1
|
Madappura AP, Madduri S. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Comput Struct Biotechnol J 2023; 21:4868-4886. [PMID: 37860231 PMCID: PMC10583100 DOI: 10.1016/j.csbj.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023] Open
Abstract
Hydrogel scaffolds hold great promise for developing novel treatment strategies in the field of regenerative medicine. Within this context, silk fibroin (SF) has proven to be a versatile material for a wide range of tissue engineering applications owing to its structural and functional properties. In the present review, we report on the design and fabrication of different forms of SF-based scaffolds for tissue regeneration applications, particularly for skin, bone, and neural tissues. In particular, SF hydrogels have emerged as delivery systems for a wide range of bio-actives. Given the growing interest in the field, this review has a primary focus on the fabrication, characterization, and properties of SF hydrogels. We also discuss their potential for the delivery of drugs, stem cells, genes, peptides, and growth factors, including future directions in the field of SF hydrogel scaffolds.
Collapse
Affiliation(s)
- Alakananda Parassini Madappura
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044 Hsinchu, Taiwan, Republic of China
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Surgery, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Abdal Dayem A, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG. Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 2023; 160:114376. [PMID: 36764131 DOI: 10.1016/j.biopha.2023.114376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Young Bong Kim
- Department of Biomedical Science & Engineering, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Bakhshandeh B, Ranjbar N, Abbasi A, Amiri E, Abedi A, Mehrabi M, Dehghani Z, Pennisi CP. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. Bioeng Transl Med 2023; 8:e10383. [PMID: 36925674 PMCID: PMC10013802 DOI: 10.1002/btm2.10383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue engineering (TE) is currently considered a cutting-edge discipline that offers the potential for developing treatments for health conditions that negatively affect the quality of life. This interdisciplinary field typically involves the combination of cells, scaffolds, and appropriate induction factors for the regeneration and repair of damaged tissue. Cell fate decisions, such as survival, proliferation, or differentiation, critically depend on various biochemical and biophysical factors provided by the extracellular environment during developmental, physiological, and pathological processes. Therefore, understanding the mechanisms of action of these factors is critical to accurately mimic the complex architecture of the extracellular environment of living tissues and improve the efficiency of TE approaches. In this review, we recapitulate the effects that biochemical and biophysical induction factors have on various aspects of cell fate. While the role of biochemical factors, such as growth factors, small molecules, extracellular matrix (ECM) components, and cytokines, has been extensively studied in the context of TE applications, it is only recently that we have begun to understand the effects of biophysical signals such as surface topography, mechanical, and electrical signals. These biophysical cues could provide a more robust set of stimuli to manipulate cell signaling pathways during the formation of the engineered tissue. Furthermore, the simultaneous application of different types of signals appears to elicit synergistic responses that are likely to improve functional outcomes, which could help translate results into successful clinical therapies in the future.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Nika Ranjbar
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Elahe Amiri
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Mohammad‐Reza Mehrabi
- Department of Microbial Biotechnology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Dehghani
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| |
Collapse
|
4
|
Goto R, Nakahata M, Sakai S. Phenol-Grafted Alginate Sulfate Hydrogel as an Injectable FGF-2 Carrier. Gels 2022; 8:gels8120818. [PMID: 36547342 PMCID: PMC9778324 DOI: 10.3390/gels8120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
In the field of tissue engineering, fibroblast growth factor-2 (FGF-2) effectively regenerates damaged tissue and restores its biological function. However, FGF-2 readily diffuses and degrades under physiological conditions. Therefore, methods for the sustained and localized delivery of FGF-2 are needed. Drug delivery systems using hydrogels as carriers have attracted significant interest. Injectable hydrogels with an affinity for FGF-2 are candidates for FGF-2 delivery systems. In this study, we fabricated a hydrogel from phenol-grafted alginate sulfate (AlgS-Ph) and investigated its application to the delivery of FGF-2. The hydrogel was prepared under mild conditions via horseradish peroxidase (HRP)-mediated cross-linking. Surface plasmon resonance (SPR) measurements show that the AlgS-Ph hydrogel has an affinity for FGF-2 in accordance with its degree of sulfation. Conditions for the preparation of the AlgS-Ph hydrogel, including HRP and H2O2 concentrations, are optimized so that the hydrogel can be used as an injectable drug carrier. The hydrogel shows no cytotoxicity when using 10T1/2 cells as a model cell line. The angiogenesis assay shows that FGF-2 released from the AlgS-Ph hydrogel promotes the formation of blood vessels. These results indicate that the AlgS-Ph hydrogel is a suitable candidate for the FGF-2 carrier.
Collapse
Affiliation(s)
- Ryota Goto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
- Correspondence: (M.N.); (S.S.)
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Correspondence: (M.N.); (S.S.)
| |
Collapse
|
5
|
Ferreira MJS, Mancini FE, Humphreys PA, Ogene L, Buckley M, Domingos MAN, Kimber SJ. Pluripotent stem cells for skeletal tissue engineering. Crit Rev Biotechnol 2022; 42:774-793. [PMID: 34488516 DOI: 10.1080/07388551.2021.1968785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we review the use of human pluripotent stem cells for skeletal tissue engineering. A number of approaches have been used for generating cartilage and bone from both human embryonic stem cells and induced pluripotent stem cells. These range from protocols relying on intrinsic cell interactions and signals from co-cultured cells to those attempting to recapitulate the series of steps occurring during mammalian skeletal development. The importance of generating authentic tissues rather than just differentiated cells is emphasized and enabling technologies for doing this are reported. We also review the different methods for characterization of skeletal cells and constructs at the tissue and single-cell level, and indicate newer resources not yet fully utilized in this field. There have been many challenges in this research area but the technologies to overcome these are beginning to appear, often adopted from related fields. This makes it more likely that cost-effective and efficacious human pluripotent stem cell-engineered constructs may become available for skeletal repair in the near future.
Collapse
Affiliation(s)
- Miguel J S Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul A Humphreys
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Buckley
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Marco A N Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Surface Creasing-Induced Micropatterned GelMA Using Heating-Hydration Fabrication for Effective Vascularization. Tissue Eng Regen Med 2021; 18:759-773. [PMID: 34387853 PMCID: PMC8440774 DOI: 10.1007/s13770-021-00345-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Surface modification is used to modify the biomaterials for the regulation of cell culture using different approaches, such as chemical graft and mechanical treatment. However, those conventional methodologies often require precise fabrication in a high resolution involving either high cost or laborious steps to remove chemical residues that are toxic to the cells. METHODS A novel and simple method was proposed and evaluated to rapidly generate surface ceases on the gelatin methacrylate (gelMA) surface using the heating-hydration process. Human umbilical vein endothelial cells (HUVECs) were cultured on the gelMA surface. The surface binding was characterized using the RGD (Arg-Gly-Asp) antibodies and cell adhesion pattern captured by scanning electron microscopy. The effect of the heating-hydration parameters on the creasing formation was investigated. The morphology of HUVECs cultured on such micropatterned gelMA was characterized and compared. RESULTS It is found that the hydration solution, gelMA mixture, and hydration rate are the major factors that influence the cracking sizes in the range from 20 to 120 µm which resulted in capillary-like patterns on the gelMA surface. Low concentration of gelMA, high water concentration of cooling agent, and slow hydration rate result in the long creases, and heating of at least 60 min is required for complete dehydration. Strong fluorescence was around the creases with RGD-staining. Consequently, micropatterned gelMA demonstrated good biocompatibility with endothelial cells with more than 95% cell viability and continuous cell proliferation throughout 2 weeks as well as a good trace of neovascular formation. In comparison, normal gelMA surface did not exhibit RGD-fluorescent signals, and the cultured HUVECs on it were rounded with no spreading for network formation. CONCLUSION The heating-hydration approach can successfully and easily produce the micropatterned gelMA that allows rapid and effective vascularization to potentially improve the functionalities of the tissue-engineered construct.
Collapse
|
7
|
Shen H, Hu X. Growth factor loading on aliphatic polyester scaffolds. RSC Adv 2021; 11:6735-6747. [PMID: 35423177 PMCID: PMC8694921 DOI: 10.1039/d0ra10232f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Cells, scaffolds and growth factors are three elements of tissue engineering. The success of tissue engineering methods relies on precise and dynamic interactions between cells, scaffolds and growth factors. Aliphatic polyester scaffolds are promising tissue engineering scaffolds that possess good mechanical properties, low immunogenicity, non-toxicity, and adjustable degradation rates. How growth factors can be loaded onto/into aliphatic polyester scaffolds and be constantly released with the required bioactivity to regulate cell growth and promote defect tissue repair and regeneration has become the main concern of tissue engineering researchers. In this review, the existing main methods of loading growth factors on aliphatic polyester scaffolds, the release behavior of loaded growth factors and their positive effects on cell, tissue repair and regeneration are introduced. Advantages and shortcomings of each method also are mentioned. It is still a great challenge to control the release of loaded growth factors at a certain time and at a concentration simulating the biological environment of native tissue.
Collapse
Affiliation(s)
- Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China +86-10-62581241
| | - Xixue Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 China +86-10-82545676
| |
Collapse
|
8
|
Gelatin Microsphere for Cartilage Tissue Engineering: Current and Future Strategies. Polymers (Basel) 2020; 12:polym12102404. [PMID: 33086577 PMCID: PMC7603179 DOI: 10.3390/polym12102404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The gelatin microsphere (GM) provides an attractive option for tissue engineering due to its versatility, as reported by various studies. This review presents the history, characteristics of, and the multiple approaches to, the production of GM, and in particular, the water in oil emulsification technique. Thereafter, the application of GM as a drug delivery system for cartilage diseases is introduced. The review then focusses on the emerging application of GM as a carrier for cells and biologics, and biologics delivery within a cartilage construct. The influence of GM on chondrocytes in terms of promoting chondrocyte proliferation and chondrogenic differentiation is highlighted. Furthermore, GM seeded with cells has been shown to have a high tendency to form aggregates; hence the concept of using GM seeded with cells as the building block for the formation of a complex tissue construct. Despite the advancement in GM research, some issues must still be addressed, particularly the improvement of GM’s ability to home to defect sites. As such, the strategy of intraarticular injection of GM seeded with antibody-coated cells is proposed. By addressing this in future studies, a better-targeted delivery system, that would result in more effective intervention, can be achieved.
Collapse
|
9
|
Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020; 120:10608-10661. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Ahmad SS, Ahmad K, Lee EJ, Lee YH, Choi I. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells 2020; 9:cells9081773. [PMID: 32722232 PMCID: PMC7465464 DOI: 10.3390/cells9081773] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is an essential tissue that attaches to bones and facilitates body movements. Insulin-like growth factor-1 (IGF-1) is a hormone found in blood that plays an important role in skeletal myogenesis and is importantly associated with muscle mass entity, strength development, and degeneration and increases the proliferative capacity of muscle satellite cells (MSCs). IGF-1R is an IGF-1 receptor with a transmembrane location that activates PI3K/Akt signaling and possesses tyrosine kinase activity, and its expression is significant in terms of myoblast proliferation and normal muscle mass maintenance. IGF-1 synthesis is elevated in MSCs of injured muscles and stimulates MSCs proliferation and myogenic differentiation. Mechanical loading also affects skeletal muscle production by IGF-1, and low IGF-1 levels are associated with low handgrip strength and poor physical performance. IGF-1 is potentially useful in the management of Duchenne muscular dystrophy, muscle atrophy, and promotes neurite development. This review highlights the role of IGF-1 in skeletal muscle, its importance during myogenesis, and its involvement in different disease conditions.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Yong-Ho Lee
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan 38430, Korea
- Correspondence: (Y.-H.L.); (I.C.); Fax: +82-53-810-4769
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (Y.-H.L.); (I.C.); Fax: +82-53-810-4769
| |
Collapse
|
11
|
Kong D, Shi Y, Gao Y, Fu M, Kong S, Lin G. Preparation of BMP-2 loaded MPEG-PCL microspheres and evaluation of their bone repair properties. Biomed Pharmacother 2020; 130:110516. [PMID: 32674018 DOI: 10.1016/j.biopha.2020.110516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/17/2023] Open
Abstract
Autologous or allogeneic bone grafts are common methods to treat bone defects. Bone tissue engineering combining carrier material with the active factor can induce a generation of new bone at the bone defect site. However, its clinical application is restricted by the limited donors, the high morbidity at the donor site, the low activity in vivo, and dose-independent adverse effect. To overcome the limitations of traditional therapies, it is urgent to find and develop a repair material that can replace natural bones. Hence, we designed and prepared suitable MPEG-PCL microspheres loaded bone morphogenetic protein-2 (BMP-2/MPEG-PCL-MS) to effectively solve the problem mentioned above, prolong its reaction time at the targeted site, and avoid the pain of patients caused by frequent administration. The physicochemical properties and in vitro release behaviors were good. The microspheres showed high biocompatibility and strongly induced osteogenesis in vivo. BMP-2/MPEG-PCL-MS has been proven to exert sustained-release in vivo and maintain the inherent BMP-2 activity. They can be directly injected into the bone defect site, or implanted to a large bone defect site together with stent material to exert therapeutic effects. Hence, this smart drug delivery system has promising potential for clinical applications and provides a well-controlled design for combination of tissue engineering and pharmaceutics for further exploration.
Collapse
Affiliation(s)
- Deyin Kong
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yan Gao
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mengguang Fu
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shengli Kong
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| |
Collapse
|
12
|
Kim HY, An BS, Kim MJ, Jeoung YJ, Byun JH, Lee JH, Oh SH. Signaling Molecule-Immobilized Porous Particles with a Leaf-Stacked Structure as a Bioactive Filler System. ACS Biomater Sci Eng 2020; 6:2231-2239. [PMID: 33455335 DOI: 10.1021/acsbiomaterials.9b01731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ultimate purpose of this study was to develop a bioactive filler system that would allow volume restoration (passive property) and continuous release of signaling molecules to recruit soft tissues (bioactive property) and thus effectively correct facial aging. To achieve this, we prepared porous particles with a leaf-stacked structure throughout the entire particle volume (LSS particles) using a simple heating-cooling technique. LSS particles were loaded with insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) separately, by immersing the particles in signaling molecule-containing solutions for target tissue recruitment (adipose by IGF-1 and blood vessels by VEGF). IGF-1 and VEGF were continuously released from LSS particles for 28 and 21 days in vitro, respectively, even without additional chemical/physical modifications, because of the unique morphology of the particles. Signaling molecules preserved their bioactivity in vitro (induction of adipogenic and angiogenic differentiation) and in vivo (recruitment of fat and blood vessels) for a sufficient period. Moreover, it was observed that the LSS particles themselves have stable volume retention characteristics in the body. Thus, we suggest that the signaling molecule-loaded LSS particles can function as a bioactive filler system for volume retention and target tissue regeneration.
Collapse
Affiliation(s)
- Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Bo Seul An
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Yeoung Jo Jeoung
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.,Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
13
|
Baek J, Lee E, Lotz MK, D'Lima DD. Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102090. [PMID: 31493556 DOI: 10.1016/j.nano.2019.102090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022]
Abstract
Mimicking the ultrastructural morphology of the meniscus with nanofiber scaffolds, coupled with controlled growth-factor delivery to the appropriate cells, can help engineer tissue with the potential to grow, mature, and regenerate after in vivo implantation. We electrospun nanofibers encapsulating platelet-derived growth factor (PDGF-BB), which is a potent mitogen and chemoattractant in a core of serum albumin contained within a shell of polylactic acid. We controlled the local PDGF-BB release by adding water-soluble polyethylene glycol to the polylactic acid shell to serve as a porogen. The novel core-shell nanofibers generated 3D scaffolds with an interconnected macroporous structure, with appropriate mechanical properties and with high cell compatibility. Incorporating PDGF-BB increased cell viability, proliferation, and infiltration, and upregulated key genes involved in meniscal extracellular matrix synthesis in human meniscal and synovial cells. Our results support proof of concept that these core-shell nanofibers can create a cell-favorable nanoenvironment and can serve as a system for sustained release of bioactive factors.
Collapse
Affiliation(s)
- Jihye Baek
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Emily Lee
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| | - Darryl D D'Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.
| |
Collapse
|
14
|
Chen T, Cao F, Wu X, Peng W, Zhi W, Weng J, Zhang X, Wang J. Constructing Gene-Enhanced Tissue Engineering for Regeneration and Repair of Osteochondral Defects. ACTA ACUST UNITED AC 2019; 3:e1900004. [PMID: 32648702 DOI: 10.1002/adbi.201900004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/06/2019] [Indexed: 11/07/2022]
Abstract
In situ sustained release of endogenous growth factors from cells is a challenge for repair and regeneration of tissue. Although recombinant adenovirus vectors are an effective delivery system that can prolong the release of growth factors and is very suitable for the therapy of growth factors, these recombinant adenovirus vectors that are widely used at present have low safety and stability in terms of long-term expression. In this study, the above problems are solved by knocking out both E1 and E3 genes at the same time and directly inserting the gene fragments encoding target proteins after the inverted terminal repeats. Finally, the combination of gene therapy with tissue engineering in regeneration and repair of full-thickness defects of osteochondral tissue are applied as an example. The results show that this strategy can achieve complete repair of articular osteochondral defects and recovery of their function, and meanwhile solve the problems of low safety and expression instability of recombinant adenovirus vectors. This method provides a bright prospect for the application of gene enhanced tissue engineering in the regeneration and repair of joint tissue, and also provides a reference for the repair and regeneration of other tissues.
Collapse
Affiliation(s)
- Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Fei Cao
- Department of Orthopaedics, Chengdu First People's Hospital, Chengdu, 610041, P. R. China
| | - Xin Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xingdong Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- National Engineering Research Center for Biomaterials, Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
15
|
Zeng HY, Huang YC. Basic fibroblast growth factor released from fucoidan-modified chitosan/alginate scaffolds for promoting fibroblasts migration. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1476-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Mu L, Sobotka S, Chen J, Nyirenda T. Nerve growth factor and basic fibroblast growth factor promote reinnervation by nerve-muscle-endplate grafting. Muscle Nerve 2017. [PMID: 28632904 DOI: 10.1002/mus.25726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION This study was designed to test whether exogenous application of nerve growth factor (NGF) and basic fibroblast growth factor (FGF-2) to muscles reinnervated with nerve-muscle-endplate band grafting (NMEG) could promote specific outcomes. METHODS The right sternomastoid muscle in adult rats was experimentally denervated and immediately reinnervated by implanting an NMEG pedicle from the ipsilateral sternohyoid muscle. A fibrin sealant containing NGF and FGF-2 was focally applied to the implantation site. Maximal tetanic force, muscle weight, regenerated axons, and motor endplates were analyzed 3 months after treatment. RESULTS Mean tetanic force, wet muscle weight, and number of regenerated axons in the treated muscles were 91%, 92%, and 84% of the contralateral controls, respectively. The majority of endplates (86%) in the treated muscles were reinnervated by regenerated axons. DISCUSSION Focal administration of NGF and FGF-2 promotes efficacy of the NMEG technique. Muscle Nerve 57: 449-459, 2018.
Collapse
Affiliation(s)
- Liancai Mu
- Department of Biomedical Research, Hackensack University Medical Center, 40 Prospect Avenue, Hackensack, New Jersey, 07601, USA
| | - Stanislaw Sobotka
- Department of Biomedical Research, Hackensack University Medical Center, 40 Prospect Avenue, Hackensack, New Jersey, 07601, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, New York, USA
| | - Jingming Chen
- Department of Biomedical Research, Hackensack University Medical Center, 40 Prospect Avenue, Hackensack, New Jersey, 07601, USA
| | - Themba Nyirenda
- Department of Biomedical Research, Hackensack University Medical Center, 40 Prospect Avenue, Hackensack, New Jersey, 07601, USA
| |
Collapse
|
17
|
Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. Eur J Pharm Biopharm 2017; 114:69-78. [PMID: 28087378 DOI: 10.1016/j.ejpb.2016.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/28/2022]
Abstract
The regeneration of articular cartilage remains an unresolved question despite the current access to a variety of tissue scaffolds activated with growth factors relevant to this application. Further advances might result from combining more than one of these factors; here, we propose a scaffold composition optimized for the dual delivery of BMP-7 and TGF-β3, two proteins with described chondrogenic activity. First, we tested in a mesenchymal stem cell micromass culture with TGF-β3 whether the exposure to microspheres loaded with BMP-7 would improve cartilage formation. Histology and qRT-PCR data confirmed that the sustained release of BMP-7 cooperates with TGF-β3 towards chondrogenic differentiation. Then, we optimized a scaffold prototype for tissue culture and dual encapsulation of BMP-7 and TGF-β3. The scaffolds were prepared from poly(lactic-co-glycolic acid), and BMP-7/TGF-β3 were loaded as nanocomplexes with heparin and Tetronic 1107. The scaffolds showed the sustained release of both proteins over four weeks, with minimal burst effect. We finally cultured human mesenchymal stem cells on these scaffolds, in the absence of exogenous chondrogenic factor supplementation. The cells cultured on the scaffolds loaded with BMP-7 and TGF-β3 showed clear signs of cartilage formation macroscopically and histologically. RT-PCR studies confirmed a clear upregulation of cartilage markers SOX9 and Aggrecan. In summary, scaffolds encapsulating BMP-7 and TGF-β3 can efficiently deliver a cooperative growth factor combination that drives efficient cartilage formation in human mesenchymal stem cell cultures. These results open attractive perspectives towards in vivo translation of this technology in cartilage regeneration experiments.
Collapse
Affiliation(s)
- Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Erea Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Advanced Regenerative Strategies for Human Knee Meniscus. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Schirmer L, Atallah P, Werner C, Freudenberg U. StarPEG-Heparin Hydrogels to Protect and Sustainably Deliver IL-4. Adv Healthc Mater 2016; 5:3157-3164. [PMID: 27860466 DOI: 10.1002/adhm.201600797] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/04/2016] [Indexed: 12/31/2022]
Abstract
A major limitation for the therapeutic applications of cytokines is their short half-life time. Glycosaminoglycans (GAGs), known to complex and stabilize cytokines in vivo, are therefore used to form 3D-biohybrid polymer networks capable of aiding the effective administration of Interleukin-4, a key regulator of the inflammatory response. Mimicking the in vivo situation of a protease-rich inflammatory milieu, star-shaped poly(ethylene glycol) (starPEG)-heparin hydrogels and starPEG reference hydrogels without heparin are loaded with Interleukin-4 and subsequently exposed to trypsin as a model protease. Heparin-containing hydrogels retain significantly higher amounts of the Interleukin-4 protein thus exhibiting a significantly higher specific activity than the heparin-free controls. StarPEG-heparin hydrogels are furthermore shown to enable a sustained delivery of the cytokine for time periods of more than two weeks. Primary murine macrophages adopt a wound healing supporting (M2) phenotype when conditioned with Interleukin-4 releasing starPEG-heparin hydrogels. The reported results suggest that GAG-based hydrogels offer valuable options for the effective administration of cytokines in protease-rich proinflammatory milieus such as chronic wounds of diabetic patients.
Collapse
Affiliation(s)
- Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| | - Passant Atallah
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
- Center for Regenerative Therapies Dresden (CRTD); Technische Universität Dresden; Fetscherstraße 105 01307 Dresden Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
20
|
Maruki H, Sato M, Takezawa T, Tani Y, Yokoyama M, Takahashi T, Toyoda E, Okada E, Aoki S, Mochida J, Kato Y. Effects of a cell-free method using collagen vitrigel incorporating TGF-β1 on articular cartilage repair in a rabbit osteochondral defect model. J Biomed Mater Res B Appl Biomater 2016; 105:2592-2602. [DOI: 10.1002/jbm.b.33792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Hideyuki Maruki
- Department of Orthopaedic Surgery; Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku; Tokyo 162-8666 Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine, 143 Shimokasuya; Isehara Kanagawa 259-1193 Japan
| | - Toshiaki Takezawa
- Transgenic Animal Research Center; National Institute of Agrobiological Sciences, 2 Ikenodai; Tsukuba Ibaraki 305-0901 Japan
| | - Yoshiki Tani
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine, 143 Shimokasuya; Isehara Kanagawa 259-1193 Japan
| | - Munetaka Yokoyama
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine, 143 Shimokasuya; Isehara Kanagawa 259-1193 Japan
| | - Takumi Takahashi
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine, 143 Shimokasuya; Isehara Kanagawa 259-1193 Japan
| | - Eriko Toyoda
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine, 143 Shimokasuya; Isehara Kanagawa 259-1193 Japan
| | - Eri Okada
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine, 143 Shimokasuya; Isehara Kanagawa 259-1193 Japan
| | - Shigehisa Aoki
- Department of Pathology and Microbiology Faculty of Medicine; Saga University, 5-1-1 Nabeshima; Saga 849-8501 Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine, 143 Shimokasuya; Isehara Kanagawa 259-1193 Japan
| | - Yoshiharu Kato
- Department of Orthopaedic Surgery; Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku; Tokyo 162-8666 Japan
| |
Collapse
|
21
|
Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1215263. [PMID: 27642587 PMCID: PMC5011507 DOI: 10.1155/2016/1215263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.
Collapse
|
22
|
Jayasuriya CT, Chen Y, Liu W, Chen Q. The influence of tissue microenvironment on stem cell-based cartilage repair. Ann N Y Acad Sci 2016; 1383:21-33. [PMID: 27464254 PMCID: PMC5599120 DOI: 10.1111/nyas.13170] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem/progenitor cells and induced pluripotent stem cells have become viable cell sources for prospective cell-based cartilage engineering and tissue repair. The development and function of stem cells are influenced by the tissue microenvironment. Specifically, the local tissue microenvironment can dictate how stem cells integrate into the existing tissue matrix and how successfully they can restore function to the damaged area in question. This review focuses on the microenvironmental features of articular cartilage and how they influence stem cell-based cartilage tissue repair. Also discussed are current tissue-engineering strategies used in combination with cell-based therapies, all of which are designed to mimic the natural properties of cartilage tissue in order to achieve a better healing response.
Collapse
Affiliation(s)
- Chathuraka T Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island.,Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yupeng Chen
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island.,Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenguang Liu
- Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Chen
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island.,Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Yamamoto M, Tabata Y, Ikada Y. Growth Factor Release from Gelatin Hydrogel for Tissue Engineering. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391159901400603] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the key technologies for regeneration of damaged and lost tissue is the sustained release of biologically active growth factors. The present study was undertaken to investigate sorption and desorption of various growth factors from biodegradable hydrogels prepared through glutaraldehyde crosslinking of gelatin with isoelectric points (IEPs) of 5.0 and 9.0, which are named "acidic" and "basic" gelatins, respectively, based on their overall charge. Basic bFGF and TGF-β1 were markedly sorbed with time in the acidic gelatin hydrogels, while less sorption took place in the basic gelatin hydrogels. This behavior was explained in terms of an electrostatic interaction between the basic growth factors and the acidic gelatin. However, BMP-2 was sorbed into the acidic gelatin hydrogel to a lesser extent than the other two growth factors, even though its IEP is also greater than 7.0. An in vivo experiment revealed that the acidic gelatin hydrogel was degraded with time, while growth factors were retained in the body for a longer time period as the in vitro sorption to the acidic gelatin hydrogel was larger. These findings indicate that the growth factors sonically complexes to the acidic gelatin hydrogel were released in vivo as a result of hydrogel degradation. Furthermore, animal experiments revealed that the biological performance of growth factors was enhanced by their sustaned release, in marked contrast to the growth factors administered in the solution form.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshito Ikada
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
24
|
Almeida HV, Mulhall KJ, O'Brien FJ, Kelly DJ. Stem cells display a donor dependent response to escalating levels of growth factor release from extracellular matrix-derived scaffolds. J Tissue Eng Regen Med 2016; 11:2979-2987. [PMID: 27402022 DOI: 10.1002/term.2199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/05/2016] [Accepted: 03/14/2016] [Indexed: 11/12/2022]
Abstract
Numerous growth factor delivery systems have been developed for tissue engineering. However, little is known about how the dose of a specific protein will influence tissue regeneration, or how different patients will respond to altered levels of growth factor presentation. The objective of the present study was to assess stem cell chondrogenesis within extracellular-matrix (ECM)-derived scaffolds loaded with escalating levels of transforming growth factor (TGF)-β3. It was also sought to determine if stem cells display a donor-dependent response to different doses of TGF-β3, from low (5 ng) to high (200 ng), released from such scaffolds. It was found that ECM-derived scaffolds possess the capacity to bind and release increasing amounts of TGF-β3, with between 60% and 75% of this growth factor released into the media over the first 12 days of culture. After seeding these scaffolds with human infrapatellar fat pad-derived stem cells (FPSCs), it was found that cartilage-specific ECM accumulation was greatest for the higher levels of growth factor loading. Importantly, soak-loading cartilage ECM-derived scaffolds with high levels of TGF-β3 always resulted in at least comparable levels of chondrogenesis to controls where this growth factor was continuously added to the culture media. Similar results were observed for FPSCs from all donors, although the absolute level of secreted matrix did vary from donor to donor. Therefore, while no single growth factor release profile will be optimal for all patients, the results of this study suggest that the combination of a highly porous cartilage ECM-derived scaffold coupled with appropriate levels of TGF-β3 can consistently drive chondrogenesis of adult stem cells. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Henrique V Almeida
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | | | - Fergal J O'Brien
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
25
|
Lou ZC, Yang J, Tang Y, Fu YH. Topical application of epidermal growth factor with no scaffold material on the healing of human traumatic tympanic membrane perforations. Clin Otolaryngol 2016; 41:744-749. [PMID: 26825650 DOI: 10.1111/coa.12627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We evaluated the effects of conservative treatment and topical application of epidermal growth factor (EGF) with no scaffold material on the healing of human traumatic tympanic membrane perforations (TMPs). STUDY DESIGN Prospective, randomised clinical trial. METHODS A prospective analysis was performed between January 2015 and March 2015 for the treatment of human traumatic TMPs. The closure rate, closure time, hearing gain and rate of purulent otorrhoea were compared between the topical application of EGF and conservative treatment. RESULT In total, 97 patients were analysed. The total closure rates did not significantly differ between the observation and EGF groups (83.0% versus 92.0%, P = 0.182). The total average closure time in the observation group was significantly longer than in the EGF group (25.1 ± 10.5 versus 11.7 ± 5.2 days, P = 0.001). When the closure rate was evaluated according to perforation size, no significant difference was seen for medium or large perforations (P = 0.18 and 0.21, respectively). When closure time was evaluated according to perforation size, a significant difference was seen for medium and large perforations (P = 0.001). CONCLUSIONS This study suggests that topical application of EGF with no scaffold material may significantly shorten the closure time of human traumatic TMPs. Such a shorter recovery time may lead to reduced healthcare costs. This alternative technique to a classic myringoplasty is particularly beneficial and suitable for the closure of large human traumatic TMPs.
Collapse
Affiliation(s)
- Z C Lou
- Department of Otorhinolaryngology, The Affiliated YiWu Hospital of Wenzhou Medical University, Zhejiang, 322000, China
| | - J Yang
- Department of Otorhinolaryngology, The Affiliated YiWu Hospital of Wenzhou Medical University, Zhejiang, 322000, China
| | - Y Tang
- Department of pathology, The Affiliated YiWu Hospital of Wenzhou Medical University, Zhejiang, 322000, China
| | - Y H Fu
- Department of General Medicine, Wenzhou Medical University, Renji College, Zhejiang, 325035, China
| |
Collapse
|
26
|
Kou D, Du M, Hou X, Chen B, Li X, Fang Y, Zhao Y, Wang H, Wang L, Dai J. Centimeter-sized biomimetic bone constructs fabricated via CBD-BMP2-collagen microcarriers and BMSC-gelatin microspheres. J Mater Chem B 2016; 4:461-470. [DOI: 10.1039/c5tb02048d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cell-culture modules and function-control modules could be easily assembled into the aimed tissue in “bottom-up” approaches.
Collapse
|
27
|
Sheikh L, Tripathy S, Nayar S. Biomimetic matrix mediated room temperature synthesis and characterization of nano-hydroxyapatite towards targeted drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra06759j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nucleation and growth of hydroxyapatite nanoparticles in the presence of different matrices acting as a potent drug delivery vehicle.
Collapse
Affiliation(s)
- Lubna Sheikh
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi
- India
- CSIR-Indian Institute of Chemical Biology
- Kolkata
| | - Sucheta Tripathy
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi
- India
- CSIR-Indian Institute of Chemical Biology
- Kolkata
| | - Suprabha Nayar
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi
- India
- CSIR-National Metallurgical Laboratory
- Jmashedpur-831007
| |
Collapse
|
28
|
Du M, Chen B, Meng Q, Liu S, Zheng X, Zhang C, Wang H, Li H, Wang N, Dai J. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers. Biofabrication 2015; 7:044104. [PMID: 26684899 DOI: 10.1088/1758-5090/7/4/044104] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting.
Collapse
Affiliation(s)
- Mingchun Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. ZonHon Biopharma Institute, Inc., Changzhou 213022, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Swed A, Cordonnier T, Dénarnaud A, Boyer C, Guicheux J, Weiss P, Boury F. Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Wei Q, Pohl TLM, Seckinger A, Spatz JP, Cavalcanti-Adam EA. Regulation of integrin and growth factor signaling in biomaterials for osteodifferentiation. Beilstein J Org Chem 2015; 11:773-83. [PMID: 26124879 PMCID: PMC4464188 DOI: 10.3762/bjoc.11.87] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/07/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cells respond to the microenvironment (niche) they are located in. Under natural conditions, the extracellular matrix (ECM) is the essential component the in stem cell niche, in which both integrin ligands and growth factors are important regulators to directly or indirectly modulate the cell behavior. In this review, we summarize the current knowledge about the potential of integrin ligands and growth factors to induce osteogenic differentiation of stem cells, and discuss the signaling pathways that are initiated by both individual and cooperative parameters. The joint effect of integrin ligands and growth factors is highlighted as the multivalent interactions for bone therapy.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany ; Department of New Materials and Biosystems, Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Theresa L M Pohl
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany ; Department of New Materials and Biosystems, Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anja Seckinger
- Department of Internal Medicine V, Oncology, Hematology, and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany ; Department of New Materials and Biosystems, Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Elisabetta A Cavalcanti-Adam
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany ; Department of New Materials and Biosystems, Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
31
|
Shen H, Niu Y, Hu X, Yang F, Wang S, Wu D. A biomimetic 3D microtubule-orientated poly(lactide-co-glycolide) scaffold with interconnected pores for tissue engineering. J Mater Chem B 2015; 3:4417-4425. [PMID: 32262785 DOI: 10.1039/c5tb00167f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An ideal tissue engineering scaffold should imitate physical and biochemical cues of natural extracellular matrix and have interconnected porous structures with high porosity to provide adequate space for cell seeding, growth and proliferation, as well as nutrient delivery and metabolized product elimination. In this study, we examined the feasibility of fabricating microtubule-orientated poly(lactide-co-glycolide) (PLGA) scaffolds with interconnected pores (denoted as MOIP-PLGA) by an improved thermal-induced phase separation technique. We successfully constructed MOIP-PLGA using 1,4-dioxane as the first solvent and benzene or water with lower freezing point as the second solvent. Especially, when water was used, the MOIP-PLGA had higher porosity and it could guide rabbit aortic smooth muscle cells (SMCs) to better grow along the microtubule direction of the scaffold. Comparing with microtubule-orientated scaffold without interconnected pores (denoted as MONIP-PLGA), the proliferation and viability of SMCs cultured on MOIP-PLGA were higher. Moreover, basic fibroblast growth factor could be effectively bound on MOIP-PLGA by a plasma treatment technique and the growth factor could be slowly released in vitro, maintaining bioactivity.
Collapse
Affiliation(s)
- Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
32
|
Izadifar M, Haddadi A, Chen X, Kelly ME. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering. NANOTECHNOLOGY 2015; 26:012001. [PMID: 25474543 DOI: 10.1088/0957-4484/26/1/012001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, 57 Campus Drive, University of Saskatchewan, Saskatoon, SK, S7N5A9, Canada
| | | | | | | |
Collapse
|
33
|
Hrynyk M, Neufeld RJ. Insulin and wound healing. Burns 2014; 40:1433-46. [PMID: 24810536 DOI: 10.1016/j.burns.2014.03.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 02/27/2014] [Accepted: 03/28/2014] [Indexed: 12/11/2022]
Abstract
Skin is a dynamic and complex organ that relies on the interaction of different cell types, biomacromolecules and signaling molecules. Injury triggers a cascade of events designed to quickly restore skin integrity. Depending on the size and severity of the wound, extensive physiological and metabolic changes can occur, resulting in impaired wound healing and increased morbidity resulting in higher rates of death. While wound dressings provide a temporary barrier, they are inherently incapable of significantly restoring metabolic upsets, post-burn insulin resistance, and impaired wound healing in patients with extensive burns. Exogenous insulin application has therefore been investigated as a potential therapeutic intervention for nearly a century to improve wound recovery. This review will highlight the important achievements that demonstrate insulin's ability to stimulate cellular migration and burn wound recovery, as well as providing a perspective on future therapeutic applications and research directions.
Collapse
Affiliation(s)
- Michael Hrynyk
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
34
|
Boekhoven J, Stupp SI. 25th anniversary article: supramolecular materials for regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1642-59. [PMID: 24496667 PMCID: PMC4015801 DOI: 10.1002/adma.201304606] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/22/2013] [Indexed: 05/17/2023]
Abstract
In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine.
Collapse
Affiliation(s)
- Job Boekhoven
- Institute for Bio Nanotechnology in Medicine, Northwestern University, Chicago, Illinois, USA
| | - Samuel I. Stupp
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Institute for Bio Nanotechnology in Medicine, Northwestern University, Chicago, Illinois, USA, , Homepage: http://stupp.northwestern.edu
| |
Collapse
|
35
|
Lee JY, Kim SM, Kim MJ, Lee JH. Controlled release of nerve growth factor from heparin-conjugated fibrin gel within the nerve growth factor-delivering implant. J Korean Assoc Oral Maxillofac Surg 2014; 40:3-10. [PMID: 24627836 PMCID: PMC3949490 DOI: 10.5125/jkaoms.2014.40.1.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/28/2023] Open
Abstract
Objectives Although nerve growth factor (NGF) could promote the functional regeneration of an injured peripheral nerve, it is very difficult for NGF to sustain the therapeutic dose in the defect due to its short half-life. In this study, we loaded the NGF-bound heparin-conjugated fibrin (HCF) gel in the NGF-delivering implants and analyzed the time-dependent release of NGF and its bioactivity to evaluate the clinical effectiveness. Materials and Methods NGF solution was made of 1.0 mg of NGF and 1.0 mL of phosphate buffered saline (PBS). Experimental group A consisted of three implants, in which 0.25 µL of NGF solution, 0.75 µL of HCF, 1.0 µL of fibrinogen and 2.0 µL of thrombin was injected via apex hole with micropipette and gelated, were put into the centrifuge tube. Three implants of experimental group B were prepared with the mixture of 0.5 µL of NGF solution, 0.5 µL HCF, 1.0 µL of fibrinogen and 2.0 µL of thrombin. These six centrifuge tubes were filled with 1.0 mL of PBS and stirred in the water-filled beaker at 50 rpm. At 1, 3, 5, 7, 10, and 14 days, 1.0 mL of solution in each tubes was collected and preserved at -20℃ with adding same amount of fresh PBS. Enzyme-linked immunosorbent assay (ELISA) was done to determine in vitro release profile of NGF and its bioactivity was evaluated with neural differentiation of pheochromocytoma (PC12) cells. Results The average concentration of released NGF in the group A and B increased for the first 5 days and then gradually decreased. Almost all of NGF was released during 10 days. Released NGF from two groups could promote neural differentiation and neurite outgrowth of PC12 cells and these bioactivity was maintained over 14 days. Conclusion Controlled release system using NGF-HCF gel via NGF-delivering implant could be an another vehicle of delivering NGF to promote the nerve regeneration of dental implant related nerve damage.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Department of Oral and Maxillofacial Surgery, Korea University Guro Hospital, Seoul, Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Myung-Jin Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
36
|
Vasita R, Katti DS. Growth factor-delivery systems for tissue engineering: a materials perspective. Expert Rev Med Devices 2014; 3:29-47. [PMID: 16359251 DOI: 10.1586/17434440.3.1.29] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transplantation of organs, their surgical reconstruction or implantation of synthetic devices that can perform the function of organs, are the currently available methods for treating loss of tissue/organs in humans. However, the limitations associated with these techniques have led to the development of tissue engineering. One of the primary goals of tissue engineering is to provide growth factor delivery systems that can induce desired cell responses both in vitro and in vivo, in order to cause accelerated tissue regeneration. To make growth factors a more therapeutically viable alternative for the treatment of chronic degenerative diseases, a wide range of natural and synthetic materials have been employed as vehicles for their controlled delivery. The choice of material and design of the carrier device influence the mode of immobilization of growth factors on the scaffolds and their local/systemic administration. From a tissue engineer's perspective, materials could be used for designing scaffolds as well as for delivering single or multiple growth factors. Therefore, this review discusses growth factor delivery systems, with particular reference to carrier-based growth factor delivery systems with a focus on materials.
Collapse
Affiliation(s)
- Rajesh Vasita
- Indian Institute of Technology - Kanpur, Department of Biological Sciences and Bioengineering, Kanpur-208016, Uttar-Pradesh, India.
| | | |
Collapse
|
37
|
La WG, Park S, Yoon HH, Jeong GJ, Lee TJ, Bhang SH, Han JY, Char K, Kim BS. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4051-4060. [PMID: 23839958 DOI: 10.1002/smll.201300571] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Indexed: 06/02/2023]
Abstract
The therapeutic efficacy of drugs often depends on the drug delivery carrier. For efficient delivery of therapeutic proteins, delivery carriers should enable the loading of large doses, sustained release, and retention of the bioactivity of the therapeutic proteins. Here, it is demonstrated that graphene oxide (GO) is an efficient carrier for delivery of therapeutic proteins. Titanium (Ti) substrates are coated with GO through layer-by-layer assembly of positively (GO-NH₃⁺) and negatively (GO-COO⁻) charged GO sheets. Subsequently, a therapeutic protein (bone morphogenetic protein-2, BMP-2) is loaded on the GO-coated Ti substrate with the outermost coating layer of GO-COO⁻ (Ti/GO⁻). The GO coating on Ti substrate enables loading of large doses and the sustained release of BMP-2 with preservation of the structure and bioactivity of the drug. The extent of in vitro osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is higher when they are cultured on Ti/GO- carrying BMP-2 than when they are cultured on Ti with BMP-2. Eight weeks after implantation in mouse models of calvarial defects, the Ti/GO-/BMP-2 implants show more robust new bone formation compared with Ti, Ti/GO-, or Ti/BMP-2 implants. Therefore, GO is an effective carrier for the controlled delivery of therapeutic proteins, such as BMP-2, which promotes osteointegration of orthopedic or dental Ti implants.
Collapse
Affiliation(s)
- Wan-Geun La
- School of Chemical & Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Neves PCF, Abib SDCV, Neves RF, Pircchio O, Saad KR, Saad PF, Simões RS, Moreira MB, Laurino CFDS. Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing. Clinics (Sao Paulo) 2013; 68:1239-46. [PMID: 24141841 PMCID: PMC3782723 DOI: 10.6061/clinics/2013(09)11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The purpose is to study the effects of hyperbaric oxygen therapy and autologous platelet concentrates in healing the fibula bone of rabbits after induced fractures. METHODS A total of 128 male New Zealand albino rabbits, between 6-8 months old, were subjected to a total osteotomy of the proximal portion of the right fibula. After surgery, the animals were divided into four groups (n = 32 each): control group, in which animals were subjected to osteotomy; autologous platelet concentrate group, in which animals were subjected to osteotomy and autologous platelet concentrate applied at the fracture site; hyperbaric oxygen group, in which animals were subjected to osteotomy and 9 consecutive daily hyperbaric oxygen therapy sessions; and autologous platelet concentrate and hyperbaric oxygen group, in which animals were subjected to osteotomy, autologous platelet concentrate applied at the fracture site, and 9 consecutive daily hyperbaric oxygen therapy sessions. Each group was divided into 4 subgroups according to a pre-determined euthanasia time points: 2, 4, 6, and 8 weeks postoperative. After euthanasia at a specific time point, the fibula containing the osseous callus was prepared histologically and stained with hematoxylin and eosin or picrosirius red. RESULTS Autologous platelet concentrates and hyperbaric oxygen therapy, applied together or separately, increased the rate of bone healing compared with the control group. CONCLUSION Hyperbaric oxygen therapy and autologous platelet concentrate combined increased the rate of bone healing in this experimental model.
Collapse
|
39
|
Pohl TLM, Schwab EH, Cavalcanti-Adam EA. Covalent binding of BMP-2 on surfaces using a self-assembled monolayer approach. J Vis Exp 2013. [PMID: 24021994 DOI: 10.3791/50842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) is a growth factor embedded in the extracellular matrix of bone tissue. BMP-2 acts as trigger of mesenchymal cell differentiation into osteoblasts, thus stimulating healing and de novo bone formation. The clinical use of recombinant human BMP-2 (rhBMP-2) in conjunction with scaffolds has raised recent controversies, based on the mode of presentation and the amount to be delivered. The protocol presented here provides a simple and efficient way to deliver BMP-2 for in vitro studies on cells. We describe how to form a self-assembled monolayer consisting of a heterobifunctional linker, and show the subsequent binding step to obtain covalent immobilization of rhBMP-2. With this approach it is possible to achieve a sustained presentation of BMP-2 while maintaining the biological activity of the protein. In fact, the surface immobilization of BMP-2 allows targeted investigations by preventing unspecific adsorption, while reducing the amount of growth factor and, most notably, hindering uncontrolled release from the surface. Both short- and long-term signaling events triggered by BMP-2 are taking place when cells are exposed to surfaces presenting covalently immobilized rhBMP-2, making this approach suitable for in vitro studies on cell responses to BMP-2 stimulation.
Collapse
Affiliation(s)
- Theresa L M Pohl
- Department of Biophysical Chemistry, Institute for Physical Chemistry, University of Heidelberg
| | | | | |
Collapse
|
40
|
McCormick AM, Wijekoon A, Leipzig ND. Specific immobilization of biotinylated fusion proteins NGF and Sema3A utilizing a photo-cross-linkable diazirine compound for controlling neurite extension. Bioconjug Chem 2013; 24:1515-26. [PMID: 23909702 DOI: 10.1021/bc400058n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study we report the successful synthesis of N-(2-mercaptoethyl)-3-(3-methyl-3H-diazirine-3-yl) propanamide (N-MCEP-diazirine), with sulfhydryl and amine photoreactive ends to allow recombinant protein tethering to chitosan films. This regimen allows mimicry of the physiological endeavor of axon pathfinding in the nervous system where neurons rely on cues for guidance during development and regeneration. Our strategy incorporates strong covalent and noncovalent interactions, utilizing N-MCEP-diazirine, maleimide-streptavidin complex, and two custom biotinylated-fusion proteins, nerve growth factor (bNGF), and semaphorin3A (bSema3A). Synthetic yield of N-MCEP-diazirine was 87.3 ± 1.9%. Characteristic absorbance decrease at 348 nm after N-MCEP-diazirine exposure to UV validated the photochemical properties of the diazirine moiety, and the attachment of cross-linker to chitosan films was verified with Fourier transform infrared spectroscopy (FTIR). Fluorescence techniques showed no significant difference in the detection of immobilized proteins compared to absorbing the proteins to films (p < 0.05); however, in vitro outgrowth of dorsal root ganglia (DRG) was more responsive to immobilized bNGF and bSema3A compared to adsorbed bNGF and bSema3A over a 5 day period. Immobilized bNGF significantly increased DRG length over time (p < 0.0001), but adsorbed bNGF did not increase in axon extension from day 1 to day 5 (p = 0.4476). Immobilized bSema3A showed a significant decrease in neurite length (524.42 ± 57.31 μm) at day 5 compared to adsorbed bSema3A (969.13 ± 57.31 μm). These results demonstrate the superiority of our immobilization approach to protein adsorption because biotinylated-fusion proteins maintain their active confirmation and their tethering can be spatially controlled via a UV activated N-MCEP-diazirine cross-linker.
Collapse
Affiliation(s)
- Aleesha M McCormick
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio, United States
| | | | | |
Collapse
|
41
|
Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:106-25. [PMID: 23815376 DOI: 10.1089/ten.teb.2013.0271] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.
Collapse
Affiliation(s)
- Henning Madry
- 1 Center of Experimental Orthopaedics, Saarland University , Homburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Huang YC, Yang YT. Effect of basic fibroblast growth factor released from chitosan-fucoidan nanoparticles on neurite extension. J Tissue Eng Regen Med 2013; 10:418-27. [DOI: 10.1002/term.1752] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 02/06/2013] [Accepted: 03/20/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Yi-Cheng Huang
- Department of Food Science, College of Life Science; National Taiwan Ocean University; Keelung Taiwan
| | - Ya-Ting Yang
- Department of Food Science, College of Life Science; National Taiwan Ocean University; Keelung Taiwan
| |
Collapse
|
43
|
Abstract
STUDY DESIGN Prospective investigation using a posterolateral spinal fusion (PLSF) model in rabbits. OBJECTIVE To assess the effects of platelet-rich plasma (PRP) alone, or with uncultured bone marrow, on bone ingrowth and angiogenesis in experimental PLSF. SUMMARY OF BACKGROUND DATA PRP is an autologous substance potentially beneficial to spinal fusion, because it includes several growth factors that may stimulate bone ingrowth and angiogenesis. However, the results of experimental and clinical investigations on the effectiveness of PRP in spinal fusion are controversial. This study was aimed at analyzing the influence of PRP on bone ingrowth and angiogenesis in experimental PLSF. METHODS Twenty White New Zealand rabbits underwent PLSF at L4-L5 level. The graft material included a ceramic carrier (Pro-Osteon 500R) loaded, in 7 rabbits, with PRP alone on the right side (group 1A) and with uncultured bone marrow in the left side (group 1B). In 7 rabbits, the ceramic carrier was used alone in the right side (group 2A), and with uncultured bone marrow in the left side (group 2B). Six rabbits (group 3) were sham operated on both right and left sides. Six months after surgery, the lumbar spine was harvested en bloc and evaluated by high-resolution radiographs (Faxitron, Wheeling, IL) and histology. RESULTS The radiographical outcome showed a fusion rate of 86% in groups 1A, 1B, and 2B and a fusion rate of 71% in group 2A. No specimen showed a solid fusion in the sham group. Histological analysis revealed new bone formation in the periapophyseal area in groups 1 and 2, but a complete bony bridge between the transverse processes was not observed in any specimen. In all groups, vascular density was significantly greater in the peri- compared with the interapophyseal region. In the PRP group, there was no evidence of increased vascular density in the grafted material compared with the other groups. CONCLUSION In experimental PLSF model in rabbits, PRP was not effective in promoting new bone formation and vascularization.
Collapse
|
44
|
Wu Q, Liu C, Fan L, Shi J, Jia H, Qi Q, Sun L, Chen F. Fabrication of heparinized hierarchically hollow hydroxyapatite microspheres as bone substitute for controlled growth factors delivery. RSC Adv 2013. [DOI: 10.1039/c3ra00095h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Efficacy of Novel Collagen/Gelatin Scaffold With Sustained Release of Basic Fibroblast Growth Factor for Dermis-like Tissue Regeneration. Ann Plast Surg 2012; 69:569-74. [DOI: 10.1097/sap.0b013e318222832f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Carneiro E, Garcia RB, Oliveira RCD, Moraes FGD, Menezes R, Letra A, Canova GC, Cestari TM, Granjeiro JM. Microscopic and radiographic analysis of the effect of particle size of demineralized bovine cancellous bone matrix on the repair of bone defects in femurs of rabbits. J Appl Oral Sci 2012; 13:157-62. [PMID: 20924541 DOI: 10.1590/s1678-77572005000200012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 05/10/2005] [Indexed: 11/22/2022] Open
Abstract
The bone tissue has a great regenerative potential, with ability to completely restore its structure and original functions. In some situations, though, bone defects cannot be self-repaired, thus requiring the use of grafts for a correct treatment and good prognosis. This work aimed at microscopically analyzing the effect of the particle size of demineralized bovine cancellous bone matrix in micro and macrogranular forms on the repair of bone defects in femurs of rabbits, with blood clot used as control. At 1, 3 and 6 months after implantation of the materials, the animals were killed and the anatomic specimens were removed. A foreign body-type granulomatous reaction containing macrophages and multinucleated giant cells in contact with the implanted particles was observed. These results suggest a failure in demineralization and/or interruption of the antigenic potential during production of the biomaterial. It is concluded that the size of the particles did not influence the evolution of the repair process of bone defects, acting only as bone-filler substances, and that the material implanted should be improved by quality control during production, since it may represent a good alternative for bone graft.
Collapse
|
47
|
Ito R, Morimoto N, Liem PH, Nakamura Y, Kawai K, Taira T, Tsuji W, Toi M, Suzuki S. Adipogenesis using human adipose tissue-derived stromal cells combined with a collagen/gelatin sponge sustaining release of basic fibroblast growth factor. J Tissue Eng Regen Med 2012; 8:1000-8. [PMID: 22997068 DOI: 10.1002/term.1611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/04/2012] [Accepted: 08/25/2012] [Indexed: 01/07/2023]
Abstract
We have developed a collagen/gelatin sponge (CGS) that can provide a sustained release of basic fibroblast growth factor (bFGF). In our previous study, it was shown that CGS impregnated with the appropriate dosage of bFGF accelerates dermis-like tissue formation two or three times earlier than an existing collagen sponge. In this study, adipogenesis was evaluated using CGSs disseminated with adipose tissue-derived stem cells (ASCs). Human ASCs were primarily isolated from human adipose tissue that was obtained during breast cancer surgery with informed consent at Kyoto University Hospital. ASCs were isolated from collagenase digests of adipose tissue. ASCs were labelled with PKH26. CGSs (8 mm diameter × 3 mm thickness) were impregnated with bFGF (0.1, 1, 7, 14 µg/cm(2) ) or normal saline solution. Then the labelled cells were disseminated (passage 3) on CGSs at a seeding density of 1 × 10(5) cells/cm(2) and implanted into the back subcutis of nude mice. Six weeks after implantation, adipogenesis at the administered site was evaluated. Immunohistological staining with von Willebrand factor (vWf) was performed to evaluate newly formed capillaries. Newly formed adipose tissue was observed macroscopically and histologically in all groups. The weight and area of regenerated adipose tissue were largest in the 1 µg/cm(2) bFGF group. Under a fluorescent microscope, newly formed adipose tissue in the bFGF-administered group was PKH-positive. These findings show that ASCs differentiated and formed adipose tissue. In this study, we showed that our CGSs impregnated with bFGF could be used as scaffolds with ASCs for adipogenesis.
Collapse
Affiliation(s)
- Ran Ito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gokce A, Yilmaz I, Bircan R, Tonbul M, Gokay NS, Gokce C. Synergistic Effect of TGF-β1 And BMP-7 on Chondrogenesis and Extracellular Matrix Synthesis: An In Vitro Study. Open Orthop J 2012; 6:406-13. [PMID: 23002411 PMCID: PMC3447182 DOI: 10.2174/1874325001206010406] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/13/2012] [Accepted: 07/15/2012] [Indexed: 11/22/2022] Open
Abstract
Introduction: The purpose of the present study seeks to determine the signal timing of BMP–7 and TGF-β1 from a novel chitosan based hydrogel system that may affect chondrocyte proliferation resulting in the presence of a synergism seen conspicuously in consecutive controlled delivery. Methods: Four groups of cultured chondrocytes were seeded on a novel designed chitosan based hydrogel. The hydrogel was left empty (control) in one group and loaded with BMP–7, TGF-β1 and their combination in the other groups, respectively. Hydrogel structure was analyzed with scanning electron microscope. The release kinetics of Growth Factors (GFs) was determined with ELISA. Chondrocyte viability and toxicity after being tested with MTS and collagen type II synthesis, were quantified with western blotting. Canonical regression analysis was used for measuring statistical evaluation. Results: Chitosan based hydrogel allowed controlled release of GFs in different time intervals for BMP–7 and TGF-β1. Double peak concentration gradient was found to be present in the group loaded with both GFs. In this group, substantially higher chondrocyte growth and collagen synthesis were also detected. Conclusions: We concluded that, chitosan based hydrogel systems may be adjusted to release GFs consecutively during biodegradation at the layers of surface, which may increase the cell number and enhance collagen type II synthesis.
Collapse
Affiliation(s)
- Alper Gokce
- Department of Orthopaedics and Traumatology, Namik Kemal University, School of Medicine, Tekirdag, Turkey
| | | | | | | | | | | |
Collapse
|
49
|
Sukarto A, Yu C, Flynn LE, Amsden BG. Co-delivery of adipose-derived stem cells and growth factor-loaded microspheres in RGD-grafted N-methacrylate glycol chitosan gels for focal chondral repair. Biomacromolecules 2012; 13:2490-502. [PMID: 22746668 DOI: 10.1021/bm300733n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The coencapsulation of growth factor-loaded microspheres with adipose-derived stem cells (ASCs) within a hydrogel matrix was studied as a potential means to enhance ASC chondrogenesis in the development of a cell-based therapeutic strategy for the regeneration of partial thickness chondral defects. A photopolymerizable N-methacrylate glycol chitosan (MGC) was employed to form an in situ gel used to encapsulate microspheres loaded with bone morphogenetic protein 6 (BMP-6) and transforming growth factor-β3 (TGF-β3) with human ASCs. ASC viability and retention were enhanced when the Young's modulus of the MGC ranged between 225 and 380 kPa. Grafting an RGD-containing peptide onto the MGC backbone (RGD-MGC) improved ASC viability within the gels, remaining at greater than 90% over 14 days in culture. The effects of BMP-6 and TGF-β3 released from the polymer microspheres on ASC chondrogenesis were assessed, and the level of differentiation was compared to ASCs in control gels containing nongrowth factor-loaded microspheres cultured with and without the growth factors supplied in the medium. There was enhanced expression of chondrogenic markers at earlier time points when the ASCs were induced with the sustained and local release of BMP-6 and TGF-β3 from the microspheres. More specifically, the normalized glycosaminoglycan and collagen type II protein expression levels were significantly higher than in the controls. In addition, the ratio of collagen type II to type I was significantly higher in the microsphere delivery group and increased over time. End-point RT-PCR analysis supported that there was a more rapid induction and enhancement of ASC chondrogenesis in the controlled release group. Interestingly, in all of the assays, there was evidence of chondrogenic differentiation when the ASCs were cultured in the gels in the absence of growth factor stimulation. Overall, the co-delivery of growth-factor-loaded microspheres and ASCs in RGD-modified MGC gels successfully induced ASC chondrogenesis and is a promising strategy for cartilage repair.
Collapse
Affiliation(s)
- Abby Sukarto
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Srinivasan PP, McCoy SY, Jha AK, Yang W, Jia X, Farach-Carson MC, Kirn-Safran CB. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis. Biomed Mater 2012; 7:024109. [PMID: 22455987 DOI: 10.1088/1748-6041/7/2/024109] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.
Collapse
Affiliation(s)
- Padma P Srinivasan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | | | | | | | | | | |
Collapse
|