1
|
Jäger E, Murthy S, Schmidt C, Hahn M, Strobel S, Peters A, Stäubert C, Sungur P, Venus T, Geisler M, Radusheva V, Raps S, Rothe K, Scholz R, Jung S, Wagner S, Pierer M, Seifert O, Chang W, Estrela-Lopis I, Raulien N, Krohn K, Sträter N, Hoeppener S, Schöneberg T, Rossol M, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nat Commun 2020; 11:4243. [PMID: 32843625 PMCID: PMC7447633 DOI: 10.1038/s41467-020-17749-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Increased extracellular Ca2+ concentrations ([Ca2+]ex) trigger activation of the NLRP3 inflammasome in monocytes through calcium-sensing receptor (CaSR). To prevent extraosseous calcification in vivo, the serum protein fetuin-A stabilizes calcium and phosphate into 70-100 nm-sized colloidal calciprotein particles (CPPs). Here we show that monocytes engulf CPPs via macropinocytosis, and this process is strictly dependent on CaSR signaling triggered by increases in [Ca2+]ex. Enhanced macropinocytosis of CPPs results in increased lysosomal activity, NLRP3 inflammasome activation, and IL-1β release. Monocytes in the context of rheumatoid arthritis (RA) exhibit increased CPP uptake and IL-1β release in response to CaSR signaling. CaSR expression in these monocytes and local [Ca2+] in afflicted joints are increased, probably contributing to this enhanced response. We propose that CaSR-mediated NLRP3 inflammasome activation contributes to inflammatory arthritis and systemic inflammation not only in RA, but possibly also in other inflammatory conditions. Inhibition of CaSR-mediated CPP uptake might be a therapeutic approach to treating RA.
Collapse
Affiliation(s)
- Elisabeth Jäger
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Supriya Murthy
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Caroline Schmidt
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Magdalena Hahn
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Sarah Strobel
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Pelin Sungur
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Tom Venus
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Mandy Geisler
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Veselina Radusheva
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Stefanie Raps
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Kathrin Rothe
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Roger Scholz
- Department of Orthopaedic, Trauma and Plastic Surgery, Leipzig University, Liebigstraße 20, Leipzig, Germany
| | - Sebastian Jung
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Sylke Wagner
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Matthias Pierer
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Olga Seifert
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Wenhan Chang
- UCSF Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Irina Estrela-Lopis
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Nora Raulien
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany
| | - Knut Krohn
- DNA Core Unit Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Stephanie Hoeppener
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Manuela Rossol
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany.
| | - Ulf Wagner
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Liebigstraße 19, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Gerbino A, Colella M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int J Mol Sci 2018; 19:E999. [PMID: 29584660 PMCID: PMC5979557 DOI: 10.3390/ijms19040999] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| |
Collapse
|
3
|
Colella M, Gerbino A, Hofer AM, Curci S. Recent advances in understanding the extracellular calcium-sensing receptor. F1000Res 2016; 5. [PMID: 27803801 PMCID: PMC5074356 DOI: 10.12688/f1000research.8963.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaR), a ubiquitous class C G-protein-coupled receptor (GPCR), is responsible for the control of calcium homeostasis in body fluids. It integrates information about external Ca
2+ and a surfeit of other endogenous ligands into multiple intracellular signals, but how is this achieved? This review will focus on some of the exciting concepts in CaR signaling and pharmacology that have emerged in the last few years.
Collapse
Affiliation(s)
- Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari , Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari , Bari, Italy
| | - Aldebaran M Hofer
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School and VA Boston Healthcare System, West Roxbury, MA, USA
| | - Silvana Curci
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School and VA Boston Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
4
|
Cellular Calcium. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
5
|
Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A. Modulation of calcium signalling by mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1374-82. [PMID: 19344663 DOI: 10.1016/j.bbabio.2009.01.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 02/07/2023]
Abstract
In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca(2+) signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species - which in turn modulate components of the Ca(2+) signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca(2+) pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca(2+) via the mitochondrial Ca(2+) uniporter or transporting Ca(2+) from the interior of the organelle into the cytosol by means of Na+/Ca(2+) or H+/Ca(2+) exchangers. Considerable progress in understanding the relationship between Ca(2+) signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.
Collapse
Affiliation(s)
- Ciara Walsh
- Department of Physiology, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | | | |
Collapse
|
6
|
Sehring IM, Klotz C, Beisson J, Plattner H. Rapid downregulation of the Ca2+-signal after exocytosis stimulation in Paramecium cells: essential role of a centrin-rich filamentous cortical network, the infraciliary lattice. Cell Calcium 2008; 45:89-97. [PMID: 18653233 DOI: 10.1016/j.ceca.2008.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/15/2008] [Accepted: 06/17/2008] [Indexed: 01/18/2023]
Abstract
We analysed in Paramecium tetraurelia cells the role of the infraciliary lattice, a cytoskeletal network containing numerous centrin isoforms tightly bound to large binding proteins, in the re-establishment of Ca2+ homeostasis following exocytosis stimulation. The wild type strain d4-2 has been compared with the mutant cell line Delta-PtCenBP1 which is devoid of the infraciliary lattice ("Delta-PtCenBP1" cells). Exocytosis is known to involve the mobilization of cortical Ca2+-stores and a superimposed Ca2+-influx and was analysed using Fura Red ratio imaging. No difference in the initial signal generation was found between wild type and Delta-PtCenBP1 cells. In contrast, decay time was greatly increased in Delta-PtCenBP1 cells particularly when stimulated, e.g., in presence of 1mM extracellular Ca2+, [Ca2+]o. Apparent halftimes of f/f0 decrease were 8.5 s in wild type and approximately 125 s in Delta-PtCenBP1 cells, requiring approximately 30 s and approximately 180 s, respectively, to re-establish intracellular [Ca2+] homeostasis. Lowering [Ca2+]o to 0.1 and 0.01 mM caused an acceleration of intracellular [Ca2+] decay to t(1/2)=33 s and 28 s, respectively, in Delta-PtCenBP1 cells as compared to 8.1 and 5.6, respectively, for wild type cells. We conclude that, in Paramecium cells, the infraciliary lattice is the most efficient endogenous Ca2+ buffering system allowing the rapid downregulation of Ca2+ signals after exocytosis stimulation.
Collapse
Affiliation(s)
- Ivonne M Sehring
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
7
|
Petersen OH. Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 2008; 38:171-200. [PMID: 16107275 DOI: 10.1016/j.ceca.2005.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/11/2023]
Abstract
The development of the calcium signalling field, from its early beginnings some 40 years ago to the present, is described. Calcium signalling in exocrine gland acinar cells and the effects of neurotransmitter- or hormone-elicited rises in the cytosolic calcium ion concentration on ion channel gating are reviewed. The highly polarized arrangement of the organelle systems in living acinar cells is described as well as its importance for the physiologically relevant local and polarized calcium signalling events.
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
8
|
Shuba YM, Dietrich CJ, Oermann E, Cleemann L, Morad M. Local extracellular acidification caused by Ca2+-dependent exocytosis in PC12 cells. Cell Calcium 2008; 44:220-9. [PMID: 18346783 DOI: 10.1016/j.ceca.2007.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 11/06/2007] [Accepted: 12/01/2007] [Indexed: 11/26/2022]
Abstract
Exocytosis of acidic synaptic vesicles may produce local extracellular acidification, but this effect has not been measured directly and its magnitude may depend on the geometry and pH-buffering capacity of both the vesicles and the extracellular space. Here we have used SNARF dye immobilized by conjugation to dextran to measure the release of protons from PC12 cells. The PC12 cells were stimulated by exposure to depolarizing K(+)-rich solution and activation was verified by fluorescence measurement of intracellular Ca(2+) and the release kinetics of GFP-labeled vesicles. Confocal imaging of the pH-dependent fluorescence from the immobile extracellular SNARF dye showed transient acidification around the cell bodies and neurites of activated PC12 cells. The local acidification was abolished when extracellular solution was devoid of Ca(2+) or strong pH-buffering was imposed with 10mM of HEPES. We conclude that the release of secretory vesicles induces local rises in proton concentrations that are co-released from synaptic vesicles with the primary neurotransmitter, and propose that the co-released protons may modulate the signaling in confined micro-domains of synapses.
Collapse
Affiliation(s)
- Yaroslav M Shuba
- Department of Pharmacology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
9
|
Barrow SL, Voronina SG, da Silva Xavier G, Chvanov MA, Longbottom RE, Gerasimenko OV, Petersen OH, Rutter GA, Tepikin AV. ATP depletion inhibits Ca2+ release, influx and extrusion in pancreatic acinar cells but not pathological Ca2+ responses induced by bile. Pflugers Arch 2007; 455:1025-39. [PMID: 17952455 DOI: 10.1007/s00424-007-0360-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Accepted: 09/24/2007] [Indexed: 11/26/2022]
Abstract
Here, we describe novel mechanisms limiting a toxic cytosolic Ca(2+) rise during adenosine 5'-triphosphate (ATP) depletion. We studied the effect of ATP depletion on Ca(2+) signalling in mouse pancreatic acinar cells. Measurements of ATP in isolated cells after adenovirus-mediated expression of firefly luciferase revealed that the cytosolic ATP concentration fell from approximately 1 mM to near zero after treatment with oligomycin plus iodoacetate. ATP depletion resulted in the inhibition of Ca(2+) extrusion, which was accompanied by a remarkably synchronous inhibition of store-operated Ca(2+) influx. Alternative inhibition of Ca(2+) extrusion by carboxyeosin had a much smaller effect on Ca(2+) influx. The coordinated metabolic inhibition of Ca(2+) influx and extrusion suggests the existence of a common ATP-dependent master regulator of both processes. ATP-depletion also suppressed acetylcholine (ACh)-induced Ca(2+) oscillations, which was due to the inhibition of Ca(2+) release from internal stores. This could be particularly important for limiting Ca(2+) toxicity during periods of hypoxia. In contrast, metabolic control of Ca(2+) influx and Ca(2+) release from internal stores spectacularly failed to prevent large toxic Ca(2+) responses induced by bile acids-activators of acute pancreatitis (a frequent and often fatal disease of the exocrine pancreas). The bile acids taurolithocholic acid 3-sulphate (TLC-S), taurochenodeoxycholic acid (TCDC) and taurocholic acid (TC) were used in our experiments. Neither Ca(2+) release from internal stores nor Ca(2+) influx triggered by bile acids were inhibited by ATP depletion, emphasising the danger of these pathological mechanisms.
Collapse
Affiliation(s)
- Stephanie L Barrow
- The Physiological Laboratory, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Barrow SL, Sherwood MW, Dolman NJ, Gerasimenko OV, Voronina SG, Tepikin AV. Movement of calcium signals and calcium-binding proteins: firewalls, traps and tunnels. Biochem Soc Trans 2006; 34:381-4. [PMID: 16709167 DOI: 10.1042/bst0340381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the board game 'Snakes and Ladders', placed on the image of a pancreatic acinar cell, calcium ions have to move from release sites in the secretory region to the nucleus. There is another important contraflow - from calcium entry channels in the basal part of the cell to ER (endoplasmic reticulum) terminals in the secretory granule region. Both transport routes are perilous as the messenger can disappear in any place on the game board. It can be grabbed by calcium ATPases of the ER (masquerading as a snake but functioning like a ladder) and tunnelled through its low buffering environment, it can be lured into the whirlpools of mitochondria uniporters and forced to regulate the tricarboxylic acid cycle, and it can be permanently placed inside the matrix of secretory granules and released only outside the cell. The organelles could trade calcium (e.g. from the ER to mitochondria and vice versa) almost depriving this ion the light of the cytosol and noble company of cytosolic calcium buffers. Altogether it is a rich and colourful story.
Collapse
Affiliation(s)
- S L Barrow
- MRC Secretory Control Research Group, The Physiological Laboratory, The University of Liverpool, UK
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Cell biologists know the calcium ion best as a vital intracellular second messenger that governs countless cellular functions. However, the recent identification of cell-surface detectors for extracellular Ca(2+) has prompted consideration of whether Ca(2+) also functions as a signaling molecule in the extracellular milieu. The cast of Ca(2+) sensors includes the well-characterized extracellular-Ca(2+)-sensing receptor, a G-protein-coupled receptor originally isolated from the parathyroid gland. In addition, other receptors, channels and membrane proteins, such as gap junction hemichannels, metabotropic glutamate receptors, HERG K(+) channels and the receptor Notch, are all sensitive to external [Ca(2+)] fluctuations. A recently cloned Ca(2+) sensor (CAS) in Arabidopsis extends this concept to the plant kingdom. Emerging evidence indicates that [Ca(2+)] in the local microenvironment outside the cell undergoes alterations potentially sufficient to exert biological actions through these sensor proteins. The extracellular space might therefore constitute a much more dynamic Ca(2+) signaling compartment than previously appreciated.
Collapse
Affiliation(s)
- Aldebaran M Hofer
- VA Boston Healthcare System and Brigham & Women's Hospital, Department of Surgery, Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA 02132, USA.
| |
Collapse
|
12
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|
13
|
Caroppo R, Gerbino A, Fistetto G, Colella M, Debellis L, Hofer AM, Curci S. Extracellular calcium acts as a "third messenger" to regulate enzyme and alkaline secretion. ACTA ACUST UNITED AC 2004; 166:111-9. [PMID: 15240573 PMCID: PMC2172151 DOI: 10.1083/jcb.200310145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is generally assumed that the functional consequences of stimulation with Ca2+-mobilizing agonists are derived exclusively from the second messenger action of intracellular Ca2+, acting on targets inside the cells. However, during Ca2+ signaling events, Ca2+ moves in and out of the cell, causing changes not only in intracellular Ca2+, but also in local extracellular Ca2+. The fact that numerous cell types possess an extracellular Ca2+ “sensor” raises the question of whether these dynamic changes in external [Ca2+] may serve some sort of messenger function. We found that in intact gastric mucosa, the changes in extracellular [Ca2+] secondary to carbachol-induced increases in intracellular [Ca2+] were sufficient and necessary to elicit alkaline secretion and pepsinogen secretion, independent of intracellular [Ca2+] changes. These findings suggest that extracellular Ca2+ can act as a “third messenger” via Ca2+ sensor(s) to regulate specific subsets of tissue function previously assumed to be under the direct control of intracellular Ca2+.
Collapse
Affiliation(s)
- Rosa Caroppo
- Dipartimento di Fisiologia Generale ed Ambientale, Università di Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Hofer AM, Gerbino A, Caroppo R, Curci S. The extracellular calcium-sensing receptor and cell-cell signaling in epithelia. Cell Calcium 2004; 35:297-306. [PMID: 15200154 DOI: 10.1016/j.ceca.2003.10.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In multicellular organisms, cells are crowded together in organized communities, surrounded by an interstitial fluid of extremely limited volume. Local communication between adjacent cells is known to occur through gap junctions in cells that are physically connected, or through the release of paracrine signaling molecules (e.g. ATP, glutamate, nitric oxide) that diffuse to their target receptors through the extracellular microenvironment. Recent evidence hints that calcium ions may possibly be added to the list of paracrine messengers that allow cells to communicate with one another. Local fluctuations in extracellular [Ca2+] can be generated as a consequence of intracellular Ca2+ signaling events, owing to the activation of Ca2+ influx and efflux pathways at the plasma membrane. In intact tissues, where the interstitial volumes between cells are much smaller than the cells themselves, this can result in significant alterations in external [Ca2+]. This article will explore emerging evidence that these extracellular [Ca2+] changes can be detected by the extracellular calcium-sensing receptor (CaR) on adjacent cells, forming the basis for a paracrine signaling system. Such a mechanism could potentially provide CaR-expressing cells with the means to sense the Ca2+ signaling status of their neighbors, and expand the utility of the intracellular Ca2+ signal to a domain outside the cell.
Collapse
Affiliation(s)
- Aldebaran M Hofer
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and Boston VA Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
Ca2+ is well established as an intracellular second messenger. However, the molecular identification of a detector for extracellular Ca2+--the extracellular calcium-sensing receptor--has opened up the possibility that Ca2+ might also function as a messenger outside cells. Information about the local extracellular Ca2+ concentration is conveyed to the interior of many cell types through this unique G-protein-coupled receptor. Here, we describe new emerging concepts concerning the signalling function of extracellular Ca2+, with particular emphasis on the extracellular calcium-sensing receptor.
Collapse
Affiliation(s)
- Aldebaran M Hofer
- West Roxbury Veterans Affairs Medical Center and Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Room 2B111, 1400 VFW Parkway, West Roxbury, Massachusetts 02132, USA.
| | | |
Collapse
|
16
|
Nakano K, Takeo T, Sato T, Suga S, Eto K, Kadowaki T, Wakui M. Role of mitochondrial NADH shuttle system in acute amylase secretion by acetylcholine from mouse pancreatic acinar cells. TOHOKU J EXP MED 2002; 198:151-62. [PMID: 12597242 DOI: 10.1620/tjem.198.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using the mice that lack mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), a rate limiting enzyme of the glycerol-phosphate NADH shuttle, we investigated the role of the NADH shuttle system in amylase secretion in response to acetylcholine (ACh) in pancreatic acinar cells. The pancreatic acinar cells of mGPDH-deficient mice were not different in histology and immunohistochemistry from those of wild-type mice. In both types of pancreatic acinar cells from wild-type and mGPDH-deficient mice, ACh similarly potentiated amylase secretion, measured in 30 minutes after the ACh stimulation. A 30 minutes pre-treatment of wild-type cells with aminooxyacetate (AOA), an inhibitor of aspartate aminotransferases of the malate-aspartate NADH shuttle, did not change the rate of ACh-induced amylase secretion, measured in the following 30 minutes. In also mGPDH-deficient cells treated with AOA, thus in this situation all mitochondrial NADH shuttles being dysfunctioning, ACh induced amylase release in a similar amount to that in AOA-untreated cells. The basal levels of intracellular Ca2+ concentration ([Ca2+]i), the ACh-stimulated levels of [Ca2+]i and Ca2+ oscillation patterns in response to ACh were similar in wild-type and mGPDH-deficient cells, and the AOA-treatment did not affect these [Ca2+]i responses. The levels of intracellular concentration of ATP before and during stimulation with ACh were similar in wild-type and mGPDH-defficient cells. In only AOA-treated mGPDH-deficient cells, the level of ATP decreased after the ACh stimulation. These results suggest that acute response of amylase secretion to ACh from mouse pancreatic acinar cells does not require simultaneous functioning of the mitochondrial NADH shuttle system, although the supply of intracellular ATP decreases during the ACh stimulation.
Collapse
Affiliation(s)
- Kyoko Nakano
- Department of Medical Technology, Hirosaki University School of Health Sciences, Hirosaki 036-8564, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
This review examines polarized calcium and calmodulin signaling in exocrine epithelial cells. The calcium ion is a simple, evolutionarily ancient, and universal second messenger. In exocrine epithelial cells, it regulates essential functions such as exocytosis, fluid secretion, and gene expression. Exocrine cells are structurally polarized, with the apical region usually dedicated to secretion. Recent advances in technology, in particular the development of videoimaging and confocal microscopy, have led to the discovery of polarized, subcellular calcium signals in these cell types. The properties of a rich variety of local and global calcium signals have now been described in secretory epithelial cells. Secretagogues stimulate apical-to-basal waves of calcium in many exocrine cell types, but there are some interesting exceptions to this rule. The shapes of intracellular calcium signals are determined by the distribution of calcium-releasing channels and mechanisms that limit calcium elevation. Polarized distribution of calcium-handling mechanisms also leads to transcellular calcium transport in exocrine epithelial cells. This transport can deliver considerable amounts of calcium into secreted fluids. Multicellular polarized calcium signals can coordinate the activity of many individual cells in epithelial secretory tissue. Certain particularly sensitive cells serve as pacemakers for initiation of intercellular calcium waves. Many calcium signaling pathways involve activation of calmodulin. This ubiquitous protein regulates secretion in exocrine cells and also activates interesting feedback interactions with calcium channels and transporters. Very recently it became possible to directly study polarized calcium-calmodulin reactions and to visualize the process of hormone-induced redistribution of calmodulin in live cells. The structural and functional polarity of secretory epithelia alongside the polarity of its calcium and calmodulin signaling present an interesting lesson in tissue organization.
Collapse
Affiliation(s)
- Michael C Ashby
- Medical Research Council Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
18
|
Abstract
The concentration of free calcium ions (Ca(2+)) in the cytosol is precisely regulated and can be rapidly increased in response to various types of stimuli. Since Ca(2+) can be used to control different processes in the same cell, the spatial organization of cytosolic Ca(2+) signals is of considerable importance. Polarized cells have advantages for Ca(2+) studies since localized signals can be related to particular organelles. The pancreatic acinar cell is well-characterized with a clearly polarized structure and function. Since the discovery of the intracellular Ca(2+)-releasing function of inositol 1,4,5-trisphosphate (IP(3)) in the pancreas in the early 1980s, this cell has become a popular study object and is now one of the best-characterized with regard to Ca(2+) signaling properties. Stimulation of pancreatic acinar cells with the neurotransmitter acetylcholine or the hormone cholecystokinin evokes Ca(2+) signals that are either local or global, depending on the agonist concentration and the length of the stimulation period. The nature of the Ca(2+) transport events across the basal and apical plasma membranes as well as the involvement of the endoplasmic reticulum (ER), the nucleus, the mitochondria, and the secretory granules in Ca(2+) signal generation and termination have become much clearer in recent years.
Collapse
Affiliation(s)
- O H Petersen
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool, UK.
| | | | | |
Collapse
|
19
|
Yagodin S, Pivovarova NB, Andrews SB, Sattelle DB. Functional characterization of thapsigargin and agonist-insensitive acidic Ca2+ stores in Drosophila melanogaster S2 cell lines. Cell Calcium 1999; 25:429-38. [PMID: 10579054 DOI: 10.1054/ceca.1999.0043] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of acidic intracellular calcium stores in calcium homeostasis was investigated in the Drosophila Schneider cell line 2 (S2) by means of free cytosolic calcium ([Ca2+]i) and intracellular pH (pHi) imaging together with measurements of total calcium concentrations within intracellular compartments. Both a weak base (NH4Cl, 15 mM) and a Na+/H+ ionophore (monensin, 10 microM) evoked cytosolic alkalinization followed by Ca2+ release from acidic intracellular Ca2+ stores. Pretreatment of S2 cells with either thapsigargin (1 microM), an inhibitor of endoplasmic reticulum Ca(2+)-ATPases, or with the Ca2+ ionophore ionomycin (10 microM) was without effect on the amplitude of Ca2+ release evoked by alkalinization. Application of the cholinergic agonist carbamylcholine (100 microM) to transfected S2-DM1 cells expressing a Drosophila muscarinic acetylcholine receptor (DM1) emptied the InsP3-sensitive Ca2+ store but failed to affect the amplitude of alkalinization-evoked Ca2+ release. Glycyl-L-phenylalanine-beta-naphthylamide (200 microM), a weak hydrophobic base known to permeabilize lysosomes by osmotic swelling, triggered Ca2+ release from internal stores, while application of brefeldin A (10 microM), an antibiotic which disperses the Golgi complex, resulted in a smaller increase in [Ca2+]i. These results suggest that the alkali-evoked calcium release is largely attributable to lysosomes, a conclusion that was confirmed by direct measurements of total calcium content of S2 organelles. Lysosomes and endoplasmic reticulum were the only organelles found to have concentrations of total calcium significantly higher than the cytosol. However, NH4Cl (15 mM) reduced the level of total calcium only in lysosomes. Depletion of acidic Ca2+ stores did not elicit depletion-operated Ca2+ entry. They were refilled upon re-exposure of cells to normal saline ([Ca2+]o = 2 mM), but not by thapsigargin-induced [Ca2+]i elevation in Ca(2+)-free saline.
Collapse
Affiliation(s)
- S Yagodin
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | | | | | |
Collapse
|
20
|
Craske M, Takeo T, Gerasimenko O, Vaillant C, Török K, Petersen OH, Tepikin AV. Hormone-induced secretory and nuclear translocation of calmodulin: oscillations of calmodulin concentration with the nucleus as an integrator. Proc Natl Acad Sci U S A 1999; 96:4426-31. [PMID: 10200278 PMCID: PMC16348 DOI: 10.1073/pnas.96.8.4426] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many important enzyme activities are regulated by Ca2+-dependent interactions with calmodulin (CaM). Some of the most important targets for CaM action are in the nucleus, and Ca2+-dependent CaM translocation into this organelle has been reported. Hormone-evoked cytosolic Ca2+ signals occur physiologically as oscillations, but, so far, oscillations in CaM concentration have not been described. We loaded fluorescent-labeled CaM into pancreatic acinar cells and monitored the fluorescence in various regions by confocal microscopy. Sustained high concentrations of the hormone cholecystokinin or the neurotransmitter acetylcholine evoked a transient movement of cytosolic CaM from the basal nonnuclear area into the secretory granule region and, thereafter, a more substantial and prolonged translocation of CaM into the nucleoplasm. About 50% of the CaM that bound Ca2+ translocated. At a lower hormone concentration, evoking Ca2+ oscillations, regular spikes of increased CaM concentration were seen in the secretory granule region with mirror image spikes of decreased CaM concentration in the basal nonnuclear region. The nucleus was able to integrate the Ca2+ spike-evoked pulses of CaM translocation into a sustained elevation of the nucleoplasmic concentration of this protein.
Collapse
Affiliation(s)
- M Craske
- Medical Research Council Secretory Control Research Group, Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Giovannucci DR, Yule DI, Stuenkel EL. Optical measurement of stimulus-evoked membrane dynamics in single pancreatic acinar cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C732-9. [PMID: 9730956 DOI: 10.1152/ajpcell.1998.275.3.c732] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of pancreatic acinar cells induces the release of digestive enzymes via the exocytotic fusion of zymogen granules and activates postfusion granule membrane retrieval and receptor cycling. In the present study, changes in membrane surface area of rat single pancreatic acinar cells were monitored by cell membrane capacitance (Cm) measurements and by the membrane fluorescent dye FM1-43. When measured with the Cm method, agonist treatment evoked a graded, transient increase in acinar cell surface area averaging 3. 5%. In contrast, a 13% increase in surface area was estimated using FM1-43, corresponding to the fusion of 48 zymogen granules at a rate of 0.5 s-1. After removal of FM1-43 from the surface-accessible membrane, a residual fluorescence signal was shown by confocal microscopy to be localized in endosome-like structures and confined to the apical regions of acinar cells. The development of an optical method for monitoring the membrane turnover of single acinar cells, in combination with measurements of Cm changes, reveals coincidence of exocytotic and endocytotic activity in acinar cells after hormonal stimulation.
Collapse
Affiliation(s)
- D R Giovannucci
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
22
|
Mogami H, Tepikin AV, Petersen OH. Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J 1998; 17:435-42. [PMID: 9430635 PMCID: PMC1170394 DOI: 10.1093/emboj/17.2.435] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mechanism by which agonist-evoked cytosolic Ca2+ signals are terminated has been investigated. We measured the Ca2+ concentration inside the endoplasmic reticulum store of pancreatic acinar cells and monitored the cytoplasmic Ca2+ concentration by whole-cell patch-clamp recording of the Ca2+-sensitive currents. When the cytosolic Ca2+ concentration was clamped at the resting level by a high concentration of a selective Ca2+ buffer, acetylcholine evoked the usual depletion of intracellular Ca2+ stores, but without increasing the Ca2+-sensitive currents. Removal of acetylcholine allowed thapsigargin-sensitive Ca2+ reuptake into the stores, and this process stopped when the stores had been loaded to the pre-stimulation level. The apparent rate of Ca2+ reuptake decreased steeply with an increase in the Ca2+ concentration in the store lumen and it is this negative feedback on the Ca2+ pump that controls the Ca2+ store content. In the absence of a cytoplasmic Ca2+ clamp, acetylcholine removal resulted in a rapid return of the elevated cytoplasmic Ca2+ concentration to the pre-stimulation resting level, which was attained long before the endoplasmic reticulum Ca2+ store had been completely refilled. We conclude that control of Ca2+ reuptake by the Ca2+ concentration inside the intracellular store allows precise Ca2+ signal termination without interfering with store refilling.
Collapse
Affiliation(s)
- H Mogami
- Medical Research Council Secretory Control Research Group, Physiological Laboratory, University of Liverpool, UK
| | | | | |
Collapse
|
23
|
Tepikin AV, Petersen OH. Functional organization of calcium stores in polarized secretory cells and transcellular calcium transport. NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf02461228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|