a feasibility study revealing a novel approach for cartilage tissue engineering with in vitro and in vivo animal data. METHODS Porcine adipose-derived stem cells and chondrocytes were isolated and co-seeded at 1:1, 2:1, 5:1, 10:1, and 0:1 experimental ratios in a hyaluronic acid/collagen hydrogel in the pores of 3D-printed polycaprolactone scaffolds to form 3D bioscaffolds for cartilage tissue engineering. Bioscaffolds were cultured in vitro without growth factors for 4 weeks and then implanted into the subcutaneous tissue of athymic rats for an additional 4 weeks before sacrifice. Bioscaffolds were subjected to histologic, immunohistochemical, and biochemical analysis. RESULTS Successful production of cartilage was achieved using a co-culture model of adipose-derived stem cells and chondrocytes without the use of exogenous growth factors. Histology demonstrated cartilage growth for all experimental ratios at the post-in vivo time point confirmed with type II collagen immunohistochemistry. There was no difference in sulfated-glycosaminoglycan production between experimental groups. CONCLUSION Tissue-engineered cartilage was successfully produced on 3D-printed bioresorbable scaffolds using an adipose-derived stem cell and chondrocyte co-culture technique. This potentiates co-culture as a solution for several key barriers to a clinically translatable cartilage tissue engineering process. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E251-E257, 2018.
Collapse
Affiliation(s)
- Robert J. Morrison
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hassan B. Nasser
- Department of Otolaryngology-Head & Neck Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Khaled N. Kashlan
- Department of Otolaryngology-Head & Neck Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - David A. Zopf
- Department of Otolaryngology-Head & Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J. Milner
- Carel R. Woese Institute for Genomic Biology, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Colleen L. Flanangan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew B. Wheeler
- Carel R. Woese Institute for Genomic Biology, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Glenn E. Green
- Department of Otolaryngology-Head & Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Scott J. Hollister
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Wallace A. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
41
|
A Novel Biodegradable Polyurethane Matrix for Auricular Cartilage Repair: An In Vitro and In Vivo Study. J Burn Care Res 2018; 37:e353-64. [PMID: 26284639 DOI: 10.1097/bcr.0000000000000281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Auricular reconstruction poses a challenge for reconstructive and burns surgeons. Techniques involving cartilage tissue engineering have shown potential in recent years. A biodegradable polyurethane matrix developed for dermal reconstruction offers an alternative to autologous, allogeneic, or xenogeneic biologicals for cartilage reconstruction. This study assesses such a polyurethane matrix for this indication in vivo and in vitro. To evaluate intrinsic cartilage repair, three pigs underwent auricular surgery to create excisional cartilage ± perichondrial defects, measuring 2 × 3 cm in each ear, into which acellular polyurethane matrices were implanted. Biopsies were taken at day 28 for histological assessment. Porcine chondrocytes ± perichondrocytes were cultured and seeded in vitro onto 1 × 1 cm polyurethane scaffolds. The total culture period was 42 days; confocal, histological, and immunohistochemical analyses of scaffold cultures were performed on days 14, 28, and 42. In vivo, the polyurethane matrices integrated with granulation tissue filling all biopsy samples. Minimal neocartilage invasion was observed marginally on some samples. Tissue composition was identical between ears whether perichondrium was left intact, or not. In vitro, the polyurethane matrix was biocompatible with chondrocytes ± perichondrocytes and supported production of extracellular matrix and Type II collagen. No difference was observed between chondrocyte culture alone and chondrocyte/perichondrocyte scaffold coculture. The polyurethane matrix successfully integrated into the auricular defect and was a suitable scaffold in vitro for cartilage tissue engineering, demonstrating its potential application in auricular reconstruction.
Collapse
|
42
|
In Vitro Regeneration of Patient-specific Ear-shaped Cartilage and Its First Clinical Application for Auricular Reconstruction. EBioMedicine 2018. [PMID: 29396297 DOI: 10.1016/j.ebiom.2018.01.011.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microtia is a congenital external ear malformation that can seriously influence the psychological and physiological well-being of affected children. The successful regeneration of human ear-shaped cartilage using a tissue engineering approach in a nude mouse represents a promising approach for auricular reconstruction. However, owing to technical issues in cell source, shape control, mechanical strength, biosafety, and long-term stability of the regenerated cartilage, human tissue engineered ear-shaped cartilage is yet to be applied clinically. Using expanded microtia chondrocytes, compound biodegradable scaffold, and in vitro culture technique, we engineered patient-specific ear-shaped cartilage in vitro. Moreover, the cartilage was used for auricle reconstruction of five microtia patients and achieved satisfactory aesthetical outcome with mature cartilage formation during 2.5years follow-up in the first conducted case. Different surgical procedures were also employed to find the optimal approach for handling tissue engineered grafts. In conclusion, the results represent a significant breakthrough in clinical translation of tissue engineered human ear-shaped cartilage given the established in vitro engineering technique and suitable surgical procedure. This study was registered in Chinese Clinical Trial Registry (ChiCTR-ICN-14005469).
Collapse
|
43
|
Lin AJ, Bernstein JL, Spector JA. Ear Reconstruction and 3D Printing: Is It Reality? CURRENT SURGERY REPORTS 2018. [DOI: 10.1007/s40137-018-0198-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Zhou G, Jiang H, Yin Z, Liu Y, Zhang Q, Zhang C, Pan B, Zhou J, Zhou X, Sun H, Li D, He A, Zhang Z, Zhang W, Liu W, Cao Y. In Vitro Regeneration of Patient-specific Ear-shaped Cartilage and Its First Clinical Application for Auricular Reconstruction. EBioMedicine 2018; 28:287-302. [PMID: 29396297 PMCID: PMC5835555 DOI: 10.1016/j.ebiom.2018.01.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/17/2022] Open
Abstract
Microtia is a congenital external ear malformation that can seriously influence the psychological and physiological well-being of affected children. The successful regeneration of human ear-shaped cartilage using a tissue engineering approach in a nude mouse represents a promising approach for auricular reconstruction. However, owing to technical issues in cell source, shape control, mechanical strength, biosafety, and long-term stability of the regenerated cartilage, human tissue engineered ear-shaped cartilage is yet to be applied clinically. Using expanded microtia chondrocytes, compound biodegradable scaffold, and in vitro culture technique, we engineered patient-specific ear-shaped cartilage in vitro. Moreover, the cartilage was used for auricle reconstruction of five microtia patients and achieved satisfactory aesthetical outcome with mature cartilage formation during 2.5 years follow-up in the first conducted case. Different surgical procedures were also employed to find the optimal approach for handling tissue engineered grafts. In conclusion, the results represent a significant breakthrough in clinical translation of tissue engineered human ear-shaped cartilage given the established in vitro engineering technique and suitable surgical procedure. This study was registered in Chinese Clinical Trial Registry (ChiCTR-ICN-14005469). Patient-specific ear-shaped cartilage was engineered in vitro using expanded MCs and compound biodegradable scaffold. The first microtia case treated with the tissue engineered ear-shaped cartilage was follow-up for 2.5 years. Other four cases with similar and different surgical procedures were also presented.
Microtia is a congenital external ear malformation that can seriously influence the psychological and physiological well-being of affected children. Using expanded microtia chondrocytes, compound biodegradable scaffold, and in vitro culture technique, we engineered patient-specific ear-shaped cartilage in vitro, and performed a pilot clinical trial of auricle reconstruction using the engineered ear cartilage on five patients. Satisfactory aesthetical outcome with mature cartilage formation was achieved with the longest follow-up of 2.5 years.
Collapse
Affiliation(s)
- Guangdong Zhou
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China; Research Institute of Plastic Surgery, Plastic Surgery Hospital, Wei Fang Medical College, Weifang, Shandong Province, PR China
| | - Haiyue Jiang
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Zongqi Yin
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Yu Liu
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Qingguo Zhang
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Chen Zhang
- Department of Plastic Surgery, Xin Hua Hospital, Dalian University, Dalian, Liaoning Province, PR China
| | - Bo Pan
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Jiayu Zhou
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Xu Zhou
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Hengyun Sun
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Dan Li
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Aijuan He
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Zhiyong Zhang
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Wenjie Zhang
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Wei Liu
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Yilin Cao
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China; Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China.
| |
Collapse
|
45
|
Reighard CL, Hollister SJ, Zopf DA. Auricular reconstruction from rib to 3D printing. JOURNAL OF 3D PRINTING IN MEDICINE 2018; 2:35-41. [PMID: 29607095 PMCID: PMC5824712 DOI: 10.2217/3dp-2017-0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022]
Abstract
The human ear imparts critical form and function and remains one of the most challenging facial features to reconstruct. Over the past century, surgeons have developed numerous techniques and materials for total auricular reconstruction. Refined costal cartilage techniques have remained the gold standard for the past half-century. Recent advancements with novel materials, tissue engineering and 3D printing provide immense potential; however, prohibitive costs and regulatory steps remain as barriers to clinical translation.
Collapse
Affiliation(s)
| | - Scott J Hollister
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David A Zopf
- Otolaryngology – Head & Neck Surgery, Pediatric Division, University of Michigan Health Systems, CS Mott Children's Hospital, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Harata M, Watanabe M, Nagata S, Ko EC, Ohba S, Takato T, Hikita A, Hoshi K. Improving chondrocyte harvests with poly(2-hydroxyethyl methacrylate) coated materials in the preparation for cartilage tissue engineering. Regen Ther 2017; 7:61-71. [PMID: 30271853 PMCID: PMC6149190 DOI: 10.1016/j.reth.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 11/07/2022] Open
Abstract
Remarkable advances have been made in cartilage regenerative medicine to cure congenital anomalies including microtia, tissue defects caused by craniofacial injuries, and geriatric diseases such as osteoarthritis. However, those procedures require a substantial quantity of chondrocytes for tissue engineering. Previous studies have required several passages to obtain sufficient cell numbers for three-dimensional and monolayer cultures. Thus, our objective was to improve the quantity of chondrocytes that can be obtained by examining an anti-fouling polyhydrophilic chemical called poly(2-hydroxyethyl methacrylate) (pHEMA). To determine the effectiveness of the chemical, pHEMA solution was applied via dip-coating to centrifuge tubes, serological pipettes, and pipette tips. The cell quantity obtained during standard cell culturing and passaging procedures was measured alongside non-coated materials as a control. A significant 2.2-fold increase of chondrocyte yield was observed after 2 passages when pHEMA was applied to the tubes compared to when non-coated tubes were utilized. The 3-dimensional chondrocyte pellets prepared from the respective cell populations and transplanted into nude mice were histologically and biochemically analyzed. No evidence of difference in matrix production for in vitro and in vivo cultures was found as well as similar proliferation rates and colony formation abilities. The use of pHEMA provides a powerful alternative method for expanding the quantity of chondrocytes harvested and handled during cell isolation and passaging to enhance cartilage tissue engineering.
Collapse
Affiliation(s)
- Mikako Harata
- Division of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
- Department of Oral-maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Watanabe
- Division of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoru Nagata
- Nagata Microtia and Reconstructive Plastic Surgery Clinic, Saitama, Japan
| | | | - Shinsuke Ohba
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Takato
- Division of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
- Department of Oral-maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuto Hoshi
- Division of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
- Department of Oral-maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Lee JM, Sultan MT, Kim SH, Kumar V, Yeon YK, Lee OJ, Park CH. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel. Int J Mol Sci 2017; 18:E1707. [PMID: 28777314 PMCID: PMC5578097 DOI: 10.3390/ijms18081707] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel.
Collapse
Affiliation(s)
- Jung Min Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Vijay Kumar
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Yeung Kyu Yeon
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 200-704, Korea.
| |
Collapse
|
48
|
Auricular Tissue Engineering Using Osteogenic Differentiation of Adipose Stem Cells with Small Intestine Submucosa. Plast Reconstr Surg 2017; 140:297-305. [DOI: 10.1097/prs.0000000000003522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Gu Y, Kang N, Dong P, Liu X, Wang Q, Fu X, Yan L, Jiang H, Cao Y, Xiao R. Chondrocytes from congenital microtia possess an inferior capacity for in vivo cartilage regeneration to healthy ear chondrocytes. J Tissue Eng Regen Med 2017; 12:e1737-e1746. [PMID: 27860439 DOI: 10.1002/term.2359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 01/01/2023]
Abstract
The remnant auricular cartilage from microtia has become a valuable cell source for ear regeneration. It is important to clarify the issue of whether the genetically defective microtia chondrocytes could engineer cartilage tissue comparable to healthy ear chondrocytes. In the current study, the histology and cell yield of native microtia and normal ear cartilage were investigated, and the biological characteristics of derived chondrocytes examined, including proliferation, chondrogenic phenotype and cell migration. Furthermore, the in vivo cartilage-forming capacity of passaged microtia and normal auricular chondrocytes were systematically compared by seeding them onto polyglycolic acid/polylactic acid scaffold to generate tissue engineered cartilage in nude mice. Through histological examinations and quantitative analysis of glycosaminoglycan, Young's modulus, and the expression of cartilage-related genes, it was found that microtia chondrocytes had a slower dedifferentiation rate with the decreased expression of stemness-related genes, and weaker migration ability than normal ear chondrocytes, and the microtia chondrocytes-engineered cartilage was biochemically and biomechanically inferior to that constructed using normal ear chondrocytes. This study provides valuable information for the clinical application of the chondrocytes derived from congenital microtia to engineer cartilage. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yunpeng Gu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ning Kang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ping Dong
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Haiyue Jiang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yilin Cao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
50
|
Morrison KA, Cohen BP, Asanbe O, Dong X, Harper A, Bonassar LJ, Spector JA. Optimizing cell sourcing for clinical translation of tissue engineered ears. Biofabrication 2016; 9:015004. [PMID: 27917821 DOI: 10.1088/1758-5090/9/1/015004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background . Currently, the major impediment to clinical translation of our previously described platform for the fabrication of high fidelity, patient-specific tissue engineered ears is the development of a clinically optimal cell sourcing strategy. A limited autologous auricular chondrocyte (AuC) supply in conjunction with rapid chondrocyte de-differentiation during in vitro expansion currently makes clinical translation more challenging. Mesenchymal stem cells (MSCs) offer significant promise due to their inherent chondrogenic potential, and large availability through minimally invasive procedures. Herein, we demonstrate the promise of AuC/MSC co-culture to fabricate elastic cartilage using 50% fewer AuC than standard approaches. METHODS Bovine auricular chondrocytes (bAuC) and bovine MSC (bMSC) were encapsulated within 10 mg ml-1 type I collagen hydrogels in ratios of bAuC:bMSC 100:0, 50:50, and 0:100 at a density of 25 million cells ml-1 hydrogel. One mm thick collagen sheet gels were fabricated, and thereafter, 8 mm diameter discs were extracted using a biopsy punch. Discs were implanted subcutaneously in the dorsa of nude mice (NU/NU) and harvested after 1 and 3 months. RESULTS Gross analysis of explanted discs revealed bAuC:bMSC co-culture discs maintained their size and shape, and exhibited native auricular cartilage-like elasticity after 1 and 3 months of implantation. Co-culture discs developed into auricular cartilage, with viable chondrocytes within lacunae, copious proteoglycan and elastic fiber deposition, and a distinct perichondrial layer. Biochemical analysis confirmed that co-culture discs deposited critical cartilage molecular components more readily than did both bAuC and bMSC discs after 1 and 3 months, and proteoglycan content significantly increased between 1 and 3 months. CONCLUSION We have successfully demonstrated an innovative cell sourcing strategy that facilitates our efforts to achieve clinical translation of our high fidelity, patient-specific ears for auricular reconstruction utilizing only half of the requisite auricular chondrocytes to fabricate mature elastic cartilage.
Collapse
Affiliation(s)
- Kerry A Morrison
- Laboratory for Bioregenerative Medicine and Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|